MTI science, data products, and ground-data processing overview
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Atkins, William H.; Balick, Lee K.; Borel, Christoph C.; Clodius, William B.; Christensen, R. Wynn; Davis, Anthony B.; Echohawk, J. C.; Galbraith, Amy E.; Hirsch, Karen L.; Krone, James B.; Little, Cynthia K.; McLachlan, Peter M.; Morrison, Aaron; Pollock, Kimberly A.; Pope, Paul A.; Novak, Curtis; Ramsey, Keri A.; Riddle, Emily E.; Rohde, Charles A.; Roussel-Dupre, Diane C.; Smith, Barham W.; Smith, Kathy; Starkovich, Kim; Theiler, James P.; Weber, Paul G.
2001-08-01
The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The MTI satellite also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data interpretation and analysis. Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. In addition, the MTI science team has produced detailed site, system and atmospheric models to aid in system design and data analysis. This paper provides an overview of the MTI research objectives, data products and ground data processing.
NASA Astrophysics Data System (ADS)
Wasowski, Janusz; Bovenga, Fabio; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa; Refice, Alberto; Pasquariello, Guido
2016-04-01
Launched in 2014, the European Space Agency (ESA) Sentinel-1 satellite carrying a medium resolution (20 m) C-Band Synthetic Aperture Radar (SAR) sensor holds much promise for new applications of multi-temporal interferometry (MTI) in landslide assessment. Specifically, the regularity of acquisitions, timeliness of data delivery, shorter repeat cycle (currently 12 days with Sentinel-1A sensor), and flexible incidence angle geometry, all imply better practical utility of MTI relying on Sentinel-1 with respect to MTI based on data from earlier ESA's satellite radar C-band sensors (ERS1/2, ENVISAT). Furthermore, the upcoming launch of Sentinel-1B will cut down the repeat cycle to 6 days, thereby further improving temporal coherence and quality and coverage of MTI products. Taking advantage of the Interferometric Wide (IW) Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground), in this work we test the potential of such data for regional scale slope instability detection through MTI. Our test area includes the landslide-prone Apennine Mountains of Southern Italy. We rely on over 30 Sentinel-1 images, most of which acquired in 2015, and MTI processing through the SPINUA algorithm (Stable Points INterferometry in Un-urbanized Areas). The potential of MTI results based on Sentinel-1 data is assessed by comparing the detected ground surface displacements with the MTI results obtained for the same test area using the C-Band data acquired by ERS1/2 and ENVISAT in 1990s and 2000s. Although the initial results are encouraging, it seems evident that longer-term (few years) acquisitions of Sentinel-1 are necessary to reliably detect some extremely slow movements, which were observed in the last two decades and are likely to be still present in peri-urban areas of many hilltop towns in the Apennine Mts. The MTI results obtained from Sentinel-1 data are also locally compared with the MTI outcomes based on the high resolution (3 m) TerraSAR-X imagery. Again, even though there is lack of temporal overlap in the two datasets, the comparison shows some potential benefits of the exploitation different resolution sensor datasets. For example, when considering the costs of MTI applications, an effective approach to slope hazard assessment could rely on the use of coarser imagery MTI to secure long-term wide-area coverage, to be integrated by higher resolution MTI with more focus on urbanized or greater value areas (cf., Wasowski and Bovenga et al., 2014a,b). Now these approaches are facilitated by the regular global coverage and free medium resolution imagery guaranteed by the background satellite radar mission of Sentinel-1. Acknowledgments Study carried out in the framework of the Apulia Space project (PON&REC 2007-2013, Cod: PON03PE_00067_6). We also thank ESA and the German Space Agency (DLR) for providing us radar data. References Wasowski J., Bovenga F. 2014a. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology 174: 103-138. http://dx.doi.org/10.1016/j.enggeo.2014.03.003 Wasowski J., Bovenga F. 2014. Remote Sensing of Landslide Motion with Emphasis on Satellite Multitemporal Interferometry Applications: An Overview. In T. Davies (Ed). Landslide Hazards, Risks and Disasters. p. 345-403. http://dx.doi.org/10.1016/B978-0-12-396452-6.00011-2
Cell Science-02 Payload Overview
NASA Technical Reports Server (NTRS)
Mitchell, Sarah Diane
2014-01-01
The presentation provides an general overview of the Cell Science-02 science and payload operations to the NASA Payload Operations Integrated Working Group. The overview includes a description of the science objectives and specific aims, manifest status, and operations concept.
12 years on - Is the NLM medical text indexer still useful and relevant?
Mork, James; Aronson, Alan; Demner-Fushman, Dina
2017-02-23
Facing a growing workload and dwindling resources, the US National Library of Medicine (NLM) created the Indexing Initiative project in 1996. This cross-library team's mission is to explore indexing methodologies for ensuring quality and currency of NLM document collections. The NLM Medical Text Indexer (MTI) is the main product of this project and has been providing automated indexing recommendations since 2002. After all of this time, the questions arise whether MTI is still useful and relevant. To answer the question about MTI usefulness, we track a wide variety of statistics related to how frequently MEDLINE indexers refer to MTI recommendations, how well MTI performs against human indexing, and how often MTI is used. To answer the question of MTI relevancy compared to other available tools, we have participated in the 2013 and 2014 BioASQ Challenges. The BioASQ Challenges have provided us with an unbiased comparison between the MTI system and other systems performing the same task. Indexers have continually increased their use of MTI recommendations over the years from 15.75% of the articles they index in 2002 to 62.44% in 2014 showing that the indexers find MTI to be increasingly useful. The MTI performance statistics show significant improvement in Precision (+0.2992) and F 1 (+0.1997) with modest gains in Recall (+0.0454) over the years. MTI consistency is comparable to the available indexer consistency studies. MTI performed well in both of the BioASQ Challenges ranking within the top tier teams. Based on our findings, yes, MTI is still relevant and useful, and needs to be improved and expanded. The BioASQ Challenge results have shown that we need to incorporate more machine learning into MTI while still retaining the indexing rules that have earned MTI the indexers' trust over the years. We also need to expand MTI through the use of full text, when and where it is available, to provide coverage of indexing terms that are typically only found in the full text. The role of MTI at NLM is also expanding into new areas, further reinforcing the idea that MTI is increasingly useful and relevant.
NASA Astrophysics Data System (ADS)
Wasowski, Janusz; Bovenga, Fabio; Nitti, Davide Oscar; Tijani, Khalid; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa
2017-04-01
The shorter repeat cycle (6 days since October 2016) and regularity of acquisitions of Sentinel-1A/B with respect to earlier European Space Agency (ESA) satellites with C-band sensors (ERS1/2, ENVISAT) represent the key advantages for the research-oriented and practical applications of multi-temporal interferometry (MTI). The applicability of the Interferometric Wide Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground) to regional scale slope instability detection through MTI has already been demonstrated, e.g., via studies of landslide-prone areas in Italy. Here we focus on the potential of Sentinel-1 data for local (site-specific), MTI-based monitoring and capturing pre-failure signs of slope instability, by exploiting the Persistent and Distributed Scatterers processing capability of the SPINUA algorithm. In particular, we present an example of a retrospective study of a large (over 2 km long) landslide, which took place in 2016 in an active open-cast coal mine in central Europe. This seemingly sudden failure caused destruction of the mining equipment, blocked the mining operations thereby resulting in significant economic losses. For the study, we exploited over 60 Sentinel-1A/B images acquired since November 2014. The MTI results furnished a valuable overview of the ground instability/stability conditions within and around the active mine, even though considerable spatial gaps in information were encountered due to surface disturbance by mining operations. Significantly, the ground surface displacement time series revealed that the 2016 slope failure was preceded by very slow (generally 1-3 cm/yr) creep-like deformations, already present in 2014. The MTI results also indicated that the slope experienced a phase of accelerated movement several weeks prior to the landslide event. Furthermore, the spatio-temporal analysis of interferometric coherence changes in the unstable area (mapped on Sentinel-2 Bottom Of Atmosphere reflectance images processed by using the ESA Sen2Cor processor), indicated a sharp coherence loss in the last few weeks before the slope collapse. The availability of more frequent measurements represents a key improvement for MTI-based ground surface displacement monitoring and this will better support research on slope destabilization processes over time and, ultimately, on slope failure forecasting. Acknowledgments We thank ESA for Sentinel-1 & Sentinel-2 images.
Mobile Technology Interventions for Asthma Self-Management: Systematic Review and Meta-Analysis
Schüz, Benjamin; Walters, Julia; Walters, E Haydn
2017-01-01
Background Mobile technology interventions (MTI) are becoming increasingly popular in the management of chronic health behaviors. Most MTI allow individuals to monitor medication use, record symptoms, or store and activate disease-management action plans. Therefore, MTI may have the potential to improve low adherence to medication and action plans for individuals with asthma, which is associated with poor clinical outcomes. Objective A systematic review and meta-analysis were conducted to evaluate the efficacy of MTI on clinical outcomes as well as adherence in individuals with asthma. As the use of evidence-based behavior change techniques (BCT) has been shown to improve intervention effects, we also conducted exploratory analyses to determine the role of BCT and engagement with MTI as moderators of MTI efficacy. Methods We searched electronic databases for randomized controlled trials up until June 2016. Random effect models were used to assess the effect of MTI on clinical outcomes as well as adherence to preventer medication or symptom monitoring. Mixed effects models assessed whether the features of the MTI (ie, use of BCT) and how often a person engaged with MTI moderated the effects of MTI. Results The literature search located 11 studies meeting the inclusion criteria, with 9 providing satisfactory data for meta-analysis. Compared with standard treatment, MTI had moderate to large effect sizes (Hedges g) on medication adherence and clinical outcomes. MTI had no additional effects on adherence or clinical outcomes when compared with paper-based monitoring. No moderator effects were found, and the number of studies was small. A narrative review of the two studies, which are not included in the meta-analysis, found similar results. Conclusions This review indicated the efficacy of MTI for self-management in individuals with asthma and also indicated that MTI appears to be as efficacious as paper-based monitoring. This review also suggested a need for robust studies to examine the effects of BCT use and engagement on MTI efficacy to inform the evidence base for MTI in individuals with asthma. PMID:28465281
Quantum anomalous Hall Majorana platform
NASA Astrophysics Data System (ADS)
Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.
2018-02-01
We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
NASA Technical Reports Server (NTRS)
Naftel, Chris
2014-01-01
The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.
MEDRank: using graph-based concept ranking to index biomedical texts.
Herskovic, Jorge R; Cohen, Trevor; Subramanian, Devika; Iyengar, M Sriram; Smith, Jack W; Bernstam, Elmer V
2011-06-01
As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as "major headings" by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. We insert a MEDRank step into the MTI and compare MTI's output with and without MEDRank to the MEDLINE indexers' selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs. 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs. 0.460) as was F(2) (3%, 0.408 vs. 0.396). However, overall precision was 3.9% lower (0.268 vs. 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall and F(2). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Rizzo, J A; Bogardus , S T; Leo-Summers, L; Williams, C S; Acampora, D; Inouye, S K
2001-07-01
Delirium, or acute confusional state, is a common and serious occurrence among hospitalized older persons. Current estimates suggest that delirium complicates hospital stays for more than 2.3 million older persons each year, involving more than 17.5 million hospital days and accounting for more than $4 billion (1994 dollars) of Medicare expenditures. A 40% reduction was recently reported in the risk for delirium among hospitalized older persons receiving a multicomponent targeted risk factor intervention (MTI) strategy to prevent delirium, compared with subjects receiving usual hospital care.1 Before recommending that this preventive strategy be implemented in clinical practice, however, the cost implications must be thoroughly examined as well. The present analysis performs net cost evaluations of the MTI for the prevention of delirium among hospitalized patients. Hospital charge and cost-to-charge ratio data are linked to a database of 852 subjects, who were treated with MTI or usual care. Multivariable regression methods were used to help isolate the impact of MTI on hospital costs. These results were then combined with our earlier work on the impact of the MTI on delirium prevention to assess the cost effectiveness of this intervention. The MTI significantly reduced nonintervention costs among subjects at intermediate risk for developing delirium, but not among subjects at high risk. When MTI intervention costs were included, MTI had no significant effect on overall health care costs in the intermediate risk cohort, but raised overall costs in the high risk group. Because the MTI prevented delirium in the intermediate risk group without raising costs, the conclusion reached is that it is a cost effective treatment option for patients at intermediate risk for developing delirium. In contrast, the results suggest that the MTI is not cost effective for subjects at high risk.
MEDRank: using graph-based concept ranking to index biomedical texts
Herskovic, Jorge R.; Cohen, Trevor; Subramanian, Devika; Iyengar, M. Sriram; Smith, Jack W.; Bernstam, Elmer V.
2011-01-01
BACKGROUND As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly-trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. OBJECTIVE To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as “major headings” by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. METHODS We insert a MEDRank step into the MTI and compare MTI’s output with and without MEDRank to the MEDLINE indexers’ selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. RESULTS MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs 0.460) as was F2 (3%, 0.408 vs 0.396). However, overall precision was 3.9% lower (0.268 vs 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. CONCLUSIONS The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall and F2. PMID:21439897
Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.
John, Gordon; Becker, Jürgen; Schwarz, Frank
2017-07-01
The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Control and Non-Payload Communications (CNPC) Prototype Radio Verification Test Report
NASA Technical Reports Server (NTRS)
Bishop, William D.; Frantz, Brian D.; Thadhani, Suresh K.; Young, Daniel P.
2017-01-01
This report provides an overview and results from the verification of the specifications that defines the operational capabilities of the airborne and ground, L Band and C Band, Command and Non-Payload Communications radio link system. An overview of system verification is provided along with an overview of the operation of the radio. Measurement results are presented for verification of the radios operation.
Free piston space Stirling technology program
NASA Technical Reports Server (NTRS)
Dochat, G. R.; Dhar, M.
1989-01-01
MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.
NASA Astrophysics Data System (ADS)
Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.
2002-01-01
The Tropical Pacific Island of Nauru is a US DOE ARM observation site that monitors tropical climate and atmospheric radiation. This observation site is ideal for validating MTI images because of the extensive deployment of continuously operating instruments. MTI images are also useful in assessing the effect of the island on the ocean climate and on the ARM data. An MTI image has been used to determine the spatial distribution of water vapor and sea-surface temperature near the island. The results are compared with a three-dimensional numerical model simulation.
NASA Technical Reports Server (NTRS)
1985-01-01
The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.
Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary
2011-01-01
Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820
MeSH indexing based on automatically generated summaries.
Jimeno-Yepes, Antonio J; Plaza, Laura; Mork, James G; Aronson, Alan R; Díaz, Alberto
2013-06-26
MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzeja, R.
2001-07-26
Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacificmore » Ocean site but were 1-2 percent different over the mid-latitude lake.« less
MeSH indexing based on automatically generated summaries
2013-01-01
Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading. PMID:23802936
Geometric correction and digital elevation extraction using multiple MTI datasets
Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.
2007-01-01
Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.
Ansarypour, Zahra; Shahpiri, Azar
Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd 2+ , H 2 O 2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd 2+ and accumulated more Cd 2+ ions when they were grown in the medium containing CdCl 2 . In addition, the heterologous expression of GST-OsMTI-1b conferred H 2 O 2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
NASA ELV Payload Safety Program Information Exchange
NASA Technical Reports Server (NTRS)
Staubus, Cal; Palo, Tom; Dook, Mike; Donovan, Shawn
2007-01-01
This presentation details the Expendable Launch Vehicle (ELV) Payload Safety Program in its development and plan for implementation. It is an overview of the program's policies, process and requirements.
Comparison and combination of several MeSH indexing approaches.
Yepes, Antonio Jose Jimeno; Mork, James G; Demner-Fushman, Dina; Aronson, Alan R
2013-01-01
MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.
NASA Astrophysics Data System (ADS)
Kito, Hijiri; Iyo, Akira; Wada, Toshimi
2011-01-01
Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.
The NLM Indexing Initiative's Medical Text Indexer.
Aronson, Alan R; Mork, James G; Gay, Clifford W; Humphrey, Susanne M; Rogers, Willie J
2004-01-01
The Medical Text Indexer (MTI) is a program for producing MeSH indexing recommendations. It is the major product of NLM's Indexing Initiative and has been used in both semi-automated and fully automated indexing environments at the Library since mid 2002. We report here on an experiment conducted with MEDLINE indexers to evaluate MTI's performance and to generate ideas for its improvement as a tool for user-assisted indexing. We also discuss some filtering techniques developed to improve MTI's accuracy for use primarily in automatically producing the indexing for several abstracts collections.
International Space Station Payload Training Overview
NASA Technical Reports Server (NTRS)
Underwood, Deborah B.; Noneman, Steven R.; Sanchez, Julie N.
2001-01-01
This paper describes payload crew training-related activities performed by NASA and the U.S. Payload Developer (PD) community for the International Space Station (ISS) Program. It describes how payloads will be trained and the overall training planning and integration process. The overall concept, definition, and template for payload training are described. The roles and responsibilities of individuals, organizations, and groups involved are discussed. The facilities utilized during payload training and the primary processes and activities performed to plan, develop, implement, and administer payload training for ISS crews are briefly described. Areas of improvement to crew training processes that have been achieved or are currently being worked are identified.
Operational support considerations in Space Shuttle prelaunch processing
NASA Technical Reports Server (NTRS)
Schuiling, Roelof L.
1991-01-01
This paper presents an overview of operational support for Space Shuttle payload processing at the John F. Kennedy Space Center. The paper begins with a discussion of the Shuttle payload processing operation itself. It discusses the major organizational roles and describes the two major classes of payload operations: Spacelab mission payload and vertically-installed payload operations. The paper continues by describing the Launch Site Support Team and the Payload Processing Test Team. Specific areas of operational support are then identified including security and access, training, transport and handling, documentation and scheduling. Specific references for further investigatgion are included.
NASA Technical Reports Server (NTRS)
Rossi, David
1991-01-01
Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Mary K.
The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixelmore » in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic classes were analyzed using the algorithm. The tuffs within the Koobi Fora Formation were defined with 100% accuracy using a combination of pure spectra from the basalt, vegetation, and tuff.« less
Supplement to MTI study on selective passenger screening in the mass transit rail environment.
DOT National Transportation Integrated Search
2010-01-01
This supplement updates and adds to MTIs 2007 report on Selective Screening of Rail Passengers (Jenkins and Butterworth MTI 06-07: Selective Screening of Rail Passengers). The report reviews current screening programs implemented (or planned) by n...
Tokuda, Eiichi; Okawa, Eriko; Watanabe, Shunsuke; Ono, Shin-Ichi
2014-03-01
Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.
Approaches to environmental verification of STS free-flier and pallet payloads
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1982-01-01
This paper presents an overview of the environmental verification programs followed on an STS-launched free-flier payload, using the Tracking and Data Relay Satellite (TDRS) as an example, and a pallet payload, using the Office of Space Sciences-1 (OSS-1) as an example. Differences are assessed and rationale given as to why the differing programs were used on the two example payloads. It is concluded that the differences between the programs are due to inherent differences in the payload configuration, their respective mission performance objectives and their operational scenarios rather than to any generic distinctions that differentiate between a free-flier and a pallet payload.
International Space Station Payload Operations Integration Center (POIC) Overview
NASA Technical Reports Server (NTRS)
Ijames, Gayleen N.
2012-01-01
Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).
76 FR 68671 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... incorrect connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation... condition, if not corrected, could cause the level sensor to heat above acceptable limits, possibly.... Degradation of the electrical insulation sleeves of the Low- level indication lamps on the MTI of the flight...
NASA Astrophysics Data System (ADS)
Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon
2015-04-01
Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a considerable hazard to the local population and infrastructure. The case of Haiti suggests that in the future MTI applications can become increasingly more important in cases where little or no conventional monitoring is feasible because of limited funds. Acknowledgements The Italian Spatial Agency (ASI) provided CSK imagery of Haiti in the framework of a scientific collaboration between the Centre National de l'Information Géo-Spatiale (CNIGS), Haiti and the Department of Physics of the Politecnico di Bari, Italy. We also thank Aldo Giovacchini (Consorzio ITA) and Luciano Guerriero for their help with the project.
Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)
NASA Technical Reports Server (NTRS)
Marz, Bryan E.; Ash, Robert L.
1996-01-01
This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.
STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight
NASA Technical Reports Server (NTRS)
1981-01-01
The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.
Spacelab Life Sciences-2 ARC payload - An overview
NASA Technical Reports Server (NTRS)
Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.
1988-01-01
The effects of microgravity on the anatomy and physiology of rodent and primate systems will be investigated on the Spacelab Life Sciences 2 (SLS-2) mission. Here, the payload being developed at NASA Ames Research Center (ARC) is described and illustrated with drawings. The ARC payload will build upon the success of previous missions. Experiments includes asssessment of rodent cardiovascular and vestibular system responses, primate thermoregulation and metabolic responses.
Thermal targets for satellite calibration
NASA Astrophysics Data System (ADS)
Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.
2001-03-01
The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.
NASA Technical Reports Server (NTRS)
Dillman, Robert
2015-01-01
Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).
The Effects of Practicum Experience on the Opinions of Secondary Mathematics Teachers.
ERIC Educational Resources Information Center
Kulm, Gerald
Over a period of five semesters, the attitudes of preservice secondary mathematics teachers participating in seven varieties of educational experiences were measured using the Mathematics Teaching Inventory (MTI). Items on the MTI were scored for modern versus traditional attitudes. Seven subscales were generated by classifying items on the basis…
USDA-ARS?s Scientific Manuscript database
Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...
"I Always Knew I Was Gifted": Latino Males and the Mestiz@ Theory of Intelligences (MTI)
ERIC Educational Resources Information Center
Carrillo, Juan F.
2013-01-01
Drawing on the work on "scholarship boys" (Carrillo, 2010; Hoggart, 1957/2006; Rodriguez, 1982), this qualitative study explores the schooling trajectories of working-class, Mexican-origin "ghetto nerds" (Diaz, 2007) in order to introduce Mestiz@ Theory of Intelligences (MTI). For the purpose of this study, "ghetto…
Multi-terminology indexing for the assignment of MeSH descriptors to medical abstracts in French.
Pereira, Suzanne; Sakji, Saoussen; Névéol, Aurélie; Kergourlay, Ivan; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J
2009-11-14
To facilitate information retrieval in the biomedical domain, a system for the automatic assignment of Medical Subject Headings to documents curated by an online quality-controlled health gateway was implemented. The French Multi-Terminology Indexer (F-MTI) implements a multiterminology approach using nine main medical terminologies in French and the mappings between them. This paper presents recent efforts to assess the added value of (a) integrating four new terminologies (Orphanet, ATC, drug names, MeSH supplementary concepts) into F-MTI's knowledge sources and (b) performing the automatic indexing on the titles and abstracts (vs. title only) of the online health resources. F-MTI was evaluated on a CISMeF corpus comprising 18,161 manually indexed resources. The performance of F-MTI including nine health terminologies on CISMeF resources with Title only was 27.9% precision and 19.7% recall, while the performance on CISMeF resources with Title and Abstract is 14.9 % precision (-13.0%) and 25.9% recall (+6.2%). In a few weeks, CISMeF will launch the indexing of resources based on title and abstract, using nine terminologies.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
NASA Astrophysics Data System (ADS)
Shi, Zhongliang; Lai, Hong; Yao, Shuhua
2012-08-01
Preparation of samarium-doped mesoporous titanium dioxide (Sm/MTiO2) coated magnetite (Fe3O4) photocatalysts (Sm/MTiO2/Fe3O4) and their activities under visible light were reported. The catalysts with Sm/MTiO2 shell and a Fe3O4 core were prepared by coating photoactive Sm/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of Sm(NO3)3 and TBT in the presence of Fe3O4 nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by BET surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of Sm ion content on the photocatalytic activity was studied. The photocatalytic activities of obtained photocatalysts under visible light were estimated by measuring the decomposition rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Sm/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.
Nahar, Laizuman; Nasrin, Fatema; Zahan, Ronok; Haque, Anamul; Haque, Ekramul; Mosaddik, Ashik
2014-01-01
Background: Oxidative stress not only develops complications in diabetic (type 1 and type 2) but also contributes to beta cell destruction in type 2 diabetes in insulin resistance hyperglycemia. Glucose control plays an important role in the pro-oxidant/antioxidant balance. Some antidiabetic agents may by themselves have antioxidant properties independently of their role on glucose control. Objective: The present investigation draws a comparison of the protective antioxidant activity, total phenol content and the antihyperglycemic activity of the methanolic extract of Cajanus cajan root (MCC) and Tamarindus indica seeds (MTI). Materials and Methods: Antidiabetic potentials of the plant extracts were evaluated in alloxan-induced diabetic Swiss albino mice. The plant extracts at the doses of 200 and 400 mg/kg body weight was orally administered for glucose tolerance test during 1-hour study and hypoglycemic effect during 5-day study period in comparison with reference drug Metformin HCl (50 mg/kg). In vitro antioxidant potential of MCC and MTI was investigated by using 1, 1- diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity at 517 nm. Total phenolic content, total antioxidant capacity and reducing power activity was also assayed. Results: There was a significant decrease in fasting serum glucose level (P < 0.001), reduction in blood glucose level (P < 0.001) in 5-days study, observed in the alloxan-induced diabetic mice. The reduction efficacy of blood glucose level of both the extracts is proportional to their dose but MCC is more potent than MTI. Antioxidant study and quantification of phenolic compound of both the extracts revealed that they have high antioxidant capacity. Conclusion: These studies showed that MCC and MTI have both hypoglycemic and antioxidant potential but MCC is more potent than MTI. The present study suggests that both MCC and MTI could be used in managing oxidative stress. PMID:24761124
Overview of OBPR Free Flyer System Concept
NASA Technical Reports Server (NTRS)
Leung, Ronald Y.; Lieberman, Alvin S.
2003-01-01
Contents include the following:OBPR free flyer theme. OBPR free flyer technical activity last 2 years. GSFC integrated mission design center (IMDC) studies. Free flyer assumptions and goals. Free flyer total payload reference concept capabilities. FFM reference payload requirements. FFM mission. FFM medium summary. FFH block diagram FFH spacecraft configuration.concept.
Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.
Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system
NASA Technical Reports Server (NTRS)
Cady, E. C.; Kendle, D. W.
1972-01-01
A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.
Small self-contained payload overview. [Space Shuttle Getaway Special project management
NASA Technical Reports Server (NTRS)
Miller, D. S.
1981-01-01
The low-cost Small Self-Contained Payload Program, also known as the Getaway Special, initiated by NASA for providing a stepping stone to larger scientific and manufacturing payloads, is presented. The steps of 'getting on board,' the conditions of use, the reimbursement policy and the procedures, and the flight scheduling mechanism for flying the Getaway Special payload are given. The terms and conditions, and the interfaces between NASA and the users for entering into an agreement with NASA for launch and associated services are described, as are the philosophy and the rationale for establishing the policy and the procedures.
Neutron Star Interior Composition Explorer (NICE)
NASA Technical Reports Server (NTRS)
Gendreau, Keith C.; Arzoumanian, Zaven
2008-01-01
This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.
NASA Astrophysics Data System (ADS)
Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui
2018-04-01
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.
NASA Astrophysics Data System (ADS)
Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.
1998-03-01
The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.
NASA Technical Reports Server (NTRS)
Cissom, R. D.; Melton, T. L.; Schneider, M. P.; Lapenta, C. C.
1999-01-01
The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304.
Shuttle operations era planning for flight operations
NASA Technical Reports Server (NTRS)
Holt, J. D.; Beckman, D. A.
1984-01-01
The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.
Physical Activity Patterns During School Recess: A Study in Children 6 to 10 Years Old
ERIC Educational Resources Information Center
Lopes, Victor; Vasques, Catarina Margarida Silva; de Oliveira Pereira, Maria Beatriz Ferreira Leite
2006-01-01
The aims of this study were to characterize the spontaneous physical activity of children during school recess, and to estimate variation in physical activity associated with gender and age. A MTI actigraph (Model 7164) was used with a sample of 140 boys and 131 girls, 6 to 10 years of age. MTI counts were converted to METs using a regression…
NASA Technical Reports Server (NTRS)
Sledd, Annette M.; Mueller, Charles W.
1999-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System, was developed to provide Space Station accommodations for small, subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data, command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify power and data interfaces at the development site, Functional Checkout Units to allow Payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the analytical and physical integration processes, and facilitates simpler ISS payload development. The EXPRESS Rack has also formed the basis for the U.S. Life Sciences payload racks on Space Station.
First Spacelab flight - A status report of the joint ESA/NASA mission
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.; Sanfourche, J.-P.
1978-01-01
A general overview of the first Spacelab flight is presented and a table is given listing the payload composition. An accommodation study is presented with emphasis on the configuration, mass status, timeline, and experiment interface specifications. Also considered are flight and ground operations, safety factors, and payload specialists training for the first flight.
Nielsen, Nina O; Soborg, Bolette; Børresen, Malene; Andersson, Mikael; Koch, Anders
2013-01-01
To evaluate the cytokine response pattern in Inuit in Greenland in relation to age, gender, body mass index (BMI), Mycobacterium tuberculosis infection (MTI), and otitis media (OM) to assess whether Inuit may have signs of impaired immune responsiveness to infection. A cross-sectional health assessment was conducted among inhabitants of Maniitsoq, West Greenland, in 2009, and several health outcomes were measured. The prevalence of MTI, overweight, and obesity was assessed among 263 school children and 137 adults, and OM was assessed among the children. Cytokine responses were measured in whole blood cultures after stimulation with phytohemagglutinin or purified protein derivative (PPD). Associations between cytokine concentrations, age, gender, BMI, MTI, and OM were estimated by linear regression. Adults had generally higher cytokine concentrations than children. Children with MTI had 2.7 times higher interleukin (IL)-10 concentrations than those without (P = 0.01), and girls had 80% higher IL-10 than boys (P < 0.01) after phytohemagglutinin stimulation. Interferon (IFN)γ and tumor necrosis factor (TNF) concentrations were strongly elevated among children (P(IFNγ) < 0.001 and P(TNF) < 0.001) and adults (P(IFNγ) < 0.001 and P(TNF) <0.01) with MTI compared to those without after PPD stimulation. Adult women had significantly lower IFNγ (P = 0.03) and TNF (P = 0.04) concentrations than men. TNF was positively correlated with BMI in children (P = 0.01), and IL-10 was positively correlated with BMI in adults (P = 0.0004) after PPD stimulation. We found cytokine patterns similar to those reported from other immune competent study populations. Therefore, the study does not support the suggestion that Inuit may have impaired immune reactivity to infection. Copyright © 2012 Wiley Periodicals, Inc.
Mean trophic level of coastal fisheries landings in the Persian Gulf (Hormuzgan Province), 2002-2011
NASA Astrophysics Data System (ADS)
Razzaghi, Marzieh; Mashjoor, Sakineh; Kamrani, Ehsan
2017-05-01
Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FiB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings ( Y t) ( R=0.88, P<0.001) increased gradually while the Y t of carnivores has slightly declined, and the Y t of herbivores, detritivores and omnivores has increased. Consequently, the MTI significantly decreased ( R =-0.69, P<0.05) at a rate of 0.11 during this decade. The MTI showed a decreasing trend, which indicates exploitation of marine resources. The FiB index also showed a downward trend and negative values from 2002 to 2009, which may be associated with unbalanced structure in the fisheries, but an upward trend from 2009 to 2011. The time variation of the landing profile showed two periods with significant diff erences in their species composition ( R=0.88; P =0.005), and based on analysis of similarity, species have been identified as discriminator species, namely Thunnus albacores and Benthosema pterotum. Results indicate that changes in MTI reflected changes in the Hormuzgan landing structure. The examination of the MTI, FBI, and landing profile (LP) temporal pattern suggests that the status of fishery resources in Hormuzgan inshore waters is overexploited, and provides evidence of the probability that a fishing down process is occurring in this area, and that this trend may continue in the long-term. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.
Comparison and combination of several MeSH indexing approaches
Yepes, Antonio Jose Jimeno; Mork, James G.; Demner-Fushman, Dina; Aronson, Alan R.
2013-01-01
MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI’s performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings. PMID:24551371
1989-05-31
LD1505223589 Budapest MTI in English 2017 GMT 15 May 89 [Text] Budapest, May 15 (MTI)—NATO General Secre- tary Manfred Woerner discussed the missile...Denucle- arization or the Implications of the Interatlantic Crisis "] [Excerpts] While a tremendous majority of the people on earth and all progressive...Avibras is experiencing a financial crisis . At the end of last year, after the Iraqi Government delayed payment on military rocket launchers of
Globalization and the trends of medical technology trade in Turkey.
