Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario
2017-06-01
Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors might reduce the mTOR inhibitors-induced escape mechanisms and/or activate the endogenous mTOR suppressor, potentiating the effect of the mTOR inhibitors in an in vitro model of typical lung carcinoids.
Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro
ROGERS-BROADWAY, KARLY-RAI; CHUDASAMA, DIMPLE; PADOS, GEORGE; TSOLAKIDIS, DIMITRIS; GOUMENOU, ANASTASIA; HALL, MARCIA; KARTERIS, EMMANOUIL
2016-01-01
Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH-2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer. PMID:27211906
Mechanistic insights into the role of mTOR signaling in neuronal differentiation.
Bateman, Joseph M
2015-01-01
Temporal control of neuronal differentiation is critical to produce a complete and fully functional nervous system. Loss of the precise temporal control of neuronal cell fate can lead to defects in cognitive development and to disorders such as epilepsy and autism. Mechanistic target of rapamycin (mTOR) is a large serine/threonine kinase that acts as a crucial sensor of cellular homeostasis. mTOR signaling has recently emerged as a key regulator of neurogenesis. However, the mechanism by which mTOR regulates neurogenesis is poorly understood. In constrast to other functions of the pathway, 'neurogenic mTOR pathway factors' have not previously been identified. We have very recently used Drosophila as a model system to identify the gene unkempt as the first component of the mTOR pathway regulating neuronal differentiation. Our study demonstrates that specific adaptor proteins exist that channel mTOR signaling toward the regulation of neuronal cell fate. In this Commentary we discuss the role of mTOR signaling in neurogenesis and the significance of these findings in advancing our understanding of the mechanism by which mTOR signaling controls neuronal differentiation.
Tan, Heng Kean; Moad, Ahmed Ismail Hassan; Tan, Mei Lan
2014-01-01
The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
The ever-evolving role of mTOR in translation.
Fonseca, Bruno D; Smith, Ewan M; Yelle, Nicolas; Alain, Tommy; Bushell, Martin; Pause, Arnim
2014-12-01
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3
2010-05-10
target of rapamycin ( mTOR ) and hypoxia-inducible factor-1α (HIF-1α) target genes (12). Additionally, transcriptional activation of Bcl-2 by NF-κB...in resistance to hormone therapy (19). Elevated expression of genes encoding PI3K/Akt/ mTOR pathway components has also been implicated in androgen... mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med, 10
mTOR Cross-Talk in Cancer and Potential for Combination Therapy.
Conciatori, Fabiana; Ciuffreda, Ludovica; Bazzichetto, Chiara; Falcone, Italia; Pilotto, Sara; Bria, Emilio; Cognetti, Francesco; Milella, Michele
2018-01-19
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy.
mTOR Cross-Talk in Cancer and Potential for Combination Therapy
Conciatori, Fabiana; Ciuffreda, Ludovica; Bazzichetto, Chiara; Falcone, Italia; Pilotto, Sara; Bria, Emilio; Cognetti, Francesco; Milella, Michele
2018-01-01
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy. PMID:29351204
Hütt-Cabezas, Marianne; Karajannis, Matthias A.; Zagzag, David; Shah, Smit; Horkayne-Szakaly, Iren; Rushing, Elisabeth J.; Cameron, J. Douglas; Jain, Deepali; Eberhart, Charles G.; Raabe, Eric H.; Rodriguez, Fausto J.
2013-01-01
Background Previous studies support a role for mitogen-activated protein kinase pathway signaling, and more recently Akt/mammalian target of rapamycin (mTOR), in pediatric low-grade glioma (PLGG), including pilocytic astrocytoma (PA). Here we further evaluate the role of the mTORC1/mTORC2 pathway in order to better direct pharmacologic blockade in these common childhood tumors. Methods We studied 177 PLGGs and PAs using immunohistochemistry and tested the effect of mTOR blockade on 2 PLGG cell lines (Res186 and Res259) in vitro. Results Moderate (2+) to strong (3+) immunostaining was observed for pS6 in 107/177 (59%) PAs and other PLGGs, while p4EBP1 was observed in 35/115 (30%), pElF4G in 66/112 (59%), mTOR (total) in 53/113 (47%), RAPTOR (mTORC1 component) in 64/102 (63%), RICTOR (mTORC2 component) in 48/101 (48%), and pAkt (S473) in 63/103 (61%). Complete phosphatase and tensin homolog protein loss was identified in only 7/101 (7%) of cases. In PA of the optic pathways, compared with other anatomic sites, there was increased immunoreactivity for pS6, pElF4G, mTOR (total), RICTOR, and pAkt (P < .05). We also observed increased pS6 (P = .01), p4EBP1 (P = .029), and RICTOR (P = .05) in neurofibromatosis type 1 compared with sporadic tumors. Treatment of the PLGG cell lines Res186 (PA derived) and Res259 (diffuse astrocytoma derived) with the rapalog MK8669 (ridaforolimus) led to decreased mTOR pathway activation and growth. Conclusions These findings suggest that the mTOR pathway is active in PLGG but varies by clinicopathologic subtype. Additionally, our data suggest that mTORC2 is differentially active in optic pathway and neurofibromatosis type 1–associated gliomas. MTOR represents a potential therapeutic target in PLGG that merits further investigation. PMID:24203892
Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation.
Harraz, M M; Tyagi, R; Cortés, P; Snyder, S H
2016-03-01
As traditional antidepressants act only after weeks/months, the discovery that ketamine, an antagonist of glutamate/N-methyl-D-aspartate (NMDA) receptors, elicits antidepressant actions in hours has been transformative. Its mechanism of action has been elusive, though enhanced mammalian target of rapamycin (mTOR) signaling is a major feature. We report a novel signaling pathway wherein NMDA receptor activation stimulates generation of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitrosylated GAPDH complexes with the ubiquitin-E3-ligase Siah1 and Rheb, a small G protein that activates mTOR. Siah1 degrades Rheb leading to reduced mTOR signaling, while ketamine, conversely, stabilizes Rheb that enhances mTOR signaling. Drugs selectively targeting components of this pathway may offer novel approaches to the treatment of depression.
The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
Tee, Andrew R; Sampson, Julian R; Pal, Deb K; Bateman, Joseph M
2016-04-01
Understanding the development and function of the nervous system is one of the foremost aims of current biomedical research. The nervous system is generated during a relatively short period of intense neurogenesis that is orchestrated by a number of key molecular signalling pathways. Even subtle defects in the activity of these molecules can have serious repercussions resulting in neurological, neurodevelopmental and neurocognitive problems including epilepsy, intellectual disability and autism. Tuberous sclerosis complex (TSC) is a monogenic disease characterised by these problems and by the formation of benign tumours in multiple organs, including the brain. TSC is caused by mutations in the TSC1 or TSC2 gene leading to activation of the mechanistic target of rapamycin (mTOR) signalling pathway. A desire to understand the neurological manifestations of TSC has stimulated research into the role of the mTOR pathway in neurogenesis. In this review we describe TSC neurobiology and how the use of animal model systems has provided insights into the roles of mTOR signalling in neuronal differentiation and migration. Recent progress in this field has identified novel mTOR pathway components regulating neuronal differentiation. The roles of mTOR signalling and aberrant neurogenesis in epilepsy are also discussed. Continuing efforts to understand mTOR neurobiology will help to identify new therapeutic targets for TSC and other neurological diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mitochondrial AKAP1 supports mTOR pathway and tumor growth.
Rinaldi, Laura; Sepe, Maria; Delle Donne, Rossella; Conte, Kristel; Arcella, Antonietta; Borzacchiello, Domenica; Amente, Stefano; De Vita, Fernanda; Porpora, Monia; Garbi, Corrado; Oliva, Maria A; Procaccini, Claudio; Faicchia, Deriggio; Matarese, Giuseppe; Zito Marino, Federica; Rocco, Gaetano; Pignatiello, Sara; Franco, Renato; Insabato, Luigi; Majello, Barbara; Feliciello, Antonio
2017-06-01
Mitochondria are the powerhouses of energy production and the sites where metabolic pathway and survival signals integrate and focus, promoting adaptive responses to hormone stimulation and nutrient availability. Increasing evidence suggests that mitochondrial bioenergetics, metabolism and signaling are linked to tumorigenesis. AKAP1 scaffolding protein integrates cAMP and src signaling on mitochondria, regulating organelle biogenesis, oxidative metabolism and cell survival. Here, we provide evidence that AKAP1 is a transcriptional target of Myc and supports the growth of cancer cells. We identify Sestrin2, a leucine sensor and inhibitor of the mammalian target of rapamycin (mTOR), as a novel component of the complex assembled by AKAP1 on mitochondria. Downregulation of AKAP1 impaired mTOR pathway and inhibited glioblastoma growth. Both effects were reversed by concomitant depletion of AKAP1 and sestrin2. High levels of AKAP1 were found in a wide variety of high-grade cancer tissues. In lung cancer, AKAP1 expression correlates with high levels of Myc, mTOR phosphorylation and reduced patient survival. Collectively, these data disclose a previously unrecognized role of AKAP1 in mTOR pathway regulation and cancer growth. AKAP1/mTOR signal integration on mitochondria may provide a new target for cancer therapy.
Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development
Guan, Yingjie; Yang, Xu; Yang, Wentian; Charbonneau, Cherie; Chen, Qian
2014-01-01
Mechanical stress regulates development by modulating cell signaling and gene expression. However, the cytoplasmic components mediating mechanotransduction remain unclear. In this study, elimination of muscle contraction during chicken embryonic development resulted in a reduction in the activity of mammalian target of rapamycin (mTOR) in the cartilaginous growth plate. Inhibition of mTOR activity led to significant inhibition of chondrocyte proliferation, cartilage tissue growth, and expression of chondrogenic genes, including Indian hedgehog (Ihh), a critical mediator of mechanotransduction. Conversely, cyclic loading (1 Hz, 5% matrix deformation) of embryonic chicken growth plate chondrocytes in 3-dimensional (3D) collagen scaffolding induced sustained activation of mTOR. Mechanical activation of mTOR occurred in serum-free medium, indicating that it is independent of growth factor or nutrients. Treatment of chondrocytes with Rapa abolished mechanical activation of cell proliferation and Ihh gene expression. Cyclic loading of chondroprogenitor cells deficient in SH2-containing protein tyrosine phosphatase 2 (Shp2) further enhanced mechanical activation of mTOR, cell proliferation, and chondrogenic gene expression. This result suggests that Shp2 is an antagonist of mechanotransduction through inhibition of mTOR activity. Our data demonstrate that mechanical activation of mTOR is necessary for cell proliferation, chondrogenesis, and cartilage growth during bone development, and that mTOR is an essential mechanotransduction component modulated by Shp2 in the cytoplasm.—Guan, Y., Yang, X., Yang, W., Charbonneau, C., Chen, Q. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. PMID:25002119
mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xingang, E-mail: pengxinggang26@sina.com; Zhang, Donghui, E-mail: zhangdonghuiyx@sina.com; Li, Zhengling, E-mail: lizhenglingzz@sina.com
Histone deacetylases (HDACs) hyper-activity in hepatocellular carcinoma (HCC) is often associated with patients’ poor prognosis. Our previous study has shown that resminostat, a novel HDAC inhibitor (HDACi), activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway in HCC cells. Here we explored the potential resminostat resistance factor by focusing on mammalian target of rapamycin (mTOR). We showed that AZD-2014, a novel mTOR kinase inhibitor, potentiated resminostat-induced cytotoxicity and proliferation inhibition in HCC cells. Molecularly, AZD-2014 enhanced resminostat-induced mPTP apoptosis pathway activation in HCC cells. Inhibition of this apoptosis pathway, by the caspase-9 specific inhibitor Ac-LEHD-CHO, the mPTP blockers (sanglifehrin A/cyclosporine A),more » or by shRNA-mediated knockdown of mPTP component cyclophilin-D (Cyp-D), significantly attenuated resminostat plus AZD-2014-induced cytotoxicity and apoptosis in HCC cells. Significantly, mTOR shRNA knockdown or kinase-dead mutation (Asp-2338-Ala) also sensitized HCC cells to resminostat, causing profound cytotoxicity and apoptosis induction. Together, these results suggest that mTOR could be a primary resistance factor of resminostat. Targeted inhibition of mTOR may thus significantly sensitize HCC cells to resminostat. - Highlights: • AZD-2014 potentiates resminostat’s cytotoxicity against HCC cells. • AZD-2014 facilitates resminostat-induced HCC cell apoptosis. • AZD-2014 augments resminostat-induced mitochondrial apoptosis pathway activation. • mTOR shRNA or kinase-dead mutation significantly sensitizes HCC cells to resminostat.« less
Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio; Court-Vazquez, Brenda; Bennett, Michael Vander Laan; Ofengeim, Dimitry; Zukin, Ruth Suzanne
2017-02-01
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.
Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration.
Nguyen, Joe Truong; Ray, Connor; Fox, Alexandra Lucienne; Mendonça, Daniela Baccelli; Kim, Jin Koo; Krebsbach, Paul H
2018-05-01
Nematode EAK-7 (enhancer-of- akt -1-7) regulates dauer formation and controls life span; however, the function of the human ortholog mammalian EAK-7 (mEAK-7) is unknown. We report that mEAK-7 activates an alternative mechanistic/mammalian target of rapamycin (mTOR) signaling pathway in human cells, in which mEAK-7 interacts with mTOR at the lysosome to facilitate S6K2 activation and 4E-BP1 repression. Despite interacting with mTOR and mammalian lethal with SEC13 protein 8 (mLST8), mEAK-7 does not interact with other mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2) components; however, it is essential for mTOR signaling at the lysosome. This phenomenon is distinguished by S6 and 4E-BP1 activity in response to nutrient stimulation. Conventional S6K1 phosphorylation is uncoupled from S6 phosphorylation in response to mEAK-7 knockdown. mEAK-7 recruits mTOR to the lysosome, a crucial compartment for mTOR activation. Loss of mEAK-7 results in a marked decrease in lysosomal localization of mTOR, whereas overexpression of mEAK-7 results in enhanced lysosomal localization of mTOR. Deletion of the carboxyl terminus of mEAK-7 significantly decreases mTOR interaction. mEAK-7 knockdown decreases cell proliferation and migration, whereas overexpression of mEAK-7 enhances these cellular effects. Constitutively activated S6K rescues mTOR signaling in mEAK-7-knocked down cells. Thus, mEAK-7 activates an alternative mTOR signaling pathway through S6K2 and 4E-BP1 to regulate cell proliferation and migration.
Multi-functional regulation of 4E-BP gene expression by the Ccr4-Not complex.
Okada, Hirokazu; Schittenhelm, Ralf B; Straessle, Anna; Hafen, Ernst
2015-01-01
The mechanistic target of rapamycin (mTOR) signaling pathway is highly conserved from yeast to humans. It senses various environmental cues to regulate cellular growth and homeostasis. Deregulation of the pathway has been implicated in many pathological conditions including cancer. Phosphorylation cascades through the pathway have been extensively studied but not much is known about the regulation of gene expression of the pathway components. Here, we report that the mRNA level of eukaryotic translation initiation factor (eIF) subunit 4E-binding protein (4E-BP) gene, one of the key mTOR signaling components, is regulated by the highly conserved Ccr4-Not complex. RNAi knockdown of Not1, a putative scaffold protein of this protein complex, increases the mRNA level of 4E-BP in Drosophila Kc cells. Examination of the gene expression mechanism using reporter swap constructs reveals that Not1 depletion increases reporter mRNAs with the 3'UTR of 4E-BP gene, but decreases the ones with the 4E-BP promoter region, suggesting that Ccr4-Not complex regulates both degradation and transcription of 4E-BP mRNA. These results indicate that the Ccr4-Not complex controls expression of a single gene at multiple levels and adjusts the magnitude of the total effect. Thus, our study reveals a novel regulatory mechanism of a key component of the mTOR signaling pathway at the level of gene expression.
The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions.
Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco
2016-01-01
Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be anatomically segregated) co-exist and they are likely to interact at molecular level. In fact, LC3 and P20S co-immunoprecipitate, suggesting a specific binding and functional interplay, which may be altered by inhibiting mTOR. In summary, ATG and UP often represent two facets of a single organelle, in which unexpected amount of enzymatic activity should be available. Thus, autophagoproteasome may represent a sophisticated ultimate clearing apparatus.
The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions
Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L.; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco
2016-01-01
Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be anatomically segregated) co-exist and they are likely to interact at molecular level. In fact, LC3 and P20S co-immunoprecipitate, suggesting a specific binding and functional interplay, which may be altered by inhibiting mTOR. In summary, ATG and UP often represent two facets of a single organelle, in which unexpected amount of enzymatic activity should be available. Thus, autophagoproteasome may represent a sophisticated ultimate clearing apparatus. PMID:27493626
[Signaling pathways mTOR and AKT in epilepsy].
Romero-Leguizamon, C R; Ramirez-Latorre, J A; Mora-Munoz, L; Guerrero-Naranjo, A
2016-07-01
The signaling pathway AKT/mTOR is a central axis in regulating cellular processes, particularly in neurological diseases. In the case of epilepsy, it has been observed alteration in the pathophysiological process of the same. However, they have not described all the mechanisms of these signaling pathways that could open the opportunity to new research and therapeutic strategies. To review existing partnerships between intracellular signaling pathways AKT and mTOR in the pathophysiology of epilepsy. Epilepsy is a disease with a high epidemiological impact globally, so it is widely investigated regarding the pathophysiological components thereof. In that search they have been involved different intracellular signaling pathways in neurons, as determinants epileptogenic. Advances in this field have even allowed the successful implementation of new therapeutic strategies and to open the way to new research in the field. Improving knowledge about the pathophysiological role of the signaling pathway mTOR/AKT in epilepsy can raise new investigations regarding therapeutic alternatives. The use of mTOR inhibitors, has emerged in recent years as effective in treating this disease entity alternative however is clear the necessity of continue the research for new drug therapies.
Recent developments in anti-cancer agents targeting PI3K, Akt and mTORC1/2.
Dienstmann, Rodrigo; Rodon, Jordi; Markman, Ben; Tabernero, Josep
2011-05-01
Inappropriate PI3K signaling is one of the most frequent occurrences in human cancer and is critical for tumor progression. A variety of genetic mutations and amplifications have been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex downstream signalling, interactions and crosstalk. This knowledge, combined with the limited clinical antitumor activity of mTOR complex 1 inhibitors, has led to the development of rationally designed drugs targeting key elements of this pathway, such as pure PI3K inhibitors (both pan-PI3K and isoform-specific), dual PI3K/ mTOR inhibitors, Akt inhibitors, and mTOR complexes 1 and 2 catalytic site inhibitors. This review will focus primarily on an analysis of newly developed inhibitors of this pathway that have entered clinical trials, and recently registered patents in this field.
Jacot, Jorge L.; Sherris, David
2011-01-01
Novel therapeutics such as inhibitors of PI3K/Akt/mTOR pathway presents a unique opportunity for the management of diabetic retinopathy (DR). Second generation mTOR inhibitors have the prospect to be efficacious in managing various stages of disease progression in DR. During early stages, the mTOR inhibitors suppress HIF-1α, VEGF, leakage, and breakdown of the blood-retinal barrier. These mTOR inhibitors impart a pronounced inhibitory effect on inflammation, an early component with diverse ramifications influencing the progression of DR. These inhibitors suppress IKK and NF-κB along with downstream inflammatory cytokines, chemokines, and adhesion molecules. In proliferative DR, mTOR inhibitors suppress several growth factors that play pivotal roles in the induction of pathological angiogenesis. Lead mTOR inhibitors in clinical trials for ocular indications present an attractive treatment option for chronic use in DR with favorable safety profile and sustained ocular pharmacokinetics following single dose. Thereby, reducing dosing frequency and risk associated with chronic drug administration. PMID:22132311
Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid.
Nicolini, Chiara; Ahn, Younghee; Michalski, Bernadeta; Rho, Jong M; Fahnestock, Margaret
2015-01-20
The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior. Components of the mTOR pathway were assayed by Western blotting in postmortem fusiform gyrus samples from 11 subjects with idiopathic autism and 13 controls and in valproic acid versus saline-exposed rat neocortex. Additionally, protein levels of brain-derived neurotrophic factor receptor (TrkB) isoforms and the postsynaptic organizing molecule PSD-95 were measured in autistic versus control subjects. Full-length TrkB, PI3K, Akt, phosphorylated and total mTOR, p70S6 kinase, eIF4B and PSD-95 were reduced in autistic versus control fusiform gyrus. Similarly, phosphorylated and total Akt, mTOR and 4E-BP1 and phosphorylated S6 protein were decreased in valproic acid- versus saline-exposed rats. However, no changes in 4E-BP1 or eIF4E were found in autistic brains. In contrast to some monogenic disorders with high rates of autism, our data demonstrate down-regulation of the Akt/mTOR pathway, specifically via p70S6K/eIF4B, in idiopathic autism. These findings suggest that disruption of this pathway in either direction is widespread in autism and can have adverse consequences for synaptic function. The use of valproic acid, a histone deacetylase inhibitor, in rats successfully modeled these changes, implicating an epigenetic mechanism in these pathway disruptions.
2013-01-01
Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158
mTOR Inhibitors in Children: Current Indications and Future Directions in Neurology.
Jeong, Anna; Wong, Michael
2016-12-01
The mammalian/mechanistic target of rapamycin (mTOR) pathway is a key signaling pathway that has been implicated in genetic epilepsy syndromes, neurodegenerative diseases, and conditions associated with autism spectrum disorder and cognitive impairment. The mTOR pathway has become an exciting treatment target for these various disorders, with mTOR inhibitors such as rapamycin being studied for their potential therapeutic applications. In particular, tuberous sclerosis complex (TSC) is a genetic disorder resulting from overactivation of the mTOR pathway, and pharmacologic therapy with mTOR inhibitors has emerged as a viable treatment option for the systemic manifestations of the disease. In this review, we discuss the approved indications for mTOR inhibitors in TSC, the potential future applications of mTOR inhibitors in TSC and other neurological conditions, and the safety considerations applicable to mTOR therapy in the pediatric population.
Roles of mTOR Signaling in Brain Development.
Lee, Da Yong
2015-09-01
mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.
NASA Astrophysics Data System (ADS)
Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin
2013-11-01
Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.
Correlation between telomerase and mTOR pathway in cancer stem cells.
Dogan, Fatma; Biray Avci, Cigir
2018-01-30
Cancer stem cells (CSCs), which are defined as a subset of tumor cells, are able to self-renew, proliferate, differentiate similar to normal stem cells. Therefore, targeting CSCs has been considered as a new approach in cancer therapy. The mammalian target of rapamycin (mTOR) is a receptor tyrosine kinase which plays an important role in regulating cell proliferation, differentiation, cell growth, self-renewal in CSCs. On the other hand, hTERT overactivation provides replicative feature and immortality to CSCs, so the stemness and replicative properties of CSCs depend on telomerase activity. Therefore hTERT/telomerase activity may become a universal biomarker for anticancer therapy and it is an attractive therapeutic target for CSCs. It is known that mTOR regulates telomerase activity at the translational and post-translational level. Researchers show that mTOR inhibitor rapamycin reduces telomerase activity without changing hTERT mRNA activity. Correlation between mTOR and hTERT is important for survival and immortality of cancer cells. In addition, the PI3K/AKT/mTOR signaling pathway and hTERT up-regulation are related with cancer stemness features and drug resistance. mTOR inhibitor and TERT inhibitor combination may construct a novel strategy in cancer stem cells and it can make a double effect on telomerase enzyme. Consequently, inhibition of PI3K/AKT/mTOR signaling pathway components and hTERT activation may prohibit CSC self-renewal and surpass CSC-mediated resistance in order to develop new cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
BMAL1-dependent regulation of the mTOR signaling pathway delays aging
Khapre, Rohini V.; Kondratova, Anna A.; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P.; Kondratov, Roman V.
2014-01-01
The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1−/− mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism. PMID:24481314
BMAL1-dependent regulation of the mTOR signaling pathway delays aging.
Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V
2014-01-01
The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.
The nuclear import of ribosomal proteins is regulated by mTOR
Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.
2014-01-01
Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810
Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway.
Le Sage, Valerie; Cinti, Alessandro; Amorim, Raquel; Mouland, Andrew J
2016-05-24
The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs.
The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.
Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang
2018-05-12
The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway
Le Sage, Valerie; Cinti, Alessandro; Amorim, Raquel; Mouland, Andrew J.
2016-01-01
The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs. PMID:27231932
The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis
Nho, Richard
2018-01-01
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression. PMID:29518028
BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein.
Liu, Juan; Wang, Hailong; Gu, Jinyan; Deng, Tingjuan; Yuan, Zhuangchuan; Hu, Boli; Xu, Yunbin; Yan, Yan; Zan, Jie; Liao, Min; DiCaprio, Erin; Li, Jianrong; Su, Shuo; Zhou, Jiyong
2017-04-03
Autophagy is an essential component of host immunity and used by viruses for survival. However, the autophagy signaling pathways involved in virus replication are poorly documented. Here, we observed that rabies virus (RABV) infection triggered intracellular autophagosome accumulation and results in incomplete autophagy by inhibiting autophagy flux. Subsequently, we found that RABV infection induced the reduction of CASP2/caspase 2 and the activation of AMP-activated protein kinase (AMPK)-AKT-MTOR (mechanistic target of rapamycin) and AMPK-MAPK (mitogen-activated protein kinase) pathways. Further investigation revealed that BECN1/Beclin 1 binding to viral phosphoprotein (P) induced an incomplete autophagy via activating the pathways CASP2-AMPK-AKT-MTOR and CASP2-AMPK-MAPK by decreasing CASP2. Taken together, our data first reveals a crosstalk of BECN1 and CASP2-dependent autophagy pathways by RABV infection.
Choi, Yeon Ja; Moon, Kyoung Mi; Chung, Ki Wung; Jeong, Ji Won; Park, Daeui; Kim, Dae Hyun; Yu, Byung Pal; Chung, Hae Young
2016-01-01
Mammalian target of rapamycin complex 2 (mTORC2), one of two different enzymatic complexes of mTOR, regulates a diverse set of substrates including Akt. mTOR pathway is one of well-known mediators of aging process, however, its role in skin aging has not been determined. Skin aging can be induced by physical age and ultraviolet (UV) irradiation which are intrinsic and extrinsic factors, respectively. Here, we report increased mTORC2 pathway in intrinsic and photo-induced skin aging, which is implicated in the activation of nuclear factor-κB (NF-κB). UVB-irradiated or aged mice skin revealed that mTORC2 activity and its component, rictor were significantly upregulated which in turn increased Akt activation and Akt-dependent IκB kinase α (IKKα) phosphorylation at Thr23 in vivo. We also confirmed that UVB induced the mTORC2/Akt/IKKα signaling pathway with HaCaT human normal keratinocytes. The increased mTORC2 signaling pathway during skin aging were associated to NF-κB activation. Suppression of mTORC2 activity by the treatment of a mTOR small inhibitor or knockdown of RICTOR partially rescued UVB-induced NF-κB activation through the downregulation of Akt/IKKα activity. Our data demonstrated the upregulation of mTORC2 pathway in intrinsic and photo-induced skin aging and its role in IKKα/NF-κB activation. These data not only expanded the functions of mTOR to skin aging but also revealed the therapeutic potential of inhibiting mTORC2 in ameliorating both intrinsic skin aging and photoaging. PMID:27486771
Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism.
Huber, Kimberly M; Klann, Eric; Costa-Mattioli, Mauro; Zukin, R Suzanne
2015-10-14
The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs. Copyright © 2015 the authors 0270-6474/15/3513836-07$15.00/0.
mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects.
Goncharova, Elena A
2013-05-01
Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. Remodeling of small pulmonary arteries due to increased proliferation, resistance to apoptosis, and altered metabolism of cells forming the pulmonary vascular wall is a key currently irreversible pathological feature of pulmonary hypertension, a progressive pulmonary vascular disorder with high morbidity and mortality. In addition to rare familial and idiopathic forms, pulmonary hypertension is also a life-threatening complication of several lung diseases associated with hypoxia. This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.
Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun
2015-11-01
Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. © 2015 International Federation for Cell Biology.
mTOR signaling for biological control and cancer.
Alayev, Anya; Holz, Marina K
2013-08-01
Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Xueqin; Sha, Longze; Sun, Nannan; Shen, Yan; Xu, Qi
2017-01-01
Germline and somatic mutations in key genes of the mammalian target of rapamycin (mTOR) pathway have been identified in seizure-associated disorders. mTOR mutations lead to aberrant activation of mTOR signaling, and, although affected neurons are critical for epileptogenesis, the role of mTOR activation in glial cells remains poorly understood. We previously reported a consistent activation of the mTOR pathway in astrocytes in the epileptic foci of temporal lobe epilepsy. In this study, it was demonstrated that mTOR deletion from reactive astrocytes prevents increases in seizure frequency over the disease course. By using a tamoxifen-inducible mTOR conditional knockout system and kainic acid, a model was developed that allowed astrocyte-specific mTOR gene deletion in mice with chronic epilepsy. Animals in which mTOR was deleted from 44 % of the astrocyte population exhibited a lower seizure frequency compared with controls. Down-regulation of mTOR significantly ameliorated astrogliosis in the sclerotic hippocampus but did not rescue mossy fiber sprouting. In cultured astrocytes, the mTOR pathway modulated the stability of the astroglial glutamate transporter 1 (Glt1) and influenced the ability of astrocytes to remove extracellular glutamate. Taken together, these data indicate that astrocytes with activated mTOR signaling may provide conditions that are favorable for spontaneous recurrent seizures.