Semin, Semih; Güldal, Dilek; Demiral, Yücel
2007-05-01
Medical technology trade is one of the most affected health areas by global regulations in the developing countries. The aim of the study is to examine recent changes in medical technology import and export and their results in Turkey. Data show that the total medical technology imports (MTI) increased from $ 34.6 million to $ 3427.9 million between 1970 and 2003. While MTI constituted 3.6% of total imports in 1970 and 1.3% in 1980, this ratio raised up to 4.9% in 2003. The ratio of MTI in total health expenditures were also increased from 7.6% in 1970 to 31.5% in 2003. Medical technology exports (MTE) have been increased from $ 0.9 million in 1970 to $ 303.2 million in 2003. The ratio of MTE to MTI increased from 2.7% to 13.9% between 1970 and 1990 and decreased after 1990, to 8.8%. Our study implied that the medical technology trade in Turkey has been negatively affected and in some respects differs from some other important industries in the globalization era. Nevertheless, detailed comparative studies in different developing countries such as China, Brazil, Mexico and India, are needed to explore the real state of medical technology trade, use and the effects of globalization on these topics.
Automated coregistration of MTI spectral bands
NASA Astrophysics Data System (ADS)
Theiler, James P.; Galbraith, Amy E.; Pope, Paul A.; Ramsey, Keri A.; Szymanski, John J.
2002-08-01
In the focal plane of a pushbroom imager, a linear array of pixels is scanned across the scene, building up the image one row at a time. For the Multispectral Thermal Imager (MTI), each of fifteen different spectral bands has its own linear array. These arrays are pushed across the scene together, but since each band's array is at a different position on the focal plane, a separate image is produced for each band. The standard MTI data products (LEVEL1B_R_COREG and LEVEL1B_R_GEO) resample these separate images to a common grid and produce coregistered multispectral image cubes. The coregistration software employs a direct ``dead reckoning' approach. Every pixel in the calibrated image is mapped to an absolute position on the surface of the earth, and these are resampled to produce an undistorted coregistered image of the scene. To do this requires extensive information regarding the satellite position and pointing as a function of time, the precise configuration of the focal plane, and the distortion due to the optics. These must be combined with knowledge about the position and altitude of the target on the rotating ellipsoidal earth. We will discuss the direct approach to MTI coregistration, as well as more recent attempts to tweak the precision of the band-to-band registration using correlations in the imagery itself.
Pomeroy, Jeremy; Brage, Søren; Curtis, Jeffrey M; Swan, Pamela D; Knowler, William C; Franks, Paul W
2011-04-27
The quantification of the relationships between walking and health requires that walking is measured accurately. We correlated different measures of step accumulation to body size, overall physical activity level, and glucose regulation. Participants were 25 men and 25 women American Indians without diabetes (Age: 20-34 years) in Phoenix, Arizona, USA. We assessed steps/day during 7 days of free living, simultaneously with three different monitors (Accusplit-AX120, MTI-ActiGraph, and Dynastream-AMP). We assessed total physical activity during free-living with doubly labeled water combined with resting metabolic rate measured by expired gas indirect calorimetry. Glucose tolerance was determined during an oral glucose tolerance test. Based on observed counts in the laboratory, the AMP was the most accurate device, followed by the MTI and the AX120, respectively. The estimated energy cost of 1000 steps per day was lower in the AX120 than the MTI or AMP. The correlation between AX120-assessed steps/day and waist circumference was significantly higher than the correlation between AMP steps and waist circumference. The difference in steps per day between the AX120 and both the AMP and the MTI were significantly related to waist circumference. Between-monitor differences in step counts influence the observed relationship between walking and obesity-related traits.
Orbiter CIU/IUS communications hardware evaluation
NASA Technical Reports Server (NTRS)
Huth, G. K.
1979-01-01
The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.
Structural dynamics payload loads estimates: User guide
NASA Technical Reports Server (NTRS)
Shanahan, T. G.; Engels, R. C.
1982-01-01
This User Guide with an overview of an integration scheme to determine the response of a launch vehicle with multiple payloads. Chapter II discusses the software package associated with the integration scheme together with several sample problems. A short cut version of the integration technique is also discussed. The Guide concludes with a list of references and the listings of the subroutines.
Tsatsaronis, George; Balikas, Georgios; Malakasiotis, Prodromos; Partalas, Ioannis; Zschunke, Matthias; Alvers, Michael R; Weissenborn, Dirk; Krithara, Anastasia; Petridis, Sergios; Polychronopoulos, Dimitris; Almirantis, Yannis; Pavlopoulos, John; Baskiotis, Nicolas; Gallinari, Patrick; Artiéres, Thierry; Ngomo, Axel-Cyrille Ngonga; Heino, Norman; Gaussier, Eric; Barrio-Alvers, Liliana; Schroeder, Michael; Androutsopoulos, Ion; Paliouras, Georgios
2015-04-30
This article provides an overview of the first BIOASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BIOASQ assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return concise and user-understandable answers to given natural language questions by combining information from biomedical articles and ontologies. The 2013 BIOASQ competition comprised two tasks, Task 1a and Task 1b. In Task 1a participants were asked to automatically annotate new PUBMED documents with MESH headings. Twelve teams participated in Task 1a, with a total of 46 system runs submitted, and one of the teams performing consistently better than the MTI indexer used by NLM to suggest MESH headings to curators. Task 1b used benchmark datasets containing 29 development and 282 test English questions, along with gold standard (reference) answers, prepared by a team of biomedical experts from around Europe and participants had to automatically produce answers. Three teams participated in Task 1b, with 11 system runs. The BIOASQ infrastructure, including benchmark datasets, evaluation mechanisms, and the results of the participants and baseline methods, is publicly available. A publicly available evaluation infrastructure for biomedical semantic indexing and QA has been developed, which includes benchmark datasets, and can be used to evaluate systems that: assign MESH headings to published articles or to English questions; retrieve relevant RDF triples from ontologies, relevant articles and snippets from PUBMED Central; produce "exact" and paragraph-sized "ideal" answers (summaries). The results of the systems that participated in the 2013 BIOASQ competition are promising. In Task 1a one of the systems performed consistently better from the NLM's MTI indexer. In Task 1b the systems received high scores in the manual evaluation of the "ideal" answers; hence, they produced high quality summaries as answers. Overall, BIOASQ helped obtain a unified view of how techniques from text classification, semantic indexing, document and passage retrieval, question answering, and text summarization can be combined to allow biomedical experts to obtain concise, user-understandable answers to questions reflecting their real information needs.
Transforming War Fighting through the Use of Service Based Architecture (SBA) Technology
2006-05-04
near-real-time video & telemetry to users on network using standard web-based protocols – Provides web-based access to archived video files MTI...Target Tracks Service Capabilities – Disseminates near-real-time MTI and Target Tracks to users on network based on consumer specified geographic...filter IBS SIGINT Service Capabilities – Disseminates near-real-time IBS SIGINT data to users on network based on consumer specified geographic filter
Evaluation of French and English MeSH Indexing Systems with a Parallel Corpus
Névéol, Aurélie; Mork, James G.; Aronson, Alan R.; Darmoni, Stefan J.
2005-01-01
Objective This paper presents the evaluation of two MeSH® indexing systems for French and English on a parallel corpus. Material and methods We describe two automatic MeSH indexing systems - MTI for English, and MAIF for French. The French version of the evaluation resources has been manually indexed with MeSH keyword/qualifier pairs. This professional indexing is used as our gold standard in the evaluation of both systems on keyword retrieval. Results The English system (MTI) obtains significantly better precision and recall (78% precision and 21% recall at rank 1, vs. 37%. precision and 6% recall for MAIF ). Moreover, the performance of both systems can be optimised by the breakage function used by the French system (MAIF), which selects an adaptive number of descriptors for each resource indexed. Conclusion MTI achieves better performance. However, both systems have features that can benefit each other. PMID:16779103
Semi-Automatic Indexing of Full Text Biomedical Articles
Gay, Clifford W.; Kayaalp, Mehmet; Aronson, Alan R.
2005-01-01
The main application of U.S. National Library of Medicine’s Medical Text Indexer (MTI) is to provide indexing recommendations to the Library’s indexing staff. The current input to MTI consists of the titles and abstracts of articles to be indexed. This study reports on an extension of MTI to the full text of articles appearing in online medical journals that are indexed for Medline®. Using a collection of 17 journal issues containing 500 articles, we report on the effectiveness of the contribution of terms by the whole article and also by each section. We obtain the best results using a model consisting of the sections Results, Results and Discussion, and Conclusions together with the article’s title and abstract, the captions of tables and figures, and sections that have no titles. The resulting model provides indexing significantly better (7.4%) than what is currently achieved using only titles and abstracts. PMID:16779044
Ground-truth collections at the MTI core sites
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; Parker, Matthew J.; O'Steen, Byron L.; Pendergast, Malcolm M.; Villa-Aleman, Eliel
2001-08-01
The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation.
Overview for Attached Payload Accommodations and Environments
NASA Technical Reports Server (NTRS)
Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James
2007-01-01
External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.
Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements
NASA Astrophysics Data System (ADS)
Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.
2017-12-01
New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar satellites represent the key improvement for MTI-based slope monitoring. The forecasting of potential slope failures from space is now more feasible. ACKNOWLEDGEMENTS We thank European (ESA) and Italian (ASI) space agencies for S-1 and CSK® Products. We also acknowledge the IT resources made available by ReCaS, a project financed by the MIUR.
NASA Technical Reports Server (NTRS)
Jordan, Lee P.
2013-01-01
The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades.
Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit
2015-01-01
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927
Homeland Security: Unmanned Aerial Vehicles and Border Surveillance
2010-07-08
outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft
Risk factors of significant pain syndrome 90 days after minor thoracic injury: trajectory analysis.
Daoust, Raoul; Emond, Marcel; Bergeron, Eric; LeSage, Natalie; Camden, Stéphanie; Guimont, Chantal; Vanier, Laurent; Chauny, Jean-Marc
2013-11-01
The objective was to identify the risk factors of clinically significant pain at 90 days in patients with minor thoracic injury (MTI) discharged from the emergency department (ED). A prospective, multicenter, cohort study was conducted in four Canadian EDs from November 2006 to November 2010. All consecutive patients aged 16 years or older with MTI were eligible at discharge from EDs. They underwent standardized clinical and radiologic evaluations at 1 and 2 weeks, followed by standardized telephone interviews at 30 and 90 days. A pain trajectory model characterized groups of patients with different pain evolutions and ascertained specific risk factors in each group through multivariate analysis. In this cohort of 1,132 patients, 734 were eligible for study inclusion. The authors identified a pain trajectory that characterized 18.2% of the study population experiencing clinically significant pain (>3 of 10) at 90 days after a MTI. Multivariate modeling found two or more rib fractures, smoking, and initial oxygen saturation below 95% to be predictors of this group of patients. To the authors' knowledge, this is the first prospective study of trajectory modeling to detect risk factors associated with significant pain at 90 days after MTI. These factors may help in planning specific treatment strategies and should be validated in another prospective cohort. © 2013 by the Society for Academic Emergency Medicine.
Alternate nozzle ablative materials program
NASA Technical Reports Server (NTRS)
Kimmel, N. A.
1984-01-01
Four subscale solid rocket motor tests were conducted successfully to evaluate alternate nozzle liner, insulation, and exit cone structural overwrap components for possible application to the Space Shuttle Solid Rocket Motor (SRM) nozzle asasembly. The 10,000 lb propellant motor tests were simulated, as close as practical, the configuration and operational environment of the full scale SRM. Fifteen PAN based and three pitch based materials had no filler in the phenolic resin, four PAN based materials had carbon microballoons in the resin, and the rest of the materials had carbon powder in the resin. Three nozzle insulation materials were evaluated; an aluminum oxide silicon oxide ceramic fiber mat phenolic material with no resin filler and two E-glass fiber mat phenolic materials with no resin filler. It was concluded by MTI/WD (the fabricator and evaluator of the test nozzles) and NASA-MSFC that it was possible to design an alternate material full scale SRM nozzle assembly, which could provide an estimated 360 lb increased payload capability for Space Shuttle launches over that obtainable with the current qualified SRM design.
NASA Technical Reports Server (NTRS)
Honeycutt, John
2017-01-01
Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle Payload fairings of up to 10-meter diameter are being studied Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t Evolved version of SLS will offer Mars-enabling capability of greater than 130 metric tons to LEO SLS offers reduced transit times to the outer solar system by half or greater Higher characteristic energy (C3) also enables larger payloads to destination
An overview of the 1984 Battelle outside users payload model
NASA Astrophysics Data System (ADS)
Day, J. B.; Conlon, R. J.; Neale, D. B.; Fischer, N. H.
1984-10-01
The methodology and projections from a model for the market for non-NASA, non-DOD, reimbursable payloads from the non-Soviet bloc countries over the 1984-2000 AD time period are summarized. High and low forecast ranges were made based on demand forecasts by industrial users, NASA estimates, and other publications. The launches were assumed to be alloted to either the Shuttle or the Ariane. The greatest demand for launch services is expected to come form communications and materials processing payloads, the latter either becoming a large user or remaining a research item. The number of Shuttle payload equivalents over the reference time spanis projected as 84-194, showing the large variance that is dependent on the progress in materials processing operations.
Van Brunt, Kate; Pedersini, Riccardo; Rooney, Jillian; Corrigan, Sheila M
2017-04-01
People with diabetes who use mealtime insulin (MTI) were surveyed about insulin wastage and injection habits when insufficient insulin remains in a disposable prefilled pen/cartridge to administer a full dose in a single injection. Cross-sectional, online, self-reported survey of MTI usage/wastage behaviour in 400 adults with type 1 (n=120) or type 2 (n=280) diabetes mellitus administering >20units/day of MTI via 100units/ml prefilled pens/cartridges for ⩾1month, conducted in France, Germany, Italy and UK. Participants' mean±standard deviation age was 54.5±12.2years, body mass index was 29.9±7.2kg/m 2 and duration of MTI therapy was 8.6±7.8years. They administered 3.7±5.9 injections/day with meals, using 11.3±18.0 prefilled pens/cartridges per month. Overall, 63.5% split the dose across two prefilled pens/cartridges (i.e. administered two injections to obtain a full dose), 15.0% used just what remained in their current pen (i.e. took a lower-than-prescribed dose) and 36.3% discarded prefilled pens/cartridges still containing insulin (i.e. took full dose with new pen). The latter participants discarded a mean 5.5±8.2 prefilled pens/cartridges monthly still containing insulin, each containing 8.6±8.7 units of insulin. Participants who wasted insulin considered it frustrating, time-consuming and painful to inject twice. Patients taking >20units/day MTI can find transitions between insulin pens challenging. This study highlights the need to identify ways of improving transitions between pens to make transitions easier for insulin users, which could potentially improve adherence to prescribed doses and reduce waste. Copyright © 2016 Eli Lilly and Company. Published by Elsevier B.V. All rights reserved.
An overview on the TACTS mission using the new German research aircraft HALO in summer 2012
NASA Astrophysics Data System (ADS)
Engel, Andreas; Boenisch, Harald
2013-04-01
The TACTS (Transport and Composition in the UTLS) mission is the first large atmospheric mission of the new German research aircraft HALO. TACTS aims at improving our understanding of the transport processes which determine the chemical composition in the UTLS with a special emphasis on the transition from summer to fall. The mission was flown in August and September 2012 with a fully equipped aircraft carrying 13 different instruments measuring a wide range of chemical tracers with different lifetimes and different source-sink characteristics. The payload consists of both in-situ and remote sensing instruments. In addition to TACTS the same payload was employed to measure the chemical composition during a large north-south transect as part of the ESMVal project. Data are available up to to altitudes above 15 km, potential temperatures above 400 K and covering the latitude range from 65°S to 80°N. Due to the large payload a very wide range of measurements allows for a very good characterisation of the chemical composition. All instruments performed well and close to complete data sets are available for all flights performed during both missions. We present an overview of the scientific aims of TACTS, the payload, the measurements performed and some selected first results.
Advanced planning for ISS payload ground processing
NASA Astrophysics Data System (ADS)
Page, Kimberly A.
2000-01-01
Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .
Shuttle-Derived Launch Vehicles' Capablities: An Overview
NASA Technical Reports Server (NTRS)
Rothschild, William J.; Bailey, Debra A.; Henderson, Edward M.; Crumbly, Chris
2005-01-01
Shuttle-Derived Launch Vehicle (SDLV) concepts have been developed by a collaborative team comprising the Johnson Space Center, Marshall Space Flight Center, Kennedy Space Center, ATK-Thiokol, Lockheed Martin Space Systems Company, The Boeing Company, and United Space Alliance. The purpose of this study was to provide timely information on a full spectrum of low-risk, cost-effective options for STS-Derived Launch Vehicle concepts to support the definition of crew and cargo launch requirements for the Space Exploration Vision. Since the SDLV options use high-reliability hardware, existing facilities, and proven processes, they can provide relatively low-risk capabilities to launch extremely large payloads to low Earth orbit. This capability to reliably lift very large, high-dollar-value payloads could reduce mission operational risks by minimizing the number of complex on-orbit operations compared to architectures based on multiple smaller launchers. The SDLV options also offer several logical spiral development paths for larger exploration payloads. All of these development paths make practical and cost-effective use of existing Space Shuttle Program (SSP) hardware, infrastructure, and launch and flight operations systems. By utilizing these existing assets, the SDLV project could support the safe and orderly transition of the current SSP through the planned end of life in 2010. The SDLV concept definition work during 2004 focused on three main configuration alternatives: a side-mount heavy lifter (approximately 77 MT payload), an in-line medium lifter (approximately 22 MT Crew Exploration Vehicle payload), and an in-line heavy lifter (greater than 100 MT payload). This paper provides an overview of the configuration, performance capabilities, reliability estimates, concept of operations, and development plans for each of the various SDLV alternatives. While development, production, and operations costs have been estimated for each of the SDLV configuration alternatives, these proprietary data have not been included in this paper.
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.
Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J.
2008-01-01
Background: To assist with the development of a French online quality-controlled health gateway (CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (F-MTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. Objective: In this paper, we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. Methods: The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. Results: There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. Conclusion: F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French. PMID:18998933
Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali
2015-11-05
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.
Post-launch validation of Multispectral Thermal Imager (MTI) data and algorithms
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, B. L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel
1999-10-01
Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL) and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern U.S., Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V&V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in Nevada. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V&V.
Comparative analysis of recent satellite missions for multi-temporal SAR interferometry
NASA Astrophysics Data System (ADS)
Bovenga, Fabio; Refice, Alberto; Belmonte, Antonella; Pasquariello, Guido
2016-10-01
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors.
Hajirezaei, Mohammad R.
2016-01-01
The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5′-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development. PMID:26662272
Levesque, Ives; Sled, John G; Narayanan, Sridar; Santos, A Carlos; Brass, Steven D; Francis, Simon J; Arnold, Douglas L; Pike, G Bruce
2005-02-01
To use quantitative magnetization transfer imaging (qMTI) in an investigation of T1-weighted hypointensity observed in clinical magnetic resonance imaging (MRI) scans of multiple sclerosis (MS) patients, which has previously been proposed as a more specific indicator of tissue damage than the more commonly detected T2 hyperintensity. A cross-sectional study of 10 MS patients was performed using qMTI. A total of 60 MTI measurements were collected in each patient at a resolution of 2 x 2 x 7 mm, over a range of saturation pulses. The observed T1 and T2 were also measured. qMT model parameters were estimated using a voxel-by-voxel fit. A total of 65 T2-hyperintense lesions were identified; 53 were also T1 hypointense. In these black holes, the qMTI-derived semisolid pool fraction F correlated negatively with T(1,obs) (r2 = 0.76; P < 0.0001). The water pool absolute size (PDf) showed a weaker correlation with T(1,obs) (positive, r2 = 0.53; P < 0.0001). The magnetization transfer ratio (MTR) showed a similarly strong correlation with F and a weaker correlation with PDf (r2 = 0.18; P < 0.04). T1 increases in chronic black holes strongly correlated with the decline in semisolid pool size, and somewhat less to the confounding effect of edema. MTR was less sensitive than T(1,obs) to liquid pool changes associated with edema. (c) 2005 Wiley-Liss, Inc.
Microgravity research at the University of Mexico: Experiments in payload G-006
NASA Technical Reports Server (NTRS)
Peralta-Fabi, Ricardo; Mendieta-Jimenez, Javier
1988-01-01
The experiments contained in the G-006 payload related to thin film vapor deposition, vacuum variations in a chamber vented to space, solidification of a Zn-Al-Cu alloy, and multiple location temperature monitoring for thermal model validation are described in detail. A discussion of the expected results is presented, together with the methods selected to conduct the postflight analysis, and finally, a overview of the future activities in this field.
Overview of Payload Processing at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Okrepkie, Christine S.
2015-01-01
The workshop for Lunar Science Applications brings like minded people together to discuss ways to get back to the Moon and showcase cutting edge science and engineering that will help make that a reality. This presentation will be provided to the attendees as a way to showcase and highlight how KSC's over 50 years experience with payload testing, integration, and processing can help the commercial and government space in getting back to the Moon.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Nichols, Kelvin; Bradford, Robert
2003-01-01
This viewgraph presentation provides an overview of a proposed voice communication system for use in remote payload operations performed on the International Space Station. The system, Internet Voice Distribution System (IVoDS), would make use of existing Internet protocols, and offer a number of advantages over the system currently in use. Topics covered include: system description and operation, system software and hardware, system architecture, project status, and technology transfer applications.
Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms
Chang, Leon; Luo, Lin; Palmer, James A; Sutton, Steven; Wilson, Sandy J; Barbier, Ann J; Breitenbucher, James Guy; Chaplan, Sandra R; Webb, Michael
2006-01-01
The reversible fatty acid amide hydrolase (FAAH) inhibitor OL135 reverses mechanical allodynia in the spinal nerve ligation (SNL) and mild thermal injury (MTI) models in the rat. The purpose of this study was to investigate the role of the cannabinoid and opioid systems in mediating this analgesic effect. Elevated brain concentrations of anandamide (350 pmol g−1 of tissue vs 60 pmol g−1 in vehicle-treated controls) were found in brains of rats given OL135 (20 mg kg−1) i.p. 15 min prior to 20 mg kg−1 i.p. anandamide. Predosing rats with OL135 (2–60 mg kg−1 i.p.) 30 min before administration of an irreversible FAAH inhibitor (URB597: 0.3 mg kg−1 intracardiac) was found to protect brain FAAH from irreversible inactivation. The level of enzyme protection was correlated with the OL135 concentrations in the same brains. OL135 (100 mg kg−1 i.p.) reduced by 50% of the maximum possible efficacy (MPE) mechanical allodynia induced by MTI in FAAH+/+mice (von Frey filament measurement) 30 min after dosing, but was without effect in FAAH−/− mice. OL135 given i.p. resulted in a dose-responsive reversal of mechanical allodynia in both MTI and SNL models in the rat with an ED50 between 6 and 9 mg kg−1. The plasma concentration at the ED50 in both models was 0.7 μM (240 ng ml−1). In the rat SNL model, coadministration of the selective CB2 receptor antagonist SR144528 (5 mg kg−1 i.p.), with 20 mg kg−1 OL135 blocked the OL135-induced reversal of mechanical allodynia, but the selective CB1 antagonist SR141716A (5 mg kg−1 i.p.) was without effect. In the rat MTI model neither SR141716A or SR144528 (both at 5 mg kg−1 i.p.), or a combination of both antagonists coadministered with OL135 (20 mg kg−1) blocked reversal of mechanical allodynia assessed 30 min after dosing. In both the MTI model and SNL models in rats, naloxone (1 mg kg−1, i.p. 30 min after OL135) reversed the analgesia (to 15% of control levels in the MTI model, to zero in the SNL) produced by OL135. PMID:16501580
ESA'S Biomass Mission System And Payload Overview
NASA Astrophysics Data System (ADS)
Arcioni, M.; Bensi, P.; Fois, F.; Gabriele, A.; Heliere, F.; Lin, C. C.; Massotti, L.; Scipal, K.
2013-12-01
Earth Explorers are the backbone of the science and research element of ESA's Living Planet Programme, providing an important contribution to the understanding of the Earth system. Following the User Consultation Meeting held in Graz, Austria on 5-6 March 2013, the Earth Science Advisory Committee (ESAC) has recommended implementing Biomass as the 7th Earth Explorer Mission within the frame of the ESA Earth Observation Envelope Programme. This paper will give an overview of the satellite system and its payload. The system technical description presented here is based on the results of the work performed during parallel Phase A system studies by two industrial consortia led by EADS Astrium Ltd. and Thales Alenia Space Italy. Two implementation concepts (respectively A and B) are described and provide viable options capable of meeting the mission requirements.
2015-01-01
guidance, lack of time off, long work hours ) and asks MTIs to indicate the extent to which each has caused stress over the past six months (five-point...questions also ask MTIs about their work and sleep habits. Although the section on specific stressors includes items that assess MTI stress related to...single question on the average number of hours worked in a 30 day, as well as a single item on the number of hours of sleep the MTI is able to
Evaluation of Tier 5 Medical Training Initiative opportunities in dentistry.
Wilson, M A; Burke, M
2012-03-09
This paper reviews the first two years of overseas postgraduate dental placements in the UK under the Medical Training Initiative (MTI), which is part of Tier 5 government authorised exchange. Details of the objectives of the programme, the trainees appointed, specialty areas studied and length of training are described. The methods used for assessing the training are reported. It is concluded that the objectives of the MTI have been met in dentistry and that Tier 5 provides a valuable opportunity for establishing international links in postgraduate clinical dentistry.
Final MTI Data Report: Pilgrim Nuclear Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.
2003-03-17
During the period from May 2000 to September 2001, ocean surface water temperature data was collected at the Pilgrim Nuclear Power Station near Plymouth, MA. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of a local sub-contractor, Marine BioControl Corporation of Sandwich, MA. Permission for setting up the monitoring system was granted by Energy Corporation, which owns the plant site. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.
Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG
NASA Technical Reports Server (NTRS)
Jordan, Lee
2016-01-01
The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades. The author would like to acknowledge Teledyne Brown Engineering and the entire MSG Team for their inputs into this poster.
Status of the assessment phase of the ESA M3 mission candidate LOFT
NASA Astrophysics Data System (ADS)
Corral van Damme, Carlos; Ayre, Mark; Lumb, David; Short, Alexander D.; Rando, Nicola
2012-09-01
LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 - 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.
COSMO - SkyMed Mission Overview
2000-10-01
antenna with range and cross-range steering capabilities; The SAR Payload is an X-band Radar which 0 development and qualification of low mass ...summarised as follows: * Swaths: 20 Kmn to 300 Km SIlfale sflos" Swaccs: regKion: t 350 (a) to support the Payload mass (on ground,"• Access region: -/+ 35...real-time product is requested); situ" product delivery. This raises the problem of the size of the data to be transmitted and the geo- Customisation
Calderón, Juan C; Bolaños, Pura; Caputo, Carlo
2014-12-01
One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.
Fruit Fly Lab - 01 Payload Overview
NASA Technical Reports Server (NTRS)
Lera, Matthew P.; Lu, Zhe
2014-01-01
Presentation to POIWG meeting at MSFC to discuss planned operations for upcoming FFL-01 mission on SpaceX-5. Will show hardware suite used, on-orbit operations, training strategy, and data handling architecture.
NASA Astrophysics Data System (ADS)
Thiebes, Benni; Cuozzo, Giovanni; Callegari, Mattia; Schlögel, Romy; Mulas, Marco; Corsini, Alessandro; Mair, Volkmar
2016-04-01
Corvara landslide in the Italian Dolomites is slow-moving landslide on which extensive research activities have been carried out since the 1990ies, including sub-surface techniques (e.g. drillings, piezometers and inclinometers), surface methods (e.g. geomorphological mapping and GPS measurements), and remote sensing techniques (e.g. multi-temporal radar interferometry (MTI), and recently amplitude-based offset-tracking and UAV-based photogrammetry). The currently active volume of Corvara landslide has been estimated to be approximately 25 million m³ with shear surfaces at depths of 40 m. Displacement velocities greatly vary spatially and temporally, with only a few cm per year in the accumulation zone, and more than 20 m per year in the highly active source zone. Autumn rainfall and spring snow melt, as well as accumulation of snow during winter have been identified as the major displacement triggering and accelerating events. The ongoing landslide movements pose a threat to the municipality of Corvara, the national road 244, extensive ski resort infrastructure and a golf course. Over the last years, the focus for monitoring the Corvara landslide was put on MTI using 16 artificial corner reflectors and on permanent and periodic differential GPS measurements. This aimed for (1) assessing the ongoing displacements of an active and complex landslide, and (2) analysing the benefits and limitations of MTI for landslide monitoring from the perspective of geomorphologists but also for administrative end-user such as civil protection and Geological surveys. Here, we present the latest results of these analyses, and report on the potential of MTI and related investigations, as well as future fields of research.
Émond, Marcel; Sirois, Marie-Josée; Guimont, Chantal; Chauny, Jean-Marc; Daoust, Raoul; Bergeron, Éric; Vanier, Laurent; Camden, Stephanie; Le Sage, Natalie
2015-12-01
To investigate whether minor thoracic injuries (MTIs) relate to subsequent functional limitations. Approximately 75% of patients with an MTI are discharged after an emergency department (ED) visit, whereas significant functional limitations can occur in the weeks that follow. A 19 months' prospective cohort study with a 90-day follow-up was conducted at 4 university-affiliated EDs. Patients 16 years and older with an MTI were assessed at initial ED visit, 7, 14, 30, and 90 days after injury. Functional outcome was measured using the SF-12 scale. General linear model were used to assess outcome. A total of 482 patients were included, of whom 127 (26.3%) were 65 or older. Overall, 147 patients (30.5%) presented with at least 1 rib fracture and 59 subjects (12.2%) with delayed hemothorax. At 90 days, 22.8% of patients still had severe or moderate disabilities on global physical health score. Patients with solely delayed hemothorax and no rib fracture had the lowest global physical health score (46.4 vs 61.1, P < 0.01, effect size = -2.60) than patients with simple MTI. Generally, functional limitations also increase with increments of number of rib fracture detected on radiograph. Outcomes were not different among patients 65 years or older when compared to their younger counterparts. In this prospective study of MTIs, severe to moderate disabilities were present in nearly 1 patient out of 5 at 90 days. The presence of delayed hemothorax and the number of rib fracture were associated with increased functional limitations after a MTI.
Effect of composition gradient on magnetothermal instability modified by shear and rotation
NASA Astrophysics Data System (ADS)
Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar
2018-02-01
We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.
NASA Astrophysics Data System (ADS)
Hamaguchi, Motoyuki; Momida, Hiroyoshi; Oguchi, Tamio
2018-04-01
We study the cathode properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) for Li-ion batteries by performing first-principles calculations. Formation energies and voltages for Li2-xMTiO4 (0 ≤ x ≤ 2) models with rock-salt-based structures considering several Li concentrations (2 - x) are calculated. Two dominant charge/discharge reaction mechanisms associated with redox reactions of M and O are found mainly in the ranges of lower and higher x, respectively. In the higher-x region, the O redox reactions can destabilize atomic structures, because the electron removal from O-p states produces high peaks at the fermi level in the density of states. The structural stability of O using the models with O deficiency is calculated, and the result shows that O can dissociate much more easily than Li in the higher-x region. The critical Li concentration at which the vacancy formation energy of O becomes lower than that of Li is estimated, and the critical x value decreases with increasing number of 3d electrons as M changes from V to Ni. The calculated voltages of Li2MTiO4 with O deficiency are lower than those without O deficiency, showing that the O dissociation degrades battery performances. Our systematic study for the series of M predicts that Li2CrTiO4 may be the best cathode material considering its cathode properties of high voltage and stability against O dissociation.
Overview of the Mars Reconnaissance Orbiter mission
NASA Technical Reports Server (NTRS)
Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.
2002-01-01
The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.
2001-08-01
The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.
Whittaker, Heather T; Zhu, Shenghua; Di Curzio, Domenico L; Buist, Richard; Li, Xin-Min; Noy, Suzanna; Wiseman, Frances K; Thiessen, Jonathan D; Martin, Melanie
2018-07-01
Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T 1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T 1 -weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD. Copyright © 2018. Published by Elsevier Inc.