Hadjadj, Jérôme; Canaud, Guillaume; Mirault, Tristan; Samson, Maxime; Bruneval, Patrick; Régent, Alexis; Goulvestre, Claire; Witko-Sarsat, Véronique; Costedoat-Chalumeau, Nathalie; Guillevin, Loïc; Mouthon, Luc; Terrier, Benjamin
2018-06-01
Takayasu arteritis (TA) and GCA are large-vessel vasculitides characterized by vascular remodelling involving endothelial cells (ECs) and vascular smooth muscle cells. Mammalian target of rapamycin (mTOR) pathway has been involved in vascular remodelling. We hypothesized that the mTOR pathway was involved in the pathogenesis of large-vessel vasculitis. We used IF analysis on aortic and temporal artery biopsies from patients with TA and GCA to assess the involvement of the mTOR pathway and searched for antibodies targeting ECs in serum by IIF and cellular ELISA. We evaluated in vitro the effect of purified IgG from patients on mTOR pathway activation and cell proliferation. IF analyses on tissues revealed that both mTORC1 and mTORC2 are activated specifically in ECs from TA patients but not in ECs from GCA patients and healthy controls (HCs). Using IIF and ELISA, we observed higher levels of antibodies binding to ECs in TA patients compared with GCA patients and HCs. Using western blot, we demonstrated that purified IgG from TA patients caused mTORC1 activation in ECs, whereas this effect was not observed with purified IgG from GCA patients or HCs. Purified IgG from TA patients induced a significant EC proliferation compared with to GCA and HC IgG, and this effect was decreased after EC exposure with sirolimus, a specific mTOR inhibitor and PI3K inhibitor. Our results suggest that antibodies targeting ECs drive endothelial remodelling in TA through activation of the mTOR pathway, but not in GCA. Inhibition of the mTOR pathway could represent a therapeutic option in TA.
Pegylated IFN-α suppresses hepatitis C virus by promoting the DAPK-mTOR pathway.
Liu, Wei-Liang; Yang, Hung-Chih; Hsu, Ching-Sheng; Wang, Chih-Chiang; Wang, Tzu-San; Kao, Jia-Horng; Chen, Ding-Shinn
2016-12-20
Death-associated protein kinase (DAPK) has been found to be induced by IFN, but its antiviral activity remains elusive. Therefore, we investigated whether DAPK plays a role in the pegylated IFN-α (peg-IFN-α)-induced antiviral activity against hepatitis C virus (HCV) replication. Primary human hepatocytes, Huh-7, and infectious HCV cell culture were used to study the relationship between peg-IFN-α and the DAPK-mammalian target of rapamycin (mTOR) pathways. The activation of DAPK and signaling pathways were determined using immunoblotting. By silencing DAPK and mTOR, we further assessed the role of DAPK and mTOR in the peg-IFN-α-induced suppression of HCV replication. Peg-IFN-α up-regulated the expression of DAPK and mTOR, which was associated with the suppression of HCV replication. Overexpression of DAPK enhanced mTOR expression and then inhibited HCV replication. In addition, knockdown of DAPK reduced the expression of mTOR in peg-IFN-α-treated cells, whereas silencing of mTOR had no effect on DAPK expression, suggesting mTOR may be a downstream effector of DAPK. More importantly, knockdown of DAPK or mTOR significantly mitigated the inhibitory effects of peg-IFN-α on HCV replication. In conclusion, our data suggest that the DAPK-mTOR pathway is critical for anti-HCV effects of peg-IFN-α.
Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Michels, Monique; Abatti, Mariane; Sonai, Beatriz; Dal Pizzol, Felipe; Carvalho, André F; Quevedo, João
2017-04-01
Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
The emerging role of m-TOR up-regulation in brain Astrocytoma.
Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco
2017-05-01
The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.
Kapoor, Vaishali; Zaharieva, Maya M; Das, Satya N; Berger, Martin R
2012-06-01
We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.
Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. Themore » AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.« less
Pivonello, Claudia; Negri, Mariarosaria; De Martino, Maria Cristina; Napolitano, Maria; de Angelis, Cristina; Provvisiero, Donatella Paola; Cuomo, Gaia; Auriemma, Renata Simona; Simeoli, Chiara; Izzo, Francesco; Colao, Annamaria; Hofland, Leo J.; Pivonello, Rosario
2016-01-01
Deregulation of mTOR and IGF pathways is frequent in hepatocellular carcinoma (HCC), thus mTOR and IGF1R represent suitable therapeutic targets in HCC. The aim of this study was to evaluate the effects of mTOR inhibitors (mTORi) and OSI-906, blocker of IGF1R/IR, on HCC cell proliferation, viability, migration and invasion, and alpha-fetoprotein (α-FP) secretion. In HepG2 and HuH-7 we evaluated, the expression of mTOR and IGF pathway components; the effects of Sirolimus, Everolimus, Temsirolimus and OSI-906 on cell proliferation; the effects of Sirolimus, OSI-906, and their combination, on cell secretion, proliferation, viability, cell cycle, apoptosis, invasion and migration. Moreover, intracellular mechanisms underlying these cell functions were evaluated in both cell lines. Our results show that HepG2 and HuH-7 present with the same mRNA expression profile with high levels of IGF2. OSI-906 inhibited cell proliferation at high concentration, while mTORi suppressed cell proliferation in a dose-time dependent manner in both cell lines. The co-treatment showed an additive inhibitory effect on cell proliferation and viability. This effect was not related to induction of apoptosis, but to G0/G1 phase block. Moreover, the co-treatment prevented the Sirolimus-induced AKT activation as escape mechanism. Both agents demonstrated to be differently effective in inhibiting α-FP secretion. Sirolimus, OSI-906, and their combination, blocked cell migration and invasion in HuH-7. These findings indicate that, co-targeting of IGF1R/IR and mTOR pathways could be a novel therapeutic approach in the management of HCC, in order to maximize antitumoral effect and to prevent the early development of resistance mechanisms. PMID:26756219
Hou, Xiaoying; Arvisais, Edward W; Davis, John S
2010-06-01
LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.
Lasarge, Candi L; Danzer, Steve C
2014-01-01
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats.
Qin, Liyan; Dai, Xufang; Yin, Yunhou
2016-09-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats. Copyright © 2016 Elsevier Inc. All rights reserved.
Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B
2016-01-01
Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in CP. Copyright © 2015 Elsevier Inc. All rights reserved.
Lipton, Jonathan O; Sahin, Mustafa
2014-10-22
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei
2012-01-01
The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144
mTOR pathway and Ca2+ stores mobilization in aged smooth muscle cells
Martín-Cano, Francisco E; Camello-Almaraz, Cristina; Hernandez, David; Pozo, Maria J; Camello, Pedro J
2013-01-01
Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca2+ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca2+ stores mobilization in colonic smooth muscle cells of young (4 month old) and aged (24 month old) guinea pigs. mTORC1 activity was enhanced in aged smooth muscle, as revealed by phosphorylation of mTOR and its direct substrates S6K1 and 4E-BP1. Mobilization of intracellular Ca2+ stores through IP3R or RyR channels was impaired in aged cells, and it was facilitated by mTOR and by FKBP12, as indicated by the inhibitory effects of KU0063794 (a direct mTOR inhibitor), rapamycin (a FKBP12-mediated mTOR inhibitor) and FK506 (an FKBP12 binding immunosuppressant). Aging suppressed the facilitation of the Ca2+ mobilization by FKBP12 but not by mTOR, without changing the total expression of FKBP12 protein. In conclusion, or study shows that in smooth muscle aging enhances the constitutive activity of mTORC1 pathway and impairs Ca2+ stores mobilization by suppression of the FKBP12-induced facilitation of Ca2+ release. PMID:23661091
2005-02-01
Akt in the P13K pathway. Given the emerging data for a positive feedback loop induced by mTOR inhibition, a bispecific 5 inhibitor might be attractive...cells relatively sensitive to rapamycin are also sensitive to thioridazine. PTEN null cells are known to be preferentially sensitized to mTOR ...a potent mTOR inhibitor, a downstream protein kinase in the Akt pathway. Rapamycin showed strong growth inhibitory effect in PTEN-null cells but 786
Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui
2015-04-01
A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice.
Liu, Xiao-Long; Luo, Liu; Mu, Rong-Hao; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao
2015-11-02
Previous studies have demonstrated that the mammalian target of rapamycin (mTOR) signaling pathway has an important role in ketamine-induced, rapid antidepressant effects despite the acute administration of fluoxetine not affecting mTOR phosphorylation in the brain. However, the effects of long-term fluoxetine treatment on mTOR modulation have not been assessed to date. In the present study, we examined whether fluoxetine, a type of commonly used antidepressant agent, alters mTOR signaling following chronic administration in different brain regions, including the frontal cortex, hippocampus, amygdala and hypothalamus. We also investigated whether fluoxetine enhanced synaptic protein levels in these regions via the activation of the mTOR signaling pathway and its downstream regulators, p70S6K and 4E-BP-1. The results indicated that chronic fluoxetine treatment attenuated the chronic, unpredictable, mild stress (CUMS)-induced mTOR phosphorylation reduction in the hippocampus and amygdala of mice but not in the frontal cortex or the hypothalamus. Moreover, the CUMS-decreased PSD-95 and synapsin I levels were reversed by fluoxetine, and these effects were blocked by rapamycin only in the hippocampus. In conclusion, our findings suggest that chronic treatment with fluoxetine can induce synaptic protein expression by activating the mTOR signaling pathway in a region-dependent manner and mainly in the hippocampus.
CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.
Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania
2016-04-05
To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.
CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR
Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania
2016-01-01
Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant. PMID:26934559
Dynamic landscape of the local translation at activated synapses.
Khlebodarova, T M; Kogai, V V; Trifonova, E A; Likhoshvai, V A
2018-01-01
The mammalian target of rapamycin (mTOR) signaling pathway is the central regulator of cap-dependent translation at the synapse. Disturbances in mTOR pathway have been associated with several neurological diseases, such as autism and epilepsy. RNA-binding protein FMRP, a negative regulator of translation initiation, is one of the key components of the local translation system. Activation and inactivation of FMRP occurs via phosphorylation by S6 kinase and dephosphorylation by PP2A phosphatase, respectively. S6 kinase and PP2A phosphatase are activated in response to mGluR receptor stimulation through different signaling pathways and at different rates. The dynamic aspects of this system are poorly understood. We developed a mathematical model of FMRP-dependent regulation of postsynaptic density (PSD) protein synthesis in response to mGluR receptor stimulation and conducted in silico experiments to study the regulatory circuit functioning. The modeling results revealed the possibility of generating oscillatory (cyclic and quasi-cyclic), chaotic and even hyperchaotic dynamics of postsynaptic protein synthesis as well as the presence of multiple attractors in a wide range of parameters of the local translation system. The results suggest that autistic disorders associated with mTOR pathway hyperactivation may be due to impaired proteome stability associated with the formation of complex dynamic regimes of PSD protein synthesis in response to stimulation of mGluR receptors on the postsynaptic membrane of excitatory synapses on pyramidal hippocampal cells.
Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.
2014-01-01
Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473
Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice
Liu, Xiao-Long; Luo, Liu; Mu, Rong-Hao; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao
2015-01-01
Previous studies have demonstrated that the mammalian target of rapamycin (mTOR) signaling pathway has an important role in ketamine-induced, rapid antidepressant effects despite the acute administration of fluoxetine not affecting mTOR phosphorylation in the brain. However, the effects of long-term fluoxetine treatment on mTOR modulation have not been assessed to date. In the present study, we examined whether fluoxetine, a type of commonly used antidepressant agent, alters mTOR signaling following chronic administration in different brain regions, including the frontal cortex, hippocampus, amygdala and hypothalamus. We also investigated whether fluoxetine enhanced synaptic protein levels in these regions via the activation of the mTOR signaling pathway and its downstream regulators, p70S6K and 4E-BP-1. The results indicated that chronic fluoxetine treatment attenuated the chronic, unpredictable, mild stress (CUMS)-induced mTOR phosphorylation reduction in the hippocampus and amygdala of mice but not in the frontal cortex or the hypothalamus. Moreover, the CUMS-decreased PSD-95 and synapsin I levels were reversed by fluoxetine, and these effects were blocked by rapamycin only in the hippocampus. In conclusion, our findings suggest that chronic treatment with fluoxetine can induce synaptic protein expression by activating the mTOR signaling pathway in a region-dependent manner and mainly in the hippocampus. PMID:26522512
Nutrient Regulation of the mTOR Complex 1 Signaling Pathway
Kim, Sang Gyun; Buel, Gwen R.; Blenis, John
2013-01-01
The mammalian target of rapamycin (mTOR) is an evolutionally conserved kinase which exists in two distinct structural and functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Of the two complexes, mTORC1 couples nutrient abundance to cell growth and proliferation by sensing and integrating a variety of inputs arising from amino acids, cellular stresses, energy status, and growth factors. Defects in mTORC1 regulation are implicated in the development of many metabolic diseases, including cancer and diabetes. Over the past decade, significant advances have been made in deciphering the complexity of the signaling processes contributing to mTORC1 regulation and function, but the mechanistic details are still not fully understood. In particular, how amino acid availability is sensed by cells and signals to mTORC1 remains unclear. In this review, we discuss the current understanding of nutrient-dependent control of mTORC1 signaling and will focus on the key components involved in amino acid signaling to mTORC1. PMID:23694989
Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.
2014-01-01
The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536
You, Jae Sung; Frey, John W.; Hornberger, Troy A.
2012-01-01
Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA) may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis. PMID:23077579
mTOR Signaling Confers Resistance to Targeted Cancer Drugs.
Guri, Yakir; Hall, Michael N
2016-11-01
Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways
Iwata, Terri N.; Ramírez-Komo, Julita A.; Park, Heon; Iritani, Brian M.
2017-01-01
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells. PMID:28583723
Livingstone, Mark; Larsson, Ola; Sukarieh, Rami; Pelletier, Jerry; Sonenberg, Nahum
2009-12-24
The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens. Copyright 2009 Elsevier Ltd. All rights reserved.
Shui, Xiaolong; Zhou, Chengwei; Lin, Wei; Yu, Yang; Feng, Yongzeng
2017-01-01
Background: Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. PMID:28399646
Shui, Xiaolong; Zhou, Chengwei; Lin, Wei; Yu, Yang; Feng, Yongzeng; Kong, Jianzhong
2017-05-01
Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression.
Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.
Avet-Rochex, Amélie; Carvajal, Nancy; Christoforou, Christina P; Yeung, Kelvin; Maierbrugger, Katja T; Hobbs, Carl; Lalli, Giovanna; Cagin, Umut; Plachot, Cedric; McNeill, Helen; Bateman, Joseph M
2014-09-01
Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR)/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk), which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc) as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem/progenitor cells, suggesting that the role of Unk in neurogenesis may be conserved in mammals.
Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice.
Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; Abbring, Suzanne; van der Horst, Hilma; Broersen, Laus M; Willemsen, Linette; Kas, Martien; Garssen, Johan; Kraneveld, Aletta D
2017-01-01
Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD. Copyright © 2016. Published by Elsevier Inc.
mTOR is a key modulator of ageing and age-related disease
Johnson, Simon C.; Rabinovitch, Peter S.; Kaeberlein, Matt
2013-01-01
Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of ‘when’ rather than ‘if’. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans. PMID:23325216
Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target
Galanopoulou, Aristea S.; Gorter, Jan A.; Cepeda, Carlos
2012-01-01
Summary The mTOR signaling pathway regulates cell growth, differentiation, proliferation and metabolism. Loss of function mutations in upstream regulators of mTOR have been highly associated with dysplasias, epilepsy and neurodevelopmental disorders. These include tuberous sclerosis, which is due to mutations in TSC1 or TSC2 genes, mutations in phosphatase and tensin homolog (PTEN) as in Cowden syndrome, polyhydramnios, megalencephaly, symptomatic epilepsy syndrome (PMSE) due to mutations in the STE20-related kinase adaptor alpha (STRADalpha), and neurofibromatosis type 1 attributed to neurofibromin 1 mutations. Inhibition of the mTOR pathway with rapamycin may prevent epilepsy and improve the underlying pathology in mouse models with disrupted mTOR signaling, due to PTEN or TSC mutations. However the timing and duration of its administration appear critical in defining the seizure and pathology-related outcomes. Rapamycin application in human cortical slices from patients with cortical dysplasias reduces the 4-aminopyridine induced oscillations. In the multiple-hit model of infantile spasms, pulse high dose rapamycin administration can reduce the cortical overactivation of the mTOR pathway, suppresses spasms and has disease-modifying effects by partially improving cognitive deficits. In post-status epilepticus models of temporal lobe epilepsy, rapamycin may ameliorate the development of epilepsy-related pathology and reduce the expression of spontaneous seizures, but its effects depend on the timing and duration of administration, and possibly the model used. The observed recurrence of seizures and epilepsy-related pathology after rapamycin discontinuation suggests the need for continuous administration to maintain the benefit. However, the use of pulse administration protocols may be useful in certain age-specific epilepsy syndromes, like infantile spasms, whereas repetitive pulse rapamycin protocols may suffice to sustain a long-term benefit in genetic disorders of the mTOR pathway. In summary, mTOR dysregulation has been implicated in several genetic and acquired forms of epileptogenesis. The use of mTOR inhibitors can reverse some of these epileptogenic processes although their effects depend upon the timing and dose of administration as well as the model used. PMID:22578218
Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.
2015-01-01
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306
Frontier of Epilepsy Research - mTOR signaling pathway
2011-01-01
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839
FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian; Zeng, Yeting
The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth bymore » rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.« less
TOR and ageing: a complex pathway for a complex process
McCormick, Mark A.; Tsai, Shih-yin; Kennedy, Brian K.
2011-01-01
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity. PMID:21115526
A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling
Findlay, Greg M.; Yan, Lijun; Procter, Julia; Mieulet, Virginie; Lamb, Richard F.
2007-01-01
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3. PMID:17253963
Foster, David A.; Salloum, Darin; Menon, Deepak; Frias, Maria A.
2014-01-01
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. PMID:24990952
Foster, David A; Salloum, Darin; Menon, Deepak; Frias, Maria A
2014-08-15
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DEPDC5 as a potential therapeutic target for epilepsy.
Myers, Kenneth A; Scheffer, Ingrid E
2017-06-01
Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.
Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James
2009-12-28
Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC.
Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James
2009-01-01
Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC. PMID:21139932
McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Nicoletti, Ferdinando; Fagone, Paolo; Malaponte, Grazia; Mazzarino, Maria C.; Candido, Saverio; Libra, Massimo; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.
2012-01-01
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors. PMID:23006971
The mTOR signalling cascade: paving new roads to cure neurological disease.
Crino, Peter B
2016-07-01
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
O’Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A
2009-01-01
Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K–PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K–PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K–PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K–PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K–PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K–PKB-independent mechanism that requires PLD and PA. PMID:19470781
2013-01-01
PIK3CA is the most frequently mutated oncogene in human cancers. PIK3CA is phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha. It controls cell growth, proliferation, motility, survival, differentiation and intracellular trafficking. In most of human cancer alteration occurred frequently in the alpha isoform of phosphatidylinositol 3 kinase. PIK3CA mutations were most frequent in endometrial, ovarian, colorectal, breast, cervical, squamous cell cancer of the head and neck, chondroma, thyroid carcinoma and in cancer family syndrome. Inhibition of PI3K signaling can diminish cell proliferation, and in some circumstances, promote cell death. Consequently, components of this pathway present attractive targets for cancer therapeutics. A number of PI3K pathway inhibitors have been developed and used. PI3K inhibitors (both pan-PI3K and isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase component of both mTORC1 and mTORC2), mTOR catalytic site inhibitors, and AKT inhibitors are the most advanced in the clinic. They are approved for the treatment of several carcinomas. PMID:23768168
Clinical development of mTOR inhibitors in breast cancer
2014-01-01
The mammalian target of rapamycin (mTOR) pathway is a central pathway that regulates mRNA translation, protein synthesis, glucose metabolism, lipid synthesis and autophagy, and is involved in malignant transformation. Several randomized trials have shown that the use of mTOR inhibitors could improve patient outcome with hormone receptor-positive or human epidermal growth factor receptor-2-positive breast cancer. This review analyzes new perspectives from these trials. Preclinical studies have suggested that the mTOR pathway may play a role in the resistance to hormone therapy, trastuzumab and chemotherapy for breast cancer. This concept has been tested in clinical trials for neoadjuvant treatment and for metastatic breast cancer patients. Also, much effort has gone into the identification of biomarkers that will allow for more precise stratification of patients. Findings from these studies will provide indispensable tools for the design of future clinical trials and identify new perspectives and challenges for researchers and clinicians. PMID:25189767
Liu, Hui; Remedi, Maria S.; Pappan, Kirk L.; Kwon, Guim; Rohatgi, Nidhi; Marshall, Connie A.; McDaniel, Michael L.
2009-01-01
OBJECTIVE—Our previous studies demonstrated that nutrient regulation of mammalian target of rapamycin (mTOR) signaling promotes regenerative processes in rodent islets but rarely in human islets. Our objective was to extend these findings by using therapeutic agents to determine whether the regulation of glycogen synthase kinase-3 (GSK-3)/β-catenin and mTOR signaling represent key components necessary for effecting a positive impact on human β-cell mass relevant to type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS—Primary adult human and rat islets were treated with the GSK-3 inhibitors, LiCl and the highly potent 1-azakenpaullone (1-Akp), and with nutrients. DNA synthesis, cell cycle progression, and proliferation of β-cells were assessed. Measurement of insulin secretion and content and Western blot analysis of GSK-3 and mTOR signaling components were performed. RESULTS—Human islets treated for 4 days with LiCl or 1-Akp exhibited significant increases in DNA synthesis, cell cycle progression, and proliferation of β-cells that displayed varying degrees of sensitivity to rapamycin. Intermediate glucose (8 mmol/l) produced a striking degree of synergism in combination with GSK-3 inhibition to enhance bromodeoxyuridine (BrdU) incorporation and Ki-67 expression in human β-cells. Nuclear translocation of β-catenin responsible for cell proliferation was found to be particularly sensitive to rapamycin. CONCLUSIONS—A combination of GSK-3 inhibition and nutrient activation of mTOR contributes to enhanced DNA synthesis, cell cycle progression, and proliferation of human β-cells. Identification of therapeutic agents that appropriately regulate GSK-3 and mTOR signaling may provide a feasible and available approach to enhance human islet growth and proliferation. PMID:19073772
Shi, Hongbo; Shi, Honglin; Ren, Feng; Chen, Dexi; Chen, Yu; Duan, Zhongping
2017-03-01
A previous study has demonstrated that Ganshuang granule (GSG) plays an anti-fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)-autophagy plays an important role. We attempted to investigate the role of mTOR-autophagy in anti-fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti-fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti-fibrotic effect. 3-methyladenine (3-MA) and Insulin-like growth factor-1 (IGF-1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti-fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3-MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF-1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti-fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The antitumor effect of GDC-0941 alone and in combination with rapamycin in breast cancer cells.
Zheng, Jie; Zou, Xianjin; Yao, Jia
2012-01-01
The phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key potential target in breast cancer therapy. Because some cancer cell lines are resistant to mTOR inhibition, we combined the mTOR inhibitor with the PI3K inhibitor and assayed the inhibitory effect of this combination versus that of a single inhibitor. The proliferation of MCF7, SK-BR-3, T-47D, and MDA-MB-231 cells was measured by MTT assay in the presence of GDC-0941 and/or rapamycin. Afterwards, we determined the visible changes in signaling in the PI3K/AKT/mTOR pathway by Western blotting. GDC-0941 exhibited excellent inhibition on MCF7, T-47D and SK-BR-3 cells with different characteristics. In addition, GDC-0941 blocked the feedback of PI3K/Akt through S6K1, resulting in decreased Akt activity by rapamycin activation. The combination of GDC-0941 and rapamycin downregulated the key components of the cell cycle machinery, such as cyclin D1 and upregulated the apoptotic markers. Our findings suggest that GDC-0941, either alone or in combination with rapamycin, may serve as a new, promising approach for breast cancer treatment. Copyright © 2012 S. Karger AG, Basel.
Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head.
Liao, Yun; Su, Rui; Zhang, Ping; Yuan, Bo; Li, Ling
2017-10-18
ANFH is a major health problem, to which long lasting and definitive treatments are lacking. The aim of this study is to study RNA alterations attributed to cortisol-induced ANFH. Rat models were stratified into three groups: in vitro group (n = 20) for molecular biological assays, control group (n = 3), and ANFH group induced using lipopolysaccharide and dexamethasone (n = 3). Bone marrow-derived endothelial progenitor cells (BM-EPCs) were extracted from the rats. An RNA expression array was performed on BM-EPCs, and enriched genes were subject to pathway analysis. In vitro studies following findings of array results were also performed using the isolated BM-EPCs. Significant alterations in mammalian target of rapamycin (mTOR) and HIF signaling pathways were identified in BM-EPCs of ANFH. By applying cortisol and dexamethasone to BM-EPCs, significant changes in mTOR and HIF elements were identified. The alteration of HIF pathways appeared to be downstream of mTOR signaling. Glucocorticoid receptor (GR) expression was related to glucocorticoid-dependent mRNA expression of mTOR/HIF genes. mTOR-dependent angiogenesis but not anabolism was the target of GR in ANFH. Inhibition of mTOR signaling also induced apoptosis of BM-EPCs via CHOP-dependent DR5 induction in response to GR stimulation. Decreased mTOR signaling in response to GR stimulation leading to downregulated HIF pathway as well as increased apoptosis could be the pathophysiology.
Wang, Huakai; Li, Yongjian; Shi, Minmin; Li, Hongwei; Yan, Jiqi
2016-01-01
Background Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. Methods Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. Results We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. Conclusions This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly. PMID:26734934
Chen, Yunyang; Wang, Weijie; Wang, Huakai; Li, Yongjian; Shi, Minmin; Li, Hongwei; Yan, Jiqi
2016-01-01
Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly.
Liang, Simin; Li, Jie; Gou, Xin; Chen, Daihui
2016-01-01
Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. The expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4 E-binding protein 4 (p-4 E-BP1), as well as phosphatidylinositide 3-kinase (p-PI3K) pathway were amplified in cyclophosphamide rats as compared with control rats. Blocking mTOR by intrathecal infusion of rapamycin attenuated bladder hyperactivity and pain. In addition, blocking PI3K signal pathway attenuated activities of mTOR, which was accompanied with decreasing bladder hyperactivity and pain. Inhibition of either mTOR or PI3K blunted the enhanced spinal substance P and calcitonin gene-related peptide in cyclophosphamide rats. The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis. © The Author(s) 2016.
Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, William Ka Kei, E-mail: wukakei@cuhk.edu.hk; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong; Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong
2009-09-04
Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85more » S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.« less
Predictive value of EGFR-PI3K-pAKT-mTOR-pS6 pathway in sinonasal squamous cell carcinomas.
Muñoz-Cordero, María Gabriela; López, Fernando; García-Inclán, Cristina; López-Hernández, Alejandro; Potes-Ares, Sira; Fernández-Vañes, Laura; Llorente, José Luis; Hermsen, Mario
2018-03-21
We have previously indicated that EGFR has a role in carcinogenesis in a subgroup of sinonasal squamous cell carcinomas (SNSCC). In addition, EGFR activates 2 of the most important intracellular signalling pathways: PI3K/pAKT/mTOR/pS6 and MAP pathway kinases. The objective of this study was to evaluate the involvement of the EGFR/PI3K/pAKT/mTOR/pS6 pathway and its relationship with clinical-pathological parameters and follow-up of sinonasal squamous cell carcinoma. The immunohistochemical expression of different components of the PI3K/AKT/mTOR/pS6 pathway and its relationship with various clinical-pathological parameters was studied in a series of 54 patients with SNSCC. Loss of PTEN expression was observed in 33/54 cases (61%) and pAKT, mTOR and pS6 pre-expression was observed in 19/54 cases (35%), 8/54 cases (15%), and 47/54 cases (87%), respectively. Loss of PTEN expression was related to intracranial invasion and development of regional metastases (p=0.005). Overexpression of pS6 was associated with a decrease in survival (p=0.008), presence of local recurrences (p=0.055), and worsening of overall prognosis (p=0.007). No significant relationships were observed between pAKT and mTOR expression and the clinicopathological parameters studied. Alterations in the expression of EGFR/PI3K/pAKT/mTOR/pS6 pathway components are common in a subgroup of SNSCC. This study reveals that the absence of pS6 overexpression is associated with better clinical outcomes. Therefore, pS6 expression could be considered as an unfavourable prognostic marker. Copyright © 2018. Publicado por Elsevier España, S.L.U.
“mTOR Signaling Pathway”: A Potential Target of Curcumin in the Treatment of Spinal Cord Injury
Lin, Jingquan; Huo, Xue
2017-01-01
The purpose of this review is to discuss the possibility of the treatment of spinal cord injury (SCI) with curcumin via regulating the mTOR signaling pathway, which may provide another strong support for curcumin to be a promising medicine applied to the treatment of SCI. Curcumin is termed as a multifunctional targeting therapy drug that regulates the mTOR signaling pathway in the treatment of numerous diseases. Previous research has already revealed that mTOR signaling pathway plays a vital role in prognosis, which involves the axon regeneration and autophagy. This review discusses a potential mechanism that curcumin suppresses the activation of this pathway and ameliorates the microenvironment of axons regeneration which would provide a new way that induces autophagy appropriately. PMID:28691015
Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.
Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel
2015-10-01
Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.
Guzman, Johanna; Jauregui, Alexandra N.; Merscher-Gomez, Sandra; Maiguel, Dony; Muresan, Cristina; Mitrofanova, Alla; Diez-Sampedro, Ana; Szust, Joel; Yoo, Tae-Hyun; Villarreal, Rodrigo; Pedigo, Christopher; Molano, R. Damaris; Johnson, Kevin; Kahn, Barbara; Hartleben, Bjoern; Huber, Tobias B.; Saha, Jharna; Burke, George W.; Abel, E. Dale; Brosius, Frank C.; Fornoni, Alessia
2014-01-01
Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria. PMID:24101677
MacDonald, Elizabeth M; Andres-Mateos, Eva; Mejias, Rebeca; Simmers, Jessica L; Mi, Ruifa; Park, Jae-Sung; Ying, Stephanie; Hoke, Ahmet; Lee, Se-Jin; Cohn, Ronald D
2014-04-01
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFNs) are critical in animal antiviral regulation. IFN-mediated signaling regulates hundreds of genes that are directly associated with antiviral, immune and other physiological responses. The signaling pathway mediated by mechanistic target of rapamycin (mTOR), a serine/threonin...
Li, Yang; Fang, Liurong; Zhou, Yanrong; Tao, Ran; Wang, Dang; Xiao, Shaobo
2018-06-13
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. Nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest. IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by dephosphorylating eIF2α or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α-phosphorylation-dependent and -independent host translation shutoff. Copyright © 2018 American Society for Microbiology.
Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.
Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya
2017-08-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1 flox/flox :Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels
Goudarzi, Kaveh M; Nistér, Monica; Lindström, Mikael S
2014-01-01
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors. PMID:25482947
mTOR as a Molecular Target in HPV-Associated Oral and Cervical Squamous Carcinomas
Molinolo, Alfredo A.; Marsh, Christina; Dinali, Mohamed El; Gangane, Nitin; Jennison, Kaitlin; Hewitt, Stephen; Patel, Vyomesh; Seiwert, Tanguy Y.; Gutkind, J. Silvio
2012-01-01
Purpose The incidence of head and neck squamous cell carcinomas (HNSCC) associated with papillomavirus (HPV) infection has increased over the past decades in the US. We aimed at examining the global impact of HPV-associated HNSCC, and whether the established key role of mTOR activation in HNSCC is also observed in HPV+ HNSCC lesions, thereby providing novel treatment options for HPV-associated HNSCC patients. Experimental Design An international HNSCC tissue microarray (TMA) was used to analyze the expression of p16INK4A, a surrogate for HPV infection, and Akt-mTOR pathway activation. Results were confirmed in a large collection of HPV− and HPV+ HNSCC cases and in a cervical cancer (CCSCC) TMA. Observations were validated in HNSCC and CCSCC-derived cell lines, which were xenografted into immunodeficient mice for tumorigenesis assays. Results Approximately 20% of all HNSCC lesions could be classified as HPV+, irrespective of their country of origin. mTOR pathway activation was observed in most HPV+ HNSCC and CCSCC lesions and cell lines. The pre-clinical efficacy of mTOR inhibition by rapamycin and RAD001 was explored in HPV+ HNSCC and CCSCC tumor xenografts. Both mTOR inhibitors effectively decreased mTOR activity in vivo, and caused a remarkable decrease in tumor burden. These results emphasize the emerging global impact of HPV-related HNSCCs, and indicate that the activation of the mTOR pathway is a widespread event in both HPV− and HPV-associated HNSCC and CCSCC lesions. Conclusions The emerging results may provide a rationale for the clinical evaluation of mTOR inhibitors as a molecular targeted approach for the treatment of HPV-associated malignancies. PMID:22409888
Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.
Nelson, Nicholas; Clark, Geoffrey J
2016-06-07
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise
Li, Mengyao; Verdijk, Lex B.; Sakamoto, Kei; Ely, Brian; van Loon, Luc J.C.; Musi, Nicolas
2012-01-01
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. PMID:23000302
Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise.
Li, Mengyao; Verdijk, Lex B; Sakamoto, Kei; Ely, Brian; van Loon, Luc J C; Musi, Nicolas
2012-01-01
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. Published by Elsevier Ireland Ltd.
Starbuck, Kristen D; Drake, Richard D; Budd, G Thomas; Rose, Peter G
2016-11-01
Uterine perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors. Many have malignant behavior, and no successful treatment strategy has been established. Identification of mutations in the tuberous sclerosis 1 (TSC1) and TSC2 genes producing constitutive activation of the mammalian target of rapamycin (mTOR) pathway presents an opportunity for targeted therapy. Patients with advanced malignant uterine PEComa treated with mTOR inhibitors were identified and records were retrospectively reviewed for treatment response based on radiographic assessment. Three patients with advanced uterine PEComas underwent debulking surgery followed by mTOR inhibitor therapy; two had a complete response to therapy and disease in one patient progressed. Given the absence of effective therapies for malignant uterine PEComas, targeting the mTOR pathway is a logical strategy to pursue given the known pathobiology involving the Tuberous Sclerosis complex. Treatment of malignant uterine PEComas with mTOR inhibitors was effective in two out of three patients after surgical resection, with durable response. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.
Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H
2014-01-25
Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bae, Seong Kyeong; Kim, Munki; Pyo, Min Jung; Kim, Minkyung; Yang, Sujeoung; Yoon, Won Duk; Han, Chang Hoon
2017-01-01
Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells. PMID:28785288
Taking aim at Alzheimer’s disease through the mammalian target of rapamycin
Maiese, Kenneth
2014-01-01
A significant portion of the world’s population suffers from sporadic Alzheimer’s disease (AD) with available present therapies limited to symptomatic care that does not alter disease progression. Over the next decade, advancing age of the global population will dramatically increase the incidence of AD and severely impact health care resources, necessitating novel, safe, and efficacious strategies for AD. The mammalian target of rapamycin (mTOR) and its protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) offer exciting and unique avenues of intervention for AD through the oversight of programmed cell death pathways of apoptosis, autophagy, and necroptosis. mTOR modulates multi-faceted signal transduction pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex, proline-rich Akt substrate 40 kDa (PRAS40), and p70 ribosomal S6 kinase (p70S6K) and can interface with the neuroprotective pathways of growth factors, sirtuins, wingless, fork-head transcription factors, and glycogen synthase kinase-3β. With the ability of mTOR to broadly impact cellular function, clinical strategies for AD that implement mTOR must achieve parallel objectives of protecting neuronal, vascular, and immune cell survival in conjunction with preserving networks that determine memory and cognitive function. PMID:25105207
Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases.
Krab, Lianne C; Goorden, Susanna M I; Elgersma, Ype
2008-10-01
Defects in rat sarcoma viral oncogene homolog (RAS)-extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (MTOR) signaling pathways have recently been shown to cause several genetic disorders classified as neuro-cardio-facial-cutaneous (NCFC) and Hamartoma syndromes. Although these pathways are well-known players in cell proliferation and cancer, their role in cognitive function is less appreciated. Here, we focus on the cognitive problems associated with mutations in the RAS-ERK and PI3K-MTOR signaling pathways and on the underlying mechanisms revealed by recent animal studies. Cancer drugs have been shown to reverse the cognitive deficits in mouse models of NCFC and Hamartoma syndromes, raising hopes for clinical trials.
Di Domenico, Fabio; Tramutola, Antonella; Foppoli, Cesira; Head, Elizabeth; Perluigi, Marzia; Butterfield, D Allan
2018-01-01
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase involved in the regulation of protein synthesis and degradation, longevity and cytoskeletal formation. The mTOR pathway represents a key growth and survival pathway involved in several diseases such as cancer, obesity, cardiovascular disease and neurodegenerative diseases. Numerous studies linked the alterations of mTOR pathway to age-dependent cognitive decline, pathogenesis of Alzheimer disease (AD) and AD-like dementia in Down syndrome (DS). DS is the most frequent chromosomal abnormality that causes intellectual disability. The neuropathology of AD in DS is complex and involves impaired mitochondrial function, defects in neurogenesis, increased oxidative stress, altered proteostasis and autophagy networks as a result of triplication of chromosome 21(chr 21). The chr21 gene products are considered a principal neuropathogenic moiety in DS. Several genes involved respectively in the formation of senile plaques and neurofibrillary tangles (NFT), two main pathological hallmarks of AD, are mapped on chr21. Further, in subjects with DS the activation of mTOR signaling contributes to Aβ generation and the formation of NFT. This review discusses recent research highlighting the complex role of mTOR associated with the presence of two hallmarks of AD pathology, senile plaques (composed mostly of fibrillar Aß peptides), and NFT (composed mostly of hyperphosphorylated tau protein). Oxidative stress, associated with chr21-related Aβ and mitochondrial alterations, may significantly contribute to this linkage of mTOR to AD-like neuropathology in DS. Copyright © 2017 Elsevier Inc. All rights reserved.
Takayama, Koji; Kawakami, Yohei; Lavasani, Mitra; Mu, Xiaodong; Cummins, James H; Yurube, Takashi; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny
2017-07-01
Mice expressing reduced levels of ERCC1-XPF (Ercc1 -/Δ mice) demonstrate premature onset of age-related changes due to decreased repair of DNA damage. Muscle-derived stem/progenitor cells (MDSPCs) isolated from Ercc1 -/Δ mice have an impaired capacity for cell differentiation. The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth in response to nutrient, hormone, and oxygen levels. Inhibition of the mTOR pathway extends the lifespan of several species. Here, we examined the role of mTOR in regulating the MDSPC dysfunction that occurs with accelerated aging. We show that mTOR signaling pathways are activated in Ercc1 -/Δ MDSPCs compared with wild-type (WT) MDSPCs. Additionally, inhibiting mTOR with rapamycin promoted autophagy and improved the myogenic differentiation capacity of the Ercc1 -/Δ MDSPCs. The percent of apoptotic and senescent cells in Ercc1 -/Δ MDSPC cultures was decreased upon mTOR inhibition. These results establish that mTOR signaling contributes to stem cell dysfunction and cell fate decisions in response to endogenous DNA damage. Therefore, mTOR represents a potential therapeutic target for improving defective, aged stem cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1375-1382, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane
Mu, Zongkai; Wang, Lei; Deng, Wei; Wang, Jiawei; Wu, Geng
2017-01-01
The mechanistic target of rapamycin (mTOR) signal-transduction pathway plays a key role in regulating many aspects of metabolic processes. The central player of the mTOR signaling pathway, mTOR complex 1 (mTORC1), is recruited by the pentameric Ragulator complex and the heterodimeric Rag GTPase complex to the lysosomal membrane and thereafter activated. Here, we determined the crystal structure of the human Ragulator complex, which shows that Lamtor1 possesses a belt-like shape and wraps the other four subunits around. Extensive hydrophobic interactions occur between Lamtor1 and the Lamtor2-Lamtor3, Lamtor4-Lamtor5 roadblock domain protein pairs, while there is no substantial contact between Lamtor2-Lamtor3 and Lamtor4-Lamtor5 subcomplexes. Interestingly, an α-helix from Lamtor1 occupies each of the positions on Lamtor4 and Lamtor5 equivalent to the α3-helices of Lamtor2 and Lamtor3, thus stabilizing Lamtor4 and Lamtor5. Structural comparison between Ragulator and the yeast Ego1-Ego2-Ego3 ternary complex (Ego-TC) reveals that Ego-TC only corresponds to half of the Ragulator complex. Coupling with the fact that in the Ego-TC structure, Ego2 and Ego3 are lone roadblock domain proteins without another roadblock domain protein pairing with them, we suggest that additional components of the yeast Ego complex might exist. PMID:29285400
Pasquier, Benoit
2015-04-03
Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.
Kakkar, Aanchal; Majumdar, Atreye; Kumar, Anupam; Tripathi, Manjari; Pathak, Pankaj; Sharma, Mehar C; Suri, Vaishali; Tandon, Vivek; Chandra, Sarat P; Sarkar, Chitra
2016-11-01
Recently, BRAF V600E mutation, and activation of mTOR and MAPK pathways have been identified in various glial/glioneuronal tumors. Dysembryoplastic neuroepithelial tumors (DNTs) are epilepsy-associated glioneuronal neoplasms which have not been analyzed extensively in this respect. Sequencing for BRAF V600E mutation, analysis of BRAF copy number by qRT-PCR, and immunohistochemistry for mTOR (p-S6, p-4EBP1) and MAPK (p-MAPK) pathways were performed. Sixty-four DNTs were identified, accounting for 15.1% of patients with drug-refractory epilepsy (mean age: 15.5 years). Duration of seizures ranged from 1 to 22 years. BRAF V600E mutation was identified in 3.7% of DNTs, while BRAF copy number gain was observed in 33.3%. mTOR-pathway activation indicated by p-S6 or p-4EBP1 immunopositivity was seen in 89.7% cases. Interestingly, p-S6 positivity was also seen in adjacent dysplastic cortex. p-MAPK immunopositivity was seen in 50% cases. MAPK and mTOR pathway activation was independent of BRAF alterations. All patients that underwent incomplete resection had Engel grade II-III outcomes (p<0.001). BRAF alterations are frequent in DNTs, particularly BRAF copy number gain which is being reported for the first time in these tumors. Evidence of activation of mTOR and MAPK pathways suggests a role for altered signalling in DNT pathogenesis, and will pave the way for development of targeted therapies, particularly relevant for patients having persistent seizures after incomplete resection. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, Jiumei; Wu, Qihong; Geng, Liang; Chen, Xiaonan; Shen, Weifeng; Wu, Fang; Chen, Ying
2017-08-01
The aim of the present study was to investigate the effect of the mammalian target of rapamycin (mTOR) signaling pathway on thoracic aortic aneurysm (TAA) development. The study used a calcium chloride (CaCl2)‑induced rat TAA model to explore the potential role of mTOR signaling pathway in the disease development. Adult male Sprague‑Dawley rats underwent the periarterial exposure of thoracic aorta to either 0.5 M CaCl2 or normal saline, and a subgroup of CaCl2‑treated rats received rapamycin 1 day prior to surgery. Without pre‑administering rapamycin, significantly enhanced phosphorylation of mTOR and expression of proinflammatory cytokines [i.e., tumor necrosis factor α (TNF‑α), interleukin 6 (IL‑6), and interleukin (IL)‑1β] were observed in the CaCl2‑treated aortic segments 2 days post‑treatment compared with the NaCl‑treated segments. At 2 weeks post‑treatment, hematoxylin and eosin and Verhoeff‑Van Gieson staining revealed aneurysmal alteration and disappearance of normal wavy elastic structures in the aortic segments exposed to CaCl2. In contrast, the CaCl2‑induced TAA formation was inhibited by pre‑administering rapamycin to CaCl2‑treated rats, which demonstrated attenuated mTOR phosphorylation and downregulation of the proinflammatory mediators (i.e., TNF‑α, IL‑6, IL‑1β, matrix metallopeptidases 2 and 9) to the control level. Further in vitro cell culture experiments using aortic smooth muscle cell (SMC) suggested that the inhibition of the mTOR signaling pathway by rapamycin could promote the differentiation of SMCs, as reflected by the reduced expression of S100A4 and osteopontin. The present study indicated that the early enhanced mTOR signaling pathway in the TAA development and mTOR inhibitor rapamycin may inhibit CaCl2‑induced TAA formation.
Metabolism as a Target for Modulation in Autoimmune Diseases.
Huang, Nick; Perl, Andras
2018-05-05
Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Steven D.; Adams, Nicholas D.; Burgess, Joelle L.
Phosphoinositide 3-kinase {alpha} (PI3K{alpha}) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{l_brace}2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl{r_brace}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3K{alpha} and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials formore » the treatment of cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Zheng; Qi, Ruizhao; Guo, Xiaodong
Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection,more » while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC. - Highlights: • miR-223 is downregulated in hepatocellular carcinomas. • Rab1 is a novel downstream target of miR-223. • miR-223 suppressed cell growth and enhanced apoptosis in HepG2 and Bel-7402 cells. • miR-223 modulated mTOR signaling pathway by targeting Rab1.« less
Mukherjee, A; Koli, S; Reddy, K V R
2015-09-01
Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of target genes post-transcriptionally. © 2015 American Society of Andrology and European Academy of Andrology.
Chi, Xiaosa; Huang, Cheng; Li, Rui; Wang, Wei; Wu, Mengqian; Li, Jinmei; Zhou, Dong
2017-04-01
The mammalian target of rapamycin (mTOR) has been demonstrated to mediate multidrug resistance in various tumors by inducing P-glycoprotein (P-gp) overexpression. Here, we investigated the correlation between the mTOR pathway and P-gp expression in pharmacoresistant epilepsy. Temporal cortex specimens were obtained from patients with refractory mesial temporal lobe epilepsy (mTLE) and age-matched controls who underwent surgeries at West China Hospital of Sichuan University between June 2014 and May 2015. We established a rat model of epilepsy kindled by coriaria lactone (CL) and screened pharmacoresistant rats (non-responders) using phenytoin. Non-responders were treated for 4 weeks with vehicle only or with the mTOR pathway inhibitor rapamycin at doses of 1, 3, and 6 mg/kg. Western blotting and immunohistochemistry were used to detect the expression of phospho-S6 (P-S6) and P-gp at different time points (1 h, 8 h, 1 day, 3 days, 1 weeks, 2 weeks, and 4 weeks) after the onset of treatment. Overexpression of P-S6 and P-gp was detected in both refractory mTLE patients and non-responder rats. Rapamycin showed an inhibitory effect on P-S6 and P-gp expression 1 week after treatment in rats. In addition, the expression levels of P-S6 and P-gp in the 6 mg/kg group were significantly lower than those in the 1 mg/kg or the 3 mg/kg group at the same time points (all P < 0.05). Moreover, rapamycin decreased the duration and number of CL-induced seizures, as well as the stage of non-responders (all P < 0.05). The current study indicates that the mTOR signaling pathway plays a critical role in P-gp expression in drug-resistant epilepsy. Inhibition of the mTOR pathway by rapamycin may be a potential therapeutic approach for pharmacoresistant epilepsy.
Regulation of autophagy by amino acids and MTOR-dependent signal transduction.
Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice
2015-10-01
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.
Varela, Luis; Martínez-Sánchez, Noelia; Gallego, Rosalía; Vázquez, María J; Roa, Juan; Gándara, Marina; Schoenmakers, Erik; Nogueiras, Rubén; Chatterjee, Krishna; Tena-Sempere, Manuel; Diéguez, Carlos; López, Miguel
2012-06-01
Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.
Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai
2015-01-01
Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.
mTOR dysregulation and tuberous sclerosis-related epilepsy.
Curatolo, Paolo; Moavero, Romina; van Scheppingen, Jackelien; Aronica, Eleonora
2018-03-01
The mammalian target of rapamycin (mTOR) pathway has emerged as a key player for proper neural network development, and it is involved in epileptogenesis triggered by both genetic or acquired factors. Areas covered. The robust mTOR signaling deregulation observed in a large spectrum of epileptogenic developmental pathologies, such as focal cortical dysplasias and tuberous sclerosis complex (TSC), has been linked to germline and somatic mutations in mTOR pathway regulatory genes, increasing the spectrum of 'mTORopathies'. The significant advances in the field of TSC allowed for the validation of emerging hypotheses on the mechanisms of epileptogenesis and the identification of potential new targets of therapy. Recently, a double-blind phase III randomized clinical trial on patients with TSC related epilepsy, demonstrated that adjunctive treatment with mTOR inhibition is effective and safe in reducing focal drug resistant seizures. Expert commentary. mTOR signaling dysregulation represents a common pathogenic mechanism in a subset of malformations of cortical development, sharing histopathological and clinical features, including epilepsy, autism, and intellectual disability. EXIST-3 trial provided the first evaluation of the optimal dosage, conferring a higher chance of reducing seizure frequency and severity, with adverse events being similar to what observed with lower dosages.
Perl, Andras
2015-01-01
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. While rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has been also identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span. PMID:25907074
Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.
Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K
2017-02-01
Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1 -/- MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits.
Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; van der Horst, Hilma; Reinders, Margot T M; Broersen, Laus M; Willemsen, Linette E M; Kas, Martien J H; Garssen, Johan; Kraneveld, Aletta D
2015-10-01
Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways
Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui
2015-01-01
To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863
McNicholas, Bairbre A.; Eng, Diana G.; Lichtnekert, Julia; Rabinowitz, Peter S.; Pippin, Jeffrey W.
2016-01-01
Parietal epithelial cell (PEC) response to glomerular injury may underlie a common pathway driving fibrogenesis following podocyte loss that typifies several glomerular disorders. Although the mammalian target of rapamycin (mTOR) pathway is important in cell homeostasis, little is known of the biological role or impact of reducing mTOR activity on PEC response following podocyte depletion, nor in the aging kidney. The purpose of these studies was to determine the impact on PECs of reducing mTOR activity following abrupt experimental depletion in podocyte number, as well as in a model of chronic podocyte loss and sclerosis associated with aging. Podocyte depletion was induced by an anti-podocyte antibody and rapamycin started at day 5 until death at day 14. Reducing mTOR did not lead to a greater reduction in podocyte density, despite greater glomerulosclerosis. However, mTOR inhibition lead to an increase in PEC density and PEC-derived crescent formation. Additionally, markers of epithelial-to-mesenchymal transition (platelet-derived growth factor receptor-β, α-smooth muscle actin, Notch-3) and PEC activation (CD44, collagen IV) were further increased by mTOR reduction. Aged mice treated with rapamycin for 1, 2, and 10 wk before death at 26.5 mo (≈75-yr-old human age) had increased the number of glomeruli with a crescentic appearance. mTOR inhibition at either a high or low level lead to changes in PEC phenotype, indicating PEC morphology is sensitive to changes mediated by global mTOR inhibition. PMID:27440779
Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.
2013-01-01
The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17β-estradiol (E2) is dependent on mTOR signaling in the dorsal hippocampus, and whether E2-induced mTOR signaling is dependent on dorsal hippocampal phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) activation. We first demonstrated that the enhancement of object recognition induced by E2 was blocked by dorsal hippocampal inhibition of ERK, PI3K, or mTOR activation. We then showed that an increase in dorsal hippocampal ERK phosphorylation 5 min after intracerebroventricular (ICV) E2 infusion was also blocked by dorsal hippocampal infusion of the three cell signaling inhibitors. Next, we found that ICV infusion of E2 increased phosphorylation of the downstream mTOR targets S6K (Thr-421) and 4E-BP1 in the dorsal hippocampus 5 min after infusion, and that this phosphorylation was blocked by dorsal hippocampal infusion of inhibitors of ERK, PI3K, and mTOR. Collectively, these data demonstrate for the first time that activation of the dorsal hippocampal mTOR signaling pathway is necessary for E2 to enhance object recognition memory consolidation and that E2-induced mTOR activation is dependent on upstream activation of ERK and PI3K signaling. PMID:23422279
USDA-ARS?s Scientific Manuscript database
We examined activation of the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways in adult (Y; 6 mo old; n = 16) and aged (O; 30 mo old; n = 16) male rats (Fischer 344 x Brown Norway) subjected to chronic overload-induced muscle hypertrophy of the plan...
[Dysregulation of the mTOR signaling pathway in the pathogenesis of autism spectrum disorders].
Gabryel, Bożena; Kapałka, Agata; Sobczyk, Wojciech; Łabuzek, Krzysztof; Gawęda, Agnieszka; Janas-Kozik, Małgorzata
2014-04-10
Mammalian target of rapamycin (mTor) plays multiple role in central nervous system and is involved in regulation of cell viability, differentiation, transcription, translation, protein degradation, actin cytoskeletal organization and autophagy. Recent experimental and clinical studies reveal that disturbances of mTOR signaling are involved in the pathogenesis of autism spectrum disorders (ASD). This article reviews current data on the alteration in the mTOR transduction cascade, which may contribute to common neurobehavioral disorders typical for ASD. Moreover, the results of the latest experimental studies on the potential of mTOR inhibitors for the treatment of ASD are reviewed.
mTOR: A pathogenic signaling pathway in developmental brain malformations.
Crino, Peter B
2011-12-01
The mTOR signaling network functions as a pivotal regulatory cascade during the development of the cerebral cortex. Aberrant hyperactivation of mTOR as a consequence of loss-of-function gene mutations encoding mTOR inhibitor proteins such as TSC1, TSC2, PTEN and STRADα has been recently linked to developmental cortical malformations associated with epilepsy and neurobehavioral disabilities. Investigation of mTOR signaling in these disorders provides for the first time exciting future avenues for assessment of biomarkers, patient stratification and prognostic measures as well as the opportunity for targeted therapy to regulate mTOR activity across all age groups. As we learn more about mTOR and its activity in the developing brain, many challenges will arise that must be overcome before widespread clinical therapeutics can be implemented. Copyright © 2011. Published by Elsevier Ltd.
Wee, Lee Heng; Morad, Noor Azian; Aan, Goon Jo; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum
2015-01-01
The PI3K-Akt-mTOR, Wnt/β-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/β-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin, Gsk3β, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/β catenin signaling pathways and induction of apoptosis pathway.
USDA-ARS?s Scientific Manuscript database
Leucine acutely stimulates protein synthesis by activating the mammalian target of rapamycin (mTOR) signaling pathway. We hypothesized that leucine supplementation of a low protein diet will enhance protein synthesis and mTOR signaling in the neonate for prolonged periods. Fasted 5-d-old pigs (n=6–8...
mTOR-Dependent Cell Proliferation in the Brain.
Ryskalin, Larisa; Lazzeri, Gloria; Flaibani, Marina; Biagioni, Francesca; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco
2017-01-01
The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM.
mTOR-Dependent Cell Proliferation in the Brain
Lazzeri, Gloria; Frati, Alessandro
2017-01-01
The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM. PMID:29259984
Gafford, Georgette M; Parsons, Ryan G; Helmstetter, Fred J
2013-09-01
Prior work suggests that hippocampus-dependent memory undergoes a systems consolidation process such that recent memories are stored in the hippocampus, while older memories are independent of the hippocampus and instead dependent on cortical areas. One problem with interpreting these studies is that memory for the contextual stimuli weakens as time passes between the training event and testing and older memories are often less detailed, making it difficult to determine if memory storage in the hippocampus is related to the age or to the accuracy of the memory. Activity of the mammalian target of rapamycin (mTOR) signaling pathway is known to be important for controlling protein translation necessary for both memory consolidation after initial learning and for the reconsolidation of memory after retrieval. We tested whether p70s6 kinase (p70s6K), a key component of the mTOR signaling pathway, is activated following retrieval of context fear memory in the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) at 1, 10, or 36 days after context fear conditioning. We also tested whether strengthening memory for the contextual stimuli changed p70s6K phosphorylation in these structures 36 days after training. We show that under standard training conditions retrieval of a recently formed memory is initially precise and involves the DH. Over time it loses detail, becomes independent of the DH and depends on the ACC. In a subsequent experiment, we preserved the accuracy of older memories through pre-exposure to the training context. We show that remote memory still involved the DH in animals given pre-exposure. These data support the notion that detailed memories depend on the DH regardless of their age. Copyright © 2013 Wiley Periodicals, Inc.
MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis
Abshire, Camille F.; Roy, Craig R.
2016-01-01
Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L. pneumophila has evolved to manipulate MTOR-dependent lipogenesis for optimal intracellular replication. PMID:27942021
Patil, Vinit V.; Guzman, Miguel; Carter, Angela N.; Rathore, Geetanjali; Yoshor, Daniel; Curry, Daniel; Wilfong, Angus; Agadi, Satish; Swann, John W.; Adesina, Adekunle M.; Bhattacharjee, Meenakshi B.; Anderson, Anne E.