An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data
NASA Technical Reports Server (NTRS)
Chandler, Gyanesh
2007-01-01
CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2000-01-01
The objectives of the project summarized in this viewgraph presentation are the following: (1) Develop a lightweight and low cost durable Thermal Protection System (TPS) for easy application to reusable launch vehicle payload launchers; (2) Develop quickly processed composite TPS processing and repair techniques; and (3) Develop higher temperature capability tile TPS. The benefits of this technology include reduced installation and operations cost, enhanced payload capability resulting from TPS weight reduction, and enhanced flight envelope and performance resulting from higher temperature capability TPS which can result in improved safety.
Overview of the Life Science Glovebox (LSG) Facility and the Research Performed in the LSG
NASA Technical Reports Server (NTRS)
Cole, J. Michael; Young, Yancy
2016-01-01
The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson Space Center, Teledyne Brown Engineering, MOOG-Bradford Engineering and the entire LSG Team for their inputs into this abstract.
The Infrared Space Observatory (ISO)
NASA Technical Reports Server (NTRS)
Helou, George; Kessler, Martin F.
1995-01-01
ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.
Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy
2011-01-01
Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.
A bottom-up approach to MEDLINE indexing recommendations.
Jimeno-Yepes, Antonio; Wilkowski, Bartłomiej; Mork, James G; Van Lenten, Elizabeth; Fushman, Dina Demner; Aronson, Alan R
2011-01-01
MEDLINE indexing performed by the US National Library of Medicine staff describes the essence of a biomedical publication in about 14 Medical Subject Headings (MeSH). Since 2002, this task is assisted by the Medical Text Indexer (MTI) program. We present a bottom-up approach to MEDLINE indexing in which the abstract is searched for indicators for a specific MeSH recommendation in a two-step process. Supervised machine learning combined with triage rules improves sensitivity of recommendations while keeping the number of recommended terms relatively small. Improvement in recommendations observed in this work warrants further exploration of this approach to MTI recommendations on a larger set of MeSH headings.
Multi-terminology indexing for the assignment of MeSH descriptors to medical abstracts in French
Pereira, Suzanne; Sakji, Saoussen; Névéol, Aurélie; Kergourlay, Ivan; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J.
2009-01-01
Background: To facilitate information retrieval in the biomedical domain, a system for the automatic assignment of Medical Subject Headings to documents curated by an online quality-controlled health gateway was implemented. The French Multi-Terminology Indexer (F-MTI) implements a multiterminology approach using nine main medical terminologies in French and the mappings between them. Objective: This paper presents recent efforts to assess the added value of (a) integrating four new terminologies (Orphanet, ATC, drug names, MeSH supplementary concepts) into F-MTI’s knowledge sources and (b) performing the automatic indexing on the titles and abstracts (vs. title only) of the online health resources. Methods: F-MTI was evaluated on a CISMeF corpus comprising 18,161 manually indexed resources. Results: The performance of F-MTI including nine health terminologies on CISMeF resources with Title only was 27.9% precision and 19.7% recall, while the performance on CISMeF resources with Title and Abstract is 14.9 % precision (−13.0%) and 25.9% recall (+6.2%). Conclusion: In a few weeks, CISMeF will launch the indexing of resources based on title and abstract, using nine terminologies. PMID:20351910
Calderón, Juan C; Bolaños, Pura; Caputo, Carlo
2011-01-01
Abstract We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca2+ dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca2+ release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P < 0.01 between groups), respectively. The MT-II fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca2+ reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t1) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca2+ reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca2+ transients between fibres MT-I and MT-II could be related to the inactivation of Ca2+ release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and adhered to Laminin, to study muscle fatigue and demonstrated fibre-type-dependent, fatigue-induced kinetic changes in both Ca2+ release and reuptake. PMID:21878526
Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations
NASA Technical Reports Server (NTRS)
Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.
2015-01-01
This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.
Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel
2014-01-01
JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.
Structural Safety of a Hubble Space Telescope Science Instrument
NASA Technical Reports Server (NTRS)
Lou, M. C.; Brent, D. N.
1993-01-01
This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.
Launch Services Safety Overview
NASA Technical Reports Server (NTRS)
Loftin, Charles E.
2008-01-01
NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities
NASA Technical Reports Server (NTRS)
Griner, James H.
2014-01-01
NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.
1991-07-02
at the Plumbrook Station located in Sundusky, Ohio was conducted during November 1987 to confirm payload operation under vacuum and to calibrate the...DURATION STAFF TIM SDC, AZ SPIRIT-II 11/2/87 to O’Connor 11/6/87 VACUUM TEST Plumbrook SPEAR-I 11/3/87 to Wheeler Station , 11/6/87 & Sweeney Sandusky...reception by the ground stations , that signal also will be received in the payload and relayed to the ground stations . 2.5.2 Overview The LIFE I 17
NASA Astrophysics Data System (ADS)
Hernandez, S.; Blasco, J.; Henriksen, V.; Samuelsson, H.; Navasquillo, O.; Grimsgaard, M.; Mellab, K.
2017-11-01
Proba-V is the third mission of ESA's Programme for In-orbit Technology Demonstration (IOD), based on a small, high performance satellite platform and a compact payload. Besides, the main satellite instrument aiming at Vegetation imaging, Proba-V embarks five technological payloads providing early flight opportunities for novel instruments and space technologies. Successfully launched by the ESA VEGA launcher in May 2013, it has now completed its commissioning and the full calibration of platform, main instrument and additional payloads and is, since last October, fully operational. The High dEnsity space foRM cOnnector Demonstration or HERMOD is the last payload selected to fly on Proba-V. The payload objective is to validate through an actual launch and in orbit high-density optical fibre cable assembly, cumulate space heritage for fibre optics transmission and evaluate possible degradation induced by the space environment compared to on-ground tests. The future applications of this technology are for intrasatellite optical communications in view of mass reduction, the electrical grounding simplification and to increase the transmission rate. The project has been supported under an ESA GSTP contract. T&G Elektro (Norway) developed and tested the different optical cable assembly to be validated in the payload. The electrooptic modules, control, power and mechanical interfaces have been developed by DAS Photonics (Spain). The payload contains four optical channels to be studied through the experiment, two assemblies with MTP/PC connectors and two assemblies with MPO/APC connectors. Optical data is transmitted in the four independent channels using two optoelectronic conversion modules (SIOS) working at 100Mbps including 2 full duplex channels each. A FPGA is used to generate, receive and compare the different binary patterns. The number of errors (if any) and Bit Error Rate (BER) is sent to the satellite TM interface. HERMOD successfully went through all mechanical and environmental tests before the integration in a very limited time. The telemetry data is currently sent to ground on daily basis. All the channels have survived the launch and no BER has been measured with the exception of channel 2, currently recording a BER of 3.06*10-16, that exhibits from time to time a burst of errors due to synchronizing issues of the initial data frame. It is expected to observe during the operating life of the payload the first errors within the channel 4 which was designed on purpose with reduced power margin. This paper will present the full overview of the HERMOD technology demonstrator including the development, testing, validation activity, integration, commissioning and 1 year in-orbit exploitation results.
Small Payload Integration and Testing Project Development
NASA Technical Reports Server (NTRS)
Sorenson, Tait R.
2014-01-01
The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has mainly focused on large payloads for space flight beginning with the Apollo program to the assembly and resupply of the International Space Station using the Space Shuttle. NASA KSC is currently working on contracting manned Low Earth Orbit (LEO) to commercial providers, developing Space Launch System, the Orion program, deep space manned programs which could reach Mars, and providing technical expertise for the Launch Services Program for science mission payloads/satellites. KSC has always supported secondary payloads and smaller satellites as the launch provider; however, they are beginning to take a more active role in integrating and testing secondary payloads into future flight opportunities. A new line of business, the Small Payload Integration and Testing Services (SPLITS), has been established to provide a one stop shop that can integrate and test payloads. SPLITS will assist high schools, universities, companies and consortiums interested in testing or launching small payloads. The goal of SPLITS is to simplify and facilitate access to KSC's expertise and capabilities for small payloads integration and testing and to help grow the space industry. An effort exists at Kennedy Space Center to improve the external KSC website. External services has partnered with SPLITS as a content test bed for attracting prospective customers. SPLITS is an emerging effort that coincides with the relaunch of the website and has a goal of attracting external partnerships. This website will be a "front door" access point for all potential partners as it will contain an overview of KSC's services, expertise and includes the pertinent contact information.
NASA Astrophysics Data System (ADS)
Bennett, Ian Graham
Automatic Dependent Surveillance-Broadcast (ADS-B) is quickly becoming the new standard for more efficient air traffic control, but as a satellite/ground-based hybrid system it faces limitations on its usefulness over oceans and remote areas. Tracking of aircraft from space presents many challenges that if overcome will greatly increase the safety and efficiency of commercial air travel in these areas. This thesis presents work performed to develop a flight-ready ADS-B receiver payload for the CanX-7 technology demonstration satellite. Work presented includes a simulation of payload performance and coverage area, the design and testing of a single-feed circularly polarized L-band antenna, the design of software to control the payload and manage its data, and verification of the performance of the hardware prior to integration with the satellite and launch. Also included is a short overview of results from the seven-month aircraft tracking campaign conducted with the spacecraft.
Methodologies for launcher-payload coupled dynamic analysis
NASA Astrophysics Data System (ADS)
Fransen, S. H. J. A.
2012-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.
Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2013-01-01
NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.
GAIA payload module mechanical development
NASA Astrophysics Data System (ADS)
Touzeau, S.; Sein, E.; Lebranchu, C.
2017-11-01
Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.
NASA Technical Reports Server (NTRS)
1985-01-01
An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.
NASA's Space Launch System: Deep-Space Delivery for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.
NASA Astrophysics Data System (ADS)
Linzer, Lindsay; Mhamdi, Lassaad; Schumacher, Thomas
2015-01-01
A moment tensor inversion (MTI) code originally developed to compute source mechanisms from mining-induced seismicity data is now being used in the laboratory in a civil engineering research environment. Quantitative seismology methods designed for geological environments are being tested with the aim of developing techniques to assess and monitor fracture processes in structural concrete members such as bridge girders. In this paper, we highlight aspects of the MTI_Toolbox programme that make it applicable to performing inversions on acoustic emission (AE) data recorded by networks of uniaxial sensors. The influence of the configuration of a seismic network on the conditioning of the least-squares system and subsequent moment tensor results for a real, 3-D network are compared to a hypothetical 2-D version of the same network. This comparative analysis is undertaken for different cases: for networks consisting entirely of triaxial or uniaxial sensors; for both P and S-waves, and for P-waves only. The aim is to guide the optimal design of sensor configurations where only uniaxial sensors can be installed. Finally, the findings of recent laboratory experiments where the MTI_Toolbox has been applied to a concrete beam test are presented and discussed.
Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo
2014-01-01
Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels. PMID:24676665
Space Station Freedom resource allocation accommodation of technology payload requirements
NASA Technical Reports Server (NTRS)
Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.
1990-01-01
An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.
Earth resources instrumentation for the Space Station Polar Platform
NASA Technical Reports Server (NTRS)
Donohoe, Martin J.; Vane, Deborah
1986-01-01
The spacecraft and payloads of the Space Station Polar Platform program are described in a brief overview. Present plans call for one platform in a descending morning-equator-crossing orbit at 824 km and two or three platforms in ascending afternoon-crossing orbits at 542-824 km. The components of the NASA Earth Observing System (EOS) and NOAA payloads are listed in tables and briefly characterized, and data-distribution requirements and the mission development schedule are discussed. A drawing of the platform, a graph showing the spectral coverage of the EOS instruments, and a glossary of acronyms are provided.
Optical Payload for the STARE Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, L; Riot, V; De Vries, W
2011-03-13
Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.
Highly efficient, very low-thrust transfer to geosynchronous orbit - Exact and approximate solutions
NASA Astrophysics Data System (ADS)
Redding, D. C.
1984-04-01
An overview is provided of the preflight, postflight, and accuracy analysis of the Titan IIIC launch vehicle that injects payloads into geosynchronous orbits. The postflight trajectory reconstruction plays an important role in determining payload injection accuracy. Furthermore, the postflight analysis provides useful information about the characteristics of measuring instruments subjected to a flight environment. Suitable approaches for meeting mission specifications, trajectory requirements, and instrument constraints are considered, taking into account the importance of preflight trajectory analysis activities. Gimbal flip avoidance algorithms in the flight software, and considerable beta gimbal analysis ensures a singularity-free trajectory.
Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview
NASA Technical Reports Server (NTRS)
Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.
2000-01-01
This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.
NASA Astrophysics Data System (ADS)
Wasowski, J.; Chiaradia, M.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Milillo, G.; Guerriero, L.
2014-12-01
The improving temporal and spatial resolutions of new generation space-borne X-Band SAR sensors such as COSMO-SkyMed (CSK) constellation, and therefore their better monitoring capabilities, will guarantee increasing and more efficient use of multi-temporal interferometry (MTI) in landslide investigations. Thanks to their finer spatial resolution with respect to C-band data, X-band InSAR applications are very promising also for monitoring smaller landslides and single engineering structures sited on potentially unstable slopes. This work is focused on the detection of precursory signals of an impending slope failure from MTI time series of ground deformations obtained by exploiting 3 m resolution CSK data. We show the case of retrospectively captured pre-failure strains related to the landslide which occurred on January 2014 close to the town of Marina di Andora. The landslide caused the derailment of a train and the interruption of the railway line connecting north-western Italy to France. A dataset of 56 images acquired in STRIPMAP HIMAGE mode by CSK constellation from October 2008 to May 2014 was processed through SPINUA algorithm to derive the ground surface deformation map and the time series of displacement rates for each coherent radar target. We show that a cluster of moving targets coincides with the structures (buildings and terraces) affected by the 2014 landslide. The analysis of the MTI time series further shows that the targets had been moving since 2009, and thus could have provided a forewarning signal about ongoing slope or engineering structure instability. Although temporal landslide prediction remains difficult even via in situ monitoring, the presented case study indicates that MTI relying on high resolution radars such as CSK can provide very useful information for slope hazard mapping and possibly for early warning. Acknowledgments DIF provided contribution to data analysis within the framework of CAR-SLIDE project funded by MIUR (PON01_00536).
NASA Astrophysics Data System (ADS)
Yudin, V. A.; England, S.; Liu, H.; Solomon, S. C.; Immel, T. J.; Maute, A. I.; Burns, A. G.; Foster, B.; Wu, Q.; Goncharenko, L. P.
2013-12-01
We examine the capability of novel configurations of community models, WACCM-X and TIME-GCM, to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Mesosphere-Thermosphere-Ionosphere (MTI) system. In these configurations the lower atmosphere of WACCM-X is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of Global Modeling and Assimilation Office at NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics the simulations in the MTI are capable to reproduce observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. These 'terrestrial-weather' driven simulations with day-to-day variable solar and geomagnetic inputs can provide background state (first guess) and error statistics for the inverse algorithms of new NASA missions, ICON and GOLD at locations and time of observations in the MTI region. With two different viewing geometries (sun-synchronous and geostationary) of instruments, ICON and GOLD will provide complimentary global observations of temperature, winds and constituents to constrain the first-principle forecast models. This paper will discuss initial design of Observing Simulation Experiments (OSE) in WACCM-X/GEOS-5 and TIME-GCM. As recognized, OSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. They can guide on how to integrate/combine information from different instruments. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying tidal dynamics and their effects in models by combination of sun-synchronous and geostationary observations of ICON and GOLD. We will also discuss how correlative space-borne and ground-based observations can verify OSE results in the observable and non-observable regions of the MTI.
Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C
2003-12-10
BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.
Containment challenges in HPAPI manufacture for ADC generation.
Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan
2017-06-01
Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Myhre, Craig A.
2000-01-01
The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.
Guidelines for Hosted Payloads Integration Product Overview
2014-05-08
nro.mil NRO Hans Koenigsmann hans.koenigsmann@spacex.com SpaceX James Koory james.koory@rocket.com Rocket Brian Kosinski Kosinski.Brian@ssd.loral.com...Milligen fvanmilligen@jdsu.com JDSU Marvin VanderWeg marvin.vanderwag@spacex.com SpaceX Gerrit VanOmmering gerrit.vanommering@sslmda.com SSL Michael
An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.
2009-01-01
Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.
Overview of the Phoenix Entry, Descent and Landing System
NASA Technical Reports Server (NTRS)
Grover, Rob
2005-01-01
A viewgraph presentation on the entry, descent and landing system of Phoenix is shown. The topics include: 1) Phoenix Mission Goals; 2) Payload; 3) Aeroshell/Entry Comparison; 4) Entry Trajectory Comparison; 5) Phoenix EDL Timeline; 6) Hypersonic Phase; 7) Parachute Phase; 8) Terminal Descent Phase; and 9) EDL Communications.
STS-95 Mission Highlights Resources Tape
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.
Technology Overview and Assessment for Small-Scale EDL Systems
NASA Technical Reports Server (NTRS)
Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.
2016-01-01
Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.
NASA Technical Reports Server (NTRS)
Wright, Michael R.
1999-01-01
With over two dozen missions since the first in 1986, the Hitchhiker project has a reputation for providing quick-reaction, low-cost flight services for Shuttle Small Payloads Project (SSPP) customers. Despite the successes, several potential improvements in customer payload integration and test (I&T) deserve consideration. This paper presents suggestions to Hitchhiker customers on how to help make the I&T process run smoother. Included are: customer requirements and interface definition, pre-integration test and evaluation, configuration management, I&T overview and planning, problem mitigation, and organizational communication. In this era of limited flight opportunities and new ISO-based requirements, issues such as these have become more important than ever.
NASA Technical Reports Server (NTRS)
Berg, Jared J.
2014-01-01
Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.
STS-114 Discovery Return to Flight: International Space Station Processing Overview
NASA Technical Reports Server (NTRS)
2005-01-01
Bruce Buckingham, NASA Public Affairs, introduces Scott Higgenbotham, STS-114 Payload Manager. Higgenbotham gives a power point presentation on the hardware that is going to fly in the Discovery Mission to the International Space Station. He presents a layout of the hardware which includes The Logistics Flight 1 (LF1) launch package configuration Multipurpose Logistics Module (MPLM), External Stowage Platform-2 (ESP-2) and the Lightweight Mission Peculiar Equipment Support Structure Carrier (LMC). He explains these payloads in detail. The LF-1 team is also shown in the International Space Station Processing Facility. This presentation ends with a brief question and answer period.
An Attached Payload Operations Center (APOC) at the Goddard Space Flight Center (GSFC), volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
An overview of the APOC is given. For Spacelab payloads channel 2 and 3 data are input via a Statistical Multiplexer (SM) to the various SIPS functions. These include recording of the data on High Density Recorders (HDR), DQM and demultiplexing of the composite data stream by the High Rate Demultiplexer (HRDM). This system performs the inverse functions of the onboard Spacelab High Rate Multiplexer (HRM) enabling access to the data streams as multiplexed onboard the Spacelab. The contents and characteristics of channels one, two and three data as downlinked by the Tracking and Data Relay Satellite System (TDRSS) ku-band are given.
Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario
2017-01-01
During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry
Belmonte, Antonella; Nutricato, Raffaele; Nitti, Davide O.; Chiaradia, Maria T.
2018-01-01
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period. PMID:29702588
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.
Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T
2018-04-27
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.
Lewis, Laura A.; Polanski, Krzysztof; de Torres-Zabala, Marta; Bowden, Laura; Jenkins, Dafyd J.; Hill, Claire; Baxter, Laura; Truman, William; Prusinska, Justyna; Hickman, Richard; Wild, David L.; Ott, Sascha; Buchanan-Wollaston, Vicky; Beynon, Jim
2015-01-01
Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. PMID:26566919
Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray
2015-11-01
Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.
Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B
1991-12-06
A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph J.; Jordan, Lee P.
2008-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.
X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys
NASA Astrophysics Data System (ADS)
Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi
2009-01-01
We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.
Tangential velocity measurement using interferometric MTI radar
Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.
2006-01-03
Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.
Peng, Ting; Sun, Xiaochun; Mumm, Rita H
2014-01-01
Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity as well as seed chipping and tissue sampling approaches to facilitate genotyping. With selfing approaches, two generations of selfing rather than one for trait fixation (i.e. 'F2 enrichment' as per Bonnett et al. in Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75-85, 2005) were utilized to eliminate bottlenecking due to extremely low frequencies of desired genotypes in the population. The efficiency indicators such as total number of plants grown across generations, total number of marker data points, total number of generations, number of seeds sampled by seed chipping, number of plants requiring tissue sampling, and number of pollinations (i.e. selfing and crossing) were considered in comparisons of breeding strategies. A breeding strategy involving seed chipping and a two-generation selfing approach (SC + SELF) was determined to be the most efficient breeding strategy in terms of time to market and resource requirements. Doubled haploidy may have limited utility in trait fixation for MTI under the defined breeding scenario. This outcome paves the way for optimizing the last step in the MTI process, version testing, which involves hybridization of female and male RP conversions to create versions of the converted hybrid for performance evaluation and possible commercial release.
James Webb Space Telescope Project (JWST) Overview
NASA Technical Reports Server (NTRS)
Dutta, Mitra
2008-01-01
This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.
Stadlbauer, Andreas; Zimmermann, Max; Kitzwögerer, Melitta; Oberndorfer, Stefan; Rössler, Karl; Dörfler, Arnd; Buchfelder, Michael; Heinz, Gertraud
2017-06-01
Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO 2 ]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO 2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO 2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0.899) among all biomarkers. Conclusion MR imaging-derived oxygen metabolism and neovascularization characterization may be useful for grading and IDH mutation detection of gliomas and requires only 7 minutes of extra imaging time. © RSNA, 2016 Online supplemental material is available for this article.
Dalton, T; Fu, K; Enders, G C; Palmiter, R D; Andrews, G K
1996-01-01
Exposure to low levels of cadmium reduces fertility. In male mice spermatogenesis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 mumol Cd/kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 mumol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 mumol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 2. C Figure 3. Figure 4. A Figure 4. A Figure 4. B Figure 4. B Figure 4. B Figure 4. B Figure 4. D4 Figure 4. D4 Figure 4. D6 Figure 4. D6 Figure 4. D8 Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 6. F PMID:8834864
LMSS - From low data rate to voice services
NASA Astrophysics Data System (ADS)
Rogard, R.
1992-03-01
An overview of ESA's approach towards the introduction of Land Mobile Communications in Europe is presented. Emphasis is placed on a description of the payload called EMS to be launched on a host satellite, the Italsat-F2 spacecraft, and the definition of services which are most appropriate for a first-generation-operating Land Mobile Satellite System, namely, PRODAT, a message-handling system, and Europhone, an original approach to 'voice' systems. Attention is given to the EMS payload, characteristics, and capacity, the IF processor and channelization, and market considerations. It is shown that the optimization of the satellite characteristics and the mix of services to be provided are the key elements of a successful entry into the market.
High Speed Balancing Applied to the T700 Engine
NASA Technical Reports Server (NTRS)
Walton, J.; Lee, C.; Martin, M.
1989-01-01
The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.
MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence.
Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2015-06-15
Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using 'learning to rank'. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. The software is available upon request. © The Author 2015. Published by Oxford University Press.
MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2015-01-01
Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. Methods: We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using ‘learning to rank’. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. Results: MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. Availability and implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn PMID:26072501
Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E
2017-01-01
During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.
Antibody-mediated delivery of therapeutics for cancer therapy.
Parakh, Sagun; Parslow, Adam C; Gan, Hui K; Scott, Andrew M
2016-01-01
Antibody-conjugated therapies (ACTs) combine the specificity of monoclonal antibodies to target cancer cells directly with highly potent payloads, often resulting in superior efficacy and/or reduced toxicity. This represents a new approach to the treatment of cancer. There have been highly promising clinical trial results using this approach with improvements in linker and payload technology. The breadth of current trials examining ACTs in haematological malignancies and solid tumours indicate the potential for clinical impact. This review will provide an overview of ACTs currently in clinical development as well as the principles of antibody delivery and types of payloads used, including cytotoxic drugs, radiolabelled isotopes, nanoparticle-based siRNA particles and immunotoxins. The focus of much of the clinical activity in ACTs has, understandably, been on their use as a monotherapy or in combination with standard of care drugs. This will continue, as will the search for better targets, linkers and payloads. Increasingly, as these drugs enter routine clinical care, important questions will arise regarding how to optimise ACT treatment approaches, including investigation of resistance mechanisms, biomarker and patient selection strategies, understanding of the unique toxicities of these drugs, and combinatorial approaches with standard therapies as well as emerging therapeutic agents like immunotherapy.
Human Mars Entry, Descent and Landing Architectures Study Overview
NASA Technical Reports Server (NTRS)
Polsgrove, Tara T.; Dwyer Cianciolo, Alicia
2016-01-01
Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.
AFRL Research in Plasma-Assisted Combustion
2013-10-23
Scramjet propulsion Non-equilibrium flows Diagnostics for scramjet controls Boundary-layer transition Structural sciences for...hypersonic vehicles Computational sciences for hypersonic flight 3 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Overview Research...within My Division HIFiRE-5 Vehicle Launched 23 April 2012 can payload transition section Orion S-30 Focus on hypersonic flight: scalability
Status report on the activities of National Balloon Facility at Hyderabad
NASA Astrophysics Data System (ADS)
Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar
National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.
Active Rack Isolation System Program and Technical Status
NASA Technical Reports Server (NTRS)
Bushnell, Glenn; Fialho, Ian; Allen, James; Quraishi, Naveed
2000-01-01
The Boeing Active Rack Isolation System (ARIS) is one of the means used to isolate acceleration-sensitive scientific experiments from structurally transmitted disturbances aboard the International Space Station. The presentation provides an overview of ARIS and technical issues associated with the development of the active control system. An overview of ARIS analytical models is presented along with recent isolation performance predictions made using these models. Issues associated with commanding and capturing ARIS data are discussed and possible future options based on the ARIS ISS Characterization Experiment (ICE) Payload On-orbit Processor (POP) are outlined. An overview of the ARIS-ICE experiment scheduled to fly on ISS Flight 6A is presented. The presentation concludes with a discussion of recent- developmental work that includes passive rack damping, umbilical redesigns and advanced multivariable control design methods.
How to Prune Trees, Jinsi Kupogoa Mti, Swahili version
Peter Bedker; Joseph O' Brien; Manfred Mielke
1995-01-01
Utangulizi-Lengo la kupogoa miti ni kupata mimea yenye afya, nguvu, na ya kuvutia. Lengo hilo litafikiwa kwa kufuata taratibu za kupogoa, na kwa kuelewa namna gani, wakati gani, na sababu za kupogoa miti.
STS-95 Post Flight Presentation
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-95 flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "whiteroom" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The primary objectives, which include the conducting of a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the HST Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads are discussed in both the video and still photo presentation.
The partnership: Space shuttle, space science, and space station
NASA Technical Reports Server (NTRS)
Culbertson, Philip E.; Freitag, Robert F.
1989-01-01
An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.
Heavy-Lift for a New Paradigm in Space Operations
NASA Technical Reports Server (NTRS)
Morris, Bruce; Burkey, Martin
2010-01-01
NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.
A New Planning Template for Transit-Oriented Development
DOT National Transportation Integrated Search
2001-09-01
The Mineta Transportation Institute (MTI) at San Josi State University assigned a project team to design a planning template for transit-oriented development (TOD) that incorporates an understanding of nonwork travel, that is, trips for shopping, eat...
Potential terrorist uses of highway-borne hazardous materials.
DOT National Transportation Integrated Search
2010-01-01
The Department of Homeland Security (DHS) has requested that the Mineta Transportation Institutes National Transportation Security Center of Excellence (MTI NTSCOE) provide any research it has or insights it can provide on the security risks creat...
Automatic inference of indexing rules for MEDLINE
Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent
2008-01-01
Background: Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. Methods: In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Results: Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. Conclusion: We expect the sets of ILP rules obtained in this experiment to be integrated into MTI. PMID:19025687
A recent advance in the automatic indexing of the biomedical literature.
Névéol, Aurélie; Shooshan, Sonya E; Humphrey, Susanne M; Mork, James G; Aronson, Alan R
2009-10-01
The volume of biomedical literature has experienced explosive growth in recent years. This is reflected in the corresponding increase in the size of MEDLINE, the largest bibliographic database of biomedical citations. Indexers at the US National Library of Medicine (NLM) need efficient tools to help them accommodate the ensuing workload. After reviewing issues in the automatic assignment of Medical Subject Headings (MeSH terms) to biomedical text, we focus more specifically on the new subheading attachment feature for NLM's Medical Text Indexer (MTI). Natural Language Processing, statistical, and machine learning methods of producing automatic MeSH main heading/subheading pair recommendations were assessed independently and combined. The best combination achieves 48% precision and 30% recall. After validation by NLM indexers, a suitable combination of the methods presented in this paper was integrated into MTI as a subheading attachment feature producing MeSH indexing recommendations compliant with current state-of-the-art indexing practice.
Automatic inference of indexing rules for MEDLINE.
Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent
2008-11-19
Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. We expect the sets of ILP rules obtained in this experiment to be integrated into MTI.
Reflective random indexing for semi-automatic indexing of the biomedical literature.
Vasuki, Vidya; Cohen, Trevor
2010-10-01
The rapid growth of biomedical literature is evident in the increasing size of the MEDLINE research database. Medical Subject Headings (MeSH), a controlled set of keywords, are used to index all the citations contained in the database to facilitate search and retrieval. This volume of citations calls for efficient tools to assist indexers at the US National Library of Medicine (NLM). Currently, the Medical Text Indexer (MTI) system provides assistance by recommending MeSH terms based on the title and abstract of an article using a combination of distributional and vocabulary-based methods. In this paper, we evaluate a novel approach toward indexer assistance by using nearest neighbor classification in combination with Reflective Random Indexing (RRI), a scalable alternative to the established methods of distributional semantics. On a test set provided by the NLM, our approach significantly outperforms the MTI system, suggesting that the RRI approach would make a useful addition to the current methodologies.
Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Weinstein, Roy
1993-01-01
For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.
Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J
2008-11-06
To assist with the development of a French online quality-controlled health gateway(CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (FMTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. In this paper,we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French.
Extracting Characteristics of the Study Subjects from Full-Text Articles
Demner-Fushman, Dina; Mork, James G
2015-01-01
Characteristics of the subjects of biomedical research are important in determining if a publication describing the research is relevant to a search. To facilitate finding relevant publications, MEDLINE citations provide Medical Subject Headings that describe the subjects’ characteristics, such as their species, gender, and age. We seek to improve the recommendation of these headings by the Medical Text Indexer (MTI) that supports manual indexing of MEDLINE. To that end, we explore the potential of the full text of the publications. Using simple recall-oriented rule-based methods we determined that adding sentences extracted from the methods sections and captions to the abstracts prior to MTI processing significantly improved recall and F1 score with only a slight drop in precision. Improvements were also achieved in directly assigning several headings extracted from the full text. These results indicate the need for further development of automated methods capable of leveraging the full text for indexing. PMID:26958181
Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.
Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.
2017-01-01
This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.
NASA Technical Reports Server (NTRS)
Schneider, Michelle
2003-01-01
This viewgraph representation provides an overview of the Telescience Resource Kit. The Telescience Resource Kit is a pc-based telemetry and command system that will be used by scientists and engineers to monitor and control experiments located on-board the International Space Station (ISS). Topics covered include: ISS Payload Telemetry and Command Flow, kit computer applications, kit telemetry capabilities, command capabilities, and training/testing capabilities.
Transportation systems analyses. Volume 2: Technical/programmatics
NASA Astrophysics Data System (ADS)
1993-05-01
The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.