2016-01-01
Neuropathology of resected brain tissue has revealed an association of focal cortical dysplasia (FCD) with drug resistant epilepsy (DRE). Recent studies have shown that the mechanistic target of rapamycin (mTOR) pathway is hyperactivated in FCD as evidenced by increased phosphorylation of the ribosomal protein S6 (S6) at serine 240/244 (S240/244), a downstream target of mTOR. Moreover, extracellular regulated kinase (ERK) has been shown to phosphorylate S6 at serine 235/236 (S235/236) and tuberous sclerosis complex 2 (TSC2) at serine 664 (S664) leading to hyperactive mTOR signaling. We evaluated ERK phosphorylation of S6 and TSC2 in two types of FCD (FCD I and FCDII) as a candidate mechanism contributing to mTOR pathway dysregulation in this disorder. Tissue samples from patients with tuberous sclerosis (TS) served as a positive control. Immunostaining for phospho-S6 (pS6240/244 and pS6235/236), phospho-ERK (pERK), and phospho-TSC2 (pTSC2) was performed on resected brain tissue with FCD and TS. We found increased pS6240/244 and pS6235/236 staining in FCD I, FCD II, and TS compared to normal appearing tissue, while pERK and pTSC2 staining was increased only in FCD IIb and TS tissue. Our results suggest that both the ERK and mTOR pathways are dysregulated in FCD and TS; however, the signaling alterations are different for FCD I as compared to FCD II and TS. PMID:26381727
Zhou, Yuning; Wang, Qingding; Weiss, Heidi L.; Evers, B. Mark
2014-01-01
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway. PMID:25057011
Radhakrishnan, Prakash; Bryant, Vashti C; Blowers, Elizabeth C; Rajule, Rajkumar N; Gautam, Nagsen; Anwar, Muhammad M; Mohr, Ashley M; Grandgenett, Paul M; Bunt, Stephanie K; Arnst, Jamie L; Lele, Subodh M; Alnouti, Yazen; Hollingsworth, Michael A; Natarajan, Amarnath
2013-04-15
The presence of TNF-α in approximately 50% of surgically resected tumors suggests that the canonical NF-κB and the mTOR pathways are activated. Inhibitor of IκB kinase β (IKKβ) acts as the signaling node that regulates transcription via the p-IκBα/NF-κB axis and regulates translation via the mTOR/p-S6K/p-eIF4EBP axis. A kinome screen identified a quinoxaline urea analog 13-197 as an IKKβ inhibitor. We hypothesized that targeting the NF-κB and mTOR pathways with 13-197 will be effective in malignancies driven by these pathways. Retrospective clinical and preclinical studies in pancreas cancers have implicated NF-κB. We examined the effects of 13-197 on the downstream targets of the NF-κB and mTOR pathways in pancreatic cancer cells, pharmacokinetics, toxicity and tumor growth, and metastases in vivo. 13-197 inhibited the kinase activity of IKKβ in vitro and TNF-α-mediated NF-κB transcription in cells with low-μmol/L potency. 13-197 inhibited the phosphorylation of IκBα, S6K, and eIF4EBP, induced G1 arrest, and downregulated the expression of antiapoptotic proteins in pancreatic cancer cells. Prolonged administration of 13-197 did not induce granulocytosis and protected mice from lipopolysaccharide (LPS)-induced death. Results also show that 13-197 is orally available with extensive distribution to peripheral tissues and inhibited tumor growth and metastasis in an orthotopic pancreatic cancer model without any detectable toxicity. These results suggest that 13-197 targets IKKβ and thereby inhibits mTOR and NF-κB pathways. Oral availability along with in vivo efficacy without obvious toxicities makes this quinoxaline urea chemotype a viable cancer therapeutic.
Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle
2011-01-01
Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID:21494688
mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yonghuai; Institute of Hematology, Peking University, Beijing; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing
Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reducedmore » the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.« less
Perl, Andras
2015-06-01
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase, which plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. Although rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has also been identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span. © 2015 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Aller, Glenn S., E-mail: glenn.s.van.aller@gsk.com; Carson, Jeff D.; Tang, Wei
Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The keymore » nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.« less
Park, Jeong Hwan; Lee, Cheol; Chang, Mee Soo; Kim, Kwangsoo; Choi, Seongmin; Lee, Hyunjung; Lee, Hyun-Seob; Moon, Kyung Chul
2018-06-17
Tuberous sclerosis complex-associated renal cell carcinoma (TSC-RCC) has distinct clinical and histopathologic features and is considered a specific subtype of RCC. The genetic alterations of TSC1 or TSC2 are responsible for the development of TSC. In this study, we assessed the mTOR pathway activation and aimed to evaluate molecular characteristics and pathogenic pathways of TSC-RCC. Two cases of TSC-RCC, one from a 31-year-old female and the other from an 8-year-old male, were assessed. The mTOR pathway activation was determined by immunohistochemistry. The mutational spectrum of both TSC-RCCs was evaluated by whole exome sequencing (WES), and pathogenic pathways were analyzed. Differentially expressed genes were analyzed by NanoString Technologies nCounter platform. The mTOR pathway activation and the germline mutations of TSC2 were identified in both TSC-RCC cases. The WES revealed several cancer gene alterations. In Case 1, genetic alterations of CHD8, CRISPLD1, EPB41L4A, GNA11, NOTCH3, PBRM1, PTPRU, RGS12, SETBP1, SMARCA4, STMN1, and ZNRF3 were identified. In Case 2, genetic alterations of IWS1 and TSC2 were identified. Further, putative pathogenic pathways included chromatin remodeling, G protein-coupled receptor, Notch signaling, Wnt/β-catenin, PP2A and the microtubule dynamics pathway in Case 1, and mRNA processing and the PI3K/AKT/mTOR pathway in Case 2. Additionally, the ALK and CRLF2 mRNA expression was upregulated and CDH1, MAP3K1, RUNX1, SETBP1, and TSC1 mRNA expression was downregulated in both TSC-RCCs. We present mTOR pathway activation and molecular characteristics with pathogenic pathways in TSC-RCCs, which will advance our understanding of the pathogenesis of TSC-RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Nan; Cheng, C. Yan
2016-01-01
mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier “leaky”; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier “tighter”. These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088
Maiese, Kenneth
2017-01-01
The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ferrandiz-Pulido, Carla; Masferrer, Emili; Toll, Agustin; Hernandez-Losa, Javier; Mojal, Sergio; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Garcia-Patos, Vicente
2013-12-01
Penile squamous cell carcinoma is a rare neoplasm associated with a high risk of metastasis and morbidity. There are limited data on the role of the mTOR signaling pathway in penile squamous cell carcinoma carcinogenesis and tumor maintenance. We assessed a possible role for mTOR signaling pathway activation as a potential predictive biomarker of outcome and a therapeutic target for penile cancer. A cohort of 67 patients diagnosed with invasive penile squamous cell carcinoma from 1987 to 2010 who had known HPV status were selected for study. Tissue microarrays were constructed with 67 primary penile squamous cell carcinomas, matched normal tissues and 8 lymph node metastases. Immunohistochemical staining was performed for p53, pmTOR, pERK, p4E-BP1, eIF4E and peIF4E. Expression was evaluated using a semiquantitative H-score on a scale of 0 to 300. Expression of pmTOR, p4E-BP1, eIF4E and peIF4E was increased in penile tumors compared with matched adjacent normal tissues, indicating activation of the mTOR signaling pathway in penile tumorigenesis. Over expression of pmTOR, peIF4E and p53 was significantly associated with lymph node disease. peIF4E and p53 also correlated with a poor outcome, including recurrence, metastasis or disease specific death. In contrast, pERK and p4E-BP1 were associated with lower pT stages. pmTOR and intense p53 expression was associated with HPV negative tumors. Activation of mTOR signaling may contribute to penile squamous cell carcinoma progression and aggressive behavior. Targeting mTOR or its downstream signaling targets, such as peIF4E, may be a valid therapeutic strategy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ohkawa, Sakae; Yanagida, Momoko; Uchikawa, Tsuyoshi; Yoshida, Takuya; Ikegaya, Naoki; Kumagai, Hiromichi
2013-09-01
The mammalian target of rapamycin (mTOR), a regulator of cellular protein synthesis and cell growth, plays an important role in the progression of renal hypertrophy and renal dysfunction in experimental chronic kidney disease models. Because the mTOR activity is regulated by nutrients including amino acids, we tested the hypothesis that the renoprotective effect of a low-protein diet (LPD) might be associated with the attenuation of the renal mTOR pathway. In this study, 5/6 nephrectomized rats were fed an LPD or a normal protein diet (NPD), and a number of rats that were fed an NPD received rapamycin (1.0 mg kg⁻¹ d⁻¹), a specific inhibitor of mTOR. After 6 weeks, renal tissue was collected to evaluate the activity of the mTOR pathway and histologic changes. The phosphorylation of p70S6k, a kinase in the downstream of mTOR, was significantly higher in the NPD-fed rats that showed progressive renal dysfunction than in the sham-operated rats (NPD). The LPD attenuated the excessive phosphorylation of p70S6k concomitant with reduced proteinuria and improved renal histologic changes in the 5/6 nephrectomized rats. The effects of the LPD were similar to the effects of rapamycin. The expression of phosphorylated p70S6k was significantly correlated with proteinuria (r² = 0.63, P < .001), the glomerular area (r² = 0.60, P < .001), and the number of phosphorylated Smad2-positive cells in the glomerulus (r² = 0.26, P < .05) of these rats. These results suggest that the preventive effect of an LPD on the progression of renal failure is associated with attenuation of the activated mTOR/p70S6k pathway in the rat remnant kidney model. © 2013.
Signaling Pathways Involved in the Regulation of mRNA Translation
2018-01-01
ABSTRACT Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus. PMID:29610153
Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
Gao, Yanan; Gao, Juan; Li, Minghao; Zheng, Yawei; Wang, Yajie; Zhang, Hongyan; Wang, Weili; Chu, Yajing; Wang, Xiaomin; Xu, Mingjiang; Cheng, Tao; Ju, Zhenyu; Yuan, Weiping
2016-04-12
The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.
Chen, Yun; Tsai, Ya-Hui; Tseng, Bor-Jiun; Pan, Hsin-Yen; Tseng, Sheng-Hong
2016-11-01
Mammalian target of rapamycin (mTOR) inhibitors exert significant antitumor effects on several cancer cell types. In this study, we investigated the effects of mTOR inhibitors, in particular the regulation of the microRNA, in neuroblastoma cells. AZD8055 (a new mTOR inhibitor)- or rapamycin-induced cytotoxic effects on neuroblastoma cells were studied. Western blotting was used to investigate the expression of various proteins in the mTOR pathway. MicroRNA precursors and antagomirs were transfected into cells to manipulate the expression of target microRNA. AZD8055 exerted stronger cytotoxic effects than rapamycin in neuroblastoma cells (p<0.03). In addition, AZD8055 suppressed the mTOR pathway and increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the neuroblastoma cells. AZD8055 significantly decreased miR-19b expression (p<0.005); in contrast, rapamycin increased miR-19b expression (p<0.05). Transfection of miR-19b antagomir into the neuroblastoma cells mimicked the effects of AZD8055 treatment, whereas miR-19b overexpression reversed the effects of AZD8055. Combination of miR-19b knockdown and rapamycin treatment significantly improved the sensitivity of neuroblastoma cells to rapamycin (p<0.02). Suppression of miR-19b may enhance the cytotoxic effects of mTOR inhibitors in neuroblastoma cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Cross regulation between mTOR signaling and O-GlcNAcylation.
Very, Ninon; Steenackers, Agata; Dubuquoy, Caroline; Vermuse, Jeanne; Dubuquoy, Laurent; Lefebvre, Tony; El Yazidi-Belkoura, Ikram
2018-06-01
The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.
[Autism, epilepsy and tuberous sclerosis complex: a functional model linked to mTOR pathway].
García-Peñas, Juan José; Carreras-Sááez, Inmaculada
2013-02-22
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. Brain disorders are the origin of more frequent and severe problems and include infantile spasms, intractable epilepsy, brain tumors, cognitive disabilities, and autism. TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. AIM. To review the etiopathogenic mechanisms and the natural course of the association of autism and epilepsy in TSC. Both the clinical and the neuroimaging findings of TSC, including early onset epilepsy and the localization of cortical tubers in the temporal lobes, and the molecular understanding of the mTOR signaling pathway, not only involved in cell growth, but also in synaptogenesis, synaptic plasticity and neuronal functioning, have suggested a multimodal origin of autism in these patients. A greater understanding of the pathogenetic mechanisms underlying autism in TSC could help in devising targeted and potentially more effective treatment strategies. Antagonism of the mTOR pathway with rapamycin and everolimus may provide new therapeutic options for these TSC patients.
Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng
2014-12-01
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
Liu, Ling-Ling; Long, Zi-Jie; Wang, Le-Xun; Zheng, Fei-Meng; Fang, Zhi-Gang; Yan, Min; Xu, Dong-Fan; Chen, Jia-Jie; Wang, Shao-Wu; Lin, Dong-Jun; Liu, Quentin
2013-11-01
Aurora kinases are overexpressed in large numbers of tumors and considered as potential therapeutic targets. In this study, we found that the Aurora kinases inhibitors MK-0457 (MK) and ZM447439 (ZM) induced polyploidization in acute myeloid leukemia (AML) cell lines. The level of glycolytic metabolism was significantly increased in the polyploidy cells, which were sensitive to glycolysis inhibitor 2-deoxy-D-glucose (2DG), suggesting that polyploidy cells might be eliminated by metabolism deprivation. Indeed, inhibition of mTOR pathway by mTOR inhibitors (rapamycin and PP242) or 2DG promoted not only apoptosis but also autophagy in the polyploidy cells induced by Aurora inhibitors. Mechanically, PP242 or2DGdecreased the level of glucose uptake and lactate production in polyploidy cells as well as the expression of p62/SQSTM1. Moreover, knockdown of p62/SQSTM1 sensitized cells to the Aurora inhibitor whereas overexpression of p62/SQSTM1 reduced drug efficacy. Thus, our results revealed that inhibition of mTOR pathway decreased the glycolytic metabolism of the polyploidy cells, and increased the efficacy of Aurora kinases inhibitors, providing a novel approach of combination treatment in AML. ©2013 AACR.
Guimaraes, Danielle A; Dos Passos, Madla A; Rizzi, Elen; Pinheiro, Lucas C; Amaral, Jefferson H; Gerlach, Raquel F; Castro, Michele M; Tanus-Santos, Jose E
2018-05-20
Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling. Copyright © 2018 Elsevier Inc. All rights reserved.
Yeh, Lee-Chuan C; Ma, Xiuye; Ford, Jeffery J; Adamo, Martin L; Lee, John C
2013-08-01
Bone morphogenetic proteins (BMPs) promote osteoblast differentiation and bone formation in vitro and in vivo. BMPs canonically signal through Smad transcription factors, but BMPs may activate signaling pathways traditionally stimulated by growth factor tyrosine kinase receptors. Of these, the mTOR pathway has received considerable attention because BMPs activate P70S6K, a downstream effector of mTOR, suggesting that BMP-induced osteogenesis is mediated by mTOR activation. However, contradictory effects of the mTOR inhibitor rapamycin (RAPA) on bone formation have been reported. Since bone formation is thought to be inversely related to lipid accumulation and mTOR is also important for lipid synthesis, we postulated that BMP-7 may stimulate lipogenic enzyme expression in a RAPA-sensitive mechanism. To test this hypothesis, we determined the effects of RAPA on BMP-7-stimulated expression of osteogenic and lipogenic markers in cultured fetal rat calvarial cells. Our study showed that BMP-7 promoted the expression of osteogenic and lipogenic markers. The effect of BMP-7 on osteogenic markers was greater in magnitude than on lipogenic markers and was temporally more sustained. RAPA inhibited basal and BMP-7-stimulated osteogenic and lipogenic marker expression and bone nodule mineralization. The acetyl CoA carboxylase inhibitor TOFA stimulated the expression of osteoblast differentiation markers, whereas palmitate suppressed their expression. We speculate that the BMP-7-stimulated adipogenesis is part of the normal anabolic response to BMPs, but that inappropriate activation of the lipid biosynthetic pathway by mTOR could have deleterious effects on bone formation and could explain paradoxical effects of RAPA to promote bone formation. Copyright © 2013 Wiley Periodicals, Inc.
Liu, Yingpeng; Kelamangalath, Lakshmi; Kim, Hyukmin; Han, Seung Baek; Tang, Xiaoqing; Zhai, Jinbin; Hong, Jee W; Lin, Shen; Son, Young-Jin; Smith, George M.
2016-01-01
Although previous studies have identified several strategies to stimulate regeneration of CNS axons, extensive regeneration and functional recovery have remained a major challenge, particularly for large diameter myelinated axons. Within the CNS, myelin is thought to inhibit axon regeneration, while modulating activity of the mTOR pathway promotes regeneration of injured axons. In this study, we examined NT-3 mediated regeneration of sensory axons through the dorsal root entry zone in a triple knockout of myelin inhibitory proteins or after activation of mTOR using a constitutively active (ca) Rheb in DRG neurons to determine the influence of environmental inhibitory or activation of intrinsic growth pathways could enhance NT-3-mediate regeneration. Loss of myelin inhibitory proteins showed modest enhancement of sensory axon regeneration. In mTOR studies, we found a dramatic age related decrease in the mTOR activation as determined by phosphorylation of the downstream marker S6 ribosomal subunit. Expression of caRheb within adult DRG neurons in vitro increased S6 phosphorylation and doubled the overall length of neurite outgrowth, which was reversed in the presence of rapamycin. In adult female rats, combined expression of caRheb in DRG neurons and NT-3 within the spinal cord increased regeneration of sensory axons almost 3 fold when compared to NT-3 alone. Proprioceptive assessment using a grid runway indicates functionally significant regeneration of large-diameter myelinated sensory afferents. Our results indicate that caRheb-induced increase in mTOR activation enhances neurotrophin-3 induced regeneration of large-diameter myelinated axons. PMID:27264357
Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro
2010-06-01
Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.
Sahan-Firat, Seyhan; Temiz-Resitoglu, Meryem; Guden, Demet Sinem; Kucukkavruk, Sefika Pinar; Tunctan, Bahar; Sari, Ayse Nihal; Kocak, Zumrut; Malik, Kafait U
2018-02-01
Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.
Multiscale systems pharmacological analysis of everolimus action in hepatocellular carcinoma.
Ande, Anusha; Chaar, Maher; Ait-Oudhia, Sihem
2018-05-03
Dysregulation of mTOR pathway is common in hepatocellular carcinoma (HCC). A translational quantitative systems pharmacology (QSP), pharmacokinetic (PK), and pharmacodynamic (PD) model dissecting the circuitry of this pathway was developed to predict HCC patients' response to everolimus, an mTOR inhibitor. The time course of key signaling proteins in the mTOR pathway, HCC cells viability, tumor volume (TV) and everolimus plasma and tumor concentrations in xenograft mice, clinical PK of everolimus and progression free survival (PFS) in placebo and everolimus-treated patients were extracted from literature. A comprehensive and multiscale QSP/PK/PD model was developed, qualified, and translated to clinical settings. Model fittings and simulations were performed using Monolix software. The S6-kinase protein was identified as critical in the mTOR signaling pathway for describing everolimus lack of efficacy in HCC patients. The net growth rate constant (kg) of HCC cells was estimated at 0.02 h -1 (2.88%RSE). The partition coefficient of everolimus into the tumor (kp) was determined at 0.06 (12.98%RSE). The kg in patients was calculated from the doubling time of TV in naturally progressing HCC patients, and was determined at 0.004 day -1 . Model-predicted and observed PFS were in good agreement for placebo and everolimus-treated patients. In conclusion, a multiscale QSP/PK/PD model elucidating everolimus lack of efficacy in HCC patients was successfully developed and predicted PFS reasonably well compared to observed clinical findings. This model may provide insights into clinical response to everolimus-based therapy and serve as a valuable tool for the clinical translation of efficacy for novel mTOR inhibitors.
Goodson, William H; Luciani, Maria Gloria; Sayeed, S Aejaz; Jaffee, Ian M; Moore, Dan H; Dairkee, Shanaz H
2011-11-01
Breast cancer is an estrogen-driven disease. Consequently, hormone replacement therapy correlates with disease incidence. However, increasing male breast cancer rates over the past three decades implicate additional sources of estrogenic exposure including wide spread estrogen-mimicking chemicals or xenoestrogens (XEs), such as bisphenol-A (BPA). By exposing renewable, human, high-risk donor breast epithelial cells (HRBECs) to BPA at concentrations that are detectable in human blood, placenta and milk, we previously identified gene expression profile changes associated with activation of mammalian target of rapamycin (mTOR) pathway genesets likely to trigger prosurvival changes in human breast cells. We now provide functional validation of mTOR activation using pairwise comparisons of 16 independent HRBEC samples with and without BPA exposure. We demonstrate induction of key genes and proteins in the PI3K-mTOR pathway--AKT1, RPS6 and 4EBP1 and a concurrent reduction in the tumor suppressor, phosphatase and tensin homolog gene protein. Altered regulation of mTOR pathway proteins in BPA-treated HRBECs led to marked resistance to rapamycin, the defining mTOR inhibitor. Moreover, HRBECs pretreated with BPA, or the XE, methylparaben (MP), surmounted antiestrogenic effects of tamoxifen showing dose-dependent apoptosis evasion and induction of cell cycling. Overall, XEs, when tested in benign breast cells from multiple human subjects, consistently initiated specific functional changes of the kind that are attributed to malignant onset in breast tissue. Our observations demonstrate the feasibility of studying renewable human samples as surrogates and reinforce the concern that BPA and MP, at low concentrations detected in humans, can have adverse health consequences.
BRAF gene alterations and enhanced mammalian target of rapamycin signaling in gangliogliomas.
Kakkar, Aanchal; Majumdar, Atreye; Pathak, Pankaj; Kumar, Anupam; Kumari, Kalpana; Tripathi, Manjari; Sharma, Mehar C; Suri, Vaishali; Tandon, Vivek; Chandra, Sarat P; Sarkar, Chitra
2017-01-01
Gangliogliomas (GGs) are slow-growing glioneuronal tumors seen in children and young adults. They are associated with intractable epilepsy, and have recently been found to harbor BRAF (B- rapidly accelerated fibrosarcoma) gene mutations. However, the mammalian target of rapamycin (mTOR) signaling pathway, downstream of BRAF, has not been evaluated extensively in GGs. GG cases were retrieved, clinical data obtained, and histopathological features reviewed. Sequencing for BRAF V600E mutation, analysis of BRAF copy number by quantitative real-time polymerase chain reaction, and immunohistochemistry for mTOR pathway markers p-S6 and p-4EBP1 were performed. Sixty-four cases of GG were identified (0.9% of central nervous system tumors). Of these, 28 had sufficient tumor tissue for further evaluation. Mixed glial and neuronal morphology was the commonest (64%) type. Focal cortical dysplasia was identified in the adjacent cortex (6 cases). BRAF V600E mutation was identified in 30% of GGs; BRAF copy number gain was observed in 50% of them. p-S6 and p-4EBP1 immunopositivity was seen in 57% cases each. Thus, mTOR pathway activation was seen in 81% cases, and was independent of BRAF alterations. 87% patients had Engel grade I outcome, while 13% had Engel grade II outcome. Both the Engel grade II cases analyzed showed BRAF V600E mutation. BRAF V600E mutation is frequent in GGs, as is BRAF gain; the former may serve as a target for personalized therapy in patients with residual tumors, necessitating its assessment in routine pathology reporting of these tumors. Evidence of mTOR pathway activation highlights similarities in the pathogenetic mechanisms underlying GG and focal cortical dysplasia, and suggests that mTOR inhibitors may be of utility in GG patients with persistent seizures after surgery.
IGFBP-1 hyperphosphorylation in response to leucine deprivation is mediated by the AAR pathway
Malkani, Niyati; Jansson, Thomas; Gupta, Madhulika B.
2017-01-01
Insulin-like growth factor-1 (IGF-I) is the key regulator of fetal growth. IGF-I bioavailability is markedly diminished by IGF binding protein-1 (IGFBP-1) phosphorylation. Leucine deprivation strongly induces IGFBP-1hyperphosphorylation, and plays an important role in fetal growth restriction (FGR). FGR is characterized by decreased amino acid availability, which activates the amino acid response (AAR) and inhibits the mechanistic target of rapamycin (mTOR) pathway. We investigated the role of AAR and mTOR in mediating IGFBP-1 secretion and phosphorylation in HepG2 cells in leucine deprivation. mTOR inhibition (rapamycin or raptor+rictor siRNA), or activation (DEPTOR siRNA) demonstrated a role of mTOR in leucine deprivation-induced IGFBP-1 secretion but not phosphorylation. When the AAR was blocked (U0126, or ERK/GCN2 siRNA), both IGFBP-1 secretion and phosphorylation (Ser101/Ser119/Ser169) due to leucine deprivation were prevented. CK2 inhibition by TBB also attenuated IGFBP-1 phosphorylation in leucine deprivation. These results suggest that the AAR and mTOR independently regulate IGFBP-1 secretion and phosphorylation in leucine deprivation. PMID:25957086
Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A; González-Martínez, Francisco; López-Novoa, José M; Grinyó, Josep; Noboa, Oscar
2012-01-01
The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin.
Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar
2012-01-01
Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849
SMN regulates axonal local translation via miR-183/mTOR pathway
Kye, Min Jeong; Niederst, Emily D.; Wertz, Mary H.; Gonçalves, Inês do Carmo G.; Akten, Bikem; Dover, Katarzyna Z.; Peters, Miriam; Riessland, Markus; Neveu, Pierre; Wirth, Brunhilde; Kosik, Kenneth S.; Sardi, S. Pablo; Monani, Umrao R.; Passini, Marco A.; Sahin, Mustafa
2014-01-01
Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3′ UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology. PMID:25055867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogi, Makio, E-mail: makio@dpc.aichi-gakuin.ac.jp; Kondo, Ayami
Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG proteinmore » in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.« less
Cheng, Ting-Yuan David; Shankar, Jyoti; Zirpoli, Gary; Roberts, Michelle R.; Hong, Chi-Chen; Bandera, Elisa V.; Ambrosone, Christine B.; Yao, Song
2016-01-01
Purpose Positive energy imbalance and growth factors linked to obesity promote the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway. As the obesity-breast cancer associations differ between European-American (EA) and African-American (AA) women, we investigated genetic variants in the mTOR pathway and breast cancer risk in these two racial groups. Methods We examined 400 single nucleotide polymorphisms (SNPs) in 31 mTOR pathway genes in the Women’s Circle of Health Study with 1263 incident breast cancers (645 EA, 618 AA) and 1382 controls (641 EA, 741 AA). Multivariable logistic regression was performed separately within racial groups. Effect modification was assessed for measured body size and weight gain since age 20. Results In EA women, variants in FRAP1 rs12125777 (intron), PRR5L rs3740958 (synonymous-coding), and CDKAL1 rs9368197 (intron) were associated with increased breast cancer risk, while variants in RPTOR rs9900506 (intron) were associated with decreased risk (nominal P-trend for functional and FRAP1 SNPs or P adjusted for correlated test [PACT] <0.05). For AA women, variants in RPTOR rs3817293 (intron), PIK3R1 rs7713645 (intron), and CDKAL1 rs9368197 were associated with decreased breast cancer risk. The significance for FRAP1 rs12125777 and RPTOR rs9900506 in EA women did not hold after correction for multiple comparisons. The risk associated with FRAP1 rs12125777 was higher among EAs who had body mass index ≥30 kg/m2 (odds ratio=7.69, 95% CI=2.11–28.0; P-interaction=0.007) and gained weight ≥35 lb. since age 20 (odds ratio=3.34, 95% CI=1.42–7.85; P-interaction=0.021), compared to their counterparts. Conclusions The mTOR pathway may be involved in breast cancer carcinogenesis differently for EA and AA women. PMID:27314662
Sugiyama, Masakazu; Yoshizumi, Tomoharu; Yoshida, Yoshihiro; Bekki, Yuki; Matsumoto, Yoshihiro; Yoshiya, Shohei; Toshima, Takeo; Ikegami, Toru; Itoh, Shinji; Harimoto, Norifumi; Okano, Shinji; Soejima, Yuji; Shirabe, Ken; Maehara, Yoshihiko
2017-08-01
Autophagy is a homeostatic process regulating turnover of impaired proteins and organelles, and p62 (sequestosome-1, SQSTM1) functions as the autophagic receptor in this process. p62 also functions as a hub for intracellular signaling such as that in the mammalian target of rapamycin (mTOR) pathway. Liver stem/progenitor cells have the potential to differentiate to form hepatocytes or cholangiocytes. In this study, we examined effects of autophagy, p62, and associated signaling on hepatic differentiation. Adult stem/progenitor cells were isolated from the liver of mice with chemically induced liver injury. Effects of autophagy, p62, and related signaling pathways on hepatic differentiation were investigated by silencing the genes for autophagy protein 5 (ATG5) and/or SQSTM1/p62 using small interfering RNAs. Hepatic differentiation was assessed based on increased albumin and hepatocyte nuclear factor 4α, as hepatocyte markers, and decreased cytokeratin 19 and SOX9, as stem/progenitor cell markers. These markers were measured using quantitative RT-PCR, immunofluorescence, and Western blotting. ATG5 silencing decreased active LC3 and increased p62, indicating inhibition of autophagy. Inhibition of autophagy promoted hepatic differentiation in the stem/progenitor cells. Conversely, SQSTM1/p62 silencing impaired hepatic differentiation. A suggested mechanism for p62-dependent hepatic differentiation in our study was activation of the mTOR pathway by amino acids. Amino acid activation of mTOR signaling was enhanced by ATG5 silencing and suppressed by SQSTM1/p62 silencing. Our findings indicated that promoting amino acid sensitivity of the mTOR pathway is dependent on p62 accumulated by inhibition of autophagy and that this process plays an important role in the hepatic differentiation of stem/progenitor cells. J. Cell. Physiol. 232: 2112-2124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W
2015-09-01
We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. © 2015 International Society for Neurochemistry.