Toumi, Héla; Boumaiza, Moncef; Millet, Maurice; Radetski, Claudemir Marcos; Camara, Baba Issa; Felten, Vincent; Masfaraud, Jean-François; Férard, Jean-François
2018-04-19
We studied the combined acute effect (i.e., after 48 h) of deltamethrin (a pyrethroid insecticide) and malathion (an organophosphate insecticide) on Daphnia magna. Two approaches were used to examine the potential interaction effects of eight mixtures of deltamethrin and malathion: (i) calculation of mixture toxicity index (MTI) and safety factor index (SFI) and (ii) response surface methodology coupled with isobole-based statistical model (using generalized linear model). According to the calculation of MTI and SFI, one tested mixture was found additive while the two other tested mixtures were found no additive (MTI) or antagonistic (SFI), but these differences between index responses are only due to differences in terminology related to these two indexes. Through the surface response approach and isobologram analysis, we concluded that there was a significant antagonistic effect of the binary mixtures of deltamethrin and malathion that occurs on D. magna immobilization, after 48 h of exposure. Index approaches and surface response approach with isobologram analysis are complementary. Calculation of mixture toxicity index and safety factor index allows identifying punctually the type of interaction for several tested mixtures, while the surface response approach with isobologram analysis integrates all the data providing a global outcome about the type of interactive effect. Only the surface response approach and isobologram analysis allowed the statistical assessment of the ecotoxicological interaction. Nevertheless, we recommend the use of both approaches (i) to identify the combined effects of contaminants and (ii) to improve risk assessment and environmental management.
BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Matthew W.; Stone, James M.; Bogdanovic, Tamara
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-coremore » clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.« less
Nieć, Dawid; Kunicki, Paweł K
2015-10-01
Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Landry, B. J.; Blair, D.; Causey, J.; Collins, J.; Davis, A.; Fernandez-Kim, V.; Kennedy, J.; Pate, N.; Kearney, C.; Schayer, C.; Turk, E.; Cherry, M. L.; Fava, C.; Granger, D.; Stewart, M.; Guzik, T. G.
2017-12-01
High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The presentation, led by undergraduate Physics student Brad Landry, will cover the student team effort in developing the COTEL system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, lessons learned for student-led science projects, and future plans.
Final payload test results for the RemoveDebris active debris removal mission
NASA Astrophysics Data System (ADS)
Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.
2017-09-01
Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.
Modal Testing of Seven Shuttle Cargo Elements for Space Station
NASA Technical Reports Server (NTRS)
Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)
2001-01-01
From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.
NASA Technical Reports Server (NTRS)
Elliott, John; Alkalai, Leon
2010-01-01
The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.
Space applications for high temperature superconductivity - Brief review
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1990-01-01
An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.
Planning Systems for Distributed Operations
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.
2002-01-01
This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.
Human Mars Entry, Descent, and Landing Architecture Study Overview
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Polsgrove, Tara T.
2016-01-01
The Entry, Descent, and Landing (EDL) Architecture Study is a multi-NASA center activity to analyze candidate EDL systems as they apply to human Mars landing in the context of the Evolvable Mars Campaign. The study, led by the Space Technology Mission Directorate (STMD), is performed in conjunction with the NASA's Science Mission Directorate and the Human Architecture Team, sponsored by NASA's Human Exploration and Operations Mission Directorate. The primary objective is to prioritize future STMD EDL technology investments by (1) generating Phase A-level designs for selected concepts to deliver 20 t human class payloads, (2) developing a parameterized mass model for each concept capable of examining payloads between 5 and 40 t, and (3) evaluating integrated system performance using trajectory simulations. This paper summarizes the initial study results.
STS-82 Post Flight Presentation
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-82 crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley present a video and still picture overview of their mission. Included in the presentation are the following: the pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad, various panoramic views of the shuttle on the pad, the countdown, engine ignition, launch, shuttle roll maneuver, separation of the Solid Rocket Boosters (SRB) from the shuttle, survey of the payload bay with the Shuttle's 50-foot remote manipulator system (RMS), the successful retrieve of the Hubble Space Telescope (HST), EVAs to repair HST, release of HST, and the shuttle's landing.
Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS
NASA Technical Reports Server (NTRS)
Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.
2017-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.
On the Feasibility of a Generalized Linear Program
1989-03-01
generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,
Constellation Launch Vehicles Overview
NASA Technical Reports Server (NTRS)
Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve
2009-01-01
This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.
Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam
NASA Astrophysics Data System (ADS)
Lu, Xi Xi; Oeurng, Chantha; Le, Thi Phuong Quynh; Thuy, Duong Thi
2015-11-01
Dam construction is one of the main factors resulting in riverine sediment changes, which in turn cause river degradation or aggradation downstream. The main objective of this work is to examine the sediment budget affected by a sequence of dams constructed upstream in the lower reach of the Red River. The study is based on the longer-term annual data (1960-2010) with a complementary daily water and sediment data set (2008-2010). The results showed that the stretch of the river changed from sediment surplus (suggesting possible deposition processes) into sediment deficit (possible erosion processes) after the first dam (Thac Ba Dam) was constructed in 1972 and changed back to deposition after the second dam (Hoa Binh Dam) was constructed in 1985. The annual sediment deposition varied between 1.9 Mt/y and 46.7 Mt/y with an annual mean value of 22.9 Mt/y (1985-2010). The sediment deposition at the lower reach of the Red River would accelerate river aggradation which would change river channel capacity in the downstream of the Red River. The depositional processes could be sustained or changed back to erosional processes after more dams (the amount of sediment deposit was much less after the latest two dams Tuyen Quang Dam in 2009 and Sonla Dam in 2010) are constructed, depending on the water and sediment dynamics. This study revealed that the erosional and depositional processes could be shifted for the same stretch of river as affected by a sequence of dams and provides useful insights in river management in order to reduce flood frequency along the lower reach of the Red River.
NASA's Space Launch System: A New Opportunity for CubeSats
NASA Technical Reports Server (NTRS)
Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.
2016-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for CubeSats and secondary payloads, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018.
Mechanical shear and tensile characteristics of selected biomass stems
USDA-ARS?s Scientific Manuscript database
Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...
High-Accuracy Measurement of Small Movement of an Object behind Cloth Using Airborne Ultrasound
NASA Astrophysics Data System (ADS)
Hoshiba, Kotaro; Hirata, Shinnosuke; Hachiya, Hiroyuki
2013-07-01
The acoustic measurement of vital information such as breathing and heartbeat in the standing position whilst the subject is wearing clothes is a difficult problem. In this paper, we present the basic experimental results to measure small movement of an object behind cloth. We measured acoustic characteristics of various types of cloth to obtain the transmission loss through cloth. To observe the relationship between measurement error and target speed under a low signal-to-noise ratio (SNR), we tried to measure the movement of an object behind cloth. The target was placed apart from the cloth to separate the target reflection from the cloth reflection. We found that a small movement of less than 6 mm/s could be observed using the M-sequence, moving target indicator (MTI) filter, and tracking phase difference, when the SNR was less than 0 dB. We also present the results of theoretical error analysis in the MTI filter and phase tracking for high-accuracy measurement. Characteristics of the systematic error were clarified.
A Recent Advance in the Automatic Indexing of the Biomedical Literature
Névéol, Aurélie; Shooshan, Sonya E.; Humphrey, Susanne M.; Mork, James G.; Aronson, Alan R.
2009-01-01
The volume of biomedical literature has experienced explosive growth in recent years. This is reflected in the corresponding increase in the size of MEDLINE®, the largest bibliographic database of biomedical citations. Indexers at the U.S. National Library of Medicine (NLM) need efficient tools to help them accommodate the ensuing workload. After reviewing issues in the automatic assignment of Medical Subject Headings (MeSH® terms) to biomedical text, we focus more specifically on the new subheading attachment feature for NLM’s Medical Text Indexer (MTI). Natural Language Processing, statistical, and machine learning methods of producing automatic MeSH main heading/subheading pair recommendations were assessed independently and combined. The best combination achieves 48% precision and 30% recall. After validation by NLM indexers, a suitable combination of the methods presented in this paper was integrated into MTI as a subheading attachment feature producing MeSH indexing recommendations compliant with current state-of-the-art indexing practice. PMID:19166973
Névéol, Aurélie; Zeng, Kelly; Bodenreider, Olivier
2006-01-01
Objective This paper explores alternative approaches for the evaluation of an automatic indexing tool for MEDLINE, complementing the traditional precision and recall method. Materials and methods The performance of MTI, the Medical Text Indexer used at NLM to produce MeSH recommendations for biomedical journal articles is evaluated on a random set of MEDLINE citations. The evaluation examines semantic similarity at the term level (indexing terms). In addition, the documents retrieved by queries resulting from MTI index terms for a given document are compared to the PubMed related citations for this document. Results Semantic similarity scores between sets of index terms are higher than the corresponding Dice similarity scores. Overall, 75% of the original documents and 58% of the top ten related citations are retrieved by queries based on the automatic indexing. Conclusions The alternative measures studied in this paper confirm previous findings and may be used to select particular documents from the test set for a more thorough analysis. PMID:17238409
Neveol, Aurélie; Zeng, Kelly; Bodenreider, Olivier
2006-01-01
This paper explores alternative approaches for the evaluation of an automatic indexing tool for MEDLINE, complementing the traditional precision and recall method. The performance of MTI, the Medical Text Indexer used at NLM to produce MeSH recommendations for biomedical journal articles is evaluated on a random set of MEDLINE citations. The evaluation examines semantic similarity at the term level (indexing terms). In addition, the documents retrieved by queries resulting from MTI index terms for a given document are compared to the PubMed related citations for this document. Semantic similarity scores between sets of index terms are higher than the corresponding Dice similarity scores. Overall, 75% of the original documents and 58% of the top ten related citations are retrieved by queries based on the automatic indexing. The alternative measures studied in this paper confirm previous findings and may be used to select particular documents from the test set for a more thorough analysis.
GOES (Geostationary Operational Environmental Satellite)-Next Overview.
1985-09-01
shows the locations and sizes of warm and cold eddies. r * Hydrological services. GOES (and polar orbiter) data are used to produce maps and charts...rationale used to develop specifications for the N next generation of satellites of this series. The payload * instruments of the current satellites are...reviewed in con- junction with the products prepared from their data outputs. The rationale used by the National Weather Service (NWS) in developing
Spacecraft System Integration and Test: SSTI Lewis critical design audit
NASA Technical Reports Server (NTRS)
Brooks, R. P.; Cha, K. K.
1995-01-01
The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.
STS-34: Mission Overview Briefing
NASA Technical Reports Server (NTRS)
1989-01-01
Live footage shows Milt Heflin, the Lead Flight Director participating in the STS-34 Mission Briefing. He addresses the primary objective, and answered questions from the audience and other NASA Centers. Heflin also mentions the Shuttle Solar Backscatter Ultraviolet secondary payload, and several experiments. These experiments include Growth Hormone Crystal Distribution (Plants), Polymer Morphology, Sensor Technology Experiment, Mesoscale Lightning Experiment, Shuttle Student Involvement Program "Ice Crystals", and the Air Force Maui Optical Site.
Neurolab - A Space Shuttle Mission Dedicated to Neuroscience Research
NASA Technical Reports Server (NTRS)
1997-01-01
Session JA5 includes short reports concerning: (1) NASA/NIH Neurolab Collaborations; (2) Neurolab Mission: An Example of International Cooperation; (3) Neurolab: An Overview of the Planned Scientific Investigations; (4) EDEN: A Payload for NEUROLAB, dedicated to Neuro Vestibular Research; (5) Neurolab Experiments on the Role of Visual Cues in Microgravity Spatial Orientation; and (6) The Role of Space in the Exploration of the Mammalian Vestibular System.
Telescience Resource Kit Software Lifecycle
NASA Technical Reports Server (NTRS)
Griner, Carolyn S.; Schneider, Michelle
1998-01-01
The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities.
SRM-Assisted Trajectory for the GTX Reference Vehicle
NASA Technical Reports Server (NTRS)
Riehl, John; Trefny, Charles; Kosareo, Daniel
2002-01-01
A goal of the GTX effort has been to demonstrate the feasibility of a single stage- to- orbit (SSTO) vehicle that delivers a small payload to low earth orbit. The small payload class was chosen in order to minimize the risk and cost of development of this revolutionary system. A preliminary design study by the GTX team has resulted in the current configuration that offers considerable promise for meeting the stated goal. The size and gross lift-off weight resulting from scaling the current design to closure however may be considered impractical for the small payload. In lieu of evolving the project's reference vehicle to a large-payload class, this paper offers the alternative of using solid-rocket motors in order to close the vehicle at a practical scale. This approach offers a near-term, quasi-reusable system that easily evolves to reusable SSTO following subsequent development and optimization. This paper presents an overview of the impact of the addition of SRM's to the GTX reference vehicle's performance and trajectory. The overall methods of vehicle modeling and trajectory optimization will also be presented. A key element in the trajectory optimization is the use of the program OTIS 3.10 that provides rapid convergence and a great deal of flexibility to the user. This paper will also present the methods used to implement GTX requirements into OTIS modeling.
SRM-Assisted Trajectory for the GTX Reference Vehicle
NASA Technical Reports Server (NTRS)
Riehl, John; Trefny, Charles; Kosareo, Daniel (Technical Monitor)
2002-01-01
A goal of the GTX effort has been to demonstrate the feasibility of a single stage-to-orbit (SSTO) vehicle that delivers a small payload to low earth orbit. The small payload class was chosen in order to minimize the risk and cost of development of this revolutionary system. A preliminary design study by the GTX team has resulted in the current configuration that offers considerable promise for meeting the stated goal. The size and gross lift-off weight resulting from scaling the current design to closure however may be considered impractical for the small payload. In lieu of evolving the project' reference vehicle to a large-payload class, this paper offers the alternative of using solid-rocket motors in order to close the vehicle at a practical scale. This approach offers a near-term, quasi-reusable system that easily evolves to reusable SSTO following subsequent development and optimization. This paper presents an overview of the impact of the addition of SRM's to the GTX reference vehicle#s performance and trajectory. The overall methods of vehicle modeling and trajectory optimization will also be presented. A key element in the trajectory optimization is the use of the program OTIS 3.10 that provides rapid convergence and a great deal of flexibility to the user. This paper will also present the methods used to implement GTX requirements into OTIS modeling.
77 FR 36146 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... airplanes to the applicability. We are issuing this AD to prevent degradation of the electrical insulation... could cause the level sensor to heat above acceptable limits, possibly resulting in a fuel tank... connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation sleeves of the...
NASA Technical Reports Server (NTRS)
Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas
2004-01-01
Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.
NASA Technical Reports Server (NTRS)
Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.
2015-01-01
NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.
Life sciences flight experiments program - Overview
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1981-01-01
The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.
Astrobee: Space Station Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.
2016-01-01
Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.
Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project
NASA Technical Reports Server (NTRS)
Griner, James H.
2013-01-01
NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication system prototype radio, operating on recently allocated UAS frequency spectrum bands. The prototype radio will be used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the design, development, and flight test planning for this prototype radio.
NASA Technical Reports Server (NTRS)
Griner, James H.
2014-01-01
NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.
Space Station Freedom - Status of the U.S. segment
NASA Technical Reports Server (NTRS)
Bartoe, John David F.
1990-01-01
An overview of the Space Station Freedom program is given. The results of a technical audit of the U.S. program, and the reorganization taking place at NASA HQ are discussed. Some areas resolved in the past year such as the type of power to be delivered to each pressurized module and the definition of common payload interfaces within all modules are reviewed. The utility of the Space Station Freedom is emphasized.
DOT National Transportation Integrated Search
2011-06-01
This report presents the replication of an MTI study conducted in 2001 by Peter Haas and Richard Werbel.1 That research, itself a continuation of an earlier project completed in 2000, included an analysis of transportation tax elections in 11 urban a...
LANL MTI science team experience
NASA Astrophysics Data System (ADS)
Balick, Lee K.; Borel, Christopher C.; Chylek, Petr; Clodius, William B.; Davis, Anthony B.; Henderson, Bradley G.; Galbraith, Amy E.; Lawson, Stefanie L.; Pope, Paul A.; Rodger, Andrew P.; Theiler, James P.
2003-12-01
The Multispectral Thermal Imager (MTI) is a technology test and demonstration satellite whose primary mission involved a finite number of technical objectives. MTI was not designed, or supported, to become a general purpose operational satellite. The role of the MTI science team is to provide a core group of system-expert scientists who perform the scientific development and technical evaluations needed to meet programmatic objectives. Another mission for the team is to develop algorithms to provide atmospheric compensation and quantitative retrieval of surface parameters to a relatively small community of MTI users. Finally, the science team responds and adjusts to unanticipated events in the life of the satellite. Broad or general lessons learned include the value of working closely with the people who perform the calibration of the data as well as those providing archived image and retrieval products. Close interaction between the Los Alamos National Laboratory (LANL) teams was very beneficial to the overall effort as well as the science effort. Secondly, as time goes on we make increasing use of gridded global atmospheric data sets which are products of global weather model data assimilation schemes. The Global Data Assimilation System information is available globally every six hours and the Rapid Update Cycle products are available over much of the North America and its coastal regions every hour. Additionally, we did not anticipate the quantity of validation data or time needed for thorough algorithm validation. Original validation plans called for a small number of intensive validation campaigns soon after launch. One or two intense validation campaigns are needed but are not sufficient to define performance over a range of conditions or for diagnosis of deviations between ground and satellite products. It took more than a year to accumulate a good set of validation data. With regard to the specific programmatic objectives, we feel that we can do a reasonable job on retrieving surface water temperatures well within the 1°C objective under good observing conditions. Before the loss of the onboard calibration system, sea surface retrievals were usually within 0.5°C. After that, the retrievals are usually within 0.8°C during the day and 0.5°C at night. Daytime atmospheric water vapor retrievals have a scatter that was anticipated: within 20%. However, there is error in using the Aerosol Robotic Network retrievals as validation data which may be due to some combination of calibration uncertainties, errors in the ground retrievals, the method of comparison, and incomplete physics. Calibration of top-of-atmosphere radiance measurements to surface reflectance has proven daunting. We are not alone here: it is a difficult problem to solve generally and the main issue is proper compensation for aerosol effects. Getting good reflectance validation data over a number of sites has proven difficult but, when assumptions are met, the algorithm usually performs quite well. Aerosol retrievals for off-nadir views seem to perform better than near-nadir views and the reason for this is under investigation. Land surface temperature retrieval and temperature-emissivity separations are difficult to perform accurately with multispectral sensors. An interactive cloud masking system was implemented for production use. Clouds are so spectrally and spatially variable that users are encouraged to carefully evaluate the delivered mask for their own needs. The same is true for the water mask. This mask is generated from a spectral index that works well for deep, clear water, but there is much variability in water spectral reflectance inland and along coasts. The value of the second-look maneuvers has not yet been fully or systematically evaluated. Early experiences indicated that the original intentions have marginal value for MTI objectives, but potentially important new ideas have been developed. Image registration (the alignment of data from different focal planes) and band-to-band registration has been a difficult problem to solve, at least for mass production of the images in a processing pipeline. The problems, and their solutions, are described in another paper.
LANL MTI science team experience
NASA Astrophysics Data System (ADS)
Balick, Lee K.; Borel, Christopher C.; Chylek, Petr; Clodius, William B.; Davis, Anthony B.; Henderson, Bradley G.; Galbraith, Amy E.; Lawson, Stefanie L.; Pope, Paul A.; Rodger, Andrew P.; Theiler, James P.
2004-01-01
The Multispectral Thermal Imager (MTI) is a technology test and demonstration satellite whose primary mission involved a finite number of technical objectives. MTI was not designed, or supported, to become a general purpose operational satellite. The role of the MTI science team is to provide a core group of system-expert scientists who perform the scientific development and technical evaluations needed to meet programmatic objectives. Another mission for the team is to develop algorithms to provide atmospheric compensation and quantitative retrieval of surface parameters to a relatively small community of MTI users. Finally, the science team responds and adjusts to unanticipated events in the life of the satellite. Broad or general lessons learned include the value of working closely with the people who perform the calibration of the data as well as those providing archived image and retrieval products. Close interaction between the Los Alamos National Laboratory (LANL) teams was very beneficial to the overall effort as well as the science effort. Secondly, as time goes on we make increasing use of gridded global atmospheric data sets which are products of global weather model data assimilation schemes. The Global Data Assimilation System information is available globally every six hours and the Rapid Update Cycle products are available over much of the North America and its coastal regions every hour. Additionally, we did not anticipate the quantity of validation data or time needed for thorough algorithm validation. Original validation plans called for a small number of intensive validation campaigns soon after launch. One or two intense validation campaigns are needed but are not sufficient to define performance over a range of conditions or for diagnosis of deviations between ground and satellite products. It took more than a year to accumulate a good set of validation data. With regard to the specific programmatic objectives, we feel that we can do a reasonable job on retrieving surface water temperatures well within the 1°C objective under good observing conditions. Before the loss of the onboard calibration system, sea surface retrievals were usually within 0.5°C. After that, the retrievals are usually within 0.8°C during the day and 0.5°C at night. Daytime atmospheric water vapor retrievals have a scatter that was anticipated: within 20%. However, there is error in using the Aerosol Robotic Network retrievals as validation data which may be due to some combination of calibration uncertainties, errors in the ground retrievals, the method of comparison, and incomplete physics. Calibration of top-of-atmosphere radiance measurements to surface reflectance has proven daunting. We are not alone here: it is a difficult problem to solve generally and the main issue is proper compensation for aerosol effects. Getting good reflectance validation data over a number of sites has proven difficult but, when assumptions are met, the algorithm usually performs quite well. Aerosol retrievals for off-nadir views seem to perform better than near-nadir views and the reason for this is under investigation. Land surface temperature retrieval and temperature-emissivity separations are difficult to perform accurately with multispectral sensors. An interactive cloud masking system was implemented for production use. Clouds are so spectrally and spatially variable that users are encouraged to carefully evaluate the delivered mask for their own needs. The same is true for the water mask. This mask is generated from a spectral index that works well for deep, clear water, but there is much variability in water spectral reflectance inland and along coasts. The value of the second-look maneuvers has not yet been fully or systematically evaluated. Early experiences indicated that the original intentions have marginal value for MTI objectives, but potentially important new ideas have been developed. Image registration (the alignment of data from different focal planes) and band-to-band registration has been a difficult problem to solve, at least for mass production of the images in a processing pipeline. The problems, and their solutions, are described in another paper.
NASA's Space Launch System Program Update
NASA Technical Reports Server (NTRS)
May, Todd; Lyles, Garry
2015-01-01
Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in the past year, including firing tests of both main propulsion elements, manufacturing of flight hardware, and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons (t) (154,000 pounds) of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 t (286,000 pounds) to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware, including flight hardware for Exploration Mission 1 (EM-1). This paper will provide an overview of the progress made over the past year and provide a glimpse of upcoming milestones on the way to a 2018 launch readiness date.
Norton-Thevenin Receptance Coupling (NTRC) as a Payload Design Tool
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Dan; Majed, Arya
2017-01-01
The NASA Engineering and Safety Center (NESC) is funding a study to develop an alternate method for performing coupled loads analysis called Norton-Thevenin Receptance Coupling (NTRC). NTRC combines Receptance Coupling (RC), a frequency-domain synthesis method and Norton-Thevenin (NT) theory, an impedance based approach for simulating the interaction between dynamic systems. The goal of developing the NTRC method is to provide a tool that payload developers can use to reduce the conservatism in defining preliminary design loads, assess the impact of design changes between formal load cycles, and to perform trade studies for design optimization with a minimum amount of data required from the launch vehicle (LV) provider. NTRC also has the ability to perform parametric loads analysis where many different design configurations can be evaluated. This will result in cost and schedule benefits to the payload developer that are currently not possible under the standard coupled loads analysis (CLA) flow where typically only 2-3 official load cycles are performed by the LV provider over the life of a payload program. NTRC is not envisioned as a replacement for the official load cycles performed by the LV provider but rather as a means to address the types of design issues faced by the payload developer before and between official load cycles.The presentation provides an overview of the NTRC methodology and discusses how NTRC can be used to replicate the results from a standard LV CLA. The presentation covers the benchmarking that has been performed as part of the NESC study to demonstrate the accuracy of the technique for both frequency and time domain dynamic analyses. Future plans for benchmarking the NTRC approach against CLA results for NASAs Space Launch System (SLS) and commercial launch vehicles are discussed and the role that NTRC is envisioned to play in the payload development cycle.
Optical interconnects for satellite payloads: overview of the state-of-the-art
NASA Astrophysics Data System (ADS)
Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo
2010-05-01
The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.
NASA's Space Launch System: Deep-Space Deployment for SmallSats
NASA Technical Reports Server (NTRS)
Schorr, Andy
2017-01-01
From its upcoming first flight, NASA's new Space Launch System (SLS) will represent a game-changing opportunity for smallsats. On that launch, which will propel the Orion crew vehicle around the moon, the new exploration-class launch vehicle will deploy 13 6U CubeSats into deep-space, where they will continue to a variety of destinations to perform diverse research and demonstrations. Following that first flight, SLS will undergo the first of a series of performance upgrades, increasing its payload capability to low Earth orbit from 70 to 105 metric tons via the addition of a powerful upper stage. With that change to the vehicle's architecture, so too will its secondary payload accommodation for smallsats evolve, with current plans calling for a change from the first-flight limit of 6U to accommodating a range of sizes up to 27U and potentially ESPA-class payloads. This presentation will provide an overview and update on the first launch of SLS and the secondary payloads it will deploy. Currently, flight hardware has been produced for every element of the vehicle, testing of the vehicle's propulsion elements has been ongoing for years, and structural testing of its stages has begun. Major assembly and testing of the Orion Stage Adapter, including the secondary payload accommodations, will be completed this year, and the structure will then be shipped to Kennedy Space Center for integration of the payloads. Progress is being made on those CubeSats, which will include studies of asteroids, Earth, the sun, the moon, and the impacts of radiation on organisms in deep space. They will feature revolutionary innovations for smallsats, including demonstrations of use of a solar sail as propulsion for a rendezvous with an asteroid, and the landing of a CubeSat on the lunar surface. The presentation will also provide an update on progress of the SLS Block 1B configuration that will be used on the rocket's second flight, a discussion of planned secondary payload accommodations on that configuration of the vehicle, and a look at the current state of planning of upcoming missions and what that could mean for deep-space smallsat flight opportunities.
Commercial US transfer vehicle overview
NASA Astrophysics Data System (ADS)
Winchell, J. W.; Huss, R. L.
1986-10-01
A survey is presented of the design and operational status and intended or existing missions for apogee kick motors for launch from the Orbiter bay. Attention is also given to the associated hardware for interfacing and propelling the payloads from the bay. The PAM-D, -DII, and -A upper stage motors are described, with their payload boost capabilities of 1500-4300 lb to GEO. Features of the solid-fueled Transfer Orbit Stage, based on the IUS, and the liquid bipropellant-fueled Apogee and Maneuvering Stage, which can lift from 3000-5600 lb to GEO, respectively, are also delineated. The discussion also covers the liquid-fueled Leasat apogee motor, the solid-fueled GEO injection motor of the Shuttle Compatible Orbit Transfer Subsystem (4100-5900 lb), and the IUS (5000 lb) and Centaur (10,000 lb) systems. Government-industry cooperation to encourage the continued development of the industrial base to continue and expand production and use of upper stage vehicles is noted.
An Overview of the NIRA Status
NASA Technical Reports Server (NTRS)
Hughes, William
2003-01-01
The NASA Glenn Research Center (GRC) has been tasked by NASA JSC's ISS Payloads Office to perform the NIRA (Non-Isolated Rack Assessment) microgravity prediction analysis task for the International Space Station. Previously, the NIRA analysis task had been performed by Boeing/Houston. Boeing's last NIRA analysis was released in 1999 and was denoted as "NIRA 99." GRC is currently close to completing our first full-NIRA analysis (encompassing the frequency range from 0 to 50 Hz) to be released as "NIRA 2003." This presentation will focus on describing the NIRA analysis, the transition of this analysis task from Boeing to GRC, and the current status and schedule for release of the NIRA 2003 results. Additionally, the results obtained from a mini-NIRA analysis requested by ESA and completed by GRC in the Spring of 2003 will be shown. This mini-analysis focused solely on predicting the microgravity environment at the COF-EPF (Columbus Orbiting Facility - External Payload Facility).
NASA Technical Reports Server (NTRS)
Davis, V. Leon; Nordeen, Ross
1988-01-01
A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.
Overview of the Scientific Balloon Activity in Sweden
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student payloads yearly, with the goal to introduce students in ballooning. Over the next couple of years the plan is to make a re-flight of the PoGOLite payload, fly two Japanese balloon payloads for planetary science missions, fly four student balloons, three balloons for technical studies of re-entry vehicles, and a balloon with a payload studying aerodynamic behaviour of a falling body.
Phoenix Missile Hypersonic Testbed (PMHT): System Concept Overview
NASA Technical Reports Server (NTRS)
Jones, Thomas P.
2007-01-01
A viewgraph presentation of the Phoenix Missile Hypersonic Testbed (PMHT) is shown. The contents include: 1) Need and Goals; 2) Phoenix Missile Hypersonic Testbed; 3) PMHT Concept; 4) Development Objectives; 5) Possible Research Payloads; 6) Possible Research Program Participants; 7) PMHT Configuration; 8) AIM-54 Internal Hardware Schematic; 9) PMHT Configuration; 10) New Guidance and Armament Section Profiles; 11) Nomenclature; 12) PMHT Stack; 13) Systems Concept; 14) PMHT Preflight Activities; 15) Notional Ground Path; and 16) Sample Theoretical Trajectories.
LOx/LCH4: A Unifying Technology for Future Exploration
NASA Technical Reports Server (NTRS)
Banker, Brian; Ryan, Abigail
2014-01-01
OVERVIEW For every pound of payload landed on Mars, 226 pounds are required on Earth to get it there. Due to this enormous mass gear-ratio, increasing commonality between lander subsystems, such as power, propulsion, and life support, results in tremendous launch mass and cost savings. Human-Mars architectures point to an oxygen-methane economy, utilizing common commodities scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU) and common commodity tankage across sub-systems.
Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)
NASA Technical Reports Server (NTRS)
1992-01-01
An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.
Balloon stratospheric research flights, November 1974 to January 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1976-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the photochemical system of the upper atmosphere. An overview of the specific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for each of the last five flights during this period are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, K. X.
2011-05-31
This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.
The Meteorological Experiment on the Mars Surveyor '98 Polar Lander
NASA Technical Reports Server (NTRS)
Crisp, D.
1999-01-01
When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.
Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins
Yang, Nicole J.; Hinner, Marlon J.
2016-01-01
The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome. PMID:25560066
NASA Astrophysics Data System (ADS)
Stroh, F.
2017-12-01
The StratoClim Aircraft Field Campaign employing the high-flying research aircraft M55 Geophysica was carried out from mid July to mid August of 2017 from Kathmandu, Nepal, covering the airspace of Nepal, India, Bangladesh and Myanmar in the frame of the EC FP7 funded StratoClim project (see the Rex. et al. overview in this session). In order to sample the first detailed data set on climate relevant processes of the Asian Summer Monsoon anticyclone a comprehensive chemical and aerosol payload of more than 2 metric tons consisting of 26 different instrumets was flown to altitudes in excess of 20km to measure remote sensing and in-situ data on dynamical, chemical, and micro-chemical processes governing this experimentally underresearched atmospheric domain. An overview of the instrumentation, observation strategies, and preliminary results on open challenges as the horizontal and vertical trace gas and aerosol structures, effects of convective events and the ATAL will be given.
DOT National Transportation Integrated Search
2001-10-01
This publication is a follow-up study to MTI publication 00-01, Why Campaigns for Local Transportation Funding Initiatives Succeed or Fail: An Analysis of Four Communities and National Data.The earlier publication was case studies of four local ballo...
Plant innate immunity: an updated insight into defense mechanism.
Muthamilarasan, Mehanathan; Prasad, Manoj
2013-06-01
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
An experimental adaptive radar MTI filter
NASA Astrophysics Data System (ADS)
Gong, Y. H.; Cooling, J. E.
The theoretical and practical features of a self-adaptive filter designed to remove clutter noise from a radar signal are described. The hardware employs an 8-bit microprocessor/fast hardware multiplier combination along with analog-digital and digital-analog interfaces. The software here is implemented in assembler language. It is assumed that there is little overlap between the signal and the noise spectra and that the noise power is much greater than that of the signal. It is noted that one of the most important factors to be considered when designing digital filters is the quantization noise. This works to degrade the steady state performance from that of the ideal (infinite word length) filter. The principal limitation of the filter described here is its low sampling rate (1.72 kHz), due mainly to the time spent on the multiplication routines. The methods discussed here, however, are general and can be applied to both traditional and more complex radar MTI systems, provided that the filter sampling frequency is increased. Dedicated VLSI signal processors are seen as holding considerable promise.
Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham
2013-01-01
The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.
The Hinode(Solar-B)Mission: An Overview
NASA Technical Reports Server (NTRS)
Kosugi, T.; Matsuzaki, K.; Sakao, T.; Shimizu, T.; Sone, Y.; Tachikawa, S.; Minesugi, K.; Ohnishi, A.; Yamada, T.; Tsuneta, S.;
2007-01-01
The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.
Longmuir, Susannah Q; Pfeifer, Wanda; Leon, Alejandro; Olson, Richard J; Short, Lori; Scott, William E
2010-10-01
To present the largest cohort of preschool children screened by the MTI PhotoScreener over a 9-year period from a single, statewide vision screening effort. Cross-sectional study. We included 147,809 children screened between May 1, 2000, and April 30, 2009 by a photoscreening program. Retrospective review of results from the Iowa photoscreening program using the MTI PhotoScreener. The photographs were taken by volunteers from local Lions clubs and sent to the University of Iowa for interpretation. Children who failed the photoscreening were referred to local eye care professionals, who preformed a comprehensive eye evaluation and forwarded the results to the Iowa KidSight program. Number of screenings, referral rate, positive predictive value (PPV), follow-up rate, and associated costs per year are described. Over the 9 years of the continuously operating program, 147,809 children underwent photoscreens to detect amblyopic risk factors at 9746 sites. Because of abnormal photoscreen results, 6247 children (4.2%) were referred. Of the children, 24.3% were evaluated by local ophthalmologists and 76.7% were seen by local optometrists. Between 2000 and 2009, the follow-up rate ranged from a low of 36.1% to a high of 89.5%, with an overall program follow-up rate after the addition of the follow-up coordinator of 81.3%. The overall PPV of the MTI PhotoScreener was 94.2%. Taking into account overall operating budget including salaries and associated costs, the cost of screening 1 child has been reduced to $US9 per child. The addition of a part-time follow-up coordinator to the photoscreening program produced 89.5% follow-up rate when screening 147,809 children for amblyopia risk factors over a 9-year period. Copyright © 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Ercan, Ece; Ingo, Carson; Tritanon, Oranan; Magro-Checa, Cesar; Smith, Alex; Smith, Seth; Huizinga, Tom; van Buchem, Mark A; Ronen, Itamar
2015-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disease with multi-organ involvement and results in neurological and psychiatric (NP) symptoms in up to 40% of the patients. To date, the diagnosis of neuropsychiatric systemic lupus erythematosus (NPSLE) poses a challenge due to the lack of neuroradiological gold standards. In this study, we aimed to better localize and characterize normal appearing white matter (NAWM) changes in NPSLE by combining data from two quantitative MRI techniques, diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI). 9 active NPSLE patients (37 ± 13 years, all females), 9 SLE patients without NP symptoms (44 ± 11 years, all females), and 14 healthy controls (HC) (40 ± 9 years, all females) were included in the study. MTI, DTI and fluid attenuated inversion recovery (FLAIR) images were collected from all subjects on a 3 T MRI scanner. Magnetization transfer ratio (MTR), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) maps and white matter lesion maps based on the FLAIR images were created for each subject. MTR and DTI data were then co-analyzed using tract-based spatial statistics and a cumulative lesion map to exclude lesions. Significantly lower MTR and FA and significantly higher AD, RD and MD were found in NPSLE compared to HC in NAWM regions. The differences in DTI measures and in MTR, however, were only moderately co-localized. Additionally, significant differences in DTI measures, but not in MTR, were found between NPSLE and SLE patients, suggesting that the underlying microstructural changes detected by MD are linked to the onset of NPSLE. The co-analysis of the anatomical distribution of MTI and DTI measures can potentially improve the diagnosis of NPSLE and contribute to the understanding of the underlying microstructural damage.
Gulmez, Sinem Ezgi; Larrey, Dominique; Pageaux, Georges-Philippe; Lignot, Severine; Lassalle, Régis; Jové, Jérémy; Gatta, Angelo; McCormick, P Aiden; Metselaar, Harold J; Monteiro, Estela; Thorburn, Douglas; Bernal, William; Zouboulis-Vafiadis, Irene; de Vries, Corinne; Perez-Gutthann, Susana; Sturkenboom, Miriam; Bénichou, Jacques; Montastruc, Jean-Louis; Horsmans, Yves; Salvo, Francesco; Hamoud, Fatima; Micon, Sophie; Droz-Perroteau, Cécile; Blin, Patrick; Moore, Nicholas
2013-02-01
Most NSAIDs are thought to be able to cause hepatic injury and acute liver failure (ALF), but the event rates of those leading to transplantation (ALFT) remain uncertain. The aim of the study was to estimate population event rates for NSAID-associated ALFT METHODS: This was a case-population study of ALFT in 57 eligible liver transplant centres in seven countries (France, Greece, Ireland, Italy, The Netherlands, Portugal and the UK). Cases were all adults registered from 2005 to 2007 for a liver transplant following ALFT without identified clinical aetiology, exposed to an NSAID or paracetamol (acetaminophen) within 30 days before the onset of clinical symptoms. NSAID and paracetamol population exposures were assessed using national sales data from Intercontinental Marketing Services (IMS). Risk was estimated as the rate of ALFT per million treatment-years (MTY). In the 52 participating centres, 9479 patients were registered for transplantation, with 600 for ALFT, 301 of whom, without clinical aetiology, had been exposed to a drug within 30 days. Of these 301 patients, 40 had been exposed to an NSAID and 192 to paracetamol (81 of whom were without overdose). Event rates per MTY were 1.59 (95 % CI 1.1-2.2) for all NSAIDs pooled, 2.3 (95 % CI 1.2-3.9) for ibuprofen, 1.9 (95 % CI 0.8-3.7) for nimesulide, 1.6 (95 % CI 0.6-3.4) for diclofenac and 1.6 (95 % CI 0.3-4.5) for ketoprofen. For paracetamol, the event rate was 3.3 per MTY (95 % CI 2.6-4.1) without overdoses and 7.8 (95 % CI 6.8-9.0) including overdoses. ALF leading to registration for transplantation after exposure to an NSAID was rare, with no major difference between NSAID. Non-overdose paracetamol-exposed liver failure was twice more common than NSAID-exposed liver failure.
Gudlaugsson, Janus; Gudnason, Vilmundur; Aspelund, Thor; Siggeirsdottir, Kristin; Olafsdottir, Anna S; Jonsson, Palmi V; Arngrimsson, Sigurbjorn A; Harris, Tamara B; Johannsson, Erlingur
2012-09-10
Older adults have the highest rates of disability, functional dependence and use of healthcare resources. Training interventions for older individuals are of special interest where regular physical activity (PA) has many health benefits. The main purpose of this study was to assess the immediate and long-term effects of a 6-month multimodal training intervention (MTI) on functional fitness in old adults. For this study, 117 participants, 71 to 90 years old, were randomized in immediate intervention group and a control group (delayed intervention group). The intervention consisted of daily endurance and twice-a-week strength training. The method was based on a randomized-controlled cross-over design. Short Physical Performance Battery (SPPB), 8 foot up-and-go test, strength performance, six min walking test (6 MW), physical activity, BMI and quality of life were obtained at baseline, after a 6-month intervention- and control phase, again after 6-month crossover- and delayed intervention phase, and after anadditional 6-month follow-up. After 6 months of MTI, the intervention group improved in physical performance compared with the control group via Short Physical Performance Battery (SPPB) score (mean diff = 0.6, 95 % CI: 0.1, 1.0) and 8-foot up-and-go test (mean diff = -1.0 s, 95 % CI: -1.5, -0.6), and in endurance performance via 6-minute walking test (6 MW) (mean diff = 44.2 meters, 95 % CI: 17.1, 71.2). In strength performance via knee extension the intervention group improved while control group declined (mean diff = 55.0 Newton, 95 % CI: 28.4, 81.7), and also in PA (mean diff = 125.9 cpm, 95 % CI: 96.0, 155.8). Long-term effects of MTI on the particpants was assesed by estimating the mean difference in the variables measured between time-point 1 and 4: SPPB (1.1 points, 95 % CI: 0.8, 1.4); 8-foot up-and-go (-0.9 s, 95 % CI: -1.2, -0.6); 6 MW (18.7 m, 95 % CI: 6.5, 31.0); knee extension (4.2 Newton, 95 % CI: -10.0, 18.3); hand grip (6.7 Newton, 95 % CI: -4.4, 17.8); PA (-4.0 cpm, 95 % CI: -33.9, 26.0); BMI (-0.6 kg/m2, 95 % CI: -0.9, -0.3) and Icelandic quality of life (0.3 points, 95 % CI: -0.7, 1.4). Our results suggest that regular MTI can improve and prevent decline in functional fitness in older individuals, influence their lifestyle and positively affect their ability to stay independent, thus reducing the need for institutional care. This study was approved by the National Bioethics Committee in Iceland, VSNb20080300114/03-1.
NASA Technical Reports Server (NTRS)
Holladay, Jon; Cho, Frank
2003-01-01
The Multi-Purpose Logistics Module is the primary carrier for transport of pressurized payload to the International Space Station. Performing five missions within a thirteen month span provided a unique opportunity to gather a great deal of information toward understanding and verifying the orbital performance of the vehicle. This paper will provide a brief overview of the hardware history and design capabilities followed by a summary of the missions flown, resource requirements and possibilities for the future.
Adaptable, Deployable Entry and Placement Technology (ADEPT) Overview of FY15 Accomplishments
NASA Technical Reports Server (NTRS)
Wercinski, P.; Brivkalns, C.; Cassell, A.; Chen, Y.-K.; Boghozian, T.; Chinnapongse, R.; Gasch, M.; Kruger, C.; Makino, A.; Milos, F.;
2015-01-01
ADEPT is an atmospheric entry architecture for missions to most planetary bodies with atmospheres: Current Technology development project funded under STMD Game Changing Development Program (FY12 start); stowed inside the launch vehicle shroud and deployed in space prior to entry; low ballistic coefficient (less than 50 kilograms per square meter) provides a benign deceleration and thermal environment to the payload; High-temperature ribs support three dimensional woven carbon fabric to generate drag and withstand high heating.
Phoenix Missile Hypersonic Testbed (PMHT): Project Concept Overview
NASA Technical Reports Server (NTRS)
Jones, Thomas P.
2007-01-01
An over view of research into a low cost hypersonic research flight test capability to increase the amount of hypersonic flight data to help bridge the large developmental gap between ground testing/analysis and major flight demonstrator Xplanes is provided. The major objectives included: develop an air launched missile booster research testbed; accurately deliver research payloads through programmable guidance to hypersonic test conditions; low cost; a high flight rate minimum of two flights per year and utilize surplus air launched missiles and NASA aircraft.
ISO science - observations of dusty discs.
NASA Astrophysics Data System (ADS)
Heske, A.
1992-12-01
ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.
Autonomous Mechanical Assembly on the Space Shuttle: An Overview
NASA Technical Reports Server (NTRS)
Raibert, M. H.
1979-01-01
The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed.
Overview of the AFRL’s Demonstration and Science Experiments (DSX) Program
2006-09-01
most of the space weather data to-date has been accumulated in the LEO and GEO regimes, as illustrated in Figure 11 with data from dosimeters aboard...Composed of two dosimeters , two particle telescopes and a Single Event Effect detector, CEASE has the capability to monitor a broad range of space...panel of the payload module. One change for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior
An overview of the British Aerospace HOTOL transatmospheric vehicle
NASA Technical Reports Server (NTRS)
Mesnard, J.
1986-01-01
British Aerospace's space-going aircraft and economical launcher Hotol, so named for its horizontal take-off and landing ability, is described. The craft uses Rolls Royce's new Swallow engine, the principle behind which is still secret, which burns atmospheric oxygen until it leaves the atmosphere and then switches to liquid oxygen. This lightens the craft's fuel load tremendously, so that it can carry significant payloads and still take off and land like a normal airplane. A typical future mission for the craft is described.
Chiral transport along magnetic domain walls in the quantum anomalous Hall effect
Rosen, Ilan T.; Fox, Eli J.; Kou, Xufeng; ...
2017-12-01
The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Crmore » $$_y$$Bi$$_x$$Sb$$_{1-x-y}$$)$$_2$$Te$$_3$$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $$\
ERIC Educational Resources Information Center
Arwani, Salima Shahzad
2011-01-01
During Mathematics Teaching Course-I (MT-I), the author was given the opportunity to teach a primary mathematics class at a Government school in Karachi, Pakistan while on teaching practice. The author was lucky to be able to share the lesson planning with a friend, and they found the sharing of ideas a supportive process. The focus of the lesson…
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2015-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2014-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
MAIUS-1- Vehicle, Subsystems Design and Mission Operations
NASA Astrophysics Data System (ADS)
Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.
2015-09-01
In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.
Overview of the Anik C satellites and services
NASA Astrophysics Data System (ADS)
Smart, F. H.
An overview of the important technical characteristics of the Anik C series of Canadian communications satellites is presented. The system was launched as part of the Telesat Communications payload of the Space Shuttle in 1982. Among the services the system will in the near future provide are: a 27 MHz channel bandwidth television service for pay-TV distribution in Canada; two TV channels for hockey broadcasts and a transportable TV system; a heavy-voice route telephone service for five major Canadian cities; and a telephone system for business voice and data communications. Services anticipated for Anik-C satellites later in the decade include a Single Channel Per Carrier (SCPC) voice and data communications system for British Columbia and the Maritime Provinces, and a direct-to-home broadcast service to be sold to television markets in the United States.
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
Visualization of semantic indexing similarity over MeSH.
Du, Haixia; Yoo, Terry S
2007-10-11
We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.
Developing a Self-Sustaining Afghan National Army
2009-11-30
ZGZhOTRhMjRiYjE3ZGZlMTY1ZTA2MmM5YjY1ZTVlMzA=pdf (accessed May 15, 2009). 70 Anthony H. Cordesman, Follow the Money : Why the US is Losing the War in...Anthony H. Follow the Money : Why the US is Losing the War in Afghanistan. Washington, DC: Center for Strategic & International Studies, September 2008
The Imaging X-Ray Polarimetry Explorer (IXPE): Overview
NASA Technical Reports Server (NTRS)
O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.;
2017-01-01
Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.
Development of a Polarimeter for Magnetic Field Measurements in the Ultraviolet
NASA Technical Reports Server (NTRS)
West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)
2001-01-01
This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.
Annular Suspension and Pointing System (ASPS) magnetic rotary joint
NASA Technical Reports Server (NTRS)
Smith, W. E.; Quach, W.; Thomas, W.
1993-01-01
The Annular Suspension and Pointing System (ASPS) is a prototype of flight hardware for a high-accuracy space payload pointing mount. The long term project objective is to perform modifications and implement improvements to the existing ASPS in hopes of recommission. Also, new applications will be investigated for this technology. This report will focus on the first aspect of this overall goal, to establish operation of a single bearing station. Presented is an overview of the system history and bearing operation followed by the processes, results, and status of the single bearing study.
STS-71 Mission Highlights Resources Tape
NASA Technical Reports Server (NTRS)
1997-01-01
The flight crew of the STS-71 Space Shuttle Orbiter Atlantis Commander Robert L. Gibson, Pilot Charles J. Precourt, Mission Specialists, Ellen S. Baker, Bonnie J. Dunbar, Gregory J. Harbaugh, and Payload Specialists, Norman E. Thagard, Vladimir Dezhurov, and Gennadiy Strekalov present an overview of their mission. It's primary objective is the first Mir docking with a space shuttle and crew transfer. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; on orbit activities; rendezvous with Mir; Shuttle/Mir joint activities; undocking; and the shuttle landing.
The SHEFEX II Thermal Protection System
NASA Astrophysics Data System (ADS)
Bohrk, H.; Elsaber, H.; Weihs, H.
2011-05-01
The SHEFEXII payload tip is ready for flight. Within a period of three years, the experiment has been designed, laid out, parts have been manufactured, mounted and instrumented for the upcoming flight in autumn 2011. The present paper gives an overview over the thermal protection system (TPS) of the SHEFEX II vehicle including the TPS-material, the overall TPS-setup, and detailed informations on the faceted ther- mal protection including the gap seal, the sharp leading edge, the transpiration-cooling experiment AKTIV, and the aerodynamic control surfaces, i.e. canards.
ARC Cell Science Validation (CS-V) Payload Overview
NASA Technical Reports Server (NTRS)
Gilkerson, Nikita
2017-01-01
Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.
Balloon stratospheric research flights, April 1976 to December 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1977-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.
Space Station Mission Planning Study (MPS) development study. Volume 3: Software development plan
NASA Technical Reports Server (NTRS)
Klus, W. L.
1987-01-01
A software development plan is presented for the definition, design, and implementation of the Space Station (SS) Payload Mission Planning System (MPS). This plan is an evolving document and must be updated periodically as the SS design and operations concepts as well as the SS MPS concept evolve. The major segments of this plan are as follows: an overview of the SS MPS and a description of its required capabilities including the computer programs identified as configurable items with an explanation of the place and function of each within the system; an overview of the project plan and a detailed description of each development project activity breaking each into lower level tasks where applicable; identification of the resources required and recommendations for the manner in which they should be utilized including recommended schedules and estimated manpower requirements; and a description of the practices, standards, and techniques recommended for the SS MPS Software (SW) development.
Analytical Ferrography Standardization.
1982-01-01
AD-AII6 508 MECHANICAL TECHNOLOGY INC LATHAM NY RESEARCH AND 0EV--ETC F/6 7/4 ANALYTICAL FERROGRAPHY STANDARDIZATION. (U) JAN 82 P A SENHOLZI, A S...ii Mwl jutio7 Unimte SMechanical Technology Incorporated Research and Development Division ReerhadDvlpetDvso I FINAL REPORT ANALYTICAL FERROGRAPHY ...Final Report MTI Technical Report No. 82TRS6 ANALYTICAL FERROGRAPHY STANDARDIZATION P. B. Senholzi A. S. Maciejewski Applications Engineering Mechanical
MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. BALICK; A. GILLESPIE; ET AL
2001-03-01
Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellitesmore » with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.« less
The European Astronaut Centre prepares for International Space Station operations.
Messerschmid, E; Haignere, J P; Damian, K; Damann, V
2004-04-01
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms. c2003 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; Scola, Salvatore; Tobin, Steven; McLeod, Shawn; Mannu, Sergio; Guglielmo, Corrado; Moeller, Timothy
2013-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2015. A detailed thermal model of the SAGE III payload has been developed in Thermal Desktop (TD). Several novel methods have been implemented to facilitate efficient payload-level thermal analysis, including the use of a design of experiments (DOE) methodology to determine the worst-case orbits for SAGE III while on ISS, use of TD assemblies to move payloads from the Dragon trunk to the Enhanced Operational Transfer Platform (EOTP) to its final home on the Expedite the Processing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC)-4, incorporation of older models in varying unit sets, ability to change units easily (including hardcoded logic blocks), case-based logic to facilitate activating heaters and active elements for varying scenarios within a single model, incorporation of several coordinate frames to easily map to structural models with differing geometries and locations, and streamlined results processing using an Excel-based text file plotter developed in-house at LaRC. This document presents an overview of the SAGE III thermal model and describes the development and implementation of these efficiency-improving analysis methods.
NASA Technical Reports Server (NTRS)
Sullivan, Pamela C.; Krimchansky, Alexander; Walsh, Timothy J.
2017-01-01
The first of the National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite R-series (GOES-R) satellites was launched in November 2016. GOES-R has been developed by NOAA in partnership with the National Aeronautics and Space Administration (NASA). The satellite represents a quantum leap in the state of the art for geostationary weather satellites by providing data from a suite of six new instruments. All instruments were developed expressly for this mission, and include two Earth-observing instruments (the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM)), two solar-viewing instruments (Solar Ultraviolet Imager (SUVI) and Extreme ultraviolet and X-ray Irradiance Sensors (EXIS)) and two in situ instruments (Space Environment In-Situ Suite (SEISS) and a magnetometer pair). In addition to hosting the instruments, GOES-R also accommodates several communication packages designed to collect and relay data for weather forecasting and emergency management. Accommodating the six instruments and four communication payloads imposed challenging and competing constraints on the satellite, including requirements for extremely stable earth and solar pointing, high-speed and nearly error-free instrument data transmission, and a very quiet electromagnetic background. To meet mission needs, GOES-R employed several technological innovations, including low-thrust rocket engines that allow instrument observations to continue during maneuvers, and the first civilian use of Global Positioning System-based orbit determination in geostationary orbit. This paper will provide a brief overview of the GOES-R satellite and its instruments as well as the developmental challenges involved in accommodating the instruments and communications payloads.
An Overview of the Design and Development of the GOES R-Series Space Segment
NASA Technical Reports Server (NTRS)
Sullivan, Pam; Krimchansky, Alexander; Walsh, Timothy
2017-01-01
The first of the National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite R-series (GOES-R) satellites was launched in November 2016. GOES-R has been developed by NOAA in partnership with the National Aeronautics and Space Administration (NASA). The satellite represents a quantum leap in the state of the art for geostationary weather satellites by providing data from a suite of six new instruments. All instruments were developed expressly for this mission, and include two Earth-observing instruments (the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM)), two solar-viewing instruments (Solar Ultraviolet Imager (SUVI) and Extreme ultraviolet and X-ray Irradiance Sensors (EXIS)) and two in situ instruments (Space Environment In-Situ Suite (SEISS) and a magnetometer pair). In addition to hosting the instruments, GOES-R also accommodates several communication packages designed to collect and relay data for weather forecasting and emergency management. Accommodating the six instruments and four communication payloads imposed challenging and competing constraints on the satellite, including requirements for extremely stable earth and solar pointing, high-speed and nearly error-free instrument data transmission, and a very quiet electromagnetic background. To meet mission needs, GOES-R employed several technological innovations, including low-thrust rocket engines that allow instrument observations to continue during maneuvers, and the first civilian use of Global Positioning System-based orbit determination in geostationary orbit. This paper will provide a brief overview of the GOES-R satellite and its instruments as well as the developmental challenges involved in accommodating the instruments and communications payloads.
Modeling and Simulation Architecture for Studying Doppler-Based Radar with Complex Environments
2009-03-26
structures can interfere with a radar’s ability to detect moving aircraft because radar returns from turbines are comparable to those from slow flying...Netherlands Organisation for Applied Scientific Research . 13 EM Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . 14 MTI Moving Target Indicator...ensure the turbine won’t interact with the radar. However, (2.3) doesn’t account for terrain masking or shadowing. If there is a tall object or terrain
Evaluation of Improvements to Brayton Cycle Performance.
1986-05-29
cogeneration systems. They are International Power Technology (IPT), Palo Alto, California and Mechanical Technology, Inc. (MTI), Latham, New York [13]. IPT...constant (10) For a constant Reynold’s number and dimensions, the friction factor will be constant. The relationship for friction of internal ...equation for the friction factor of internal turbulent flow is expressed as Ap -friction =f(Re) - constant. (12) pV 2 Applying Equation (11), Equation (12
Performance Based Leadership Development in Organizational Settings
1979-09-01
in order to obtain the maximum performance from a group of subordinates and also maintain the subordinates’ satisfaction , Lt. Jones, o£ any other... performance and worker satisfaction . You might ask why the Developmental Model of Leadership is based upon these three assumrtions. The rationale for making...This theory then discusses the conditions under which each of these behaviors mty lead to better subordinate performance and satisfaction . The path-goal
Cousseau, F E M; Alves, S L; Trichez, D; Stambuk, B U
2013-01-01
The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose-H(+) symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort. © 2012 The Society for Applied Microbiology.
Current test results for the Athena radar responsive tag
NASA Astrophysics Data System (ADS)
Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.
2006-05-01
Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.
NASA Astrophysics Data System (ADS)
Meirenno Tielman, Eduard; Suprijanto, Jusup; Widowati, Ita
2018-02-01
The dynamics pollution that supposed to be derived from industrial activities around Tambak Lorok waters will affect the quality of waters, and also biota such as Macridiscus sp. mussels (Kerang Ceplos) that live and accumulate pollutants such as heavy metals (Pb, Cu, Al, Mn and Fe). However, Macridiscus sp. mussels which have been contaminated by heavy metals is usually sold for consumption by the people and if they consume it in excess, it will be toxic in the people’s body. So that, this study was to analyze Safely Intake Number of Macridiscus sp. from Tambak Lorok waters. This study used AAS (Atomic Absorption Spectrophotometry) method to analyze the accumulation number of the pollutant (Pb, Cu, Al, Mn and Fe). Safely Intake Number calculation is used MWI (Maximal Weekly Intake) and MTI (Maximal Tolerable Intake) calculation method. The results of AAS showed that the highest numbers of pollutant was Al (reached 534,51 mg/kg in the body of Macridiscus sp. that taken in February, 2016) and has exceeded the safely intake number (MWI Al = 1 mg/kg, based on WHO/FAO) so that it’s MTI values was low (0,08 kg/week/person). It means that Macridiscus sp. was not safe to be consumed excessively at that time.
An Overview of New Technologies Driving Innovation in the Airborne Science Community
NASA Technical Reports Server (NTRS)
Fladeland, Matthew M.
2017-01-01
Following a more than a century of scientific aircraft and ballooning there is a sense that a renaissance of sorts is at hand in the aviation industry. The advent of incredibly miniaturized autopilots, inertial navigation systems, GPS antennae, and payloads has sparked a revolution in manned and unmanned aircraft. Improved SATCOM and onboard computing has enabled realtime data processing and improved transfer of data on and off the aircraft, making flight planning and data collection more efficient and effective. Electric propulsion systems are scaling up to larger and larger vehicles as evidenced by the NASA GL-10, which is leading to a new X-plane and is leading to renewed interest in personal air vehicles. There is also significant private and government investments in the development of High Altitude, Long Endurance (HALE) aircraft. This presentation will explore how such developments are likely to improve our ability to observe earth systems processes from aircraft by providing an overview of current NASA Airborne Science capabilities, followed by a brief discussion of new technologies being applied to Airborne Science missions, and then conclude with an overview of new capabilities on the horizon that are likely to be of interest to the Earth Science community.
A Overview of New Technologies Driving Innovation in the Airborne Science Community
NASA Technical Reports Server (NTRS)
Fladeland, Matthew M.
2017-01-01
Following a more than a century of scientific aircraft and ballooning there is a sense that a renaissance of sorts is at hand in the aviation industry. The advent of incredibly miniaturized autopilots, inertial navigation systems, GPS antennae, and payloads has sparked a revolution in manned and unmanned aircraft. Improved SATCOM and onboard computing has enabled realtime data processing and improved transfer of data on and off the aircraft, making flight planning and data collection more efficient and effective. Electric propulsion systems are scaling up to larger and larger vehicles as evidenced by the NASA GL-10, which is leading to a new X-plane and is leading to renewed interest in personal air vehicles. There is also significant private and government investments in the development of High Altitude, Long Endurance (HALE) aircraft. This presentation will explore how such developments are likely to improve our ability to observe earth systems processes from aircraft by providing an overview of current NASA Airborne Science capabilities, followed by a brief discussion of new technologies being applied to Airborne Science missions, and then conclude with an overview of new capabilities on the horizon that are likely to be of interest to the Earth Science community.
Peng, Ting; Sun, Xiaochun; Mumm, Rita H
2014-01-01
From a breeding standpoint, multiple trait integration (MTI) is a four-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) using backcross breeding, ultimately regaining the performance attributes of the target hybrid along with reliable expression of the value-added traits. In the light of the overarching goal of recovering equivalent performance in the finished conversion, this study focuses on the first step of MTI, single event introgression, exploring the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events, incorporating eight events into the female hybrid parent and seven into the male parent. Single event introgression is conducted in parallel streams to convert the recurrent parent (RP) for individual events, with the primary objective of minimizing residual non-recurrent parent (NRP) germplasm, especially in the chromosomal proximity to the event (i.e. linkage drag). In keeping with a defined lower limit of 96.66 % overall RP germplasm recovery (i.e. ≤120 cM NRP germplasm given a genome size of 1,788 cM), a breeding goal for each of the 15 single event conversions was developed: <8 cM of residual NRP germplasm across the genome with ~1 cM in the 20 cM region flanking the event. Using computer simulation, we aimed to identify optimal breeding strategies for single event introgression to achieve this breeding goal, measuring efficiency in terms of number of backcross generations required, marker data points needed, and total population size across generations. Various selection schemes classified as three-stage, modified two-stage, and combined selection conducted from BC1 through BC3, BC4, or BC5 were compared. The breeding goal was achieved with a selection scheme involving five generations of marker-aided backcrossing, with BC1 through BC3 selected for the event of interest and minimal linkage drag at population size of 600, and BC4 and BC5 selected for the event of interest and recovery of the RP germplasm across the genome at population size of 400, with selection intensity of 0.01 for all generations. In addition, strategies for choice of donor parent to facilitate conversion efficiency and quality were evaluated. Two essential criteria for choosing an optimal donor parent for a given RP were established: introgression history showing reduction of linkage drag to ~1 cM in the 20 cM region flanking the event and genetic similarity between the RP and potential donor parents. Computer simulation demonstrated that single event conversions with <8 cM residual NRP germplasm can be accomplished by BC5 with no genetic similarity, by BC4 with 30 % genetic similarity, and by BC3 with 86 % genetic similarity using previously converted RPs as event donors. This study indicates that MTI to produce a 'quality' 15-event-stacked hybrid conversion is achievable. Furthermore, it lays the groundwork for a comprehensive approach to MTI by outlining a pathway to produce appropriate starting materials with which to proceed with event pyramiding and trait fixation before version testing.
Microgravity science and applications projects and payloads
NASA Technical Reports Server (NTRS)
Crouch, R. K.
1987-01-01
An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.
Columbia: The first 5 flights entry heating data series. Volume 1: An overview
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the lower windward and upper lee side centerline, lower wing 50% and 80% semi-spans, side fuselage and payload bay door, Z-400 and 440 trace aft of X/L=0.2, and OMS Pod trace 3, are presented for the first five flights of the space shuttle orbiter. Heating rate distributions are presented in terms of normalized shock Reynolds number to show the sensitivity of heating to these parameters. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program.
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; O'Malley, Terence F.
1991-01-01
NASA's ground-based and space-based low-gravity facilities are summarized, and an overview of selected experiments that have been developed for use in these facilities is presented. A variety of ground-based facilities (drop towers and aircraft) used to conduct low-gravity experiments for in-space experimentation are described. Capabilities that are available to the researcher and future on-orbit fluids facilities are addressed. The payload bay facilities range from the completely self-contained, relatively small get-away-special canisters to the Materials Science Laboratory and to the larger Spacelab facilities that require crew interaction.
An overview of the thematic mapper geometric correction system
NASA Technical Reports Server (NTRS)
Beyer, E. P.
1983-01-01
Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.
Overview and Status of the Laser Communication Relay Demonstration
NASA Technical Reports Server (NTRS)
Luzhanskiy, E.; Edwards, B.; Israel, D.; Cornwell, D.; Staren, J.; Cummings, N.; Roberts, T.; Patschke, R.
2016-01-01
NASA is presently developing first all optical high data rate satellite relay system, LCRD. To be flown on commercial geosynchronous satellite, it will communicate at DPSK and PPM modulation formats up to 1.244 Gbps. LCRD flight payload is being developed by NASA's Goddard Space Flight Center. The two ground stations, one on Table Mountain in CA, developed by NASA's Jet Propulsion Laboratory and another on Hawaiian island will enable bi-directional relay operation and ground sites diversity experiments. In this paper we will report on the current state of LCRD system development, planned operational scenarios and expected system performance.
VON and Its Use in NASA's International Space Station Science Operation
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Chamberlain, Jim
1999-01-01
This presentation will provide a brief overview of a International Space Station (ISS) remote user (scientist/experimenter) operation. Specifically, the presentation will show how Voice over IP (VoIP) is integrated into the ISS science payload operation and in the mission voice system. Included will be the details on how a scientist, using VON, will talk to the ISS onboard crew and ground based cadre from a scientist's home location (lab, office or garage) over tile public Internet and science nets. Benefit(s) to tile ISS Program (and taxpayer) and of VoIP versus other implementations also will be presented.
Advanced supersonic technology and its implications for the future
NASA Technical Reports Server (NTRS)
Driver, C.
1979-01-01
A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.
Earth-to-orbit propellant transportation overview
NASA Technical Reports Server (NTRS)
Fester, D.