Guo, Long; Liang, Ziqi; Zheng, Chen; Liu, Baolong; Yin, Qingyan; Cao, Yangchun; Yao, Junhu
2018-05-23
Dietary nutrient utilization, particularly starch, is potentially limited by digestion in dairy cow small intestine because of shortage of α-amylase. Leucine acts as an effective signal molecular in the mTOR signaling pathway, which regulates a series of biological processes, especially protein synthesis. It has been reported that leucine could affect α-amylase synthesis and secretion in ruminant pancreas, but mechanisms have not been elaborated. In this study, pancreatic acinar (PA) cells were used as a model to determine the cellular signal of leucine influence on α-amylase synthesis. PA cells were isolated from newborn Holstein dairy bull calves and cultured in Dulbecco's modifed Eagle's medium/nutrient mixture F12 liquid media containing four leucine treatments (0, 0.23, 0.45, and 0.90 mM, respectively), following α-amylase activity, zymogen granule, and signal pathway factor expression detection. Rapamycin, a specific inhibitor of mTOR, was also applied to PA cells. Results showed that leucine increased ( p < 0.05) synthesis of α-amylase as well as phosphorylation of PI3K, Akt, mTOR, and S6K1 while reduced ( p < 0.05) GCN2 expression. Inhibition of mTOR signaling downregulated the α-amylase synthesis. In addition, the extracellular leucine dosage significantly influenced intracellular metabolism of isoleucine ( p < 0.05). Overall, leucine regulates α-amylase synthesis through promoting the PI3K/Akt-mTOR pathway and reducing the GCN2 pathway in PA cells of dairy calves. These pathways form the signaling network that controls the protein synthesis and metabolism. It would be of great interest in future studies to explore the function of leucine in ruminant nutrition.
Schwarz, Jennifer Jasmin; Wiese, Heike; Tölle, Regine Charlotte; Zarei, Mostafa; Dengjel, Jörn; Warscheid, Bettina; Thedieck, Kathrin
2015-01-01
The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation. PMID:25907765
Zhao, Jie; Dong, Jian-Ning; Wang, Hong-Gang; Zhao, Mingli; Sun, Jing; Zhu, Wei-Ming; Zuo, Lu-Gen; Gong, Jian-Feng; Li, Yi; Gu, Li-Li; Li, Ning; Li, Jie-Shou
2017-07-01
In the battle against Crohn's disease, autophagy stimulation is a promising therapeutic option-one both new and newly rediscovered. In experimental models, docosahexaenoic acid (DHA)-a long-chain polyunsaturated fatty acid-has been demonstrated to be useful in the treatment of inflammatory bowel disease through inhibition of the nuclear factor-κB pathway. However, the impact of DHA on autophagy in the colon remains unclear. Mice were divided into 3 groups: wild type (placebo), the interleukin 10 knockout group (IL-10 -/- , placebo), and the DHA group (IL-10 -/- , DHA). DHA was administered to IL-10 -/- mice by gavage at a dosage of 35.5 mg/kg/d for 2 weeks. The severity of colitis, expression of proinflammatory cytokines, expression/distribution of LC3B, and mTOR signaling pathway were evaluated in the proximal colon tissues collected from all mice at the end of the experiment. DHA administration ameliorated experimental colitis in the IL-10 -/- mice, as demonstrated by decreased proinflammatory cytokines (TNF-α and IFN-γ), reduced infiltration of inflammatory cells, and lowered histologic scores of the proximal colon mucosa. Moreover, in the DHA-treated mice, enhanced autophagy was observed to be associated with (1) increased expression and restoration of the distribution integrity of LC3B in the colon and (2) inhibition of the mTOR signaling pathway. This study showed that DHA therapy could attenuate experimental chronic colitis in IL-10 -/- mice by triggering autophagy via inhibition of the mTOR pathway.
Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition
Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho
2016-01-01
Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888
Protein Kinase Cδ Suppresses Autophagy to Induce Kidney Cell Apoptosis in Cisplatin Nephrotoxicity
Pan, Jian; Xiang, Xudong; Liu, Yu; Dong, Guie; Livingston, Man J.; Chen, Jian-Kang; Yin, Xiao-Ming
2017-01-01
Nephrotoxicity is a major adverse effect in cisplatin chemotherapy, and renoprotective approaches are unavailable. Recent work unveiled a critical role of protein kinase Cδ (PKCδ) in cisplatin nephrotoxicity and further demonstrated that inhibition of PKCδ not only protects kidneys but enhances the chemotherapeutic effect of cisplatin in tumors; however, the underlying mechanisms remain elusive. Here, we show that cisplatin induced rapid activation of autophagy in cultured kidney tubular cells and in the kidneys of injected mice. Cisplatin also induced the phosphorylation of mammalian target of rapamycin (mTOR), p70S6 kinase downstream of mTOR, and serine/threonine-protein kinase ULK1, a component of the autophagy initiating complex. In vitro, pharmacologic inhibition of mTOR, directly or through inhibition of AKT, enhanced autophagy after cisplatin treatment. Notably, in both cells and kidneys, blockade of PKCδ suppressed the cisplatin-induced phosphorylation of AKT, mTOR, p70S6 kinase, and ULK1 resulting in upregulation of autophagy. Furthermore, constitutively active and inactive forms of PKCδ respectively enhanced and suppressed cisplatin-induced apoptosis in cultured cells. In mechanistic studies, we showed coimmunoprecipitation of PKCδ and AKT from lysates of cisplatin-treated cells and direct phosphorylation of AKT at serine-473 by PKCδ in vitro. Finally, administration of the PKCδ inhibitor rottlerin with cisplatin protected against cisplatin nephrotoxicity in wild-type mice, but not in renal autophagy–deficient mice. Together, these results reveal a pathway consisting of PKCδ, AKT, mTOR, and ULK1 that inhibits autophagy in cisplatin nephrotoxicity. PKCδ mediates cisplatin nephrotoxicity at least in part by suppressing autophagy, and accordingly, PKCδ inhibition protects kidneys by upregulating autophagy. PMID:27799485
Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases.
Perl, Andras
2016-03-01
Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.
Abnormal mTOR Activation in Autism.
Winden, Kellen D; Ebrahimi-Fakhari, Darius; Sahin, Mustafa
2018-01-25
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Hasskarl, Jens
2014-01-01
Everolimus (RAD001, Afinitor®) is an oral protein kinase inhibitor of the mammalian target of rapamycin (mTOR) serine/threonine kinase signal transduction pathway. The mTOR pathway regulates cell growth, proliferation, and survival and is frequently deregulated in cancer. Everolimus has been approved by the FDA and the EMA for the treatment of advanced renal cell carcinoma (RCC), subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis (TSC), pancreatic neuroendocrine tumors (PNET), in combination with exemestane in advanced hormone-receptor (HR)-positive, HER2-negative breast cancer. Everolimus shows promising clinical activity in additional indications. Multiple phase 2 and phase 3 trials of everolimus alone or in combination are ongoing and will help to further elucidate the role of mTOR in oncology. For a review on everolimus as immunosuppressant, please consult other sources.
Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus.
Vecsey, Christopher G; Peixoto, Lucia; Choi, Jennifer H K; Wimmer, Mathieu; Jaganath, Devan; Hernandez, Pepe J; Blackwell, Jennifer; Meda, Karuna; Park, Alan J; Hannenhalli, Sridhar; Abel, Ted
2012-10-17
Sleep deprivation is a common problem of considerable health and economic impact in today's society. Sleep loss is associated with deleterious effects on cognitive functions such as memory and has a high comorbidity with many neurodegenerative and neuropsychiatric disorders. Therefore, it is crucial to understand the molecular basis of the effect of sleep deprivation in the brain. In this study, we combined genome-wide and traditional molecular biological approaches to determine the cellular and molecular impacts of sleep deprivation in the mouse hippocampus, a brain area crucial for many forms of memory. Microarray analysis examining the effects of 5 h of sleep deprivation on gene expression in the mouse hippocampus found 533 genes with altered expression. Bioinformatic analysis revealed that a prominent effect of sleep deprivation was to downregulate translation, potentially mediated through components of the insulin signaling pathway such as the mammalian target of rapamycin (mTOR), a key regulator of protein synthesis. Consistent with this analysis, sleep deprivation reduced levels of total and phosphorylated mTOR, and levels returned to baseline after 2.5 h of recovery sleep. Our findings represent the first genome-wide analysis of the effects of sleep deprivation on the mouse hippocampus, and they suggest that the detrimental effects of sleep deprivation may be mediated by reductions in protein synthesis via downregulation of mTOR. Because protein synthesis and mTOR activation are required for long-term memory formation, our study improves our understanding of the molecular mechanisms underlying the memory impairments induced by sleep deprivation.
Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers
Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.
2009-01-01
Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125
Wang, Qian; Jia, Chunhong; Tan, Xiaohua; Wu, Fan; Zhong, Xinqi; Su, Zhiwen; Sun, Weiwen; Cui, Qiliang
2018-01-01
In this study, we evaluated the effects of different concentrations of docosahexanoic acid (DHA) supplement on preterm Sprague-Dawley rat pups, and in parallel, measured the phosphorylation activity of the mTOR pathway in the hippocampal CA1 area. Preterm Sprague-Dawley rat pups were randomly assigned to experimental groups which included; a sufficient DHA group (100 mg/kg/day); an enriched DHA group (300 mg/kg/day); an excess DHA group (800 mg/kg/day); and a deficient DHA group (normal saline gavage 0.1 ml/10 g). Body weight (g) was measured at days 1/7/14/21/28/42, respectively. Spatial learning and memory were also tested using the Morris water maze at week 6 (day 42). Finally, activation of the mTOR signaling pathway in hippocampal CA1 area were evaluated by western blotting. Postnatal sufficient/enriched docosahexanoic acid supplement ameliorated body weight restriction, spatial learning and memory restriction, and decreased phosphorylation of AKT, mTOR, P70S6K1, and 4EBP1 in hippocampal CA1 area. Furthermore, excess docosahexanoic acid supplement impeded weight gain and spatial learning and memory, perturbed serum unsaturated fatty acid, and downregulated phosphorylation of AKT, mTOR, P70S6K1, and 4EBP1 in hippocampal CA1 area. Postnatal sufficient/enriched DHA supplement ameliorated growth and spatial learning and memory impairment and upregulated the mTOR pathway in preterm pups, although excessive DHA supplement did not have any beneficial effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Peterson, Emily A; Boezio, Alessandro A; Andrews, Paul S; Boezio, Christiane M; Bush, Tammy L; Cheng, Alan C; Choquette, Deborah; Coats, James R; Colletti, Adria E; Copeland, Katrina W; DuPont, Michelle; Graceffa, Russell; Grubinska, Barbara; Kim, Joseph L; Lewis, Richard T; Liu, Jingzhou; Mullady, Erin L; Potashman, Michele H; Romero, Karina; Shaffer, Paul L; Stanton, Mary K; Stellwagen, John C; Teffera, Yohannes; Yi, Shuyan; Cai, Ti; La, Daniel S
2012-08-01
mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series. Copyright © 2012. Published by Elsevier Ltd.
mTOR, a Potential Target to Treat Autism Spectrum Disorder.
Sato, Atsushi
2016-01-01
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed.
mTOR, a Potential Target to Treat Autism Spectrum Disorder
Sato, Atsushi
2016-01-01
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed. PMID:27071790
Bajwa, Preety; Nagendra, Prathima B.; Nielsen, Sarah; Sahoo, Subhransu S.; Bielanowicz, Amanda; Lombard, Janine M.; Wilkinson, Erby J.; Miller, Richard A.; Tanwar, Pradeep S.
2016-01-01
Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer. PMID:27036037
Chen, Dongying; Yuan, Xiaohan; Liu, Lijie; Zhang, Minghui; Qu, Bo; Zhen, Zhen; Gao, Xuejun
2018-05-01
ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein, which is essential for cell growth and metabolism. The mechanism by which ATAD3A acts is still not fully understood. In this study, we explored the regulatory role of ATAD3A on milk biosynthesis and proliferation of bovine mammary epithelial cell. We showed that ATAD3A is localized in mitochondria and the expression of ATAD3A was up-regulated in response to extracellular stimuli such as amino acids and hormones. We observed that ATAD3A positively regulated milk protein, fat, and lactose biosynthesis, and cell proliferation. We further revealed that ATAD3A promoted the expressions of mTOR, SREBP-1c, and Cyclin D1, and triggers mTOR phosphorylation. In summary, our data reveal that ATAD3A regulates the mTOR, SREBP-1c, and Cyclin D1 signaling pathways for milk biosynthesis and cell proliferation. © 2018 International Federation for Cell Biology.
Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Suárez-Pozos, Edna; Melgarejo, Yaaziel; González-Mejia, Elba; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo
2009-09-01
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.
Ren, Yuan-Fei; Zhang, Tie-Hui; Zhong, Sheng; Zhao, Yan-Tao; Lv, Ya-Nan
2018-01-01
Studied as a type of tumor suppressor, microRNA (miR) performs an important role in growth and apoptosis of various human carcinomas. However, the effects of miR-l44 on osteosarcoma growth and apoptosis, as well as possible underlying mechanisms, remain unclear. The present study investigated the expression of miR-144 in osteosarcoma MG-63 and U-2 OS cell lines compared with osteoblast cells. In order to elucidate the effects of miR-144 on osteosarcoma, miR-144 was upregulated in MG-63 and U-2 OS cells by transfecting chemically synthesized miR-144 mimics. Bioinformatics analysis of potential miR-144 target genes was performed using TargetScanHuman 7.0 and confirmed by luciferase assay. This analysis identified mammalian target of rapamycin (mTOR) as a target of miR-144. The present results indicated that the overexpression of miR-144 may significantly inhibit proliferation and promote apoptosis of MG-63 and U-2 cells compared with scramble control. Furthermore, the effects of miR-144 on osteosarcoma were associated with the mTOR signaling pathway via directly targeting the 3' untranslated region of mTOR mRNA, resulting in a decrease in the level of mTOR protein. In summary, miR-144 was demonstrated to act as a tumor suppressor, which inhibits proliferation and promotes apoptosis of osteosarcoma cell lines. In addition, this effect was mediated by direct targeting on mTOR following inhibition of the mTOR signaling pathway. The present study suggested that miR-144 may be a candidate for the gene therapy of osteosarcoma.
2009-09-01
Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy -Bouxin N, Boni J , Kong S, Cincotta M, and Moore L. Phase II study of temsirolimus (CCI-779), a ...factor interaction results in a tissue factor cytoplasmic domain- independent activation of protein synthesis, p70, and p90 S6 kinase phosphorylation. J ...The mTOR Pathway in Breast Cancer. J Mammary Gland Biol Neoplasia 2006; 11: 53-61. 23. Guba M, Yezhelyev, Eichhorn ME, Schmid G, Ischenko, Papyan A
2010-03-01
Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy -Bouxin N, Boni J , Kong S, Cincotta M, and Moore L. Phase II study of temsirolimus (CCI-779), a novel...interaction results in a tissue factor cytoplasmic domain- independent activation of protein synthesis, p70, and p90 S6 kinase phosphorylation. J ...mTOR Pathway in Breast Cancer. J Mammary Gland Biol Neoplasia 2006; 11: 53-61. 23. Guba M, Yezhelyev, Eichhorn ME, Schmid G, Ischenko, Papyan A
PI3K/Akt/mTOR Intracellular Pathway and Breast Cancer: Factors, Mechanism and Regulation.
Sharma, Var Ruchi; Gupta, Girish Kumar; Sharma, A K; Batra, Navneet; Sharma, Daljit K; Joshi, Amit; Sharma, Anil K
2017-01-01
The most recurrent and considered second most frequent cause of cancer-related deaths worldwide in women is the breast cancer. The key to diagnosis is early prediction and a curable stage but still treatment remains a great clinical challenge. Origin of the Problem: A number of studies have been carried out for the treatment of breast cancer which includes the targeted therapies and increased survival rates in women. Essential PI3K/mTOR signaling pathway activation has been observed in most breast cancers. The cell growth and tumor development in such cases involve phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) complex intracellular pathway. Through preclinical and clinical trials, it has been observed that there are a number of other inhibitors of PI3K/Akt/mTOR pathway, which either alone or in combination with cytotoxic agents can be used for endocrine therapies. Structure and regulation/deregulation of mTOR provides a greater insight into the action mechanism. Also, through this review, one could easily scan first and second generation inhibitors for PI3K/Akt/mTOR pathway besides targeted therapies for breast cancer and the precise role of mTOR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats.
Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui
2015-01-01
Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats treated with 1.0 mg/kg rapamycin exhibited fewer and milder side effects than those treated with 3.0 mg/kg. In summary, all these data suggest that there is not a rapamycin dose that can inhibit mTOR for epilepsy without causing any side effects, but 1 mg/kg may be the optimal dose for young rats for suppressing mTOR with relatively few side effects.
Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats
Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui
2015-01-01
Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats treated with 1.0 mg/ kg rapamycin exhibited fewer and milder side effects than those treated with 3.0 mg/kg. In summary, all these data suggest that there is not a rapamycin dose that can inhibit mTOR for epilepsy without causing any side effects, but 1 mg /kg may be the optimal dose for young rats for suppressing mTOR with relatively few side effects. PMID:26248290
Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis
Mammana, Santa; Bramanti, Placido; Mazzon, Emanuela; Cavalli, Eugenio; Basile, Maria Sofia; Fagone, Paolo; Petralia, Maria Cristina; McCubrey, James Andrew; Nicoletti, Ferdinando; Mangano, Katia
2018-01-01
The PI3K/AKT/mTOR pathway is an intracellular signalling pathway that regulates cell activation. proliferation, metabolism and apoptosis. Increasing body of data suggests that alterations in the PI3K/AKT/mTOR pathway may result in an enhanced susceptibility to autoimmunity. Multiple Sclerosis (MS) is one of the most common chronic inflammatory diseases of the central nervous system leading to demyelination and neurodegeneration. In the current study, we have firstly evaluated in silico the involvement of the mTOR network on the generation and progression of MS and on oligodendrocyte function, making use of currently available whole-genome transcriptomic data. Then, the data generated in silico were subjected to an ex-vivo evaluation. To this aim, the involvement of mTOR was validated on a well-known animal model of MS and in vitro on Th17 cells. Our data indicate that there is a significant involvement of the mTOR network in the etiopathogenesis of MS and that Rapamycin treatment may represent a useful therapeutic approach in this clinical setting. On the other hand, our data showed that a significant involvement of the mTOR network could be observed only in the early phases of oligodendrocyte maturation, but not in the maturation process of adult oligodendrocytes and in the process of remyelination following demyelinating injury. Overall, our study suggests that targeting the PI3K/mTOR pathway, although it may not be a useful therapeutic approach to promote remyelination in MS patients, it can be exploited to exert immunomodulation, preventing/delaying relapses, and to treat MS patients in order to slow down the progression of disability. PMID:29492193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard
The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lowermore » phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.« less
Wang, Hao; Li, Jingdong; Han, Qiyang; Yang, Fei; Xiao, Yu; Xiao, Meng; Xu, Yingchun; Su, Longxiang; Cui, Na; Liu, Dawei
2017-01-01
Objective: To investigate whether mTOR signaling pathway regulate the proliferation and differentiation of CD8 + T cells by transcription factors T-bet and Eomes, and explore the role of IL-12 in this biological procedure. Methods: Aspergillus fumigatus spore suspension nasal inhalation was used to establish the invasive pulmonary aspergillosis (IPA) mouse model. After inoculation, rapamycin (2mg/kg) each day or IL-12 (5ug/kg) every other day was given for 7 days. The blood samples were obtained before the mice sacrificed and lung specimens were taken. Pathological sections were stained with hematoxylin and eosin (HE). The number of CD8 + effective memory T cells (Tem) and the expression of IFN-γ, mTOR, ribosomal protein S6 kinase (S6K), T-bet and EOMES were measured by flow cytometry. The levels of IL-6, IL-10 and Galactomannan (GM) were determined by ELISA. Results: After IL-12 treatment, the number of CD8 + Tem and the expression of IFN-γ increased significantly; while quite the opposite results were observed when the mTOR pathway was blocked by rapamycin. The expression of mTOR and S6K as well as the level of IFN-γ of the IL-12 treatment group were significantly higher than those in IPA and IPA + rapamycin groups. In addition, IL-12 promoted increasing T-bet and down regulating Eomes to make the Tem transformation. The final immune effector was high level of inflammatory cytokines (IL-6) and low level of anti-inflammatory factors (IL-10) and this strengthened immune response to the Aspergillus infection. Conclusions: The biological effects of Tem could significantly affect IPA infection host immune regulation, which depended on the activation of mTOR signaling pathway by IL-12.
Wang, Dan; Wan, Xuebin; Peng, Jian; Xiong, Qi; Niu, Hongdan; Li, Huanan; Chai, Jin; Jiang, Siwen
2017-04-01
Amino acid transporter plays an important role in regulating mTOR signaling pathway. This study investigated the effects of reduced dietary protein levels on amino acid transporters and mTOR signaling pathway. A total of 54 weaning pigs were randomly allocated into a 3 × 3 factorial design, followed by slaughtering the pigs separately after 10-, 25- and 45-day feeding, with 18 pigs from each feeding period divided into three subgroups for treatment with three different protein-level diets: 20% crude protein (CP) diet (normal recommended, high protein, HP), 17% CP diet (medium protein, MP) and 14% CP diet (low protein, LP). The results indicated that reduced dietary protein level decreased the weight of longissimus dorsi. Additionally, quantitative PCR chip analysis showed that mRNA expression of amino acid transporters SLC38A2, SLC1A7, SLC7A1, SLC7A5, SLC16A10 and SLC3A2 in the LP group were significantly (P < 0.05) higher than those in the MP or HP group, and the phosphorylation of mTOR and S6K1 decreased in the LP group after 25-day feeding. Furthermore, the vitro experimental results further confirmed that the mRNA levels for SLC7A1, SLC7A5, SLC3A2, SLC38A2 and SLC36A1 were increased and the phosphorylation of mTOR and S6K1 was decreased when the concentration of amino acids in C2C12 myoblasts was reduced. All these results indicated that the LP diet induced a high expression of amino acid transporters and the inhibition of the mTOR activity, which resulting in restriction on protein synthesis and longissimus dorsi growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Hassanpour, Mehdi; Rezabakhsh, Aysa; Rahbarghazi, Reza; Nourazarian, Alireza; Nouri, Mohammad; Avci, Çığır Biray; Ghaderi, Shahrooz; Alidadyani, Neda; Bagca, Bakiye Goker; Bagheri, Hesam Saghaei
2017-11-01
Diabetes mellitus type 2 predisposes patients to various microvascular complications. In the current experiment, the potent role of diabetes mellitus was investigated on the content of VEGFR-1, -2, Tie-1 and -2, and Akt in human endothelial progenitor cells. The gene expression profile of mTOR and Hedgehog signaling pathways were measured by PCR array. The possible crosstalk between RTKs, mTOR and Hedgehog signaling was also studied by bioinformatic analysis. Endothelial progenitor cells were incubated with serum from normal and diabetic for 7days. Compared to non-treated cells, diabetic serum-induced cell apoptosis (~2-fold) and prohibited cell migration toward bFGF (p<0.001). ELISA analysis showed that diabetes exposed cells had increased abundance of Tie-1, -2 and VEGFR-2 and reduced amount of VEGFR-1 (p<0.0001) in diabetic cells. Western blotting showed a marked reduction in the protein level of Akt after cells exposure to serum from diabetic subjects (p<0.0001). PCR array revealed a significant stimulation of both mTOR and Hedgehog signaling pathways in diabetic cells (p<0.05). According to data from bioinformatic datasets, we showed VEGFR-1, -2 and Tie-2, but not Tie-1, are master regulators of angiogenesis. There is a crosstalk between RTKs and mTOR signaling by involving P62, GABARAPL1, and HTT genes. It seems that physical interaction and co-expression of Akt decreased the level of VEGFR-1 in diabetic cells. Regarding data from the present experiment, diabetic serum contributed to uncontrolled induction of both mTOR and Hedgehog signaling in endothelial progenitor cells. Diabetes mellitus induces mTOR pathway by involving receptor tyrosine kinases while Hedgehog stimulation is independent of these receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Min; Zhou, Ankun; An, Tao; Kong, Lingmei; Yu, Chunlei; Liu, Jianmei; Xia, Chengfeng; Zhou, Hongyu; Li, Yan
2016-03-03
N-Hydroxyphthalimide (NHPI), an important chemical raw material, was found to have potent and selective anti-proliferative effect on human breast carcinoma BT-20 cells, human colon adenocarcinoma LoVo and HT-29 cells during our screening for anticancer compounds. The purpose of this study is to assess the antitumor efficacy of NHPI in vitro and in vivo and to explore the underlying antitumor mechanism. Cell cytotoxicity of NHPI was evaluated using MTS assay and cell morphological analysis. After NHPI treatment, cell cycle, apoptosis and mitochondrial membrane potential were analyzed using flow cytometer. The subcellular localization of eukaryotic initiation factor 4E (eIF4E) was analyzed by immunofluorescence assay. The antitumor efficacy of NHPI in vivo was tested in BT-20 xenografts. The underlying antitumor mechanisms of NHPI in vitro and in vivo were investigated with western blot analysis in NHPI-treated cancer cells and tumor tissues. Statistical significance was determined using Student's t-test. In vitro, NHPI selectively inhibited the proliferation and induced G2/M phase arrest in BT-20 and LoVo cells, which was attributed to the inhibition of cyclin B1 and cdc2 expressions. Furthermore, NHPI induced apoptosis via mitochondrial pathway. Of note, NHPI effectively inhibited mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2) signaling, and overcame the feedback activation of Akt and extracellular signal-regulated kinase (ERK) caused by mTORC1 inhibition in BT-20 and LoVo cells. In vivo, NHPI inhibited tumor growth and suppressed mTORC1 and mTORC2 signaling in BT-20 xenografts with no obvious toxicity. We found for the first time that NHPI displayed antitumor activity which is associated with the inhibition of mTOR signaling pathway. Our findings suggest that NHPI may be developed as a promising candidate for cancer therapeutics by targeting mTOR signaling pathway and as such warrants further exploration.
Adhami, Vaqar M.; Esnault, Stephane; Sechi, Mario; Siddiqui, Imtiaz A.; Satyshur, Kenneth A.; Syed, Deeba N.; Dodwad, Shah-Jahan M.; Chaves-Rodriquez, Maria-Ines; Longley, B. Jack; Wood, Gary S.
2017-01-01
Abstract Aim: The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. Results: A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2β/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49–69. PMID:27393705
Cheng, Ting-Yuan David; Shankar, Jyoti; Zirpoli, Gary; Roberts, Michelle R; Hong, Chi-Chen; Bandera, Elisa V; Ambrosone, Christine B; Yao, Song
2016-08-01
Positive energy imbalance and growth factors linked to obesity promote the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway. As the obesity-breast cancer associations differ between European American (EA) and African-American (AA) women, we investigated genetic variants in the mTOR pathway and breast cancer risk in these two racial groups. We examined 400 single-nucleotide polymorphisms (SNPs) in 31 mTOR pathway genes in the Women's Circle of Health Study with 1263 incident breast cancers (645 EA, 618 AA) and 1382 controls (641 EA, 741 AA). Multivariable logistic regression was performed separately within racial groups. Effect modification was assessed for measured body size and weight gain since age 20. In EA women, variants in FRAP1 rs12125777 (intron), PRR5L rs3740958 (synonymous coding), and CDKAL1 rs9368197 (intron) were associated with increased breast cancer risk, while variants in RPTOR rs9900506 (intron) were associated with decreased risk (nominal p-trend for functional and FRAP1 SNPs or p adjusted for correlated test [p ACT] < 0.05). For AA women, variants in RPTOR rs3817293 (intron), PIK3R1 rs7713645 (intron), and CDKAL1 rs9368197 were associated with decreased breast cancer risk. The significance for FRAP1 rs12125777 and RPTOR rs9900506 in EA women did not hold after correction for multiple comparisons. The risk associated with FRAP1 rs12125777 was higher among EAs who had body mass index ≥30 kg/m(2) (odds ratio = 7.69, 95 % CI 2.11-28.0; p-interaction = 0.007) and gained weight ≥35 lb since age 20 (odds ratio = 3.34, 95 % CI 1.42-7.85; p-interaction = 0.021), compared to their counterparts. The mTOR pathway may be involved in breast cancer carcinogenesis differently for EA and AA women.
Beck, J Thaddeus
2015-01-01
Despite advances in cytotoxic chemotherapy and targeted therapies, 5-year survival rates remain low for patients with advanced breast cancer at diagnosis. This highlights the limited effectiveness of current treatment options. An improved understanding of cellular functions associated with the development and progression of breast cancer has resulted in the creation of a number of novel targeted molecular therapies. However, more work is needed to improve outcomes, particularly in the first-line recurrent or metastatic hormone receptor–positive breast cancer setting. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) pathway is a major intracellular signaling pathway that is often upregulated in breast cancer, and overactivation of this pathway has been associated with primary or developed resistance to endocrine treatment. Clinical data from the Phase III Breast Cancer Trials of Oral Everolimus-2 (BOLERO-2) study of the mTOR inhibitor everolimus combined with exemestane in hormone receptor–positive advanced breast cancer were very promising, highlighting the potential role of mTOR inhibitors in combination with endocrine therapies as a first-line treatment option for these patients. It is hoped that the use of mTOR inhibitors combined with current standard-of-care endocrine therapies, such as aromatase inhibitors, in the first-line advanced breast cancer setting may result in greater antitumor effects and also delay or reverse treatment resistance. PMID:26675495
Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.