1984-01-01
The transportation of large quantities of cryogenic propellants which are needed to support Space Station/OTV operation is discussed. Two ways to send propellants into space are: transporting them in dedicated tankers or scavenging unused STS propellant. Scavenging propellant, both with and without an aft cargo carrier system is examined. An average of two to four flights per year can be saved by scavenging and manifesting propellant as payload. Addition of an aft cargo carrier permits loading closer to maximum, reduces the required number of flights, and reduces the propellant available for scavenging. Sufficient propellant remains, however, for OTV needs.
NASA Technical Reports Server (NTRS)
Matson, Jack E.
1992-01-01
The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.
GOCE: Mission Overview and Early Results (Invited)
NASA Astrophysics Data System (ADS)
Rummel, R. F.; Muzi, D.; Drinkwater, M. R.; Floberghagen, R.; Fehringer, M.
2009-12-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission is the first Earth Explorer Core mission of the Living Planet Programme of the European Space Agency (ESA). The primary objective of the GOCE mission is to provide global and regional models of the Earth gravity field and the geoid, its reference equi-potential surface, with unprecedented spatial resolution and accuracy. GOCE was launched successfully on 17 March 2009 from the Plesetsk Cosmodrome in northern Russia onboard a Rockot launch vehicle. System commissioning and payload calibration have been completed and the satellite is decaying to its initial measurement operating altitude of 255 km, which is expected to be reached in mid-September 2009. After one week of final payload calibration, GOCE will enter its first 6 month duration phase of uninterrupted science measurements at that altitude. This presentation will recall GOCE's main goals and its major development milestones. In addition, a description of the data products generated and some highlights of the satellite performance will be outlined. Artist's impression of GOCE Satellite in flight (courtesy AOES-Medialab).
1990-12-03
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo is an overview of the MSFC Payload Control Room (PCR).
NICER: Mission Overview and Status
NASA Astrophysics Data System (ADS)
Arzoumanian, Zaven; Gendreau, Keith C.
2016-04-01
NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.
NASA's Space Launch System: A Transformative Capability for Deep Space Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2017-01-01
Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.
A Study of Bird Ingestions Into Large High Bypass Ratio Turbine Aircraft Engines.
1984-09-01
Amrican Sparrovhawk (Kestral) 4 -- 2 5K26 Falco cherrug - Saker Falcon 36 (26-46) 1 5K54 GALLIFORNES - CHICKEN -LIKE BIRDS PHASIANIOAE - QUAILS, PHEASANTS...Palmas, Canary Is. LUX Luxembourg, Luxembourg LYS Lyon, France NAA Madras, India MAD Madrid, Spain MEL Melbourne, Australia MEX Mexico City, Mexico ...Minnesota, USA MSY New Orleans, Louisiana, USA MTY Monterrey, Mexico MYO Montevideo, Uruguay MWH Moses Lake, Washington, USA MXP Milan, Italy - Malpensa
A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model
NASA Technical Reports Server (NTRS)
Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)
2002-01-01
Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.
Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes
2012-03-01
preparation setup under the fume hood with NMP solvent, glass pipette with dispenser, and the ball milled powder mixture containing LiFePO4 , acetylene...minutes. ............................................................................. 18 Figure 12. (a) LiFePO4 slurry applied on foil current collector...and (b) LiFePO4 slurry casted with applicator and (c) LiFePO4 casted (From [15])....... 18 Figure 13. MTI disc cutter used to cut individual
Democracy and Tunisia: A Case Study
1994-06-01
2591 E. ISLAMIC MOVEMENT The al-Nahda Islamic movement, originally called the Mouvement de la Tendance Islamique (MTI), is claimed by the government to...billion for the period 1987-1991. At the same time reportedly an African Development Bank offered a $79 million credit line to finance tourism and...industrial projects, England’s Midland Bank financed $27 million and the Italian government provided $500 million in loans and grants for a five year
Transforming Airborne Command and Control and Intelligence, Surveillance, and Reconnaissance
2012-06-01
launched once and remains on station at high altitude for many years. The ISIS airship loiters at very slow speeds, but it can relocate to any theater...operate at considerable altitudes are too high to permit adequate radar resolution for MTI purposes. Additionally, even with improved radar resolution...provides a capability analysis on the AWACS, JSTARS, RPAs, and unmanned airships to determine which systems can best meet these requirements in the future
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
EarthCARE mission, overview, implementation approach and development status
NASA Astrophysics Data System (ADS)
Lefebvre, Alain; Hélière, Arnaud; Pérez Albiñana, Abelardo; Wallace, Kotska; Maeusli, Damien; Lemanczyk, Jerzy; Lusteau, Cyrille; Nakatsuka, Hirotaka; Tomita, Eiichi
2016-05-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere in order to include them correctly and reliably in climate and numerical weather prediction models. The satellite will be placed in a Sun-Synchronous Orbit at about 400 Km altitude and14h00 mean local solar time. The payload consisting of a High Spectral Resolution UV Atmospheric LIDar (ATLID), a 94GHz Cloud Profiling Radar (CPR) with Doppler capability, a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer will provide information on cloud and aerosol vertical structure of the atmosphere along the satellite track as well as information about the horizontal structures of clouds and radiant flux from sub-satellite cells. The presentation will cover the configuration of the satellite with its four instruments, the mission implementation approach, an overview of the ground segment and the overall mission development status.
WFIRST: Project Overview and Status
NASA Astrophysics Data System (ADS)
Kruk, Jeffrey; WFIRST Formulation Science Working Group, WFIRST Project Team
2018-01-01
The Wide-Field InfraRed Survey Telescope (WFIRST) will be the next Astrophysics flagship mission to follow JWST. The observatory payload consists of a Hubble-size telescope aperture with a wide-field NIR instrument and a coronagraph operating at visible wavelengths and employing state-of-the-art wavefront sensing and control. The Wide-field instrument is optimized for large area NIR imaging and spectroscopic surveys, with performance requirements driven by programs to study cosmology and exoplanet detection via gravitational microlensing. All data will be public immediately, and a substantial guest observer program will be supported.The WFIRST Project is presently in Phase A, with a transition to Phase B expected in early to mid 2018. Candidate observing programs are under detailed study in order to inform the mission design, but the actual science investigations will not be selected until much closer to launch. We will present an overview of the present mission design and expected performance, a summary of Project status, and plans for selecting the observing programs.
Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.
2017-01-01
Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.
Assessing malaria transmission in a low endemicity area of north-western Peru
2013-01-01
Background Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI using both molecular and serological tools. Methods Epidemiological, parasitological and serological data were collected from 2,667 individuals in three settlements of Bellavista district, in May 2010. Parasite infection was detected using microscopy and polymerase chain reaction (PCR). Antibodies to Plasmodium vivax merozoite surface protein-119 (PvMSP119) and to Plasmodium falciparum glutamate-rich protein (PfGLURP) were detected by ELISA. Risk factors for exposure to malaria (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific antibody prevalence of both P. falciparum and P. vivax were analysed using a previously published catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR). Results The overall parasite prevalence by microscopy and PCR were extremely low: 0.3 and 0.9%, respectively for P. vivax, and 0 and 0.04%, respectively for P. falciparum, while seroprevalence was much higher, 13.6% for P. vivax and 9.8% for P. falciparum. Settlement, age and occupation as moto-taxi driver during previous year were significantly associated with P. falciparum exposure, while age and distance to the water drain were associated with P. vivax exposure. Likelihood ratio tests supported age seroprevalence curves with two SCR for both P. vivax and P. falciparum indicating significant changes in the MTI over time. The SCR for PfGLURP was 19-fold lower after 2002 as compared to before (λ1 = 0.022 versus λ2 = 0.431), and the SCR for PvMSP119 was four-fold higher after 2006 as compared to before (λ1 = 0.024 versus λ2 = 0.006). Conclusion Combining molecular and serological tools considerably enhanced the capacity of detecting current and past exposure to malaria infections and related risks factors in this very low endemicity area. This allowed for an improved characterization of the current human reservoir of infections, largely hidden and heterogeneous, as well as providing insights into recent changes in species specific MTIs. This approach will be of key importance for evaluating and monitoring future malaria elimination strategies. PMID:24053144
2014-11-01
created to serve as idealized representations of actual medical records, and include information such as medical history , current symptoms, diagnosis...NLM Medical Text Indexer (MTI).3 MeSH, or Medical Subject Headings, are terminology used by the NLM to index articles, catalog books, and searching...MeSH- indexed databases such as PubMed. However, since many medical conditions may be expressed in varying terminology , a single representation of a
Investigation of Ice Dynamics in the Marginal Zone.
1983-12-01
Unclassified SECURITV CLASSIFICATIGON OF THIS PAGE (111mon Dole Rntormi) Unclassified MTY CLASMSFICATION OF THIS PA6SS16M POW & 6m " trength rather...modeling work, two points are recognized to need a deep consideration: transient cases and stochastic modeling. It is not certain how the velocity...if the thickness effect is indeed significant. The nature of the ice edge jet should be shown: is it transient or steady, forced or caused by ice
Concurrent Structural Fatigue Damage Prognosis Under Uncertainty
2014-04-30
stage is manufactured by Ernest F. Fullam Inc., which is now merged to MTI Instruments Inc.. The maximum gage length between mechanical grips is...closure measurement techniques, Vol. 31, Issue 4, 1988, pp. 703–712 23. M.N. James, M.N. Pacey, L.W. Wei,E.A. Patterson , Characterisation of...34. International Journal of Fatigue, 1999, pp. S35–S46. 39. Newman JC., Jr ."A crack opening stress equation for fatigue crack growth" International
SPDE/SPRE final summary report
NASA Technical Reports Server (NTRS)
Dochat, George
1993-01-01
Mechanical Technology Incorporated (MTI) performed acceptance testing on the Space Power Research Engine (SPRE), which demonstrated satisfactory operation and sufficient reliability for delivery to NASA Lewis Research Center. The unit produced 13.5 kW PV power with an efficiency of 22 percent versus design goals of 28.8 kW PV power and efficiency of 28 percent. Maximum electric power was only 8 kWe due to lower alternator efficiency. One of the major shortcomings of the SPRE was linear alternator efficiency, which was only 70 percent compared to a design value of 90 percent. It was determined from static tests that the major cause for the efficiency shortfall was the location of the magnetic structure surrounding the linear alternator. Testing of an alternator configuration without a surrounding magnetic structure on a linear dynamometer confirmed earlier static test results. Linear alternator efficiency improved from 70 percent to over 90 percent. Testing of the MTI SPRE was also performed with hydrodynamic bearings and achieved full-stroke, stable operation. This testing indicated that hydrodynamic bearings may be useful in free piston Stirling engines. An important factor in achieving stable operation at design stroke was isolating a portion of the bearing length from the engine pressure variations. In addition, the heat pipe heater head design indicates that integration of a Stirling engine with a heat source can be performed via heat pipes. This design provides a baseline against which alternative designs can be measured.
Enthalpies of formation of U-, Th-, Ce-brannerite: implications for plutonium immobilization
NASA Astrophysics Data System (ADS)
Helean, K. B.; Navrotsky, A.; Lumpkin, G. R.; Colella, M.; Lian, J.; Ewing, R. C.; Ebbinghaus, B.; Catalano, J. G.
2003-08-01
Brannerite, ideally MTi 2O 6, (M=actinides, lanthanides and Ca) occurs in titanate-based ceramics proposed for the immobilization of plutonium. Standard enthalpies of formation, Δ H0f at 298 K, for three brannerite compositions (kJ/mol): CeTi 2O 6 (-2948.8 ± 4.3), U 0.97Ti 2.03O 6 (-2977.9 ± 3.5) and ThTi 2O 6 (-3096.5 ± 4.3) were determined by high temperature oxide melt drop solution calorimetry at 975 K using 3Na 2O · 4MoO 3 solvent. The enthalpies of formation were also calculated from an oxide phase assemblage (Δ H0f-ox at 298 K): MO 2 + 2TiO 2=MTi 2O 6. Only UTi 2O 6 is energetically stable with respect to an oxide assemblage: U 0.97Ti 2.03O 6 (Δ H0f-ox=-7.7±2.8 kJ/mol). Both CeTi 2O 6 and ThTi 2O 6 are higher in enthalpy with respect to their oxide assemblages with (Δ H0f-ox=+29.4±3.6 kJ/mol) and (Δ H0f-ox=+19.4±1.6 kJ/mol) respectively. Thus, Ce- and Th-brannerite are entropy stabilized and are thermodynamically stable only at high temperature.
Noninvasive Test Detects Cardiovascular Disease
NASA Technical Reports Server (NTRS)
2007-01-01
At NASA's Jet Propulsion Laboratory (JPL), NASA-developed Video Imaging Communication and Retrieval (VICAR) software laid the groundwork for analyzing images of all kinds. A project seeking to use imaging technology for health care diagnosis began when the imaging team considered using the VICAR software to analyze X-ray images of soft tissue. With marginal success using X-rays, the team applied the same methodology to ultrasound imagery, which was already digitally formatted. The new approach proved successful for assessing amounts of plaque build-up and arterial wall thickness, direct predictors of heart disease, and the result was a noninvasive diagnostic system with the ability to accurately predict heart health. Medical Technologies International Inc. (MTI) further developed and then submitted the technology to a vigorous review process at the FDA, which cleared the software for public use. The software, patented under the name Prowin, is being used in MTI's patented ArterioVision, a carotid intima-media thickness (CIMT) test that uses ultrasound image-capturing and analysis software to noninvasively identify the risk for the major cause of heart attack and strokes: atherosclerosis. ArterioVision provides a direct measurement of atherosclerosis by safely and painlessly measuring the thickness of the first two layers of the carotid artery wall using an ultrasound procedure and advanced image-analysis software. The technology is now in use in all 50 states and in many countries throughout the world.
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing.
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-06-15
Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the 'learning to rank' framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. The software is available upon request. zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO3 Thin Films.
Varga, Tamas; Droubay, Timothy C; Kovarik, Libor; Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Hu, Dehong; Kim, Bumsoo; Jeon, Seokwoo; Hong, Seungbum; Li, Yulan; Chambers, Scott A
2017-07-05
Polarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO 3 -type compounds, MTiO 3 (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO 3 , then in thin-film NiTiO 3 , the coupling of the two order parameters has not been confirmed. Here, we report the stabilization of polar, ferromagnetic NiTiO 3 by oxide epitaxy on a LiNbO 3 substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulations using the phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and WFM in MTiO 3 transition metal titanates crystallizing in the LiNbO 3 structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic. Multiferroic NiTiO 3 has potential applications in spintronics where ferroic switching is used, such as new four-stage memories and electromagnetic switches.
NASA Astrophysics Data System (ADS)
Schreiner, W. S.; Pedatella, N. M.; Weiss, J.
2016-12-01
Measurements from constellations of low Earth orbiting (LEO) satellites are proving highly useful for ionospheric science and space weather studies. The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), a joint US/Taiwan mission launched in April 2006, is a six micro-satellite constellation carrying Global Positioning System (GPS) radio occultation (RO) receivers. COSMIC has collected a large amount of useful data from these scientific payloads and is still currently collecting up to 1,000 RO measurement events per day on average. The GPS RO dual-frequency L-band phase and amplitude measurements can be used to observe absolute Total Electron Content (TEC) and scintillation on lines of sight between the LEO and GPS satellites, and electron density profiles via the RO method. The large number and complete global and local time coverage of COSMIC data are allowing scientists to observe ionospheric and plasmaspheric phenomena that are difficult to see with other instruments. The success of COSMIC has prompted U.S. agencies and Taiwan to execute a COSMIC follow-on mission (called COSMIC-2) that will put twelve satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2017-20 time frame. The first launch in 2017 will place six satellites in a 520-km altitude 24 deg inclination orbit, which is ideal for low latitude ionospheric research and space weather forecasting. The planned second launch (not currently funded) places six additional satellites in a 750 km 72 deg inclination orbit to provide global coverage and increased sampling density. COSMIC-2 will make use of an advanced radio occultation receiver with an innovative beam-forming antenna design, and is expected to produce at least 10,000 high-quality atmospheric and ionospheric profiles per day from GPS and GLONASS signals to support operational weather prediction, climate monitoring, and space weather forecasting. Each COSMIC-2 spacecraft in the first launch will also carry additional space weather payloads: a tri-band RF Beacon transmitter, and an Ion Velocity Meter instrument. This presentation will provide a short summary of the COSMIC mission and then present an overview of the COSMIC-2 mission, including expected data product performance and science goals
National Space Transportation System Reference. Volume 2: Operations
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.
Status of the JWST Integrated Science Instrument Module
NASA Astrophysics Data System (ADS)
Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie
2015-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.
NASA Global Hawk: Project Overview and Future Plans
NASA Technical Reports Server (NTRS)
Naftel, J. Chris
2011-01-01
The National Aeronautics and Space Administration (NASA) Global Hawk Project became operational in 2009 and began support of Earth science in 2010. Thus far, the NASA Global Hawk has completed three Earth science campaigns and preparations are under way for two extensive multi-year campaigns. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance: the Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the scientific data-gathering campaigns.
An overview of the extreme ultraviolet explorer and its scientific program
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Finley, David S.; Jelinsky, Patrick; Vallerga, John; Bowyer, Stuart
1987-01-01
NASA's Extreme Ultraviolet Explorer (EUVE) will carry out an all-sky survey from 8 to 90 nm in four bandpasses; the limiting sensitivity will be between 2 to 3 orders of magnitude fainter than the hot white dwarf HZ 43. A deep survey will also be carried out along the ecliptic which will have a limiting sensitivity of 1 to 2 orders of magnitude fainter than the all-sky survey in the bandpass from 8 to 50 nm. The payload also includes a spectrometer which will be used to observe the brighter sources found in the surveys with a spectral resolution of 1 to 2 A.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Applying the ’Forward Strategy of Freedom’ to Tunisia: A Case Study in the Global War on Terrorism
2004-03-19
movement is centered on the history of the Islamic Tendency Movement (MTI- Mouvement de la Tendance Islamique ), which was founded in 1981. In 1988...years of one-party rule. Mohammed Hamdi identifies the 12 June1990 election victory of the FIS (Front Islamique du Salut, Islamic Salvation Front) party...elections. The FIS was disbanded in March 1992, and the GIA (Groupe Islamique Armee, Armed Islamic Group) would evolve, as Algeria slid into a five year
Effect of Refining Variables on the Properties and Composition of JP-5.
1980-11-01
specific fuel system components. This is believed to be caused by the removal of naturally occurring impurities such as organic acids and some polynuclear...PADs 3 and 5 would require additional downstream processing to remove aromatics and/or mercaptans in order to make acceptable grade JP-5. The MTY of JP...made.) Now that the mandatory allocation of kerosine jet fuel has been removed , it will be important to see if the refinery mix that will provide JP
Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.
1991-01-01
Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.
EXPRESS Rack Technology for Space Station
NASA Technical Reports Server (NTRS)
Davis, Ted B.; Adams, J. Brian; Fisher, Edward M., Jr.; Prickett, Guy B.; Smith, Timothy G.
1999-01-01
The EXPRESS rack provides accommodations for standard Mid-deck Locker and ISIS drawer payloads on the International Space Station. A design overview of the basic EXPRESS rack and two derivatives, the Human Research Facility and the Habitat Holding Rack, is given in Part I. In Part II, the design of the Solid State Power Control Module (SSPCM) is reviewed. The SSPCM is a programmable and remotely controllable power switching and voltage conversion unit which distributes and protects up to 3kW of 12OVDC and 28VDC power to payloads and rack subsystem components. Part III details the development and testing of a new data storage device, the BRP EXPRESS Memory Unit (BEMU). The BEMU is a conduction-cooled device which operates on 28VDC and is based on Boeing-modified 9GB commercial disk-drive technology. In Part IV results of a preliminary design effort for a rack Passive Damping System (PDS) are reported. The PDS is intended to isolate ISPR-based experiment racks from on-orbit vibration. System performance predictions based on component developmental testing indicate that such a system can provide effective isolation at frequencies of 1 Hz and above.
Choosing ESRO's first scientific satellites
NASA Astrophysics Data System (ADS)
Russo, Arturo
1992-11-01
The choice of the scientific payloads of the European Space Research Organization's (ESRO's) first generation of satellites is analyzed. Concentration is on those aspects of the decision process that involved more directly the scientific community and that emerged as major issues in the discussion of the Launching Program Advisory Committee (LPAC). The main theme was the growing competition between the various fields of space science within the progressive retrenching of the Organization's financial resources available for the satellite program. A general overview of the status of the program by the end of 1966 is presented. The choice of the first small satellites' payloads (ESRO 1 and 2, and HEOS-A) and the difficult definition of the TD satellite program are discussed. This part covers a time span going from early 1963 to the spring of 1966. In the second part, the narrative starts from the spring of 1967, when the decision to recommend a second HEOS-type satellite was taken, and then analyzes the complex situation determined by the crisis of the TD program in 1968, and the debates which eventually led to the abandonment of TD-2 and the start of the far less ambitious ESRO 5 project.
Gaia challenging performances verification: combination of spacecraft models and test results
NASA Astrophysics Data System (ADS)
Ecale, Eric; Faye, Frédéric; Chassat, François
2016-08-01
To achieve the ambitious scientific objectives of the Gaia mission, extremely stringent performance requirements have been given to the spacecraft contractor (Airbus Defence and Space). For a set of those key-performance requirements (e.g. end-of-mission parallax, maximum detectable magnitude, maximum sky density or attitude control system stability), this paper describes how they are engineered during the whole spacecraft development process, with a focus on the end-to-end performance verification. As far as possible, performances are usually verified by end-to-end tests onground (i.e. before launch). However, the challenging Gaia requirements are not verifiable by such a strategy, principally because no test facility exists to reproduce the expected flight conditions. The Gaia performance verification strategy is therefore based on a mix between analyses (based on spacecraft models) and tests (used to directly feed the models or to correlate them). Emphasis is placed on how to maximize the test contribution to performance verification while keeping the test feasible within an affordable effort. In particular, the paper highlights the contribution of the Gaia Payload Module Thermal Vacuum test to the performance verification before launch. Eventually, an overview of the in-flight payload calibration and in-flight performance verification is provided.
Medium-sized aperture camera for Earth observation
NASA Astrophysics Data System (ADS)
Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin
2017-11-01
Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.
STS-87 Mission Highlights Resources Tape
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-87 mission the flight crew, Commander Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk present an overview of there mission. STS-87 will fly the United States Microgravity Payload (USMP-4), the Spartan-201, the Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05). The objective of the observations are to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. While flying separately in the cargo bay, the Orbital Acceleration Research Experiment (OARE) is an integral part of USMP-04. It is a highly sensitive instrument designed to acquire and record data of low-level aerodynamic acceleration along the orbiter's principal axes in the free-molecular flow regime at orbital altitudes and in the transition regime during re-entry. OARE data will support advances in space materials processing by providing measurements of the low-level, low frequency disturbance environment affecting various microgravity experiments. OARE data will also support advances in orbital drag prediction technology by increasing the understanding of the fundamental flow phenomena in the upper atmosphere.
NASA Astrophysics Data System (ADS)
Hwang, David; Larson, Thomas M.
2017-08-01
Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.
NASA's Space Launch System: A Transformative Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Cook, Jerry; Hitt, David
2016-01-01
Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.
NASA's Space Launch System: A Transformative Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Cook, Jerry
2016-01-01
Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.
Indispensable Role of Proteases in Plant Innate Immunity.
Balakireva, Anastasia V; Zamyatnin, Andrey A
2018-02-23
Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-01-01
Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learning to rank’ framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. Availability and Implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307646
Lalande, Élizabeth; Guimont, Chantal; Émond, Marcel; Parent, Marc Charles; Topping, Claude; Kuimi, Brice Lionel Batomen; Boucher, Valérie; Le Sage, Natalie
2017-05-01
The main objective of this study was to evaluate the feasibility of emergency department (ED) point-of-care ultrasound (PoCUS) for rib fracture diagnosis in patients with minor thoracic injury (mTI). Secondary objectives were to 1) evaluate patients' pain during the PoCUS procedure, 2) identify the limitations of the use of PoCUS technique, and 3) compare the diagnosis obtained with PoCUS to radiography results. Adult patients who presented with clinical suspicion of rib fractures after mTI were included. All patients underwent PoCUS performed by emergency physicians (EPs) prior to a rib view X-ray. A visual analogue scale (VAS) ranging from 0 to 100 was used to ascertain feasibility, patients' pain and clinicians' degree of certitude. Feasibility was defined as a score of more than 50 on the VAS. We documented the radiologists' interpretation of rib view X-ray. Radiologists were blinded to the PoCUS results. Ninety-six patients were included. A majority (65%) of EPs concluded that the PoCUS technique to diagnose rib fracture was feasible (VAS score > 50). Median score for feasibility was 63. Median score was 31 (Interquartile range [IQR] 5-57) for patients' pain related to the PoCUS. The main limiting factor of the PoCUS technique was pain during patient examination (15%). PoCUS examination appears to be a feasible technique for a rib fracture diagnosis in the ED.
Nagamine, Takeaki; Suzuki, Keiji; Kondo, Toshihiko; Nakazato, Kyomi; Kakizaki, Satoru; Takagi, Hitoshi; Nakajima, Katuyuki
2005-08-01
An association between reactive oxygen species and liver damage has been postulated in the course of hepatitis C virus (HCV) infection. Metallothionein (MT), induced by HCV core protein and interferon (IFN), plays a role in scavenging free radicals. MT expression in liver biopsies obtained from 21 patients with chronic HCV infection before and after IFN-alpha therapy was investigated. Changes in Knodell histological activity index (HAI) scores, MT protein levels (immunohistochemistry), MT-I and MT-II messenger (m)RNA expression levels (in situ hybridization) and proliferating cell nuclear antigen (PCNA) labelling index were determined and compared in serial liver specimens. MT staining was clustered around the portal tracts with inflammatory cells and fibrosis. The pattern of MT protein before IFN-alpha therapy was similar in all patients, but was higher in IFN-sustained responders than in nonresponders after IFN-alpha therapy. HAI scores and PCNA labelling indexes were significantly reduced after IFN-alpha therapy. MT-II mRNA expression correlated positively with PCNA index before therapy and with HAI scores after therapy (P<0.05). No correlation was found between MT-I mRNA and HAI scores or PCNA index. The findings indicate that IFN-alpha-induced hepatic MT may participate in the therapeutic effects of IFN-alpha for HCV. In addition, MT-II mRNA expression may be involved in cell proliferation in the livers of patients with chronic HCV infection.
NASA Astrophysics Data System (ADS)
Balick, Lee K.; Ballard, Jerrell R., Jr.; Smith, James A.; Goltz, Stewart M.
2002-01-01
Data assimilation methods applied to hydrologic models can incorporate spatially distributed maps of near surface temperature, especially if such measurements can be reliably inferred from satellite observations. Uncalibrated thermal IR imagery sometimes is scaled to temperature units to obtain such observations using the assumption that dense forest canopies are close to air temperature. For fully leafed deciduous forest canopies in the summer, this approximation is usually valid within 2C. In a leafless canopy, however, the materials views are thick boles and branches and the forest floor, which can store heat and yield significantly higher variations. Winter coniferous forests are intermediate with needles and branches being the predominant viewed materials. The US Dept of Energy's Multispectral Thermal Imager (MTI) is an experimental satellite with the capability to perform quantitative scene measurements in the reflective and thermal infrared region respectively. Its multispectral thermal IR capability enables quantitative surface temperature retrieval if pixel emissivity is known. MTI is pointable and targets multiple times in the winter and spring of 2001 at the Howland, Maine AmeriFlux research site operated by the University of Maine. Supporting meteorological and optical depth measurements also were made from three towers at the site. Directional thermal models of forest woody materials and needles are driver by the surface measurements and compared to satellite data to help evaluate the relationship between air temperature and satellite thermal measurements as a function of look angles, day and night.
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin
2016-01-01
Present an overview of the Nanotechnology Project at NASA's Game Changing Technology Industry Day. Mature and demonstrate flight readiness of CNT reinforced composites for future NASA mission applications?Sounding rocket test in a multiexperiment payload?Integrate into cold gas thruster system as propellant storage?The technology would provide the means for reduced COPV mass and improved damage tolerance and flight qualify CNT reinforced composites. PROBLEM/NEED BEING ADDRESSED:?Reduce weight and enhance the performance and damage tolerance of aerospace structuresGAME-CHANGING SOLUTION:?Improve mechanical properties of CNTs to eventually replace CFRP –lighter and stronger?First flight-testing of a CNT reinforced composite structural component as part of an operational flight systemUNIQUENESS:?CNT manufacturing methods developed?Flight qualify CNT reinforced composites
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2002-01-01
The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.
Software Design Methodology Migration for a Distributed Ground System
NASA Technical Reports Server (NTRS)
Ritter, George; McNair, Ann R. (Technical Monitor)
2002-01-01
The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground system has been developed and has evolved over a period of about 10 years. During this time the software processes have migrated from more traditional to more contemporary development processes. The new Software processes still emphasize requirements capture, software configuration management, design documenting, and making sure the products that have been developed are accountable to initial requirements. This paper will give an overview of how the Software Process have evolved highlighting the positives as well as the negatives. In addition, we will mention the COTS tools that have been integrated into the processes and how the COTS have provided value to the project .
Power System Simulations For The Globalstar2 Mission Using The PowerCap Software
NASA Astrophysics Data System (ADS)
Defoug, S.; Pin, R.
2011-10-01
The Globalstar system aims to enable customers to communicate all around the world thanks to its constellation of 48 LEO satellites. Thales Alenia Space is in charge of the design and manufacturing of the second generation of the Globalstar satellites. For such a long duration mission (15 years) and with a payload power consumption varying incessantly, the optimization of the solar arrays and battery has to be consolidated by an accurate power simulation tool. After a general overview of the Globalstar power system and of the PowerCap software, this paper presents the dedicated version elaborated for the GlobalStar2 mission, the simulations results and their correlation with the tests.
FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, Lindsay; Buitrago-Casas, Camilo; Ishikawa, Shin-Nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Turin, Paul; Shourt, Van; Foster, Natalie; Krucker, Sam
2016-03-01
The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the second time on 2014 December 11. To enable direct Hard X-Ray (HXR) imaging spectroscopy, FOXSI makes use of grazing-incidence replicated focusing optics combined with fine-pitch solid-state detectors. FOXSI’s first flight provided the first HXR focused images of the Sun. For FOXSI’s second flight several updates were made to the instrument including updating the optics and detectors as well as adding a new Solar Aspect and Alignment System (SAAS). This paper provides an overview of these updates as well as a discussion of their measured performance.
Large antenna measurement and compensation techniques
NASA Technical Reports Server (NTRS)
Rahmatsamii, Y.
1989-01-01
Antennas in the range of 20 meters or larger will be an integral part of future satellite communication and scientific payloads. In order to commercially use these large, low sidelobe and multiple-beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. It is also desirable to compensate for slowly varying surface distortions which could results from thermal effects. An overview of recent advances in performing rf measurements on large antennas is presented with emphasis given to the application of a space-based far-field range utilizing the Space Shuttle. The concept of surface distortion compensation is discussed by providing numerical and measurement results.
Overview of the Telescience Testbed Program
NASA Technical Reports Server (NTRS)
Rasmussen, Daryl N.; Mian, Arshad; Leiner, Barry M.
1991-01-01
The NASA's Telescience Testbed Program (TTP) conducted by the Ames Research Center is described with particular attention to the objectives, the approach used to achieve these objectives, and the expected benefits of the program. The goal of the TTP is to gain operational experience for the Space Station Freedom and the Earth Observing System programs, using ground testbeds, and to define the information and communication systems requirements for the development and operation of these programs. The results of TTP are expected to include the requirements for the remote coaching, command and control, monitoring and maintenance, payload design, and operations management. In addition, requirements for technologies such as workstations, software, video, automation, data management, and networking will be defined.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
NASA Astrophysics Data System (ADS)
Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques
2014-09-01
This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.
Quantitative MRI of kidneys in renal disease.
Kline, Timothy L; Edwards, Marie E; Garg, Ishan; Irazabal, Maria V; Korfiatis, Panagiotis; Harris, Peter C; King, Bernard F; Torres, Vicente E; Venkatesh, Sudhakar K; Erickson, Bradley J
2018-03-01
To evaluate the reproducibility and utility of quantitative magnetic resonance imaging (MRI) sequences for the assessment of kidneys in young adults with normal renal function (eGFR ranged from 90 to 130 mL/min/1.73 m 2 ) and patients with early renal disease (autosomal dominant polycystic kidney disease). This prospective case-control study was performed on ten normal young adults (18-30 years old) and ten age- and sex-matched patients with early renal parenchymal disease (autosomal dominant polycystic kidney disease). All subjects underwent a comprehensive kidney MRI protocol, including qualitative imaging: T1w, T2w, FIESTA, and quantitative imaging: 2D cine phase contrast of the renal arteries, and parenchymal diffusion weighted imaging (DWI), magnetization transfer imaging (MTI), blood oxygen level dependent (BOLD) imaging, and magnetic resonance elastography (MRE). The normal controls were imaged on two separate occasions ≥24 h apart (range 24-210 h) to assess reproducibility of the measurements. Quantitative MR imaging sequences were found to be reproducible. The mean ± SD absolute percent difference between quantitative parameters measured ≥24 h apart were: MTI-derived ratio = 4.5 ± 3.6%, DWI-derived apparent diffusion coefficient (ADC) = 6.5 ± 3.4%, BOLD-derived R2* = 7.4 ± 5.9%, and MRE-derived tissue stiffness = 7.6 ± 3.3%. Compared with controls, the ADPKD patient's non-cystic renal parenchyma (NCRP) had statistically significant differences with regard to quantitative parenchymal measures: lower MTI percent ratios (16.3 ± 4.4 vs. 23.8 ± 1.2, p < 0.05), higher ADCs (2.46 ± 0.20 vs. 2.18 ± 0.10 × 10 -3 mm 2 /s, p < 0.05), lower R2*s (14.9 ± 1.7 vs. 18.1 ± 1.6 s -1 , p < 0.05), and lower tissue stiffness (3.2 ± 0.3 vs. 3.8 ± 0.5 kPa, p < 0.05). Excellent reproducibility of the quantitative measurements was obtained in all cases. Significantly different quantitative MR parenchymal measurement parameters between ADPKD patients and normal controls were obtained by MT, DWI, BOLD, and MRE indicating the potential for detecting and following renal disease at an earlier stage than the conventional qualitative imaging techniques.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
One Year Report for SAMS and OARE on STS-73/USML-2. Experiment 36
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak
1998-01-01
The Second United States Microgravity Laboratory (USML-2) payload flew on the orbiter Columbia on mission STS-73 from October 20 to November 5, 1995. The USML-2 payload on STS-73 was dedicated to microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). OARE downlinked real-time quasi-steady acceleration data, which were provided to the investigators. The SAMS recorded higher frequency data onboard for post-mission analysis. The Principal Investigator Microgravity Services (PIMS) project at NASA LeRC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-73, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-73 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-73 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, payload bay door motion, Glovebox fan operations, water dumps, Ku band antenna activity, orbital maneuvering system, and primary reaction control system firings, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.
1988-01-01
p ri r rnpy Harlan County LakeNebraska US Army Corps of Engineers Kansas City District American Resources Group, Ltd. 0’ Carbondale, Illinois A...Cultural Resources Sample Survey in the Harlan County Lake Project Lands West of U.S. Highway 183 Harlan County , Nebraska DTIC IELECTE ’-.... Author -D M...TI TLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Report A Cultural Resources Sample Survey in the Harlan 1983-1984 County Lake Project
Micro-Computer Network Architecture for Range Instrumentation Applications - Volume 1
1991-12-18
AD-A247 836 MTI-R89-006-28 Micro-Computer Network Architecture for Range Instrumentation Applications Volume 1 Mitchell R. Belzer DTIC Yong M . Cho... M . Belzer, Y. Cho, J. Han 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final Technical FROM 09SeDQ89...SpecialI I , 1 . . r l n l m s n u m mt l ~ i m I n : t l l l Contents page cover page ....................................................... 1 Report
IR temperatures of Mauna Loa caldera obtained with multispectral thermal imager
NASA Astrophysics Data System (ADS)
Pendergast, Malcolm M.; O'Steen, Byron L.; Kurzeja, Robert J.
2002-01-01
A survey of surface temperatures of the Mauna Loa caldera during 7/14/00 and 7/15/00 was made by SRTC in conjunction with a MTI satellite image collection. The general variation of surface temperature appears quite predictable responding to solar heating. The analysis of detailed times series of temperature indicates systematic variations in temperature of 5 C corresponding to time scales of 3-5 minutes and space scales of 10-20 m. The average temperature patterns are consistent with those predicted by the Regional Atmospheric Modeling System (RAMS).
1987-03-01
South Dakota 13 2 Description of the Lower Brule Section MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota 15 3 Sequence...MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota Unit # Description Thickness 1 Gray, thinbedded Cretaceous Pierre Shale...14,000 10000 C- 14 YBP WISCONSlNAN HOLOCENE AGE LATE EARLY MIDDLE LATE 10 M.I1. AGGIE BROWN PICK CITY OW MID.UPE MBR MEMBER M EMBER RIVERDALE MEMBER OAHE
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek
2016-06-01
The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation field at the position of the payload and resulting spatial- and time-correlated radiation maps of cumulative dose rate along the satellite orbit.
On-Board Software Reference Architecture for Payloads
NASA Astrophysics Data System (ADS)
Bos, Victor; Rugina, Ana; Trcka, Adam
2016-08-01
The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.
Overview of GX launch services by GALEX
NASA Astrophysics Data System (ADS)
Sato, Koji; Kondou, Yoshirou
2006-07-01
Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.
Turbulence Heating ObserveR - THOR: mission overview and payload summary
NASA Astrophysics Data System (ADS)
Escoubet, C.-Philippe; Voirin, Thomas; Wielders, Arno; Vaivads, Andris; Retino, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Chen, Chris; Fazakerley, Andrew; Lavraud, Benoit; Marcucci, Federica; Narita, Yasuhito; Vainio, Rami; Romstedt, Jens; Boudin, Nathalie; Junge, Axel; Osuna, Pedro; Walsh, Andrew
2017-04-01
The Turbulence Heating ObserveR (THOR) mission was selected as one of the three candidates, following the Call for Medium Class Missions M4 by the European Space Agency, with a launch planned in 2026. THOR is the first mission ever flown in space dedicated to plasma turbulence. THOR will lead to an understanding of the basic plasma heating and particle energization processes, of their effect on different plasma species and of their relative importance in different turbulent regimes. The THOR mission features one single spinning spacecraft, with the spin axis pointing toward the Sun, and 10 state-of-the-art scientific instruments, measuring electromagnetic fields and waves and electrons and ions at the highest spatial and temporal resolution ever achieved. THOR focuses on particular regions: pristine solar wind, Earth's bow shock and interplanetary shocks, and compressed solar wind regions downstream of shocks, that will be observed with three different orbits of 6 x 15 RE, 6 x 25 RE and 6 x 45 RE. These regions are selected because of their differing turbulent fluctuation characteristics, and reflect similar astrophysical environments. The THOR mission, the conceptual design of the spacecraft and a summary of the payload will be presented. Furthermore, driving requirements and their implications for the spacecraft like Electromagnetic Compatibility and cleanliness will be discussed.
The ISES: A non-intrusive medium for in-space experiments in on-board information extraction
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike
1990-01-01
The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.
The Space Shuttle orbiter payload retention systems
NASA Technical Reports Server (NTRS)
Hardee, J. H.
1982-01-01
Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.
Ares V: Enabling Unprecedented Payloads for Space in the 21st Century
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
Numerous technical and programmatic studies since the U.S. space program began in the 1960s has emphasized the need for a heavy lift capability for exploration beyond low Earth orbit (LEO). The Saturn V once embodied that capability until it was retired. Now the Ares V cargo launch vehicle (CaLV) promises to restore and improve on that capability, providing unprecedented opportunities for human and robotic exploration, science, national security and commercial uses. This paper provides an overview of the capabilities of Ares V, both as an opportunity for payloads of increased mass and/or volume, and as a means of reducing risk in the payload design process. The Ares V is part of NASA s Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and Altair lunar lander. This architecture is designed to carry out the national space policy goals of completing the International Space Station (ISS), retiring the Space Shuttle fleet, and expanding human exploration beyond LEO. The Ares V is designed to loft upper stages and/or cargo, such as the Altair lander, into LEO. The Ares I is designed to put Orion into LEO with a crew of up to four for rendezvous with the ISS or with the Ares V Earth departure stage for journeys to the Moon. While retaining the goals of heritage hardware and commonality, the Ares V configuration continues to be refined through a series of internal trades. The current reference configuration was recommended by the Ares Projects and approved by the Constellation Program during the Lunar Capabilities Concept Review (LCCR) June 2008. The reference configuration defines the Ares V as 381 feet (116m) tall with a gross lift-off mass (GLOM) of 8.1 million pounds (3,704.5 mT). Its first stage will generate 11 million pounds of sea-level liftoff thrust. It will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. It could also launch 123,100 pounds (55.8 mT) to Sun-Earth L2. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V s capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and with the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design. 1
Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment
NASA Astrophysics Data System (ADS)
Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.
2017-12-01
Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.
A low-cost through-the-wall FMCW radar for stand-off operation and activity detection
NASA Astrophysics Data System (ADS)
Chetty, Kevin; Chen, Qingchao; Ritchie, Matthew; Woodbridge, Karl
2017-05-01
In this paper we present a new through-wall (TW) FMCW radar system. The architecture of the radar enables both high sensitivity and range resolutions of <1.5 m. Moreover, the radar employs moving target indication (MTI) signal processing to remove the problematic primary wall reflection, allowing higher signal-to- noise and signal-to-interference ratios, which can be traded-off for increased operational stand-off. The TW radar operates at 5.8 GHz with a 200 MHz bandwidth. Its dual-frequency design minimises interference from signal leakage, and permits a baseband output after deramping which is digitized using an inexpensive 24-bit off-the-shelf sound card. The system is therefore an order of magnitude lower in cost than competitor ultrawideband (UWB) TW systems. The high sensitivity afforded by this wide dynamic range has allowed us to develop a wall removal technique whereby high-order digital filters provide a flexible means of MTI filtering based on the phases of the returned echoes. Experimental data demonstrates through-wall detection of individuals and groups of people in various scenarios. Target positions were located to within +/-1.25 m in range, allowing us distinguish between two closely separated targets. Furthermore, at 8.5 m standoff, our wall removal technique can recover target responses that would have otherwise been masked by the primary wall reflection, thus increasing the stand-off capability of the radar. Using phase processing, our experimental data also reveals a clear difference in the micro-Doppler signatures across various types of everyday actions
Waelput, W; Verhee, A; Broekaert, D; Eyckerman, S; Vandekerckhove, J; Beattie, J H; Tavernier, J
2000-05-15
Using PC12 cells as an in vitro model system, we have identified a series of transcripts induced through activation of the leptin receptor. On the basis of kinetic studies, two distinct gene sets could be discerned: signal transducer and activator of transciption-3 (STAT-3), suppressor of cytokine signalling-3 (SOCS-3), MT-II (metallothionein-II), the serine/threonine kinase fibroblast-growth-factor-inducible kinase (Fnk) and modulator recognition factor (MRF-1), which are immediate early response genes, and pancreatitis-associated protein I (PAP I), squalene epoxidase, uridine diphosphate glucuronosyltransferase and annexin VIII, which are late induced target genes. At late time points a strong co-stimulation with beta-nerve growth factor or with the adenylate cyclase activator forskolin was observed. To assess the validity of the PC12-cell model system, we examined the effect of leptin administration on the gene transcription of STAT-3, MT-II, Fnk and PAP I in vivo. Leptin treatment of leptin-deficient ob/ob mice increased the STAT-3, SOCS-3, MT-II and Fnk mRNA, and MT-I protein levels in liver, whereas, in jejunum, expression of PAP I mRNA was down-regulated. Furthermore, administration of leptin to starved wild-type mice enhanced the expression of MT-II and Fnk mRNA in liver, but decreased MT-II and PAP I mRNA expression in jejunum. These findings may help to explain the obese phenotype observed in some colonies of MT-I- and MT-II-null mice and/or the observation that leptin protects against tumour-necrosis-factor toxicity in vivo.
Rocha, Surza L G; Lomonte, Bruno; Neves-Ferreira, Ana G C; Trugilho, Monique R O; Junqueira-de-Azevedo, Inácio de L M; Ho, Paulo L; Domont, Gilberto B; Gutiérrez, José M; Perales, Jonas
2002-12-01
Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human alpha1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.
Marcus, Norman J; Gracely, Edward J; Keefe, Kelly O
2010-01-01
A comprehensive protocol is presented to identify muscular causes of regional pain syndromes utilizing an electrical stimulus in lieu of palpation, and combining elements of Prolotherapy with trigger point injections. One hundred seventy-six consecutive patients were evaluated for the presence of muscle pain by utilizing an electrical stimulus produced by the Muscle Pain Detection Device. The diagnosis of "Muscle Pain Amenable to Injection" (MPAI), rather than trigger points, was made if pain was produced for the duration of the stimulation. If MPAI was found, muscle tendon injections (MTI) were offered to patients along with post-MTI physical therapy, providing neuromuscular electrical stimulation followed by a validated exercise program [1]. A control group, evaluated 1 month prior to their actual consultation/evaluation when muscle pain was identified but not yet treated, was used for comparison. Forty-five patients who met criteria completed treatment. Patients' scores on the Brief Pain Inventory decreased an average of 62%; median 70% (P < 0.001) for pain severity and 68%; median 85% (P < 0.001) for pain interference one month following treatment. These changes were significantly greater (P < 0.001) than those observed in the untreated controls. A protocol incorporating an easily reproducible electrical stimulus to diagnose a muscle causing pain in a region of the body followed by an injection technique that involves the entirety of the muscle, and post injection restoration of muscle function, can successfully eliminate or significantly reduce regional pain present for years.
The Europa Clipper Mission Concept
NASA Astrophysics Data System (ADS)
Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate
2014-05-01
A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander, with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).
Space Station accommodation of attached payloads
NASA Technical Reports Server (NTRS)
Browning, Ronald K.; Gervin, Janette C.
1987-01-01
The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.
NASA Technical Reports Server (NTRS)
Callahan, P. X.; Schatte, C.; Grindeland, R. E.; Bowman, G.; Lencki, W. A.
1985-01-01
Engineering and biological data gathered with the research animal holding facilities (RAHFs) used on the Spacelab 3 mission are summarized. The animals totaled 24 rats and two squirrel monkeys. The RAHFs included biotelemetry, cameras and environmental monitoring equipment. The primary mission goal was engineering evaluation of the RAHFs and ancillary equipment. Tightly-fitted seals were found to be a necessity for keeping waste and food particles from contaminating the Spacelab equipment. All the rats returned with little muscle tone and suppressed immune systems. The monkeys displayed highly individual responses to spaceflight. Both species exhibited reduced abilities to maintain meticulously clean furs in weightlessness. Details of several physiological changes detected during post-flight autopsies are provided.
GERICOS: A Generic Framework for the Development of On-Board Software
NASA Astrophysics Data System (ADS)
Plasson, P.; Cuomo, C.; Gabriel, G.; Gauthier, N.; Gueguen, L.; Malac-Allain, L.
2016-08-01
This paper presents an overview of the GERICOS framework (GEneRIC Onboard Software), its architecture, its various layers and its future evolutions. The GERICOS framework, developed and qualified by LESIA, offers a set of generic, reusable and customizable software components for the rapid development of payload flight software. The GERICOS framework has a layered structure. The first layer (GERICOS::CORE) implements the concept of active objects and forms an abstraction layer over the top of real-time kernels. The second layer (GERICOS::BLOCKS) offers a set of reusable software components for building flight software based on generic solutions to recurrent functionalities. The third layer (GERICOS::DRIVERS) implements software drivers for several COTS IP cores of the LEON processor ecosystem.
STS-110 Crew Interview: Mike Bloomfield
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Commander Mike Bloomfield is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Bloomfield outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Bloomfield discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interviews: Lee Morin
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Lee Morin is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Morin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Morin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interview: Rex Walheim
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Rex Walheim is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Walheim outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Walheim discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interviews: Ellen Ochoa
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Ellen Ochoa is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Ochoa outlines her role in the mission in general, and specifically her use of the robotic arm during the extravehicular activities (EVAs). She describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Ochoa discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). She ends with thoughts on the most valuable aspect of the ISS.
STS-111 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He discusses the following mission goals: the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the International Space Station (ISS)), the delivery of the payloads which includes the Mobile Remote Servicer Base System (MBS), and the planned extravehicular activities (EVAs) which include attaching the MBS to the ISS and repairing the station's robot arm. He describes in-flight procedures for launch, reentry and docking with the ISS. He ends with his thoughts on the role of international cooperation in building and maintaining ISS.
STS-110 Crew Interview: Jerry Ross
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Jerry Ross is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Ross outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Ross discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-113 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lockhart outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the primary mission payload (the P1 truss) and the crew transfer activities (Expedition 6 crew will replace the Expedition 5 Crew). Lockhart discusses the planned EVAs in detail and mentions what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts about the importance of the ISS as the second anniversary of continuous human occupation of the space station approaches.
STS-110 Crew Interview: Stephen Frick
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Pilot Stephen Frick is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Frick outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Frick discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
NASA/Max Planck Institute Barium Ion Cloud Project.
NASA Technical Reports Server (NTRS)
Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.
1973-01-01
NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
STS-113 Crew Interviews: Jim Wetherbee, Commander
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Commander Jim Wetherbee is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Wetherbee outlines his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what the importance of the primary payload (the P1 truss) will be. He also provides a detailed account of the three planned extravehicular activities (EVAs) and additional transfer duties. He ends by offering his thoughts on the success of the ISS as the second anniversary of continuous human occupation of the ISS approaches.
Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.
2009-01-01
An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; Omalley, Terence F.
1991-01-01
An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.
Software Development and Test Methodology for a Distributed Ground System
NASA Technical Reports Server (NTRS)
Ritter, George; Guillebeau, Pat; McNair, Ann R. (Technical Monitor)
2002-01-01
The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground system has evolved over a period of about 10 years. During this time the software processes have migrated from more traditional to more contemporary development processes in an effort to minimize unnecessary overhead while maximizing process benefits. The Software processes that have evolved still emphasize requirements capture, software configuration management, design documenting, and making sure the products that have been developed are accountable to initial requirements. This paper will give an overview of how the Software Processes have evolved, highlighting the positives as well as the negatives. In addition, we will mention the COTS tools that have been integrated into the processes and how the COTS have provided value to the project.
STS-110 Crew Interviews: Steve Smith
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Steve Smith is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Smith outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Smith discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
The NASA Space Life Sciences Training Program - Preparing the way
NASA Technical Reports Server (NTRS)
Biro, Ronald; Munsey, Bill; Long, Irene
1990-01-01
Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.
NASA Technical Reports Server (NTRS)
Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.
1987-01-01
The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.
ExoMars Raman laser spectrometer overview
NASA Astrophysics Data System (ADS)
Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; González, C.
2010-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. This is the first time that a Raman spectrometer will be launched in an out planetary mission. The Instrument will be accommodated and operate inside the Rover's ALD (Analytical Laboratory Drawer), complying with COSPAR (Committee on Space Research) Planetary Protection requirements. The RLS Instrument is composed by the following units: SPU (Spectrometer Unit); iOH: (Internal Optical Head); ICEU (Instrument Control and Excitation Unit). Other instrument units are EH (Electrical Harness), OH (Optical Harness) and RLS SW On-Board.
SOCCER: Comet Coma Sample Return Mission
NASA Technical Reports Server (NTRS)
Albee, A. L.; Uesugi, K. T.; Tsou, Peter
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.
NASA Technical Reports Server (NTRS)
Zimmerman, Chris J.; Litzinger, Gerald E.
1993-01-01
The Advanced Solid Rocket Motor is a new design for the Space Shuttle Solid Rocket Booster. The new design will provide more thrust and more payload capability, as well as incorporating many design improvements in all facets of the design and manufacturing process. A 48-inch (diameter) test motor program is part of the ASRM development program. This program has multiple purposes for testing of propellent, insulation, nozzle characteristics, etc. An overview of the evolution of the 48-inch ASRM test motor ignition system which culminated with the implementation of a laser ignition system is presented. The laser system requirements, development, and operation configuration are reviewed in detail.
Integrated operations/payloads/fleet analysis. Volume 2: Payloads
NASA Technical Reports Server (NTRS)
1971-01-01
The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.
Standards for efficient employment of wide-area motion imagery (WAMI) sensors
NASA Astrophysics Data System (ADS)
Randall, L. Scott; Maenner, Paul F.
2013-05-01
Airborne Wide Area Motion Imagery (WAMI) sensors provide the opportunity for continuous high-resolution surveillance of geographic areas covering tens of square kilometers. This is both a blessing and a curse. Data volumes from "gigapixel-class" WAMI sensors are orders of magnitude greater than for traditional "megapixel-class" video sensors. The amount of data greatly exceeds the capacities of downlinks to ground stations, and even if this were not true, the geographic coverage is too large for effective human monitoring. Although collected motion imagery is recorded on the platform, typically only small "windows" of the full field of view are transmitted to the ground; the full set of collected data can be retrieved from the recording device only after the mission has concluded. Thus, the WAMI environment presents several difficulties: (1) data is too massive for downlink; (2) human operator selection and control of the video windows may not be effective; (3) post-mission storage and dissemination may be limited by inefficient file formats; and (4) unique system implementation characteristics may thwart exploitation by available analysis tools. To address these issues, the National Geospatial-Intelligence Agency's Motion Imagery Standards Board (MISB) is developing relevant standard data exchange formats: (1) moving target indicator (MTI) and tracking metadata to support tipping and cueing of WAMI windows using "watch boxes" and "trip wires"; (2) control channel commands for positioning the windows within the full WAMI field of view; and (3) a full-field-of-view spatiotemporal tiled file format for efficient storage, retrieval, and dissemination. The authors previously provided an overview of this suite of standards. This paper describes the latest progress, with specific concentration on a detailed description of the spatiotemporal tiled file format.
NASA Technical Reports Server (NTRS)
Calvert, John; Freas, George, II
2017-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.
NASA Technical Reports Server (NTRS)
1976-01-01
The preliminary analysis of strawman earth-viewing shuttle sortie payloads begun with the partial spacelab payload was analyzed. The payloads analyzed represent the two extremes of shuttle sortie application payloads: a full shuttle sortie payload dedicated to earth-viewing applications, and a small structure payload which can fly on a space available basis with another primary shuttle payload such as a free flying satellite. The intent of the dedicated mission analysis was to configure an ambitious, but feasible, payload; which, while rich in scientific return, would also stress the system and reveal any deficiences or problem areas in mission planning, support equipment, and operations. Conversely, the intent of the small structure payload was to demonstrate the ease with which a small, simple, flexible payload can be accommodated on shuttle flights.
2015-04-27
MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10
NASA Astrophysics Data System (ADS)
Williams, P. D. L.
1983-08-01
The range of R.C.S. values from a high rising natural coastline viewed by radar on a ship proceeding along that coast from 1 to 10 miles away. The range of R.C.S. values from the mountainous country just inland of the first coastal echo. The likely range of spatial filling factor of inland ground clutter and radar detection of aircraft flying overland in these regions using interclutter visibility rather than classic DOPPLER MTI methods of ""sub clutter'' detection are addressed.
Localized landslide risk assessment with multi pass L band DInSAR analysis
NASA Astrophysics Data System (ADS)
Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo
2014-05-01
In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error even in the advanced time series techniques such as StaMPS/MTI. We tried to compensate with the algorithmic base together with the usage of high resolution LIDAR DEM. The target area of this study is the eastern part of Korean peninsula centered. In there, the landslide originated by the geomorphic factors such as high sloped topography and localized torrential down pour is critical issue. The surface deformations from error corrected two pass DInSAR and StaMPS/MTI are crossly compared and validated with the landslide triggering factors such as vegetation, slope and geological properties. The study will be further extended for the application of future SAR sensors by incorporating the dynamic analysis of topography to implement practical landslide forecasting scheme.
Geochemical variation of groundwater in the Abruzzi region: earthquakes related signals?
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Caliro, S.; Frondini, F.; Avino, R.; Minopoli, C.; Morgantini, N.
2009-12-01
The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures affect the Tyrrhenian side of the Italian peninsula. The northern degassing structure (TRDS, Tuscan Roman degassing structure) includes Tuscany, Latium and part of Umbria regions (~30000 km2) and releases > 6.1 Mt/y of deeply derived CO2. The southern degassing structure (CDS, Campanian degassing structure) affects the Campania region (~10000 km2) and releases > 3.1 Mt/y of deeply derived CO2. The total CO2 released by TRDS and CDS (> 9.2 Mt/y) is globally significant, being ~10% of the estimated present-day total CO2 discharge from sub aerial volcanoes of the Earth. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS plumes, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes, by reducing fault strength and potentially controlling the nucleation, arrest, and recurrence of both micro and major (M>5) earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. In order to investigate this process, detailed hydro-geochemical campaigns started immediately after the main shock of the 6th of April 2009. The surveys include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. The new data includes the determination of the main dissolved ions, the dissolved gases (CO2, CH4, N2, Ar, He) and the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He). All the springs collected in 2009 show a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers, respect to the 1997. The origin of this regional variation is still under investigation. A monthly sampling of the main spring has been programmed in order to differentiate the variation derived by seasonal processes from eventual signals linked to seismic processes. The first results will be presented and discussed.
The LEAN Payload Integration Process
NASA Technical Reports Server (NTRS)
Jordan, Lee P.; Young, Yancy; Rice, Amanda
2011-01-01
It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.
NASA Technical Reports Server (NTRS)
1978-01-01
Four types of Spacelab payloads were analyzed; these were considered to be representative of the Spacelab traffic model. The payloads were: (1) space processing - a single pallet payload; (2) combined astronomy - a five pallet payload; (3) life sciences - a long module payload; and (4) advanced technology lab - a short module plus train payload.
Shuttle payload interface verification equipment study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1976-01-01
A preliminary design analysis of a stand alone payload integration device (IVE) is provided that is capable of verifying payload compatibility in form, fit and function with the shuttle orbiter prior to on-line payload/orbiter operations. The IVE is a high fidelity replica of the orbiter payload accommodations capable of supporting payload functional checkout and mission simulation. A top level payload integration analysis developed detailed functional flow block diagrams of the payload integration process for the broad spectrum of P/L's and identified degree of orbiter data required by the payload user and potential applications of the IVE.
Integrating International Space Station payload operations
NASA Technical Reports Server (NTRS)
Noneman, Steven R.
1996-01-01
The payload operations support for the International Space Station (ISS) payload is reported on, describing payload activity planning, payload operations control, payload data management and overall operations integration. The operations concept employed is based on the distribution of the payload operations responsibility between the researchers and ISS partners. The long duration nature of the ISS mission dictates the geographical distribution of the payload operations activities between the different national centers. The coordination and integration of these operations will be assured by NASA's Payload Operations Integration Center (POIC). The prime objective of the POIC is the achievement of unified operations through communication and collaboration.
Selection of shuttle payload data processing drivers for the data system new technology study
NASA Technical Reports Server (NTRS)
1976-01-01
An investigation of all payloads in the IBM disciplines and the selection of driver payloads within each discipline are described. The driver payloads were selected on the basis of their data processing requirements. These requirements are measured by a weighting scheme. The total requirements for each discipline are estimated by use of the technology payload model. The driver selection process which was both a payload by payload comparison and a comparison of expected groupings of payloads was examined.
Control system and method for payload control in mobile platform cranes
Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.
2002-01-01
A crane control system and method provides a way to generate crane commands responsive to a desired payload motion to achieve substantially pendulation-free actual payload motion. The control system and method apply a motion compensator to maintain a payload in a defined payload configuration relative to an inertial coordinate frame. The control system and method can further comprise a pendulation damper controller to reduce an amount of pendulation between a sensed payload configuration and the defined payload configuration. The control system and method can further comprise a command shaping filter to filter out a residual payload pendulation frequency from the desired payload motion.
Milnerowicz, Halina; Bizoń, Anna
2010-01-01
Metallothionein (MT) is a low molecular weight cysteine-rich protein with a number of roles in the pro/antioxidant balance and homeostasis of essential metals, such as zinc and copper, and in the detoxification of heavy metals, such as cadmium and mercury. Until now, detection of metallothionein in biological fluids remained difficult because of a lack of a broadly reactive commercial test. Meaningful comparison of the values of metallothionein concentrations reported by different authors using their specific isolation procedures and different conditions of enzyme-linked immunoassay is difficult due to the absence of a reference material for metallothionein. Therefore in the present study, we describe a quantitative assay for metallothionein in biological fluids such as plasma and urine performed by a direct enzyme-linked immunoassay using a commercially available monoclonal mouse anti-metallothionein clone E9 antibody and commercial standards of metallothionein from rabbit liver and a custom preparation of metallothionein from human liver. The sensitivity of the assay for the standard containing two isoforms MT-I and MT-II from human liver was 140 pg/well. The reactivity of the commercial standards and standards containing two isoforms MT-I and MT-II isolated from human liver in our laboratory with a commercial monoclonal mouse anti-metallothionein clone E9 antibody were similar. This suggests that the described ELISA test can be useful for determination of metallothionein concentration in biological fluids. The concentrations of metallothionein in human plasma, erythrocyte lysate and in urine of smoking and non-smoking healthy volunteers are reported. Tobacco smoking increases the extracellular metallothionein concentration (plasma and urine) but does not affect the intracellular concentration (erythrocyte lysate).
Comparison of a single-view and a double-view aerosol optical depth retrieval algorithm
NASA Astrophysics Data System (ADS)
Henderson, Bradley G.; Chylek, Petr
2003-11-01
We compare the results of a single-view and a double-view aerosol optical depth (AOD) retrieval algorithm applied to image pairs acquired over NASA Stennis Space Center, Mississippi. The image data were acquired by the Department of Energy's (DOE) Multispectral Thermal Imager (MTI), a pushbroom satellite imager with 15 bands from the visible to the thermal infrared. MTI has the ability to acquire imagery in pairs in which the first image is a near-nadir view and the second image is off-nadir with a zenith angle of approximately 60°. A total of 15 image pairs were used in the analysis. For a given image pair, AOD retrieval is performed twice---once using a single-view algorithm applied to the near-nadir image, then again using a double-view algorithm. Errors for both retrievals are computed by comparing the results to AERONET AOD measurements obtained at the same time and place. The single-view algorithm showed an RMS error about the mean of 0.076 in AOD units, whereas the double-view algorithm showed a modest improvement with an RMS error of 0.06. The single-view errors show a positive bias which is presumed to be a result of the empirical relationship used to determine ground reflectance in the visible. A plot of AOD error of the double-view algorithm versus time shows a noticeable trend which is interpreted to be a calibration drift. When this trend is removed, the RMS error of the double-view algorithm drops to 0.030. The single-view algorithm qualitatively appears to perform better during the spring and summer whereas the double-view algorithm seems to be less sensitive to season.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Litvinov, Alexey L; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N
2018-06-18
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu 4 N + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) and (Bu 3 MeP + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) with [M IV O(Pc 4- )] 2- dianions were synthesized and characterized. Reduction of M IV O(Pc 2- ) carried out with an excess of sodium fluorenone ketyl in the presence of Bu 4 N + or Bu 3 MeP + is exclusive to the phthalocyanine centers, forming Pc 4- species. During reduction, the metal +4 charge did not change, implying that Pc is an non-innocent ligand. The Pc negative charge increase caused the C-N(pyr) bonds to elongate and the C-N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn-Teller effects are significant in the [eg(π*)] 2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q-bands were observed in the UV/Vis/NIR when M IV O(Pc 2- ) was reduced to [M IV O(Pc . 3- )] . - and [M IV O(Pc 4- )] 2- . From magnetic measurements, [Ti IV O(Pc 4- )] 2- was found to be diamagnetic and (Bu 4 N + ) 2 [V IV O(Pc 4- )] 2- and (Bu 3 MeP + ) 2 [V IV O(Pc 4- )] 2- were found to have magnetic moments of 1.72-1.78 μ B corresponding to an S=1/2 spin state owing to V IV electron spin. As a result, two latter salts show EPR signals with V IV hyperfine coupling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.
2017-12-01
The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.
Adolescent patterns of physical activity differences by gender, day, and time of day.