2012-01-01
Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866
Inhibition of Mycobacterial Infection by the Tumor Suppressor PTEN*
Huang, Guochang; Redelman-Sidi, Gil; Rosen, Neal; Glickman, Michael S.; Jiang, Xuejun
2012-01-01
The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells. PMID:22613768
Gupte, Ankita; Baker, Emma K.; Wan, Soo-San; Stewart, Elizabeth; Loh, Amos; Shelat, Anang A.; Gould, Cathryn M.; Chalk, Alistair M.; Taylor, Scott; Lackovic, Kurt; Karlström, Åsa; Mutsaers, Anthony J.; Desai, Jayesh; Madhamshettiwar, Piyush B.; Zannettino, Andrew CW.; Burns, Chris; Huang, David CS.; Dyer, Michael A.; Simpson, Kaylene J.; Walkley, Carl R.
2015-01-01
Purpose Osteosarcoma (OS) is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of OS, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based. The identification of new therapies and therapeutic targets are urgently needed to enable improved outcomes for OS patients. Experimental Design We have used genetically engineered murine models of human OS in a systematic, genome wide screen to identify new candidate therapeutic targets. We performed a genome wide siRNA screen, with or without doxorubicin. In parallel a screen of therapeutically relevant small molecules was conducted on primary murine and primary human OS derived cell cultures. All results were validated across independent cell cultures and across human and mouse OS. Results The results from the genetic and chemical screens significantly overlapped, with a profound enrichment of pathways regulated by PI3K and mTOR pathways. Drugs that concurrently target both PI3K and mTOR were effective at inducing apoptosis in primary OS cell cultures in vitro in both human and mouse OS, while specific PI3K or mTOR inhibitors were not effective. The results were confirmed with siRNA and small molecule approaches. Rationale combinations of specific PI3K and mTOR inhibitors could recapitulate the effect on OS cell cultures. Conclusions The approaches described here have identified dual inhibition of the PI3K/mTOR pathway as a sensitive, druggable target in OS and provide rationale for translational studies with these agents. PMID:25862761
Backman, Samuel; Norlén, Olov; Eriksson, Barbro; Skogseid, Britt; Stålberg, Peter; Crona, Joakim
2017-02-01
Mutations affecting the mechanistic target of rapamycin (MTOR) signalling pathway are frequent in human cancer and have been identified in up to 15% of pancreatic neuroendocrine tumours (NETs). Grade A evidence supports the efficacy of MTOR inhibition with everolimus in pancreatic NETs. Although a significant proportion of patients experience disease stabilization, only a minority will show objective tumour responses. It has been proposed that genomic mutations resulting in activation of MTOR signalling could be used to predict sensitivity to everolimus. Patients with NETs that underwent treatment with everolimus at our Institution were identified and those with available tumour tissue were selected for further analysis. Targeted next-generation sequencing (NGS) was used to re-sequence 22 genes that were selected on the basis of documented involvement in the MTOR signalling pathway or in the tumourigenesis of gastroenterpancreatic NETs. Radiological responses were documented using Response Evaluation Criteria in Solid Tumours. Six patients were identified, one had a partial response and four had stable disease. Sequencing of tumour tissue resulted in a median sequence depth of 667.1 (range=404-1301) with 1-fold coverage of 95.9-96.5% and 10-fold coverage of 87.6-92.2%. A total of 494 genetic variants were discovered, four of which were identified as pathogenic. All pathogenic variants were validated using Sanger sequencing and were found exclusively in menin 1 (MEN1) and death domain associated protein (DAXX) genes. No mutations in the MTOR pathway-related genes were observed. Targeted NGS is a feasible method with high diagnostic yield for genetic characterization of pancreatic NETs. A potential association between mutations in NETs and response to everolimus should be investigated by future studies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Li, Weidong; Hua, Baojin; Saud, Shakir M.; Lin, Hongsheng; Hou, Wei; Matter, Matthias S.; Jia, Libin; Colburn, Nancy H.; Young, Matthew R.
2015-01-01
Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P=0.009), a 48% reduction in tumors <2 mm, (P=0.05); 94% reduction in tumors 2-4 mm, (P=0.001) and 100% reduction in tumors >4 mm (P=0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB. PMID:24838344
Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect.
Giovannini, Luca; Bianchi, Sara
2017-02-01
The aim of this study was to evaluate the effect of different natural substances on SIRT1 expression and on AMPK and mTOR phosphorylation. Moreover, we investigated the presence of a synergistic effect between the substances. Human cervical carcinoma cells were seeded in 12-well plates, then incubated with the nine tested substances (resveratrol, quercetin, berberine, catechin, tyrosol, ferulic acid, niclosamide, curcumin, and malvidin) at different concentrations and left in incubation for 3, 6, and 24 h. The targeting proteins' expression and phosphorylation were evaluated by immunoblotting, and cytotoxicity tests were performed by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (P > 0.05) in the number of viable cells was found. The expression of SIRT1 was significantly increased in all experimental groups compared with the control group (P < 0.001). Instead, the simultaneous administration involved a significant and synergistic increase in the expression of SIRT1 for some but not all of the tested compounds. Finally, the individual administration of berberine, quercetin, ferulic acid, and tyrosol resulted in a statistically significant increase in AMPK activation and mTOR inhibition, whereas their associated administration did not reveal a synergistic effect. Our results provide evidence that all compounds have the potential to stimulate SIRT1 and sustain the stimulating action of resveratrol on SIRT1, already widely reported in the literature. In this regard, we confirm the interaction of these substances also with the pathway of AMPK and mTOR, in support of the studies that highlight the importance of SIRT1/AMPK and mTOR pathway in many diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural insights of a PI3K/mTOR dual inhibitor with the morpholino-triazine scaffold
NASA Astrophysics Data System (ADS)
Takeda, Takako; Wang, Yanli; Bryant, Stephen H.
2016-04-01
Stimulation of the PI3K/Akt/mTOR pathway, which controls cell proliferation and growth, is often observed in cancer cell. Inhibiting both PI3K and mTOR in this pathway can switch off Akt activation and hence, plays a powerful role for modulating this pathway. PKI-587, a drug containing the structure of morpholino-triazines, shows a dual and nano-molar inhibition activity and is currently in clinical trial. To provide an insight into the mechanism of this dual inhibition, pharmacophore and QSAR models were developed in this work using compounds based on the morpholino-triazines scaffold, followed by a docking study. Pharmacophore model suggested the mechanism of the inhibition of PI3Kα and mTOR by the compounds were mostly the same, which was supported by the docking study showing similar docking modes. The analysis also suggested the importance of the flat plane shape of the ligands, the space surrounding the ligands in the binding pocket, and the slight difference in the shape of the binding sites between PI3Kα and mTOR.
Lin, Chen-Ju; Robert, Francis; Sukarieh, Rami; Michnick, Stephen; Pelletier, Jerry
2010-04-15
Sertraline, a selective serotonin reuptake inhibitor, is a widely used antidepressant agent. Here, we show that sertraline also exhibits antiproliferative activity. Exposure to sertraline leads to a concentration-dependent decrease in protein synthesis. Moreover, polysome profile analysis of sertraline-treated cells shows a reduction in polysome content and a concomitant increase in 80S ribosomes. The inhibition in translation caused by sertraline is associated with decreased levels of the eukaryotic initiation factor (eIF) 4F complex, altered localization of eIF4E, and increased eIF2alpha phosphorylation. The latter event leads to increased REDD1 expression, which in turn impinges on the mammalian target of rapamycin (mTOR) pathway by affecting TSC1/2 signaling. Sertraline also independently targets the mTOR signaling pathway downstream of Rheb. In the Emu-myc murine lymphoma model where carcinogenesis is driven by phosphatase and tensin homologue (PTEN) inactivation, sertraline is able to enhance chemosensitivity to doxorubicin. Our results indicate that sertraline exerts antiproliferative activity by targeting the mTOR signaling pathway in a REDD1-dependent manner. (c) 2010 AACR.
Wu, Jing; Zhou, Shan-Lei; Pi, Lin-Hua; Shi, Xia-Jie; Ma, Ling-Ran; Chen, Zi; Qu, Min-Li; Li, Xin; Nie, Sheng-Dan; Liao, Duan-Fang; Pei, Jin-Jing; Wang, Shan
2017-01-01
The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction. PMID:28489581
The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.
Yoon, Mee-Sup
2017-10-27
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.
Hasan, Md Nabiul; Queudeville, Manon; Trentin, Luca; Eckhoff, Sarah Mirjam; Bronzini, Ilaria; Palmi, Chiara; Barth, Thomas; Cazzaniga, Giovanni; te Kronnie, Geertruy; Debatin, Klaus-Michael; Meyer, Lüder Hinrich
2015-01-30
Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.
Wang, Yong; Liu, Juan; Zhou, Jie-Sen; Huang, Hua-Qiong; Li, Zhou-Yang; Xu, Xu-Chen; Lai, Tian-Wen; Hu, Yue; Zhou, Hong-Bin; Chen, Hai-Pin; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua
2018-04-15
Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD. Copyright © 2018 by The American Association of Immunologists, Inc.
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.
Adhami, Vaqar Mustafa; Syed, Deeba; Khan, Naghma; Mukhtar, Hasan
2013-01-01
Epidemiologic and case control population based studies over the past few decades have identified diet as an important determinant of cancer risk. This evidence has kindled an interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds has been fisetin (3,7,3’,4’-tetrahydroxyflavone), a flavonol and a member of the flavonoid polyphenols that also include quercetin, myricetin and kaempferol. Fisetin is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. We evaluated the effects of fisetin against melanoma and cancers of the prostate, pancreas and the lungs. Using prostate and lung adenocarcinoma cells, we observed that fisetin acts as a dual inhibitor of the PI3K/Akt and the mTOR pathways. This is a significant finding considering the fact that mTOR is phosphorylated and its activation is more frequent in tumors with overexpression of PI3K/Akt. Dual inhibitors of PI3K/Akt and mTOR signaling have been suggested as valuable agents for treating such cancers. Here, we summarize our findings on the dietary flavonoid fisetin and its effects on cancer with particular focus on prostate cancer. Our observations and findings from other laboratories suggest that fisetin could be a useful chemotherapeutic agent that could be used either alone or as an adjuvant with conventional chemotherapeutic drugs for the management of prostate and other cancers. PMID:22842629
The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.
Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M
2017-06-01
Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.
Hwang, Su-Kyeong; Lee, Jae-Hyung; Yang, Jung-Eun; Lim, Chae-Seok; Lee, Jin-A; Lee, Yong-Seok; Lee, Kyungmin; Kaang, Bong-Kiun
2016-05-23
Tuberous sclerosis complex (TSC) is a neurocutaneous disorder characterized by multiple symptoms including neuropsychological deficits such as seizures, intellectual disability, and autism. TSC is inherited in an autosomal dominant pattern and is caused by mutations in either the TSC1 or TSC2 genes, which enhance activation of the mammalian target of rapamycin (mTOR) signaling pathway. Recent studies have suggested that mTOR inhibitors such as rapamycin can reverse TSC-associated deficits in rodent models of TSC. In addition, clinical trials are ongoing to test the efficacy of mTOR inhibitors toward the psychiatric symptoms associated with TSC. Here, we report a case study of a Korean patient with TSC, who exhibited multiple symptoms including frequent seizures, intellectual disability, language delays, and social problems. We performed whole exome sequencing and identified a novel small deletion mutation in TSC2. Expressing the novel deletion mutant in HEK293T cells significantly increased mTOR pathway activation. Furthermore, everolimus treatment showed not only reduction in SEGA size, but dramatically improved behavioral deficits including autism related behaviors in the patient. In summary, we identified a novel small deletion mutation in TSC2 associated with severe TSC in a Korean family that enhances the activation of mTOR signaling in vitro. Everolimus treatment improved behavioral deficits in the patient.
Huang, Xiaoxing; McMahon, John; Yang, Jun; Shin, Damian; Huang, Yunfei
2012-01-01
Summary Seizure susceptibility to neurological insults, including chemical convulsants, is age-dependent and most likely reflective of overall differences in brain excitability. The molecular and cellular mechanisms underlying development-dependent seizure susceptibility remain to be fully understood. Because the mTOR pathway regulates neurite outgrowth, synaptic plasticity and cell survival, thereby influencing brain development, we tested if exposure of the immature brain to the mTOR inhibitor rapamycin changes seizure susceptibility to neurological insults. We found that inhibition of mTOR by rapamycin in immature rats (3 to 4 weeks old) increases the severity of seizures induced by pilocarpine, including lengthening the total seizure duration and reducing the latency to the onset of seizures. Rapamycin also reduces the minimal dose of pentylenetetrazol (PTZ) necessary to induce clonic seizures. However, in mature rats, rapamycin does not significantly change the seizure sensitivity to pilocarpine and PTZ. Likewise, kainate sensitivity was not significantly affected by rapamycin treatment in either mature or immature rats. Additionally, rapamycin treatment down-regulates the expression of potassium-chloride cotransporter 2 (KCC2) in the thalamus and to a lesser degree in the hippocampus. Pharmacological inhibition of thalamic mTOR or KCC2 increases susceptibility to pilocarpine-induced seizure in immature rats. Thus, our study suggests a role for the mTOR pathway in age-dependent seizure susceptibility. PMID:22613737
Berdichevsky, Yevgeny; Dryer, Alexandra M.; Saponjian, Yero; Mahoney, Mark M.; Pimentel, Corrin A.; Lucini, Corrina A.; Usenovic, Marija; Staley, Kevin J.
2013-01-01
mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an antiepileptogenic, or merely anti-convulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long term (four weeks) inhibition of signaling pathways that interact with mTOR. Ictal activity was quantified by measurement of lactate production and electrical recordings, and cell death was quantified with LDH release measurements and Nissl-stained neuron counts. Lactate and LDH measurements were well-correlated with electrographic activity and neuron counts, respectively. Inhibition of PI3K and Akt prevented activation of mTOR, and was as effective as inhibition of mTOR in reducing ictal activity and cell death. A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was also effective. Inhibition of mTOR with rapamycin reduced axon sprouting. Late start of rapamycin treatment was effective in reducing epileptic activity and cell death, while early termination of rapamycin treatment did not result in increased epileptic activity or cell death. The conclusions of the study are: (1), the organotypic hippocampal culture model of posttraumatic epilepsy comprises a rapid assay of antiepileptogenic and neuroprotective activities and, in this model (2), mTOR activation depends on PI3K-Akt signaling, and (3) transient inhibition of mTOR has sustained effects on epilepsy. PMID:23699517
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G
2017-06-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
NASA Astrophysics Data System (ADS)
Tian, Caiping; Ma, Yi; Li, Siwen; Gu, Yueqing
2014-09-01
Mammalian target of rapamycin (mTOR) as a key protein in PI3K-AKT-mTOR signaling pathway ,plays an important role in the tumor growth. The small interfering RNA (siRNA) of mTOR would decrease the expression of mTOR protein. In this study, we screened the mTOR siRNA sequence using MATLAB software and ascertained it based on BLAST. Then we imported it with the aid of Lipofectamine2000 into MCF-7 cancer cells where mTOR is over expression .And then we used a special hairpin deoxyribonucleic acid (DNA) for combining with the human mTOR mRNA to functionalize gold nanoparticles, which served as a molecule beacon for detecting human mTOR mRNA transcription. Laser scanning confocal microscope and Flow Cytometry data showed that the quenching efficiency was up to 90%,which are consistent with the RT-PCR measurement and Western. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection. The strategy reported in this study is a promising approach for the intracellular measurement of the result of siRNA or protein expression in living cells, and has great potential in the study of drug screening and discovery.
A comprehensive map of the mTOR signaling network
Caron, Etienne; Ghosh, Samik; Matsuoka, Yukiko; Ashton-Beaucage, Dariel; Therrien, Marc; Lemieux, Sébastien; Perreault, Claude; Roux, Philippe P; Kitano, Hiroaki
2010-01-01
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer. PMID:21179025
Modulation of mTOR signaling as a strategy for the treatment of Pompe disease.
Lim, Jeong-A; Li, Lishu; Shirihai, Orian S; Trudeau, Kyle M; Puertollano, Rosa; Raben, Nina
2017-03-01
Mechanistic target of rapamycin (mTOR) coordinates biosynthetic and catabolic processes in response to multiple extracellular and intracellular signals including growth factors and nutrients. This serine/threonine kinase has long been known as a critical regulator of muscle mass. The recent finding that the decision regarding its activation/inactivation takes place at the lysosome undeniably brings mTOR into the field of lysosomal storage diseases. In this study, we have examined the involvement of the mTOR pathway in the pathophysiology of a severe muscle wasting condition, Pompe disease, caused by excessive accumulation of lysosomal glycogen. Here, we report the dysregulation of mTOR signaling in the diseased muscle cells, and we focus on potential sites for therapeutic intervention. Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup. Of particular interest, we found that the aberrant mTOR signaling can be reversed by arginine. This finding can be translated into the clinic and may become a paradigm for targeted therapy in lysosomal, metabolic, and neuromuscular diseases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Mayer, Christopher M; Belsham, Denise D
2010-01-01
Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.
ERIC Educational Resources Information Center
Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.
2013-01-01
The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi
Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosomemore » protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.« less
Machado, Camila Oliveira Freitas; Griesi-Oliveira, Karina; Rosenberg, Carla; Kok, Fernando; Martins, Stephanie; Passos-Bueno, Maria Rita; Sertie, Andrea Laurato
2016-01-01
Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB.
Ou, Xiang; Liu, Meilian; Luo, Hairong; Dong, Lily Q.; Liu, Feng
2014-01-01
Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function. PMID:24740400
Machado, Camila Oliveira Freitas; Griesi-Oliveira, Karina; Rosenberg, Carla; Kok, Fernando; Martins, Stephanie; Rita Passos-Bueno, Maria; Sertie, Andrea Laurato
2016-01-01
Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB. PMID:25898924
mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.
Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang
2014-01-07
A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.
mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy
Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang
2014-01-01
A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102
Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping
2016-09-01
Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. Copyright © 2016 Elsevier B.V. All rights reserved.
Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats
Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko
2015-01-01
Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex’s action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles. PMID:26086773
Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.
Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko
2015-01-01
Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.
mTOR signaling: at the crossroads of plasticity, memory and disease.
Hoeffer, Charles A; Klann, Eric
2010-02-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although the majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. (c) 2009 Elsevier Ltd. All rights reserved.
mTOR Signaling: At the Crossroads of Plasticity, Memory, and Disease
Hoeffer, Charles A.; Klann, Eric
2009-01-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically-modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. PMID:19963289
Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani
2002-06-21
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.
Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex.
de Vries, Petrus J
2010-07-01
Until recently, the neuropsychiatric phenotype of tuberous sclerosis complex (TSC) was presumed to be caused by the structural brain abnormalities and/or seizures seen in the disorder. However, advances in the molecular biology of the disorder have shown that TSC is a mammalian target of rapamycin (mTOR) overactivation syndrome, and that direct molecular pathways exist between gene mutation and cognitive/neurodevelopmental phenotype. Molecularly-targeted treatments using mTOR inhibitors (such as rapamycin) are showing great promise for the physical and neurological phenotype of TSC. Pre-clinical and early-phase clinical studies of the cognitive and neurodevelopmental features of TSC suggest that some of the neuropsychiatric phenotypes might also be reversible, even in adults with the disorder. TSC, fragile X, neurofibromatosis type 1, and disorders associated with phosphatase and tensin homo (PTEN) mutations, all signal through the mTOR signaling pathway, with the TSC1-TSC2 protein complex as a molecular switchboard at its center. Together, these disorders represent as much as 14% of autism spectrum disorders (ASD). Therefore, we suggest that this signaling pathway is a key to the underlying pathophysiology of a significant subset of individuals with ASD. The study of molecularly targeted treatments in TSC and related disorders, therefore, may be of scientific and clinical value not only to those with TSC, but to a larger population that may have a neuropsychiatric phenotype attributable to mTOR overactivation or dysregulation. (c) 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.
Park, In-Hyun; Chen, Jie
2005-09-09
Skeletal myogenesis is a well orchestrated cascade of events regulated by multiple signaling pathways, one of which is recently characterized by its sensitivity to the bacterial macrolide rapamycin. Previously we reported that the mammalian target of rapamycin (mTOR) regulates the initiation of the differentiation program in mouse C2C12 myoblasts by controlling the expression of insulin-like growth factor-II in a kinase-independent manner. Here we provide experimental evidence suggesting that a different mode of mTOR signaling regulates skeletal myogenesis at a later stage. In the absence of endogenous mTOR function in C2C12 cells treated with rapamycin, a kinase-inactive mTOR fully supports myogenin expression, but causes a delay in contractile protein expression. Myoblasts fuse to form nascent myotubes in the absence of kinase-active mTOR, whereas the formation of mature myotubes by further fusion requires the catalytic activity of mTOR. Therefore, the two stages of myocyte fusion are molecularly separable at the level of mTOR signaling. In addition, our data suggest that a factor secreted into the culture medium is responsible for mediating the function of mTOR in regulating the late-stage fusion leading to mature myotubes. Furthermore, taking advantage of the unique features of cells stably expressing a mutant mTOR, we have performed cDNA microarray analysis to compare global gene expression profiles between mature and nascent myotubes, the results of which have implicated classes of genes and revealed candidate regulators in myotube maturation or functions of mature myotubes.
Berdichevsky, Yevgeny; Dryer, Alexandra M; Saponjian, Yero; Mahoney, Mark M; Pimentel, Corrin A; Lucini, Corrina A; Usenovic, Marija; Staley, Kevin J
2013-05-22
mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an anti-epileptogenic, or merely anticonvulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long-term (four weeks) inhibition of signaling pathways that interact with mTOR. Ictal activity was quantified by measurement of lactate production and electrical recordings, and cell death was quantified with lactate dehydrogenase (LDH) release measurements and Nissl-stained neuron counts. Lactate and LDH measurements were well correlated with electrographic activity and neuron counts, respectively. Inhibition of PI3K and Akt prevented activation of mTOR, and was as effective as inhibition of mTOR in reducing ictal activity and cell death. A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was also effective. Inhibition of mTOR with rapamycin reduced axon sprouting. Late start of rapamycin treatment was effective in reducing epileptic activity and cell death, while early termination of rapamycin treatment did not result in increased epileptic activity or cell death. The conclusions of the study are as follows: (1) the organotypic hippocampal culture model of post-traumatic epilepsy comprises a rapid assay of anti-epileptogenic and neuroprotective activities and, in this model (2) mTOR activation depends on PI3K-Akt signaling, and (3) transient inhibition of mTOR has sustained effects on epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, In-Hyun; Erbay, Ebru; Nuzzi, Paul
The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added atmore » a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.« less
MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages.
Li, Zhouyang; Wu, Yinfang; Chen, Hai-Pin; Zhu, Chen; Dong, Lingling; Wang, Yong; Liu, Huiwen; Xu, Xuchen; Zhou, Jiesen; Wu, Yanping; Li, Wen; Ying, Songmin; Shen, Huahao; Chen, Zhi-Hua
2018-04-15
Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders. Copyright © 2018 by The American Association of Immunologists, Inc.
Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie
2016-01-01
The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995
Yang, Ming-Tao; Lin, Yi-Chin; Ho, Whae-Hong; Liu, Chao-Lin; Lee, Wang-Tso
2017-01-21
Microglia is responsible for neuroinflammation, which may aggravate brain injury in diseases like epilepsy. Mammalian target of rapamycin (mTOR) kinase is related to microglial activation with subsequent neuroinflammation. In the present study, rapamycin and everolimus, both as mTOR inhibitors, were investigated in models of kainic acid (KA)-induced seizure and lipopolysaccharide (LPS)-induced neuroinflammation. In vitro, we treated BV2 cells with KA and LPS. In vivo, KA was used to induce seizures on postnatal day 25 in B6.129P-Cx3cr1 tm1Litt /J mice. Rapamycin and everolimus were evaluated in their modulation of neuroinflammation detected by real-time PCR, Western blotting, and immunostaining. Everolimus was significantly more effective than rapamycin in inhibiting iNOS and mTOR signaling pathways in both models of neuroinflammation (LPS) and seizure (KA). Everolimus significantly attenuated the mRNA expression of iNOS by LPS and nitrite production by KA and LPS than that by rapamycin. Only everolimus attenuated the mRNA expression of mTOR by LPS and KA treatment. In the present study, we also found that the modulation of mTOR under LPS and KA treatment was not mediated by Akt pathway but was primarily mediated by ERK phosphorylation, which was more significantly attenuated by everolimus. This inhibition of ERK phosphorylation and microglial activation in the hippocampus by everolimus was also confirmed in KA-treated mice. Rapamycin and everolimus can block the activation of inflammation-related molecules and attenuated the microglial activation. Everolimus had better efficacy than rapamycin, possibly mediated by the inhibition of ERK phosphorylation. Taken together, mTOR inhibitor can be a potential pharmacological target of anti-inflammation and seizure treatment.
Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Danielski, Lucineia G; Petronilho, Fabricia; Carvalho, André F; Quevedo, João
2017-09-01
Studies indicated that mammalian target of rapamycin (mTOR), oxidative stress, and inflammation are involved in the pathophysiology of major depressive disorder (MDD). Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been identified as a novel MDD therapy; however, the antidepressant mechanism is not fully understood. In addition, the effects of ketamine after mTOR inhibition have not been fully investigated. In the present study, we examined the behavioral and biochemical effects of ketamine in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens after inhibition of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol) or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). Immobility was assessed in forced swimming tests, and then oxidative stress parameters and inflammatory markers were evaluated in the brain and periphery. mTOR activation in the PFC was essential to ketamine's antidepressant-like effects. Ketamine increased lipid damage in the PFC, hippocampus, and amygdala. Protein carbonyl was elevated in the PFC, amygdala, and NAc after ketamine administration. Ketamine also increased nitrite/nitrate in the PFC, hippocampus, amygdala, and NAc. Myeloperoxidase activity increased in the hippocampus and NAc after ketamine administration. The activities of superoxide dismutase and catalase were reduced after ketamine administration in all brain areas studied. Inhibition of mTOR signaling pathways by rapamycin in the PFC was required to protect against oxidative stress by reducing damage and increasing antioxidant enzymes. Finally, the TNF-α level was increased in serum by ketamine; however, the rapamycin plus treatment group was not able to block this increase. Activation of mTOR in the PFC is involved in the antidepressant-like effects of ketamine; however, the inhibition of this pathway was able to protect certain brain areas against oxidative stress, without affecting inflammation parameters.
Yang, Chun; Ren, Qian; Qu, Youge; Zhang, Ji-Chun; Ma, Min; Dong, Chao; Hashimoto, Kenji
2018-01-01
The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Roberti, Sabrina L; Higa, Romina; White, Verónica; Powell, Theresa L; Jansson, Thomas; Jawerbaum, Alicia
2018-06-01
What are the consequences of inhibiting mTOR, the mechanistic target of rapamycin (mTOR), and the peroxisome proliferator activated receptor gamma (PPARγ) and PPARδ pathways in the early post-implantation period on decidual function, embryo viability and feto-placental growth in the rat? mTOR inhibition from Days 7 to 9 of pregnancy in rats caused decidual PPARγ and PPARδ upregulation on Day 9 of pregnancy and resulted in embryo resorption by Day 14 of pregnancy. PPARγ and PPARδ inhibition differentially affected decidual mTOR signaling and levels of target proteins relevant to lipid histotrophic nutrition and led to reduced feto-placental weights on Day 14 of pregnancy. Although mTOR, PPARγ and PPARδ are nutrient sensors important during implantation, the role of these signaling pathways in decidual function and how they interact in the early post-implantation period are unknown. Perilipin 2 (PLIN2) and fatty acid binding protein 4 (FABP4), two adipogenic proteins involved in lipid histotrophic nutrition, are targets of mTOR and PPAR signaling pathways in a variety of tissues. Rapamycin (mTOR inhibitor, 0.75 mg/kg, sc), T0070907 (PPARγ inhibitor, 0.001 mg/kg, sc), GSK0660 (PPARδ inhibitor, 0.1 mg/kg, sc) or vehicle was injected daily to pregnant rats from Days 7 to 9 of pregnancy and the studies were performed on Day 9 of pregnancy (n = 7 per group) or Day 14 of pregnancy (n = 7 per group). On Day 9 of pregnancy, rat decidua were collected and prepared for western blot and immunohistochemical studies. On Day 14 of pregnancy, the resorption rate, number of viable fetuses, crown-rump length and placental and decidual weights were determined. Inhibition of mTOR in the early post-implantation period led to a reduction in FABP4 protein levels, an increase in PLIN2 levels and an upregulation of PPARγ and PPARδ in 9-day-pregnant rat decidua. Most embryos were viable on Day 9 of pregnancy but had resorbed by Day 14 of pregnancy. This denotes a key function of mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced feto-placental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. Not applicable. This is an in vivo animal study and the relevance of the results for humans remains to be established. The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICET-NIH-2017) to A.J. and T.J. The authors have no conflicts of interest.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T.; Oliveira, Pedro F.; Sousa, M ario; Cheng, C. Yan; Alves, Marco G.
2017-01-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermato-genesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system. PMID:28124577
Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin
2016-05-01
Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
mTOR Inhibition: From Aging to Autism and Beyond.
Kaeberlein, Matt
2013-01-01
The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their environment and making a decision between "grow or do not grow." mTOR is a major component of the network that makes this decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously linked to aging or age-related disease.
Lyabin, D N; Ovchinnikov, L P
2016-03-02
The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.
Andrade-Vieira, Rafaela; Goguen, Donna; Bentley, Heidi A.; Bowen, Chris V.; Marignani, Paola A.