Jago, Russell; Anderson, Cheryl B; Baranowski, Tom; Watson, Kathy
2005-06-01
More information about the physical activity of adolescents is needed. This study used objective measurement to investigate differences in activity patterns related to gender, body mass index (BMI), day, and time of day. Eighth-grade adolescents (37 boys, 44 girls) wore the Manufacturing Technologies Inc. (MTI) accelerometer for 4 days and kept a previous-day physical activity recall diary in the fall of 2002. Minutes per hour in sedentary, light, and moderate/vigorous activity, as recorded by the MTI, and in nine activity categories, as recorded by the diary, were calculated for three time periods (6:00 am to 2:59 pm, 3:00 pm to 6:59 pm, 7:00 pm to midnight) on each day (Thursday through Sunday). Doubly multivariate analysis of variance revealed significant gender by day by time differences in sedentary (p =0.005) and moderate/vigorous (p <0.001) activity, but no significant BMI interactions. Except on Sunday, boys were less sedentary and more active than girls during the late afternoon period. Significant gender by category (p <0.001) and day by category (p <0.001) interactions were also found in the log data. Boys spent more time engaged in TV/electronics and sports, while girls spent more time in personal care. Three activity categories (sports, social interaction, active transportation) stayed at consistent levels across days, while others varied widely by day of the week. Except on Sunday, consistent gender differences were found in activity levels, especially for the late afternoon period. Significant increases in sitting, TV/electronic games, and chores were seen for weekend days. Results support strategies to reduce sitting and electronic recreation, which may increase physical activity.
STS-107 Crew Interviews: David Brown MS1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Mission Specialist 1 David Brown is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career. Brown outlines his role in the mission in general, and specifically during the conducting of on-board science experiments. Brown discusses the following instruments and experiments in detail: ARMS (Advanced Respiratory Monitoring System), MEIDEX (Mediterranean Israeli Dust Experiment), Combustion Module 2, and FREESTAR (Fast Reaction Enables Science Technology and Research). He also describes the new primary payload carrier, the SPACEHAB research double module which doubles the amount of space available for research. Brown shares his thoughts about the importance of international cooperation in mission planning and the need for scientific research in space.
STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.
STS-107 Crew Interviews: William McCool, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-107 Pilot William McCool is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his background. McCool outlines his role in the mission in general, and discusses the scientific experiments which comprise the primary payloads for the mission. He provides details on the following instruments and experiments: MEIDEX (Mediterranean Israeli Dust Experiment), BIOPACK (Bacterial Physiology and Virulence on Earth and in Microgravity) and SOLSE (Shuttle Ozone Limb Sounding Experiment). McCool talks about the new SPACEHAB research module which doubles the amount of space available for scientific research projects. He also mentions the training for the mission, the astronauts working in dual shifts on the shuttle, and the importance of international cooperation in planning the mission.
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
An automated miniature robotic vehicle inspection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobie, Gordon; Summan, Rahul; MacLeod, Charles
2014-02-18
A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3Dmore » model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.
14 CFR 415.59 - Information requirements for payload review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Information requirements for payload review... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.59 Information requirements for payload review. (a) A person requesting review of a particular payload or payload...
14 CFR 431.7 - Payload and payload reentry determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... payload reentry determination is required to reenter a payload to Earth on an RLV unless the proposed...
The New Commercial Suborbital Vehicles: An Opportunity for Scientific and Microgravity Research
NASA Astrophysics Data System (ADS)
Moro-Aguilar, Rafael
2014-11-01
As of 2013, a number of companies had announced their intention to start flying suborbital vehicles, capable of transporting people to high altitudes out of any airport or launch site, on a commercial and regular basis. According to several studies, a market for suborbital "space tourism" exists. Another very promising application of suborbital flight is scientific research. The present paper provides an overview of the potential of commercial suborbital flight for science, including microgravity research. Suborbital flight provides a much-needed intermediate-duration opportunity between research performed in Earth orbit and more affordable but shorter duration alternatives, such as drop towers and zero-g parabolic flights. Moreover, suborbital flight will be less expensive and more frequent than both orbital flight and sounding rockets, and it has the capability to fly into sub-orbit the researcher together with the payload, and thus enable on-site interaction with the experiment. In the United States, both the National Aeronautics and Space Administration (NASA) and a number of private institutions have already shown interest in conducting scientific experiments, particularly microgravity research, aboard these new platforms. Researchers who intend to participate in future suborbital flights as payload specialists will need training, given the physical challenges posed by the flight. Finally, suborbital researchers may also want to have a basic knowledge of the legal status that will apply to them as passengers of such flights.
Phillips Laboratory small satellite initiatives
NASA Astrophysics Data System (ADS)
Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.
1993-09-01
The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.
Engineering a responsive, low cost, tactical satellite, TACSAT-1
NASA Astrophysics Data System (ADS)
Hurley, M.; Duffey, T.; Huffine, Christopher; Weldy, Ken; Clevland, Jeff; Hauser, Joe
2004-11-01
The Secretary of Defense's Office of Force Transformation (OFT) is currently undertaking an initiative to develop a low-cost, responsive, operationally relevant space capability using small satellites. The Naval Research Laboratory (NRL) is tasked to be program manger for this initiative, which seeks to make space assets and capabilities available to operational users. TacSat-1 is the first in a series of small satellites that will result in rapid, tailored, and operationally relevant experimental space capabilities for tactical forces. Components of the resulting tactical architecture include a highly automated small satellite bus, modular payloads, common launch and payload interfaces, tasking and data dissemination using the SIPRNET (Secret Internet Protocol Routing Network), and low cost, rapid response launches. The overall goal of TacSat-1 is to demonstrate the utility of a broader complementary business model and provide a catalyst for energizing DoD and industry in the operational space area. This paper first provides a brief overview of the TacSat- 1 experiment and then discusses the engineering designs and practices used to achieve the aggressive cost and schedule goals. Non-standard approaches and engineering philosophies that allowed the TacSat-1 spacecraft to be finished in twelve months are detailed and compared with "normal" satellite programs where applicable. Specific subsystem design, integration and test techniques, which contributed to the successful completion of the TacSat-1 spacecraft, are reviewed. Finally, lessons learned are discussed.
BepiColombo: Exploring Mercury
NASA Astrophysics Data System (ADS)
Geelen, K.; Novara, M.; Fugger, S.; Benkhoff, J.
2014-04-01
BepiColombo is an interdisciplinary mission to explore Mercury, the planet closest to the sun, carried out jointly between the European Space Agency and the Japanese Aerospace Exploration Agency. The mission consists of two orbiters dedicated to the detailed study of the planet and of its magnetosphere, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The MPO is ESA's scientific contribution to the mission and comprises 11 science instruments. It is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit with a period of approximately 2.3 hours, a periapsis of 480 km and an apoapsis of 1500 km, providing excellent spatial resolution over the entire planet surface. The interplanetary transfer is performed by an Electric Propulsion Module, which is jettisoned when Mercury is reached. It will set off in July 2016 on a journey to the smallest and least explored terrestrial planet in our Solar System. When it arrives at Mercury in January 2024, it will endure temperatures in excess of 350 °C and gather data during its 1 year nominal mission, with a possible 1-year extension. The difficulty of reaching, surviving and operating in the harsh environment of a planet so close to the sun, makes BepiColombo one of the most challenging planetary projects undertaken by ESA so far. A range of major challenges need to be overcome to enable the mission including the electric propulsion system, development of a new Multi-Layer Insulation able to withstand the high temperatures, an original solar panel design, stringent pointing requirements to be maintained in extreme conditions varying from a solar flux of 10 solar constants to eclipse conditions etc. The scientific payload of both spacecraft will provide the detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface,exosphere and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein's theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload complement such that individual measurements can be interrelated and complement each other. This paper gives an in-depth overview of BepiColombo spacecraft composite and the mission profile. It describes the suite of scientific instruments on board of the two BepiColombo spacecraft and the science goals of the mission. This paper gives an overview of the mission, describes the science case together with the payload suite as well as the latest status of the spacecraft development.
Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet
NASA Technical Reports Server (NTRS)
Holladay, Jon; McClendon, Randy (Technical Monitor)
2002-01-01
The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.
14 CFR 415.57 - Payload review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload review. 415.57 Section 415.57... TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.57 Payload review. (a) Timing. A payload review may be conducted as part of a license application review or may be requested by a payload...
NASA Technical Reports Server (NTRS)
1972-01-01
The technical and cost analysis that was performed for the payload system operations analysis is presented. The technical analysis consists of the operations for the payload/shuttle and payload/tug, and the spacecraft analysis which includes sortie, automated, and large observatory type payloads. The cost analysis includes the costing tradeoffs of the various payload design concepts and traffic models. The overall objectives of this effort were to identify payload design and operational concepts for the shuttle which will result in low cost design, and to examine the low cost design concepts to identify applicable design guidelines. The operations analysis examined several past and current NASA and DoD satellite programs to establish a shuttle operations model. From this model the analysis examined the payload/shuttle flow and determined facility concepts necessary for effective payload/shuttle ground operations. The study of the payload/tug operations was an examination of the various flight timelines for missions requiring the tug.
Express Payload Project - A new method for rapid access to Space Station Freedom
NASA Technical Reports Server (NTRS)
Uhran, Mark L.; Timm, Marc G.
1993-01-01
The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.
Satellite situation report, volume 33, number 4
NASA Technical Reports Server (NTRS)
1993-01-01
The Satellite Situation Report is a listing of those satellites (objects) currently in orbit and those which have previously orbited the Earth. Some objects are too small or too far from the Earth's surface to be detected; therefore, the Satellite Situation Report does not include all manmade objects orbiting the Earth. Generally, satellites are classified as follows: (1) Payloads may contain one or more functioning or nonfunctioning experiments. Usually only the owners of the satellites know if the experiments are functioning, and there is no one source which indicates the operational status of all payloads and/or experiments. Payloads are normally the first listed in the Satellite Situation Report, i.e., 1982 087A, unless there are multiple payloads for the launch. In which case, the first objects cataloged are usually all payloads, unless a subsequent payload is later identified after objects other than payloads have been cataloged. (2) Platforms are used to support a payload while it is being placed into orbit. A platform may remain in orbit long after its purpose is served, usually longer than rocket bodies. It is usually the first object identified in the Satellite Situation Report listing after the payload(s), i.e., 1982 087B (when a platform is not used, the first object after the payload(s) is usually the rocket body). (3) Rocket bodies are used to place the payload and platform (if one is used) into orbit. Some launches may have more than one rocket body because of the payload weight or the type of orbit or experiment. Most rocket bodies decay within a short time after the payload (and platform) have achieved orbit. Rocket bodies are usually the third object listed in the Satellite Situation Report after the payload(s), i.e., 1982 087C. (4) Debris in orbit occurs when parts (nose cone shrouds, lens or hatch covers) are separated from the payload, when rocket bodies or payloads disintegrate or explode, or when objects are placed into free space from manned orbiting spacecraft during operations. Debris is detected by its size and distance from the Earth. Debris objects are the last objects after payload(s), platform, and rocket body(s) listed in the Satellite Situation Report, i.e., 1982 087D, 1982 087E, 1982 087F.
2008-10-22
CAPE CANAVERAL, Fla. - In the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers use the payload ground-handling mechanism to transfer space shuttle Endeavour's STS-126 mission payload from the payload canister. The payload is the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. The payload later will be installed in Endeavour's payload bay. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Kim Shiflett
Payload Performance of TDRS KL and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco A.; Heckler, Gregory W.; Pogorelc, Patricia M.; George, Nicholas E.; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3nd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and GT; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, GT, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
Payload Performance of Third Generation TDRS and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco; Heckler, Gregory; Pogorelc, Patsy; George, Nicholas; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3rd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space & Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and G/T; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, G/T, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
NASA's Space Launch System: Deep-Space Opportunities for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Schorr, Andrew A.
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed cubesats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the cubesats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the 2 Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth-Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond.
NASA's Space Launch System: Deep-Space Delivery for Smallsats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth- Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond.
ExoMars: Overview of scientific programme
NASA Astrophysics Data System (ADS)
Rodionov, Daniel; Witasse, Olivier; Vago, Jorge L.
The ExoMars Programme is a joint project between the European Space Agency (ESA) and the Russian Federal Space Agency (Roscosmos). The project consists of two missions with launches in 2016 and 2018. The scientific objectives of ExoMars are: begin{itemize} To search for signs of past and present life on Mars. To investigate the water/geochemical environment as a function of depth in the shallow subsurface. To study Martian atmospheric trace gases and their sources. To characterize the surface environment. The 2016 mission will be launched (January 2016) on a Proton rocket. It includes the Trace Gas Orbiter (TGO) and an Entry, descent and landing Demonstrator Module (EDM), both contributed by ESA. The TGO will carry European and Russian scientific instruments for remote observations, while the EDM will have a European payload for in-situ measurements during descent and on the Martian surface. The TGO scientific payload includes:begin{itemize} NOMAD. Suite of 2 Infrared (IR) and 1 Ultraviolet (UV) spectrometer. ACS. Suite of 2 IR echelle-spectrometers (near and middle IR) and 1 Fourier spectrometer. FREND. Neutron spectrometer with a collimation module. CaSSIS. High-resolution camera. The EDM payload includes a set of accelerometers and heat shield sensors (AMELIA), to study the Martian atmosphere and obtain images throughout the EDM’s descent, and an environmental station (DREAMS), to conduct a series of short meteorological observations at the EDM’s landing location. The 2018 mission will land a Rover, provided by ESA, making use of a Descent Module (DM) contributed by Roscosmos. The mission will be launched on a Proton rocket (May 2018). The ExoMars rover will have a nominal lifetime of approximately 6 months. During this period, it will ensure a regional mobility of several kilometres, relying on solar array electrical power. The rover’s Pasteur payload will produce self-consistent sets of measurements capable to provide reliable evidence, for or against, the existence of a range of biosignatures at each search location. Pasteur contains: panoramic instruments (wide-angle and high-resolution cameras, an infrared spectrometer, a ground-penetrating radar, and a neutron detector); contact instruments for studying rocks and collected samples (a close-up imager and an infrared spectrometer in the drill head); a subsurface drill capable of reaching a depth of 2 m to collect specimens; a Sample Preparation and Distribution System (SPDS); and the analytical laboratory, the latter including a visual and infrared imaging spectrometer, a Raman spectrometer, and a Laser-Desorption, Thermal-Volatilisation, Derivatisation, Gas Chromatograph Mass Spectrometer (LD + Der-TV GCMS). After Rover egress, the Surface Platform (SP) will conduct environmental and geophysics experiments for about a Martian year. The SP scientific payload is under selection at the moment.
NASA Technical Reports Server (NTRS)
Sapp, T. P.; Davin, D. E.
1977-01-01
The integrated payload and mission planning process for STS payloads was defined, and discrete tasks which evaluate performance and support initial implementation of this process were conducted. The scope of activity was limited to NASA and NASA-related payload missions only. The integrated payload and mission planning process was defined in detail, including all related interfaces and scheduling requirements. Related to the payload mission planning process, a methodology for assessing early Spacelab mission manager assignment schedules was defined.
Payload Operations Support Team Tools
NASA Technical Reports Server (NTRS)
Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David;
2007-01-01
Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations
Modular Countermine Payload for Small Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman Herman; Doug Few; Roelof Versteeg
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less
Modular countermine payload for small robots
NASA Astrophysics Data System (ADS)
Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.
Commercially Hosted Government Payloads: Lessons from Recent Programs
NASA Technical Reports Server (NTRS)
Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen
2011-01-01
In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future hosted payload programs, whether they are technology demonstrations, communications systems, or operational sensors. Additionally, we present a basic cost model for commercial access to space for hosted payloads as a function of payload mass
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
NASA Technical Reports Server (NTRS)
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
Electronic and Piezoelectric properties of half-Heusler compounds: A first principles study
NASA Astrophysics Data System (ADS)
Rai, D. P.; Sandeep; Shankar, A.; Aly, Abeer E.; Patra, P. K.; Thapa, R. K.
2016-10-01
We have investigated the semiconducting and piezoelectric properties of bulk MNiSn (M=Ti, Zr, Hf) type a half-Heusler compound with cubic F-43m symmetry by means of density functional theory (DFT). For electron exchange correlation a generalized gradient approximation (GGA) was used. Special attention was paid to establish a most favourble ground state configuration on magnetic as well as non-magnetic ordering. With fully optimized structure the electronic and ferroelectric calculation was performed. The formation of band gap was discussed on the basis of d-d orbital hybridization. Further we have calculated the spontaneous polarization by means of structural deformation.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Marín, E.; Calderón, A.
2013-09-01
The effect of titanium dioxide photocatalysis against bacteria that are dangerous for human health has been investigated in the past, suggesting the possibility of using a specific behavior for each microorganism during this process for its discrimination. In this study, the behavior of some plants’ growth promoting bacteria ( Burkholderia unamae (Strain MTI 641), Acetobacter diazotrophicus (Strain PAl 5T), A. diazotrophicus (Strain CFN-Cf 52), and B. unamae (Strain TATl-371)) interacting with light and bactericidal titanium dioxide films have been analyzed using the photoacoustic technique. The monitoring of these interactions shows particular characteristics that could serve for identifying these species.
Photo screening around the world: Lions Club International Foundation experience.
Donahue, Sean P; Lorenz, Sylvia; Johnson, Tammy
2008-01-01
To describe the use of photoscreening for preschool vision screening in several diverse locations throughout the world. The MTI photo screener was used to screen pre-verbal children; photographs were interpreted using standard criteria. The Tennessee vision screening program remains successful, screening over 200,000 children during the past 8 years. Similar programs modeled across the United States have screened an additional 500,000 children. A pilot demonstration project in Hong Kong, Beijing, and Brazil screened over 5000 additional children with good success and appropriately low referral rates. Photoscreening can be an appropriate technique for widespread vision screening of preschool children throughout the world.
Temporal, Spatial, and Spectral Variability at Ivanpah Playa Vicarious Calibration Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa-Aleman, E.
2003-01-07
The Savannah River Technology Center (SRTC) conducted four reflectance vicarious calibrations at Ivanpah Playa, California since July 2000 in support of the MTI satellite. The multi-year study shows temporal, spatial and spectral variability at the playa. The temporal variability in the wavelength dependent reflectance and emissivity across the playa suggests a dependency with precipitation during the winter and early spring seasons. Satellite imagery acquired on September and November 2000, May 2001 and March 2002 in conjunction with ground truth during the September, May and March campaigns and water precipitation records were used to demonstrate the correlation observed at the playa
Turbomachinery Laboratory Texas A and M University research progress on annular gas seals
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1994-01-01
Three helically-grooved seals were tested and the results were compared to the MTI code SPIRALG. A smooth annular seal was tested at six eccentricity ratios from 0 to 0.5. The following are concluded in this viewgraph presentation: (1) Helical-grooved seals provide a substantial reduction in cross-coupled stiffness coefficients. Negative k(sub xy) values are obtained for no-swirl or low-swirl cases. (2) SPIRALG is completely unsuitable for the type of seal tested, namely, turbulent flow, wide grooves and lands, etc. (3) A good analysis code is needed to guide the design of helically-grooved annular seals including groove and smooth sections.
Payload isolation and stabilization by a Suspended Experiment Mount (SEM)
NASA Technical Reports Server (NTRS)
Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.
1992-01-01
Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.
NASA Technical Reports Server (NTRS)
Sledd, Annette; Danford, Mike; Key, Brian
2002-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.
The Extension of ISS Resources for Multi-Discipline Subrack Payloads
NASA Technical Reports Server (NTRS)
Sledd, Annette M.; Gilbert, Paul A. (Technical Monitor)
2002-01-01
The EXpedite the processing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.
Test and analysis procedures for updating math models of Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1991-01-01
Over the next decade or more, the Space Shuttle will continue to be the primary transportation system for delivering payloads to Earth orbit. Although a number of payloads have already been successfully carried by the Space Shuttle in the payload bay of the Orbiter vehicle, there continues to be a need for evaluation of the procedures used for verifying and updating the math models of the payloads. The verified payload math models is combined with an Orbiter math model for the coupled-loads analysis, which is required before any payload can fly. Several test procedures were employed for obtaining data for use in verifying payload math models and for carrying out the updating of the payload math models. Research was directed at the evaluation of test/update procedures for use in the verification of Space Shuttle payload math models. The following research tasks are summarized: (1) a study of free-interface test procedures; (2) a literature survey and evaluation of model update procedures; and (3) the design and construction of a laboratory payload simulator.
Design guide for low cost standardized payloads, volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
Concept point designs of low cost and refurbishable spacecraft, subsystems, and modules revealed payload program savings up to 50 percent. The general relationship of payload approaches to program costs; cost reductions from low cost standardized payloads; cost effective application of payload reliability, MMD, repair, and refurbishment; and implementation of standardization for future spacecraft are discussed. Shuttle interfaces and support equipment for future payloads are also considered
14 CFR 415.7 - Payload determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.7 Payload determination. A payload determination is required for a launch license unless the proposed payload is exempt from payload review under § 415.53 of...
14 CFR 415.7 - Payload determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.7 Payload determination. A payload determination is required for a launch license unless the proposed payload is exempt from payload review under § 415.53 of...
NASA'S Space Launch System: Progress Toward the Proving Ground
NASA Technical Reports Server (NTRS)
Jackman, Angie; Johnson, Les
2017-01-01
With significant and substantial progress being accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight – using an upgraded version of the vehicle – and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and together with the Orion spacecraft will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 metric tons. For that flight, the new configuration introduces two major new elements to the vehicle – an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a “payload bay” for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Beyond the second flight, additional upgrades will be made to the vehicle. The Block 1B vehicle will also be able to launch 8.4-meter-diameter payload fairings, larger than any previously flown, and the Spacecraft Payload Integration and Evolution (SPIE) Element will oversee development and production of those fairings. Ultimately, SLS will be evolved to a Block 2 configuration, which will replace the solid rocket boosters on the Block 1 and 1B vehicles with more powerful boosters, and will be capable of delivering at least 130 metric tons to LEO. The Block 2 vehicle will be capable of launching even larger 10-meter diameter fairings, which will enable human mission of Mars. With these fairings, the Block 1B and 2 configurations of SLS will also be enabling for a wide variety of other payloads. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. This paper will provide a description of the SLS vehicle, and an overview of the vehicle’s capabilities and utilization potential.
NASA Technical Reports Server (NTRS)
De La Cruz, Melinda; Henderson, Steve
2016-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.
STS-55 German payload specialists (and backups) in LESs during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists, wearing launch and entry suits (LESs), pose for group portrait outside mockup side hatch in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. These payload specialists will support the STS-55 Spacelab Deutsche 2 (SL-D2) mission. It is the second dedicated German (Deutsche) Spacelab flight. Left to right are backup Payload Specialists Renate Brummer and Dr. P. Gerhard Thiele, Payload Specialist 1 Ulrich Walter, and Payload Specialist 2 Hans Schlegel.
2012-02-17
Space Shuttle Payloads: Kennedy Space Center was the hub for the final preparation and launch of the space shuttle and its payloads. The shuttle carried a wide variety of payloads into Earth orbit. Not all payloads were installed in the shuttle's cargo bay. In-cabin payloads were carried in the shuttle's middeck. Cargo bay payloads were typically large payloads which did not require a pressurized environment, such as interplanetary space probes, earth-orbiting satellites, scientific laboratories and International Space Station trusses and components. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
STS-47 crew and backups at MSFC's Payload Crew Training Complex
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) crewmembers and backup payload specialists stand outside SLJ module mockup at the Payload Crew Training Complex at Marshall SpaceFlight Center (MSFC) in Huntsville, Alabama. From left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Takao Doi, backup Payload Specialist Chiaki Naito-Mukai, Mission Specialist (MS) Mae C. Jemison, MS N. Jan Davis, backup Payload Specialist Stan Koszelak, and MS and Payload Commander (PLC) Mark C. Lee. The MSFC-managed mission is a joint venture in space-based research between the United States and Japan. Mohri, Doi, and Mukai represent Japan's National Space Development Agency (NASDA). View provided with alternate number 92P-142.
NASA Technical Reports Server (NTRS)
Rader, W. P.; Barrett, S.; Raratono, J.; Payne, K. R.
1976-01-01
The current predicted acoustic environment for the shuttle orbiter payload bay will produce random vibration environments for payload components and subsystems which potentially will result in design, weight and cost penalties if means of protecting the payloads are not developed. Results are presented of a study to develop, through design and cost effectiveness trade studies, conceptual noise suppression device designs for space shuttle payloads. The impact of noise suppression on environmental levels and associated test costs, and on test philosophy for the various payload classes is considered with the ultimate goal of reducing payload test costs. Conclusions and recommendations are presented.
Payload/cargo processing at the launch site
NASA Technical Reports Server (NTRS)
Ragusa, J. M.
1983-01-01
Payload processing at Kennedy Space Center is described, with emphasis on payload contamination control. Support requirements are established after documentation of the payload. The processing facilities feature enclosed, environmentally controlled conditions, with account taken of the weather conditions, door openings, accessing the payload, industrial activities, and energy conservation. Apparatus are also available for purges after Orbiter landing. The payloads are divided into horizontal, vertical, mixed, and life sciences and Getaway Special categories, which determines the processing route through the facilities. A canister/transport system features sealed containers for moving payloads from one facility building to another. All payloads are exposed to complete Orbiter bay interface checkouts in a simulator before actually being mounted in the bay.
Payload transportation system study
NASA Technical Reports Server (NTRS)
1976-01-01
A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.
Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload
NASA Astrophysics Data System (ADS)
Zhang, X.
2018-04-01
To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.
14 CFR 415.57 - Payload review.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.57 Payload review. (a) Timing. A payload review may be conducted as part of a license application review or may be requested by a payload...
A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements
NASA Technical Reports Server (NTRS)
Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.
2001-01-01
NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.
Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)
NASA Technical Reports Server (NTRS)
1993-01-01
Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.
NASA Technical Reports Server (NTRS)
1973-01-01
The tables of schedules and descriptions which portray the 1973 NASA Payload Model are presented. The schedules cover all NASA programs and the anticipated requirements of the user community, not including the Department of Defense, for the 1973 to 1991 period. The descriptions give an indication of what the payload is expected to accomplish, its characteristics, and where it is going. The payload flight schedules shown for each of the discipline areas indicate the time frame in which individual payloads will be launched, serviced, or retrieved. These do not necessarily constitute shuttle flights, however, since more than one payload can be flown on a single shuttle flight depending on size, weight, orbital destination, and the suitability of combining them. The weight, dimension, and destination data represent approximations of the payload characteristics as estimated by the Program Offices. Payload codes are provided for easy correlation between the schedules and descriptions of the Payload Model and subsequent documentation which may reference this model.
OPEX: (Olympus Propagation EXperiment)
NASA Technical Reports Server (NTRS)
Brussaard, Gert
1988-01-01
The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.
NASA Technical Reports Server (NTRS)
Ellenberger, Richard; Duvall, Laura; Dory, Jonathan
2016-01-01
The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.
NASA Technical Reports Server (NTRS)
1975-01-01
Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.
14 CFR 431.57 - Information requirements for payload reentry review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reentry review. 431.57 Section 431.57 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... VEHICLE (RLV) Payload Reentry Review and Determination § 431.57 Information requirements for payload reentry review. A person requesting reentry review of a particular payload or payload class must identify...
14 CFR 435.7 - Payload reentry determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload reentry determination. 435.7 Section 435.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload review...
14 CFR 431.7 - Payload and payload reentry determinations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...
14 CFR 431.7 - Payload and payload reentry determinations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...
14 CFR 431.7 - Payload and payload reentry determinations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...
14 CFR 431.7 - Payload and payload reentry determinations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...
2008-10-21
CAPE CANAVERAL, Fla. - The payload canister containing the payload for space shuttle Endeavour's STS-126 mission is transported to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Behind the canister, at left, is the Vehicle Assembly Building. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in Endeavour's payload bay. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
Shiokari, T.
1973-01-01
Payloads to be launched on the space shuttle/space tug/sortie lab combinations are discussed. The payloads are of four types: (1) expendable, (2) ground refurbishable, (3) on-orbit maintainable, and (4) sortie. Economic comparisons are limited to the four types of payloads described. Additional system guidelines were developed by analyzing two payloads parameterically and demonstrating the results on an example satellite. In addition to analyzing the selected guidelines, emphasis was placed on providing economic tradeoff data and identifying payload parameters influencing the low cost approaches.
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Winckler, J. R.
1981-01-01
The plasma environment surrounding the Echo III accelerator payload is examined with an extensive array of particle sensors. Suprathermal electrons are produced isotropically around the payload during the gun firings and decay away in approximately 32 ms. The largest directional intensities of this component are observed at the higher altitudes. Quick echo electrons are also observed to produce suprathermal electrons when they encounter the payload. The hot electrons surrounding the accelerator payload during gun injections bring sufficient charge to the payload to neutralize it provided the loss of charge by secondary production on the payload skin is small. Since the hot population exists for tens of milliseconds after the gun turnoff, it results in driving the payload up to 4 volts negative during this time. Quick echo electrons creating suprathermal electrons around the payload also drive the payload to a few volts negative.
International Space Station Alpha user payload operations concept
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.
1994-01-01
International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
International Space Station Evolution Data Book. Volume 2; Evolution Concepts; Revised
NASA Technical Reports Server (NTRS)
Jorgensen, Catherine A. (Editor); Antol, Jeffrey (Technical Monitor)
2000-01-01
This report provides a focused and in-depth look at the opportunities and drivers for the enhancement and evolution of the International Space Station (ISS) during assembly and beyond the assembly complete stage. These enhancements would expand and improve the current baseline capabilities of the ISS and help to facilitate the commercialization of the ISS by the private sector. Volume 1 provides the consolidated overview of the ISS baseline systems; information on the current facilities available for pressurized and unpressurized payloads; and information on current plans for crew availability and utilization, resource timelines and margin summaries including power, thermal, and storage volumes; and an overview of the vehicle traffic model. Volume 2 includes discussions of advanced technologies being investigated for use on the ISS and potential commercial utilization activities being examined including proposed design reference missions (DRM's) and the technologies being assessed by the Pre-planned Program Improvement (P(sup 3) I) Working Group. This information is very high level and does not provide the relevant information necessary for detailed design efforts. This document is meant to educate readers on the ISS and to stimulate the generation of ideas for enhancement and utilization of the ISS, either by or for the government, academia, and commercial industry.
An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery
Mohammed, Munawar A.; Syeda, Jaweria T. M.; Wasan, Kishor M.; Wasan, Ellen K.
2017-01-01
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies. PMID:29156634
STS-102 Expedition 2 Increment and Science Briefing
NASA Technical Reports Server (NTRS)
2001-01-01
Merri Sanchez, Expedition 2 Increment Manager, John Uri, Increment Scientist, and Lybrease Woodard, Lead Payload Operations Director, give an overview of the upcoming activities and objectives of the Expedition 2's (E2's) mission in this prelaunch press conference. Ms. Sanchez describes the crew rotation of Expedition 1 to E2, the timeline E2 will follow during their stay on the International Space Station (ISS), and the various flights going to the ISS and what each will bring to ISS. Mr. Uri gives details on the on-board experiments that will take place on the ISS in the fields of microgravity research, commercial, earth, life, and space sciences (such as radiation characterization, H-reflex, colloids formation and interaction, protein crystal growth, plant growth, fermentation in microgravity, etc.). He also gives details on the scientific facilities to be used (laboratory racks and equipment such as the human torso facsimile or 'phantom torso'). Ms. Woodard gives an overview of Marshall Flight Center's role in the mission. Computerized simulations show the installation of the Space Station Remote Manipulator System (SSRMS) onto the ISS and the installation of the airlock using SSRMS. Live footage shows the interior of the ISS, including crew living quarters, the Progress Module, and the Destiny Laboratory. The three then answer questions from the press.
A survey of hybrid Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Saeed, Adnan S.; Younes, Ahmad Bani; Cai, Chenxiao; Cai, Guowei
2018-04-01
This article presents a comprehensive overview on the recent advances of miniature hybrid Unmanned Aerial Vehicles (UAVs). For now, two conventional types, i.e., fixed-wing UAV and Vertical Takeoff and Landing (VTOL) UAV, dominate the miniature UAVs. Each type has its own inherent limitations on flexibility, payload, flight range, cruising speed, takeoff and landing requirements and endurance. Enhanced popularity and interest are recently gained by the newer type, named hybrid UAV, that integrates the beneficial features of both conventional ones. In this survey paper, a systematic categorization method for the hybrid UAV's platform designs is introduced, first presenting the technical features and representative examples. Next, the hybrid UAV's flight dynamics model and flight control strategies are explained addressing several representative modeling and control work. In addition, key observations, existing challenges and conclusive remarks based on the conducted review are discussed accordingly.