2014-01-01
Cancer therapies that simultaneously target activated mammalian target of rapamycin (mTOR) and cell metabolism are urgently needed. The goal of our study was to identify therapies that effectively inhibited both mTOR activity and cancer cell metabolism in primary tumors in vivo. Using our mouse model of spontaneous breast cancer promoted by loss of LKB1 expression in an ErbB2 activated model; referred to as LKB1−/−NIC mice, we evaluated the effect of novel therapies in vivo on primary tumors. Treatment of LKB1−/−NIC mice with AZD8055 and 2-DG mono-therapies significantly reduced mammary gland tumorigenesis by inhibiting mTOR pathways and glycolytic metabolism; however simultaneous inhibition of these pathways with AZD8055/2-DG combination was significantly more effective at reducing tumor volume and burden. At the molecular level, combination treatment inhibited mTORC1/mTORC2 activity, selectively inhibited mitochondria function and blocked MAPK pro-survival signaling responsible for the ERK-p90RSK feedback loop. Our findings suggest that loss of LKB1 expression be considered a marker for metabolic dysfunction given its role in regulating AMPK and mTOR function. Finally, the outcome of our pre-clinical study confirms therapies that simultaneously target mTORC1/mTORC2 and glycolytic metabolism in cancer produce the best therapeutic outcome for the treatment of patients harboring metabolically active HER2 positive breast cancers. PMID:25436981
PI3K pathway dependencies in endometrioid endometrial cancer cell lines
Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian
2013-01-01
Purpose Endometrioid endometrial cancers (EECs) frequently harbor coexisting mutations in PI3K pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Experimental Design Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and MAPK signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, MEK and RAF inhibitors. RNA interference (RNAi) was employed to assess effects of KRAS silencing in EEC cells. Results EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor Temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2/6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66, a decrease in cell viability was observed. Conclusions Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA-mutant and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. PMID:23674493
PI3K pathway dependencies in endometrioid endometrial cancer cell lines.
Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian
2013-07-01
Endometrioid endometrial cancers (EEC) frequently harbor coexisting mutations in phosphoinositide 3-kinase (PI3K) pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and mitogen-activated protein kinase (MAPK) signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α, and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and RAF inhibitors. RNA interference (RNAi) was used to assess effects of KRAS silencing in EEC cells. EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2 of 6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66 was a decrease in cell viability observed. Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA- and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. ©2013 AACR.
Zhang, Hong; Xu, Hua-Li; Wang, Yu-Chen; Lu, Ze-Yuan; Yu, Xiao-Feng; Sui, Da-Yun
2018-04-02
20(S)-Protopanaxadiol (PPD) is one of the major active metabolites of ginseng. It has been reported that 20(S)-PPD shows a broad spectrum of antitumor effects. Our research study aims were to investigate whether apoptosis of human breast cancer MCF-7 cells could be induced by 20(S)-PPD by targeting the Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway in vitro and in vivo. Cell cycle analysis was performed by Propidium Iodide (PI) staining. To overexpress and knock down the expression of mTOR, pcDNA3.1-mTOR and mTOR small interfering RNA (siRNA) transient transfection assays were used, respectively. Cell viability and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-test and Annexin V /PI double-staining after transfection. The antitumor effect in vivo was determined by the nude mice xenograft assay. After 24 h of incubation, treatment with 20(S)-PPD could upregulate phosphorylated-Phosphatase and tensin homologue deleted on chromosome 10 (p-PTEN) expression and downregulate PI3K/AKT/mTOR-pathway protein expression. Moreover, G0/G1 cell cycle arrest in MCF-7 cells could be induced by 20(S)-PPD treatment at high concentrations. Furthermore, overexpression or knockdown of mTOR could inhibit or promote the apoptotic effects of 20(S)-PPD. In addition, tumor volumes were partially reduced by 20(S)-PPD at 100 mg/kg in a MCF-7 xenograft model. Immunohistochemical staining indicated a close relationship between the inhibition of tumor growth and the PI3K/AKT/mTOR signal pathway. PI3K/AKT/mTOR pathway-mediated apoptosis may be one of the potential mechanisms of 20(S)-PPD treatment.
Stimulation of mTORC1 with L-leucine Rescues Defects Associated with Roberts Syndrome
Xu, Baoshan; Lee, Kenneth K.; Zhang, Lily; Gerton, Jennifer L.
2013-01-01
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential. PMID:24098154
Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.
Xu, Baoshan; Lee, Kenneth K; Zhang, Lily; Gerton, Jennifer L
2013-01-01
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.
Marin, Talita M.; Keith, Kimberly; Davies, Benjamin; Conner, David A.; Guha, Prajna; Kalaitzidis, Demetrios; Wu, Xue; Lauriol, Jessica; Wang, Bo; Bauer, Michael; Bronson, Roderick; Franchini, Kleber G.; Neel, Benjamin G.; Kontaridis, Maria I.
2011-01-01
LEOPARD syndrome (LS) is an autosomal dominant “RASopathy” that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11Y279C/+ (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients. PMID:21339643
Rapamycin has paradoxical effects on S6 phosphorylation in rats with and without seizures.
Chen, Linglin; Hu, Lin; Dong, Jing-Yin; Ye, Qing; Hua, Nan; Wong, Michael; Zeng, Ling-Hui
2012-11-01
Accumulating data have demonstrated that seizures induced by kainate (KA) or pilocarpine activate the mammalian target of rapamycin (mTOR) pathway and that mTOR inhibitor rapamycin can inhibit mTOR activation, which subsequently has potential antiepileptic effects. However, a preliminary study showed a paradoxical exacerbation of increased mTOR pathway activity reflected by S6 phosphorylation when rapamycin was administrated within a short period before KA injection. In the present study, we examined this paradoxical effect of rapamycin in more detail, both in normal rats and KA-injected animals. Normal rats or KA-treated rats pretreated with rapamycin at different time intervals were sacrificed at various time points (1, 3, 6, 10, 15, and 24 h) after rapamycin administration or seizure onset for western blotting analysis. Phosphorylation of mTOR signaling target of Akt, mTOR, Rictor, Raptor, S6K, and S6 were analyzed. Seizure activity was monitored behaviorally and graded according to a modified Racine scale (n = 6 for each time point). Neuronal cell death was detected by Fluoro-Jade B staining. In normal rats, we found that rapamycin showed the expected dose-dependent inhibition of S6 phosphorylation 3-24 h after injection, whereas a paradoxical elevation of S6 phosphorylation was observed 1 h after rapamycin. Similarly, pretreatment with rapamycin over 10 h before KA inhibited the KA seizure-induced mTOR activation. In contrast, rapamycin administered 1-6 h before KA caused a paradoxical increase in the KA seizure-induced mTOR activation. Rats pretreated with rapamycin 1 h prior to KA exhibited an increase in severity and duration of seizures and more neuronal cell death as compared to vehicle-treated groups. In contrast, rapamycin pretreated 10 h prior to KA had no effect on the seizures and decreased neuronal cell death. The paradoxical effect of rapamycin on S6 phosphorylation was correlated with upstream mTOR signaling and was reversed by pretreatment of perifosine, an Akt inhibitor. These data indicate the complexity of S6 regulation and its effect on epilepsy. Paradoxical effects of rapamycin need to be considered in clinical applications, such as for potential treatment for epilepsy and other neurologic disorders. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Rapamycin has Paradoxical Effects on S6 Phosphorylation in Rats With and Without Seizures
Chen, Linglin; Hu, Lin; Dong, Jing-Yin; Ye, Qing; Hua, Nan; Wong, Michael; Zeng, Ling-Hui
2012-01-01
Summary Purpose Accumulating data have demonstrated that seizures induced by kainate (KA) or pilocarpine activate the mammalian target of rapamycin (mTOR) pathway and mTOR inhibitor rapamycin can inhibit mTOR activation which subsequently has potential anti-epileptic effects. However, a preliminary study showed a paradoxical exacerbation of increased mTOR pathway activity reflected by S6 phosphorylation when rapamycin was administrated within a short period before KA injection. In the present study, we examined this paradoxical effect of rapamycin in more detail, both in normal rats and KA-injected animals. Methods Normal Rats or KA-treated rats pretreated with rapamycin at different time interval were sacrificed at various time points (1h, 3h, 6h, 10h, 15h and 24h) after rapamycin administration or seizure onset for Western blotting analysis. Phosphorylation of mTOR signaling target of Akt, mTOR, Rictor, Raptor, S6K and S6 were analyzed. Seizure activity was monitored behaviorally and graded according to a modified Racine scale (n=6 for each time point). Neuronal cell death was detected by Fluoro-Jade B staining. Key findings In normal rats, we found that rapamycin showed the expected dose-dependent inhibition of S6 phosphorylation 3–24 h after injection, while a paradoxical elevation of S6 phosphorylation was observed 1 hour after rapamycin. Similarly, pretreatment with rapamycin over 10 h prior to KA inhibited the KA seizure induced mTOR activation. In contrast, rapamycin administered 1 to 6 hours before KA caused a paradoxical increase in the KA seizure-induced mTOR activation. Rats pretreated with rapamycin 1 h prior to KA exhibited an increase in severity and duration of seizures and more neuronal cell death as compared to vehicle treated groups. In contrast, rapamycin pretreated 10 h prior to KA had no effect on the seizures and decreased neuronal cell death. The paradoxical effect of rapamycin on S6 phosphorylation was correlated with upstream mTOR signaling and was reversed by pre-treatment of perifosine, an Akt inhibitor. Significance These data indicate the complexity of S6 regulation and its effect on epilepsy. Paradoxical effects of rapamycin need to be considered in clinical applications, such as for potential treatment for epilepsy and other neurological disorders. PMID:23145776
PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track?
Gasparri, Maria Luisa; Bardhi, Erlisa; Ruscito, Ilary; Papadia, Andrea; Farooqi, Ammad Ahmad; Marchetti, Claudia; Bogani, Giorgio; Ceccacci, Irene; Mueller, Michael D.; Benedetti Panici, Pierluigi
2017-01-01
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents. PMID:29093603
PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track?
Gasparri, Maria Luisa; Bardhi, Erlisa; Ruscito, Ilary; Papadia, Andrea; Farooqi, Ammad Ahmad; Marchetti, Claudia; Bogani, Giorgio; Ceccacci, Irene; Mueller, Michael D; Benedetti Panici, Pierluigi
2017-10-01
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
[Therapeutic update in tuberous sclerosis complex: the role of mTOR pathway inhibitors].
Ruiz-Falcó Rojas, M Luz
2012-05-21
Tuberous sclerosis complex is an autosomal dominant disease, with variable expressivity and multisystemic involvement, which is characterised by the growth of benign tumours called hamartomas. The organs that are most commonly affected are the brain, skin, kidneys, eyes, heart and lungs. Of all the children with this disease, 85% present neurological manifestations that, due to their severity, are the main cause of morbidity and mortality. The most significant neurological manifestations are epilepsy, autism spectrum disorders and mental retardation. It has been shown that in tuberous sclerosis complex the genes TSC1 and TSC2 alter the mTOR enzyme cascade, which sets off inhibition of this pathway. The possibility of resorting to treatments applied at the origin, thus inhibiting this pathway, is currently being evaluated.
mTOR Regulates Cellular Iron Homeostasis through Tristetraprolin
Bayeva, Marina; Khechaduri, Arineh; Puig, Sergi; Chang, Hsiang-Chun; Patial, Sonika; Blackshear, Perry J.; Ardehali, Hossein
2013-01-01
SUMMARY Iron is an essential cofactor with unique redox properties. Iron regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux. Mechanistic studies identify tristetraprolin (TTP), a protein involved in anti-inflammatory response, as the downstream target of mTOR that binds to and enhances degradation of TfR1 mRNA. We also show that TTP is strongly induced by iron chelation, promotes downregulation of iron-requiring genes in both mammalian and yeast cells, and modulates survival in low-iron states. Taken together, our data uncover a link between metabolic, inflammatory, and iron regulatory pathways, and point towards the existence of a yeast-like TTP-mediated iron conservation program in mammals. PMID:23102618
The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells.
Xiao, Hao; Zeng, Liming; Shao, Fangyuan; Huang, Bo; Wu, Miaomiao; Tan, Bie; Yin, Yulong
2017-05-02
L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.
mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
Patruno, Antonia; Pesce, Mirko; Grilli, Alfredo; Speranza, Lorenza; Franceschelli, Sara; De Lutiis, Maria Anna; Vianale, Giovina; Costantini, Erica; Amerio, Paolo; Muraro, Raffaella; Felaco, Mario; Reale, Marcella
2015-01-01
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing. PMID:26431550
The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.
Riquelme, Ismael; Tapia, Oscar; Espinoza, Jaime A; Leal, Pamela; Buchegger, Kurt; Sandoval, Alejandra; Bizama, Carolina; Araya, Juan Carlos; Peek, Richard M; Roa, Juan Carlos
2016-10-01
The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.
Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina
2014-09-01
Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differential control of ageing and lifespan by isoforms and splice variants across the mTOR network.
Razquin Navas, Patricia; Thedieck, Kathrin
2017-07-15
Ageing can be defined as the gradual deterioration of physiological functions, increasing the incidence of age-related disorders and the probability of death. Therefore, the term ageing not only reflects the lifespan of an organism but also refers to progressive functional impairment and disease. The nutrient-sensing kinase mTOR (mammalian target of rapamycin) is a major determinant of ageing. mTOR promotes cell growth and controls central metabolic pathways including protein biosynthesis, autophagy and glucose and lipid homoeostasis. The concept that mTOR has a crucial role in ageing is supported by numerous reports on the lifespan-prolonging effects of the mTOR inhibitor rapamycin in invertebrate and vertebrate model organisms. Dietary restriction increases lifespan and delays ageing phenotypes as well and mTOR has been assigned a major role in this process. This may suggest a causal relationship between the lifespan of an organism and its metabolic phenotype. More than 25 years after mTOR's discovery, a wealth of metabolic and ageing-related effects have been reported. In this review, we cover the current view on the contribution of the different elements of the mTOR signalling network to lifespan and age-related metabolic impairment. We specifically focus on distinct roles of isoforms and splice variants across the mTOR network. The comprehensive analysis of mouse knockout studies targeting these variants does not support a tight correlation between lifespan prolongation and improved metabolic phenotypes and questions the strict causal relationship between them. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T
2016-06-01
Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. © 2015 Wiley Periodicals, Inc.
Wang, Yu; Yi, Xiao-Dong; Li, Chun-De
2017-02-01
To investigate the role of mTOR signaling pathway in bone marrow mesenchymal stem cells (BMSCs) differentiation into osteoblast in degenerative scoliosis (DS). The rat model of DS was established. Thirty-two Sprague-Dawley (SD) rats were selected and divided into the normal control group, the positive control group (normal rats injected with rapamycin), the negative control group (DS rats injected with PBS) and the experiment group (DS rats injected with rapamycin). H&E staining was performed to observe the osteogenesis of scoliosis. The BMSCs were obtained and assigned into seven groups: the normal control group, the positive control group, the negative control group and 1.0/10.0/100.0/1000.0 nmol/L experiment groups. Flow cytometry was conducted to testify cell cycle. The mRNA and protein expressions of mTOR and osteoblastic differentiation markers were measured by qRT-PCR and western blotting. In vivo, compared with the negative control group, bone trabecular area and the number of differentiated bone cells were significantly increased in the experiment groups. In vitro, at 24 and 48 h after rapamycin treatment, compared with the negative control group, BMSCs at G0/G1 stage increased, but BMSCs at S stage decreased in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups; the expressions of mTOR and p70-S6K1 proteins were reduced in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups, while ALP activity, OC levels, calcium deposition, Co1-I protein expression and the mRNA expressions of OC and Co1-I were significantly increased. Suppression of mTOR signaling pathway by rapamycin could promote BMSCs differentiation into osteoblast in DS.
Chen, Sujuan; Ye, Yangjing; Guo, Min; Ren, Qian; Liu, Lei; Zhang, Hai; Xu, Chong; Zhou, Qian; Huang, Shile; Chen, Long
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dysregulation of mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of PD. However, the underlying mechanism is incompletely elucidated. Here, we show that PD mimetics (6-hydroxydopamine, N-methyl-4-phenylpyridine or rotenone) suppressed phosphorylation of mTOR, S6K1 and 4E-BP1, reduced cell viability, and activated caspase-3 and PARP in PC12 cells and primary neurons. Overexpression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 in PC12 cells partially prevented cell death in response to the PD toxins, revealing that mTOR-mediated S6K1 and 4E-BP1 pathways due to the PD toxins were inhibited, leading to neuronal cell death. Furthermore, we found that the inhibition of mTOR signaling contributing to neuronal cell death was attributed to suppression of Akt and activation of AMPK. This is supported by the findings that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPKα with compound C partially attenuated inhibition of phosphorylation of mTOR, S6K1 and 4E-BP1, activation of caspase-3, and neuronal cell death triggered by the PD toxins. The results indicate that PD stresses activate AMPK and inactivate Akt, causing neuronal cell death via inhibiting mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that proper co-manipulation of AMPK/Akt/mTOR signaling may be a potential strategy for prevention and treatment of PD. PMID:24726895
The Tuberin/mTOR Pathway Promotes Apoptosis of Tubular Epithelial Cells in Diabetes
Velagapudi, Chakradhar; Bhandari, Basant S.; Abboud-Werner, Sherry; Simone, Simona; Abboud, Hanna E.
2011-01-01
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1. PMID:21289215
Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer.
Guo, Hui; Zhong, Yan; Jackson, Amanda L; Clark, Leslie H; Kilgore, Josh; Zhang, Lu; Han, Jianjun; Sheng, Xiugui; Gilliam, Timothy P; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L
2016-04-12
Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers.
Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.
2014-01-01
Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241
Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong
2017-12-01
Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.
Targeting disease through novel pathways of apoptosis and autophagy.
Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui
2012-12-01
Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), β-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, β-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.
Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A
2008-10-01
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.
Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.
2008-01-01
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538
Mitani, Akihisa; Ito, Kazuhiro; Vuppusetty, Chaitanya; Barnes, Peter J; Mercado, Nicolas
2016-01-15
Corticosteroid resistance is a major barrier to the effective treatment of chronic obstructive pulmonary disease (COPD). Several molecular mechanisms have been proposed, such as activations of the phosphoinositide-3-kinase/Akt pathway and p38 mitogen-activated protein kinase. However, the mechanism for corticosteroid resistance is still not fully elucidated. To investigate the role of mammalian target of rapamycin (mTOR) in corticosteroid sensitivity in COPD. The corticosteroid sensitivity of peripheral blood mononuclear cells collected from patients with COPD, smokers, and nonsmoking control subjects, or of human monocytic U937 cells exposed to cigarette smoke extract (CSE), was quantified as the dexamethasone concentration required to achieve 30% inhibition of tumor necrosis factor-α-induced CXCL8 production in the presence or absence of the mTOR inhibitor rapamycin. mTOR activity was determined as the phosphorylation of p70 S6 kinase, using Western blotting. mTOR activity was increased in peripheral blood mononuclear cells from patients with COPD, and treatment with rapamycin inhibited this as well as restoring corticosteroid sensitivity. In U937 cells, CSE stimulated mTOR activity and c-Jun expression, but pretreatment with rapamycin inhibited both and also reversed CSE-induced corticosteroid insensitivity. mTOR inhibition by rapamycin restores corticosteroid sensitivity via inhibition of c-Jun expression, and thus mTOR is a potential novel therapeutic target for COPD.
You, Wanchun; Wang, Zhong; Li, Haiying; Shen, Haitao; Xu, Xiang; Jia, Genlai; Chen, Gang
2016-08-15
Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Objective monitoring of mTOR inhibitor therapy by three-dimensional facial analysis.
Baynam, Gareth S; Walters, Mark; Dawkins, Hugh; Bellgard, Matthew; Halbert, Anne R; Claes, Peter
2013-08-01
With advances in therapeutics for rare, genetic and syndromic diseases, there is an increasing need for objective assessments of phenotypic endpoints. These assessments will preferentially be high precision, non-invasive, non-irradiating, and relatively inexpensive and portable. We report a case of a child with an extensive lymphatic vascular malformation of the head and neck, treated with an mammalian target of Rapamycin (mTOR) inhibitor that was assessed using 3D facial analysis. This case illustrates that this technology is prospectively a cost-effective modality for treatment monitoring, and it supports that it may also be used for novel explorations of disease biology for conditions associated with disturbances in the mTOR, and interrelated, pathways.
Oaks, Zachary; Winans, Thomas; Huang, Nick; Banki, Katalin; Perl, Andras
2016-12-01
The mechanistic target of rapamycin (mTOR) is a central regulator in cell growth, activation, proliferation, and survival. Activation of the mTOR pathway underlies the pathogenesis of systemic lupus erythematosus (SLE). While mTOR activation and its therapeutic reversal were originally discovered in T cells, recent investigations have also uncovered roles in other cell subsets including B cells, macrophages, and "non-immune" organs such as the liver and the kidney. Activation of mTOR complex 1 (mTORC1) precedes the onset of SLE and associated co-morbidities, such as anti-phospholipid syndrome (APS), and may act as an early marker of disease pathogenesis. Six case reports have now been published that document the development of SLE in patients with genetic activation of mTORC1. Targeting mTORC1 over-activation with N-acetylcysteine, rapamycin, and rapalogs provides an opportunity to supplant current therapies with severe side effect profiles such as prednisone or cyclophosphamide. In the present review, we will discuss the recent explosion of findings in support for a central role for mTOR activation in SLE.
Duong, MyLinh T.; Akli, Said; Wei, Caimiao; Wingate, Hannah F.; Liu, Wenbin; Lu, Yiling; Yi, Min; Mills, Gordon B.; Hunt, Kelly K.; Keyomarsi, Khandan
2012-01-01
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2–associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib. PMID:22479189
Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.
Lovelace, Erica S; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard P; Zink, Erika M; Kim, Young-Mo; Kyle, Jennifer E; Webb-Robertson, Bobbie-Jo M; Waters, Katrina M; Metz, Thomas O; Farin, Federico; Oberlies, Nicholas H; Polyak, Stephen J
2015-08-28
Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.
Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling
Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.
2016-01-01
Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142
Huang, Chunling; Zhang, Yuan; Kelly, Darren J.; Tan, Christina Y. R.; Gill, Anthony; Cheng, Delfine; Braet, Filip; Park, Jin-Sung; Sue, Carolyn M.; Pollock, Carol A.; Chen, Xin-Ming
2016-01-01
Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway. PMID:27381856
The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes
2011-01-01
Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of iNOS mRNA were detected after 48 hours, suggesting that rapamycin can modify iNOS mRNA stability. In this regard, we found that rapamycin significantly reduced the half-life of iNOS mRNA, from 4 h to 50 min when cells were co-incubated with cytokine mixture and 10 nM rapamycin. Similarly, rapamycin induced a significant up-regulation of tristetraprolin (TTP), a protein involved in the regulation of iNOS mRNA stability. Conclusion The present findings show that mTOR controls the rate of iNOS mRNA degradation in astrocytes. Together with the marked anti-inflammatory effects that we previously observed in microglial cells, these data suggest possible beneficial effects of mTOR inhibitors in the treatment of inflammatory-based CNS pathologies. PMID:21208419
Chang, Weilong; Bai, Jie; Tian, Shaobo; Ma, Muyuan; Li, Wei; Yin, Yuping; Deng, Rui; Cui, Jinyuan; Li, Jinjin; Wang, Guobin; Tao, Kaixiong
2017-01-01
Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in gastric mucosal epithelial cells. This study brings new and important insights into the mechanism of alcoholic gastric mucosal injury and may provide an avenue for future therapeutic strategies. PMID:28056554
Translational regulation in the anoxic turtle, Trachemys scripta elegans.
Szereszewski, Kama E; Storey, Kenneth B
2017-12-14
The red-eared slider turtle (Trachemys scripta elegans), has developed remarkable adaptive mechanisms for coping with decreased oxygen availability during winter when lakes and ponds become covered with ice. Strategies for enduring anoxia tolerance include an increase in fermentable fuel reserves to support anaerobic glycolysis, the buffering of end products to minimize acidosis, altered expression in crucial survival genes, and strong metabolic rate suppression to minimize ATP-expensive metabolic processes such as protein synthesis. The mammalian target of rapamycin (mTOR) is at the center of the insulin-signaling pathway that regulates protein translation. The present study analyzed the responses of the mTOR signaling pathway to 5 (5H) or 20 h (20H) of anoxic submergence in liver and skeletal muscle of T. scripta elegans with a particular focus on regulatory changes in the phosphorylation states of targets. The data showed that phosphorylation of multiple mTOR targets was suppressed in skeletal muscle, but activated in the liver. Phosphorylated mTOR Ser2448 showed no change in skeletal muscle but had increased by approximately 4.5-fold in the liver after 20H of anoxia. The phosphorylation states of upstream positive regulators of mTOR (p-PDK-1 Ser241 , p-AKT Ser473 , and protein levels of GβL), the relative levels of dephosphorylated active PTEN, as well as phosphorylation state of negative regulators (TSC2 Thr1462 , p-PRAS40 Thr246 ) were generally found to be differentially regulated in skeletal muscle and in liver. Downstream targets of mTOR (p-p70 S6K Thr389 , p-S6 Ser235 , PABP, p-4E-BP1 Thr37/46 , and p-eIF4E Ser209 ) were generally unchanged in skeletal muscle but upregulated in most targets in liver. These findings indicate that protein synthesis is enhanced in the liver and suggests an increase in the synthesis of crucial proteins required for anoxic survival.
de Stephanis, Lucia; Mangolini, Alessandra; Servello, Miriam; Harris, Peter C; Dell'Atti, Lucio; Pinton, Paolo; Aguiari, Gianluca
2018-09-01
Cell proliferation and apoptosis are typical hallmarks of autosomal dominant polycystic kidney disease (ADPKD) and cause the development of kidney cysts that lead to end-stage renal disease (ESRD). Many factors, impaired by polycystin complex loss of function, may promote these biological processes, including cAMP, mTOR, and EGFR signaling pathways. In addition, microRNAs (miRs) may also regulate the ADPKD related signaling network and their dysregulation contributes to disease progression. However, the role of miRs in ADPKD pathogenesis has not been fully understood, but also the function of p53 is quite obscure, especially its regulatory contribution on cell proliferation and apoptosis. Here, we describe for the first time that miR501-5p, upregulated in ADPKD cells and tissues, induces the activation of mTOR kinase by PTEN and TSC1 gene repression. The increased activity of mTOR kinase enhances the expression of E3 ubiquitin ligase MDM2 that in turn promotes p53 ubiquitination, leading to its degradation by proteasome machinery in a network involving p70S6K. Moreover, the overexpression of miR501-5p stimulates cell proliferation in kidney cells by the inhibition of p53 function in a mechanism driven by mTOR signaling. In fact, the downregulation of this miR as well as the pharmacological treatment with proteasome and mTOR inhibitors in ADPKD cells reduces cell growth by the activation of apoptosis. Consequently, the stimulation of cell death in ADPKD cells may occur through the inhibition of mTOR/MDM2 signaling and the restoring of p53 function. The data presented here confirm that the impaired mTOR signaling plays an important role in ADPKD. © 2018 Wiley Periodicals, Inc.
Human CLEC16A regulates autophagy through modulating mTOR activity.
Tam, Rachel Chun Yee; Li, Michelle Wing Man; Gao, Yan Pan; Pang, Yuen Ting; Yan, Sheng; Ge, Wei; Lau, Chak Sing; Chan, Vera Sau Fong
2017-03-15
CLEC16A is genetically linked with multiple autoimmune disorders but its functional relevance in autoimmunity remains obscure. Recent evidence has signposted the emerging role of autophagy in autoimmune disease development. Here, by ectopic expression and siRNA silencing, we show that CLEC16A has an inhibitory role in starvation-induced autophagy in human cells. Combining quantitative proteomics and immunoblotting analyses, we found that CLEC16A likely regulates autophagy by activating mTOR pathway. Overexpression of CLEC16A was found to sensitize cells towards the availability of nutrients, resulting in a heightened mTOR activity, which in turn diminished LC3 autophagic activity following nutrient deprivation. CLEC16A deficiency, on the other hand, delayed mTOR activity in response to nutrient sensing, thereby resulted in an augmented autophagic response. CLEC16A was found residing in cytosolic vesicles and the Golgi, and nutrient removal promoted a stronger clustering within the Golgi, where it was possibly in a vantage position to activate mTOR upon nutrient replenishment. These findings suggest that Golgi-associated CLEC16A negatively regulates autophagy via modulation of mTOR activity, and may provide support for a functional link between CLEC16A and autoimmunity. Copyright © 2017 Elsevier Inc. All rights reserved.
Su, Zhi-Wen; Liao, Jia-Yi; Zhang, Hui; Zhang, Tao; Wu, Fan; Tian, Xiao-Hua; Zhang, Fei-Tong; Sun, Wei-Wen; Cui, Qi-Liang
2015-06-22
The present study investigated whether a high-protein diet affects spatial learning and memory in premature rats via modulation of mammalian target of rapamycin (mTOR) signaling. Pre- and full-term Sprague-Dawley pups were fed a normal (18% protein) or high-protein (30% protein) diet (HPD) for 6 or 8 weeks after weaning. Spatial learning and memory were tested in the Morris water maze at week 6 and 8. The activation of mTOR signaling pathway components was evaluated by western blotting. Spatial memory performance of premature rats consuming a normal and HPD was lower than that of full-term rats on the same diet at 6 weeks, and was associated with lower levels of ribosomal protein S6 kinase p70 subtype (p70S6K) and initiation factor 4E-binding protein 1 (4EBP1) phosphorylation in the hippocampus. Spatial memory was improved in 8-week-old premature rats on an HPD as compared to those on a normal diet. Premature rats on an HPD had p70S6K and 4EBP1 phosphorylation levels in the hippocampus that were comparable to those of full-term rats on an HPD. Long-term consumption of a protein-rich diet can restore the impairment in learning and memory in pre-term rats via upregulation of mTOR/p70S6K signaling. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation
2017-07-01
AWARD NUMBER: W81XWH-16-1-0135 TITLE: Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation 5b. GRANT NUMBER 8W1XWH-16-1...Sclerosis Complex (TSC) 1 or 2 gene leads to deregulated mTOR activation and consequent cell proliferation/growth. Thus, studying the mTOR pathway
Wagner, Andrew J; Malinowska-Kolodziej, Izabela; Morgan, Jeffrey A; Qin, Wei; Fletcher, Christopher D M; Vena, Natalie; Ligon, Azra H; Antonescu, Cristina R; Ramaiya, Nikhil H; Demetri, George D; Kwiatkowski, David J; Maki, Robert G
2010-02-10
PURPOSE Perivascular epithelioid cell tumors (PEComas) represent a family of mesenchymal neoplasms, mechanistically linked through activation of the mTOR signaling pathway. There is no known effective therapy for PEComa, and the molecular pathophysiology of aberrant mTOR signaling provided us with a scientific rationale to target this pathway therapeutically. On this mechanistic basis, we treated three consecutive patients with metastatic PEComa with an oral mTOR inhibitor, sirolimus. PATIENTS AND METHODS Patients with advanced PEComa were treated with sirolimus and consented to retrospective collection of data from their medical records and analysis of archival tumor specimens. Tumor response was determined by computed tomography scans obtained at the clinical discretion of the treating physicians. Tumors were assessed for immunohistochemical evidence of mTORC1 activation and genetic evidence of alterations in TSC1 and TSC2. Results Radiographic responses to sirolimus were observed in all patients. PEComas demonstrated loss of TSC2 protein expression and evidence of baseline mTORC1 activation. Homozygous loss of TSC1 was identified in one PEComa. CONCLUSION Inhibition of mTORC1, pathologically activated by loss of the TSC1/TSC2 tumor suppressor complex, is a rational mechanistic target for therapy in PEComas. The clinical activity of sirolimus in PEComa additionally strengthens the pathobiologic similarities linking PEComas to other neoplasms related to the tuberous sclerosis complex.
Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition
Yang, Aimin; Xiao, Xia; Zhao, Mingfeng; LaRue, Amanda C.; Schulte, Bradley A.; Wang, Gavin Y.
2015-01-01
Abnormal activation of the mammalian target of rapamycin (mTOR) signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD), a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM) suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs) function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794) depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU) assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs) in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs) but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs), respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs. PMID:26221145
Moschella, Phillip C.; Rao, Vijay U.; McDermott, Paul J.; Kuppuswamy, Dhandapani
2007-01-01
SUMMARY Activation of both mTOR and its downstream target, S6K1 (p70 S6 kinase) have been implicated to affect cardiac hypertrophy. Our earlier work, in a feline model of 1–48 h pressure overload, demonstrated that mTOR/S6K1 activation occurred primarily through a PKC/c-Raf pathway. To further delineate the role of specific PKC isoforms on mTOR/S6K1 activation, we utilized primary cultures of adult feline cardiomyocytes in vitro and stimulated with endothelin-1 (ET-1), phenylephrine (PE), TPA, or insulin. All agonist treatments resulted in S2248 phosphorylation of mTOR and T389 and S421/T424 phosphorylation of S6K1, however only ET-1 and TPA-stimulated mTOR/S6K1 activation was abolished with infection of a dominant negative adenoviral c-Raf (DN-Raf) construct. Expression of DN-PKCε blocked ET-1-stimulated mTOR S2448 and S6K1 S421/T424 and T389 phosphorylation but had no effect on insulin-stimulated S6K1 phosphorylation. Expression of DN-PKCδ or pretreatment of cardiomyocytes with rottlerin, a PKCδ specific inhibitor, blocked both ET-1 and insulin stimulated mTOR S2448 and S6K1 T389 phosphorylation. However, treatment with Gö6976, a specific classical PKC (cPKC) inhibitor did not affect mTOR/S6K1 activation. These data indicate that: (i) PKCε is required for ET-1-stimulated T421/S424 phosphorylation of S6K1, (ii) both PKCε and PKCδ are required for ET-1-stimulated mTOR S2448 and S6K1 T389 phosphorylation, (iii) PKCδ is also required for insulin-stimulated mTOR S2448 and S6K1 T389 phosphorylation. Together, these data delineate both distinct and combinatorial roles of specific PKC isoforms on mTOR and S6K1 activation in adult cardiac myocytes following hypertrophic stimulation. PMID:17976640
Moschella, Phillip C; Rao, Vijay U; McDermott, Paul J; Kuppuswamy, Dhandapani
2007-12-01
Activation of both mTOR and its downstream target, S6K1 (p70 S6 kinase) have been implicated to affect cardiac hypertrophy. Our earlier work, in a feline model of 1-48 h pressure overload, demonstrated that mTOR/S6K1 activation occurred primarily through a PKC/c-Raf pathway. To further delineate the role of specific PKC isoforms on mTOR/S6K1 activation, we utilized primary cultures of adult feline cardiomyocytes in vitro and stimulated with endothelin-1 (ET-1), phenylephrine (PE), TPA, or insulin. All agonist treatments resulted in S2248 phosphorylation of mTOR and T389 and S421/T424 phosphorylation of S6K1, however only ET-1 and TPA-stimulated mTOR/S6K1 activation was abolished with infection of a dominant negative adenoviral c-Raf (DN-Raf) construct. Expression of DN-PKC(epsilon) blocked ET-1-stimulated mTOR S2448 and S6K1 S421/T424 and T389 phosphorylation but had no effect on insulin-stimulated S6K1 phosphorylation. Expression of DN-PKC(delta) or pretreatment of cardiomyocytes with rottlerin, a PKC(delta) specific inhibitor, blocked both ET-1 and insulin stimulated mTOR S2448 and S6K1 T389 phosphorylation. However, treatment with Gö6976, a specific classical PKC (cPKC) inhibitor did not affect mTOR/S6K1 activation. These data indicate that: (i) PKC(epsilon) is required for ET-1-stimulated T421/S424 phosphorylation of S6K1, (ii) both PKC(epsilon) and PKC(delta) are required for ET-1-stimulated mTOR S2448 and S6K1 T389 phosphorylation, (iii) PKC(delta) is also required for insulin-stimulated mTOR S2448 and S6K1 T389 phosphorylation. Together, these data delineate both distinct and combinatorial roles of specific PKC isoforms on mTOR and S6K1 activation in adult cardiac myocytes following hypertrophic stimulation.
Kaufman, J D; Kassube, K R; Almeida, R A; Ríus, A G
2018-05-02
Hyperthermia alters utilization of AA in protein synthesis and cell-signaling activity in bovine mammary cells. Essential AA and insulin regulate translation of proteins by controlling the activity of mammalian target of rapamycin (mTOR) signaling pathway. The objectives of this study were to evaluate (1) the effects of incubation temperature on the mTOR signaling pathway and transcription of AA transporters in a bovine mammary alveolar cell line (MAC-T) and (2) the combined effects of incubation temperature and insulin on the mTOR signaling pathway in this cell line. Cells were cultured in medium with 10% fetal bovine serum at 37°C and 5% CO 2 . In experiment 1, cells were subjected to 37°C (control) or 41.5°C (high incubation temperature; HT) for 12 h. In experiment 2, cells were assigned to 1 of 4 treatments as a 2 × 2 factorial arrangement, including 2 cell culture temperatures (control and HT) and absence or presence of 1.0 μg/mL of insulin. Proteins were harvested and separated by gel electrophoresis. In experiment 1, gene expression of AA transporters (SLC1A1, SLC1A5, SLC3A2, SLC7A1, SLC7A5, and SLC36A1) were evaluated, and changes of ≥2 fold were deemed significantly different. In experiments 1 and 2, immunoblotting was used to identify total and site-specific phosphorylated forms of protein kinase B (Akt1; Ser473), p70 S6 kinase (S6K1; Thr389), ribosomal protein S6 (rpS6; Ser235/236), and eukaryotic elongation factor 2 (eEF2; Thr56). Phosphorylated and total forms of Akt1, S6K1, rpS6, and eEF2 were quantified and expressed as the ratio of phosphorylated to total protein. In experiment 1, HT resulted in a ≥2-fold increase expression of SLC1A1 and SLC3A2. High incubation temperature reduced the phosphorylated to total ratio of Akt1 and rpS6 and increased the phosphorylated to total ratio of eEF2. In experiment 2, we found no temperature by insulin interactions on phosphorylation state of the protein factors of interest. High incubation temperature reduced the phosphorylated to total ratio of Akt1. The addition of insulin increased the phosphorylated to total ratio of Akt1, S6K1, and rpS6. In summary, HT reduced the activity of the mTOR signaling pathway and increased the expression of AA transporters. High incubation temperature possibly reduced protein translation by reducing the mTOR signaling pathway activity in an effort to adapt to thermal stress. These results may help explain the direct effect of elevated temperature on AA metabolism and protein translation in heat-stressed animals. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Analysis of TSC1 mutation spectrum in mucosal melanoma.
Ma, Meng; Dai, Jie; Xu, Tianxiao; Yu, Sifan; Yu, Huan; Tang, Huan; Yan, Junya; Wu, Xiaowen; Yu, Jiayi; Chi, Zhihong; Si, Lu; Cui, Chuanliang; Sheng, Xinan; Kong, Yan; Guo, Jun
2018-02-01
Mucosal melanoma is a relatively rare subtype of melanoma for which no clearly established therapeutic strategy exists. The genes of the mTOR signalling pathway have drawn great attention as key targets for cancer treatment, including melanoma. In this study, we aimed to investigate the mutation status of the upstream mTOR regulator TSC1 and evaluated its correlation with the clinicopathological features of mucosal melanoma. We collected 91 mucosal melanoma samples for detecting TSC1 mutations. All the coding exons of TSC1 were amplified by PCR and subjected to Sanger sequencing. Expression level of TSC1 encoding protein (hamartin) was detected by immunohistochemistry. The activation of mTOR pathway was determined by evaluating the phosphorylation status of S6RP and 4E-BP1. The overall mutation frequency of TSC1 was found to be 17.6% (16/91 patients). TSC1 mutations were more inclined to occur in advanced mucosal melanoma (stages III and IV). In the 16 patients with TSC1 mutations, 14 different mutations were detected, affecting 11 different exons. TSC1 mutations were correlated with upregulation of S6RP phosphorylation but were unrelated to 4E-BP1 phosphorylation or hamartin expression. Mucosal melanoma patients with TSC1 mutations had a worse outcome than patients without TSC1 mutations (24.0 versus 34.0 months, P = 0.007). Our findings suggest that TSC1 mutations are frequent in mucosal melanoma. TSC1 mutations can activate the mTOR pathway through phospho-S6RP and might be a poor prognostic predictor of mucosal melanoma. Our data implicate the potential significance of TSC1 mutations for effective and specific drug therapy for mucosal melanoma.
Li, Jiao; Wang, Xiaogan; Xie, Yan; Ying, Zhitao; Liu, Weiping; Ping, Lingyan; Zhang, Chen; Pan, Zhengying; Ding, Ning; Song, Yuqin; Zhu, Jun
2018-01-01
Mantle cell lymphoma (MCL) is an aggressive and incurable malignant disease. Despite of general chemotherapy, relapse and mortality are common, highlighting the need for the development of novel targeted drugs or combination of therapeutic regimens. Recently, several drugs that target the B-cell receptor (BCR) signaling pathway, especially the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicate that pharmacological inhibition of BCR pathway holds promise in MCL treatment. Here, we have developed a novel irreversible BTK inhibitor, PLS-123, that has more potent and selective anti-tumor activity than ibrutinib in vitro and in vivo. Using in vitro screening, we discovered that the combination of PLS-123 and the mammalian target of rapamycin (mTOR) inhibitor everolimus exert synergistic activity in attenuating proliferation and motility of MCL cell lines. Simultaneous inhibition of BTK and mTOR resulted in marked induction of apoptosis and cell cycle arrest in the G1 phase, which were accompanied by upregulation of pro-apoptotic proteins (cleaved Caspase-3, cleaved PARP and Bax), repression of anti-apoptotic proteins (Mcl-1, Bcl-xl and XIAP), and downregulation of regulators of the G1/S phase transition (CDK2, CDK4, CDK6 and Cyclin D1). Gene expression profile analysis revealed simultaneous treatment with these agents led to inhibition of the JAK2/STAT3, AKT/mTOR signaling pathways and SGK1 expression. Finally, the anti-tumor and pro-apoptotic activities of combination strategy have also been demonstrated using xenograft mice models. Taken together, simultaneous suppression of BTK and mTOR may be indicated as a potential therapeutic modality for the treatment of MCL. © 2017 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo
Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, whichmore » is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5 Prime -AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes Sirtinol-induced inflammation and NF-{kappa}B activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-{kappa}B activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.« less
Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes
Lodish, Maya B.; Stratakis, Constantine A.
2010-01-01
Neurofibromatosis type 1 (NF-1) and tuberous sclerosis complex (TSC) are two familial syndromes known as phakomatoses that may be associated with endocrine tumors. These hereditary cutaneous conditions affect the central nervous system and are characterized by the development of hamartomas. Over the past 20 years, there have been major advances in our understanding of the molecular basis of these diseases. Both NF-1 and TSC are disorders of unregulated progression through the cell cycle, in which causative genes behave as characteristic tumor suppressor genes. The pathogenesis of these familial syndromes is linked by the shared regulation of a common pathway, the protein kinase mammalian target of rapamycin (mTOR). Additional related disorders that also converge on the mTOR pathway include Peutz-Jeghers syndrome and Cowden syndrome. All of these inherited cancer syndromes are associated with characteristic skin findings that offer a clue to their recognition and treatment. The discovery of mTOR inhibitors has led to a possible new therapeutic modality for patients with endocrine tumors as part of these familial syndromes. PMID:20833335
Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway
Yuan, Lingqin; Sheng, Xiugui; Willson, Adam K; Roque, Dario R; Stine, Jessica E; Guo, Hui; Jones, Hannah M; Zhou, Chunxiao; Bae-Jump, Victoria L
2015-01-01
Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer. PMID:26045471
Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes.
Lodish, Maya B; Stratakis, Constantine A
2010-06-01
Neurofibromatosis type 1 (NF-1) and tuberous sclerosis complex (TSC) are two familial syndromes known as phakomatoses that may be associated with endocrine tumours. These hereditary cutaneous conditions affect the central nervous system and are characterised by the development of hamartomas. Over the past 20 years, there have been major advances in our understanding of the molecular basis of these diseases. Both NF-1 and TSC are disorders of unregulated progression through the cell cycle, in which causative genes behave as tumour suppressor genes. The pathogenesis of these familial syndromes is linked by the shared regulation of a common pathway, the protein kinase mammalian target of rapamycin (mTOR). Additional related disorders that also converge on the mTOR pathway include Peutz-Jeghers syndrome and Cowden syndrome. All of these inherited cancer syndromes are associated with characteristic skin findings that offer a clue to their recognition and treatment. The discovery of mTOR inhibitors has led to a possible new therapeutic modality for patients with endocrine tumours as part of these familial syndromes. Published by Elsevier Ltd.
Wnt signaling inhibits CTL memory programming
Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei
2013-01-01
Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers. PMID:23911398
Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.
2015-01-01
Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174
NASA Astrophysics Data System (ADS)
Spirina, L. V.; Gorbunov, A. K.; Chigevskaya, S. Y.; Usynin, Y. A.; Kondakova, I. V.; Slonimskaya, E. M.; Usynin, E. A.; Choinzonov, E. L.; Zaitseva, O. S.
2017-09-01
Transcription factors POU4F1 (neurogenic factor Brn-3α) play a pivotal role in cancers development. The aim of the study was to reveal the Brn-3α expression, AR, ER expression in cancers development, association with AKT/mTOR pathway activation. 30 patients with locally advanced prostate cancer, 20 patients with papillary thyroid cancer, T2-3N0-1M0 stages and 40 patients with renal cell cancer T2-3N0M0-1 were involved into the study. The expressions of Brn-3α, AR, ERα, components of AKT/m-TOR signaling pathway genes were performed by real-time PCR. The dependence of Brn-3α expression on mRNA levels of steroid hormone receptors and components of AKT/m-TOR signaling pathway in studied cancers were shown. High levels of mRNA of nuclear factor, steroid hormone receptors were found followed by the activation of this signaling pathway in prostate cancer tissue. The reduction of transcription factor Brn-3α was accompanied with tumor invasive growth with increasing rates of AR, ER and 4E-BP1 mRNA. Thyroid cancer development happened in a case of a Brn-3α and steroid hormone receptors decrease. The activation of AKT/m-TOR signaling pathway was established in the metastatic renal cancers, accompanied with the increase of ER mRNA. But there was no correlation between the steroid receptor and Brn-3α. One-direction changes of Brn-3α were observed in the development of prostate and thyroid cancer due to its effect on the steroid hormone receptors and the activation of AKT/m-TOR signaling pathway components. The influence of this factor on the development of the kidney cancer was mediated through m-TOR activity modifications, the key enzyme of oncogenesis.
Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells
María López-Colomé, Ana; Martínez-Lozada, Zila; Guillem, Alain M; López, Edith; Ortega, Arturo
2012-01-01
Glu (glutamate), the excitatory transmitter at the main signalling pathway in the retina, is critically involved in changes in the protein repertoire through the activation of signalling cascades, which regulate protein synthesis at transcriptional and translational levels. Activity-dependent differential gene expression by Glu is related to the activation of ionotropic and metabotropic Glu receptors; however, recent findings suggest the involvement of Na+-dependent Glu transporters in this process. Within the retina, Glu uptake is aimed at the replenishment of the releasable pool, and for the prevention of excitotoxicity and is carried mainly by the GLAST/EAAT-1 (Na+-dependent glutamate/aspartate transporter/excitatory amino acids transporter-1) located in Müller radial glia. Based on the previous work showing the alteration of GLAST expression induced by Glu, the present work investigates the involvement of GLAST signalling in the regulation of protein synthesis in Müller cells. To this end, we explored the effect of D-Asp (D-aspartate) on Ser-2448 mTOR (mammalian target of rapamycin) phosphorylation in primary cultures of chick Müller glia. The results showed that D-Asp transport induces the time- and dose-dependent phosphorylation of mTOR, mimicked by the transportable GLAST inhibitor THA (threo-β-hydroxyaspartate). Signalling leading to mTOR phosphorylation includes Ca2+ influx, the activation of p60src, phosphatidylinositol 3-kinase, protein kinase B, mTOR and p70S6K. Interestingly, GLAST activity promoted AP-1 (activator protein-1) binding to DNA, supporting a function for transporter signalling in retinal long-term responses. These results add a novel receptor-independent pathway for Glu signalling in Müller glia, and further strengthen the critical involvement of these cells in the regulation of glutamatergic transmission in the retina. PMID:22817638
Li, Qiang; Xia, Xuefeng; Ji, Jie; Ma, Jianghui; Tao, Liang; Mo, Linjun; Chen, Wei
2017-05-16
Several studies have reported reduced miRNA-199a-3p (miR-199a-3p) in different human malignancies, however, little is known about miR-199a-3p in cholangiocarcinoma cells. In this study, we demonstrate the essential role and mechanism of miR-199a-3p in regulating cisplatin sensitivity in cholangiocarcinoma cell lines. Using a CCK-8 cell counting assay we found that expression of miR-199a-3p was positively correlated with cisplatin sensitivity in cholangiocarcinoma cell lines. MiR-199a-3p overexpression could decrease the proliferation rate and increase apoptosis of cholangiocarcinoma cells in the presence of cisplatin, while miR-199a-3p inhibition had the opposite effect. Further study demonstrated that mTOR was the target gene of miR-199a-3p, and that miR-199a-3p mimics could inhibit expression of mTOR, which consequently reduced the phosphorylation of its downstream proteins 4EBP1 and p70s6k. Rescue experiments proved that miR-199a-3p could increase the cisplatin sensitivity of cholangiocarcinoma cell lines by regulating mTOR expression. Moreover, we also found that miR-199a-3p overexpression could reduce cisplatin induced MDR1 expression by decreasing the synthesis and increasing the degradation of MDR1, thus enhancing the effectiveness of cisplatin in cholangiocarcinoma. In conclusion, miR-199a-3p could increase cisplatin sensitivity of cholangiocarcinoma cell lines by inhibiting the activity of the mTOR signaling pathway and decreasing the expression of MDR1.
Foltz, Steven J; Luan, Junna; Call, Jarrod A; Patel, Ankit; Peissig, Kristen B; Fortunato, Marisa J; Beedle, Aaron M
2016-01-01
Secondary dystroglycanopathies are a subset of muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (αDG). Loss of αDG functional glycosylation prevents it from binding to laminin and other extracellular matrix receptors, causing muscular dystrophy. Mutations in a number of genes, including FKTN (fukutin), disrupt αDG glycosylation. We analyzed conditional Fktn knockout (Fktn KO) muscle for levels of mTOR signaling pathway proteins by Western blot. Two cohorts of Myf5-cre/Fktn KO mice were treated with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) for 4 weeks and evaluated for changes in functional and histopathological features. Muscle from 17- to 25-week-old fukutin-deficient mice has activated mTOR signaling. However, in tamoxifen-inducible Fktn KO mice, factors related to Akt/mTOR signaling were unchanged before the onset of dystrophic pathology, suggesting that Akt/mTOR signaling pathway abnormalities occur after the onset of disease pathology and are not causative in early dystroglycanopathy development. To determine any pharmacological benefit of targeting mTOR signaling, we administered RAPA daily for 4 weeks to Myf5/Fktn KO mice to inhibit mTORC1. RAPA treatment reduced fibrosis, inflammation, activity-induced damage, and central nucleation, and increased muscle fiber size in Myf5/Fktn KO mice compared to controls. RAPA-treated KO mice also produced significantly higher torque at the conclusion of dosing. These findings validate a misregulation of mTOR signaling in dystrophic dystroglycanopathy skeletal muscle and suggest that such signaling molecules may be relevant targets to delay and/or reduce disease burden in dystrophic patients.
Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels.
Takahashi, Keita; Yanai, Shuichi; Shimokado, Kentaro; Ishigami, Akihito
2017-06-01
Coffee, one of the world's most consumed beverages, has many benefits. Some studies have reported the effects of coffee on aging. The aim of this study was to investigate the locomotor activity, energy metabolism, and lipid metabolism of aged (20-mo-old) mice given coffee. Aged C57 BL/6 NCr mice were divided into three groups: controls that were not given coffee (n = 9), a group that received 0.1% caffeinated coffee (n = 9), and a group that received 0.1% decaffeinated coffee (n = 9). This regimen continued for 17 wk until mice reached the age of 24 mo. Regular and decaffeinated coffee consumption decreased plasma-free fatty acid levels, increased hepatic adenosine triphosphate content, and decreased total mammalian target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR) protein content in the liver. However, no differences were found in the protein or activity levels of Akt, adenosine monophosphate-activated protein kinase (AMPK), p70 S6 kinase, or sterol regulatory element-binding protein 1, proteins that are upstream or downstream of the mTOR complex 1 (mTORC1)-related pathways. Regular coffee consumption increased food and water intake, locomotor activity, the volume of carbon dioxide production, and the respiration exchange ratio. Regular and decaffeinated coffee consumption decreased hepatic total mTOR and p-mTOR levels independently of Akt and AMPK pathways in aged mice. Because decreased mTORC1 activity is known to have antiaging effects, coffee consumption during old age may retard aging. Moreover, coffee consumption by the aged population had a positive effect on behavioral energy and lipid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Ivanovska, Julijana; Shah, Sparsh; Wong, Mathew J; Kantores, Crystal; Jain, Amish; Post, Martin; Yeganeh, Behzad; Jankov, Robert P
2017-11-01
Mammalian target of rapamycin (mTOR) is a pivotal regulator of cell proliferation, survival, and autophagy. Autophagy is increased in adult experimental chronic pulmonary hypertension (PHT), but its contributory role to pulmonary vascular disease remains uncertain and has yet to be explored in the neonatal animal. Notch is a major pro-proliferative pathway activated by mTOR. A direct relationship between autophagy and Notch signaling has not been previously explored. Our aim was to examine changes in mTOR-, Notch-, and autophagy-related pathways and the therapeutic effects of autophagy modulators in experimental chronic neonatal PHT secondary to chronic hypoxia. Rat pups were exposed to normoxia or hypoxia (13% O 2 ) from postnatal days 1-21, while receiving treatment with temsirolimus (mTOR inhibitor), DAPT (Notch inhibitor), or chloroquine (inhibitor of autophagic flux). Exposure to hypoxia up-regulated autophagy and Notch3 signaling markers in lung, pulmonary artery (PA), and PA-derived smooth muscle cells (SMCs). Temsirolimus prevented chronic PHT and attenuated PA and SMC signaling secondary to hypoxia. These effects were replicated by DAPT. mTOR or Notch inhibition also down-regulated smooth muscle content of platelet-derived growth factor β-receptor, a known contributor to vascular remodeling. In contrast, chloroquine had no modifying effects on markers of chronic PHT. Knockdown of Beclin-1 in SMCs had no effect on hypoxia-stimulated Notch3 signaling. mTOR-Notch3 signaling plays a critical role in experimental chronic neonatal PHT. Inhibition of autophagy did not suppress Notch signaling and had no effect on markers of chronic PHT. © 2017 Wiley Periodicals, Inc.
Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling.
Xia, Rong; Chen, Sun-Xiao; Qin, Qin; Chen, Yan; Zhang, Wei-Wei; Zhu, Rong-Rong; Deng, An-Mei
2016-01-01
Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.
mTOR and Cardiovascular Diseases: Diabetes Mellitus.
Vergès, Bruno
2018-02-01
The mammalian targets of rapamycin (mTOR) inhibitors are potent immunosuppressors used for prevention of acute rejection after transplantation and have been more recently used as anticancer drugs. mTOR inhibitors have a significant impact on glucose metabolism and frequently induce diabetes. mTOR inhibitors, when used as immunosuppressive agents (sirolimus, everolimus), can induce diabetes with an incidence which is low when used without calcineurin inhibitors but high when used in combination with calcineurin inhibitors (from 11.0% to 38.1%). mTOR inhibitors used as anticancer agents (everolimus, temsirolimus) increase significantly the risk for new-onset diabetes and induce a 5-fold increase in the risk for severe hyperglycemia. The deleterious effect of mTOR inhibitors on glucose metabolism is due to an increased insulin resistance secondary to a reduction of the insulin signaling pathway within the cell and a reduction of insulin secretion via a direct effect on the pancreatic beta cells. Because of the risk for diabetes, it is recommended, when starting a treatment with an mTOR inhibitor, to check fasting blood glucose every 2 weeks during the first month of treatment then every month and HbA1c every 3 months and to intensify self-monitoring of blood glucose in patients with known diabetes. When fasting blood glucose is more than 126 mg/dL (7.0 mmol/L), when plasma glucose is more than 200 mg/dL at any time, or when HbA1c is more than 6.5%, it is recommended to start antidiabetic treatment.
mTOR activation is critical for betulin treatment in renal cell carcinoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Wenlong; Ji, Shiqi; Zhang, Haijian
Betulin, a natural product isolated from the bark of the birch trees, exhibits multiple anticancer effects. Activation of mTOR signaling pathway has been found in numerous cancers, including renal cell carcinoma (RCC). Here, we attempted to study whether mTOR signaling was essential for betulin to treat RCC. Based on cell survival and colony formation assays, we found that mTOR hyperactive RCC cell line 786-O cells were more sensitive to betulin treatment compared with mTOR-inactive Caki-2 cells. Knockdown of TSC2 in Caki-2 cells had similar results to 786-O cells, and mTOR silencing in 786-O cells rescued the inhibitory effect of betulin, indicating thatmore » betulin inhibited RCC cell proliferation in an mTOR-dependent manner. Furthermore, betulin treatment decreases the levels of glucose consumption and lactate production in 786-O cells, while minimal effects were observed in Caki-2 cells. In addition, betulin significantly inhibited the expression of PKM2 and HK2 in 786-O cells. Finally, knockdown of PKM2 or HK2 in 786-O reversed the anti-proliferative effects of betulin, and overexpression of PKM2 or HK2 in Caki-2 cells enhanced the sensitivity to betulin treatment. Taken together, these findings demonstrated the critical role of mTOR activation in RCC cells to betulin treatment, suggesting that betulin might be valuable for targeted therapies in RCC patients with mTOR activation.« less
Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F
2018-05-01
Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Structural and Mechanistic Analyses of TSC1/2 and Rheb 1/2 - Mediated Regulation of the mTOR Pathway
2011-07-01
endoplasmic reticu- lum, Golgi apparatus , and endosomes (26, 27). The intracellular localization of endogenous mTOR, as revealed with an antibody that we...insensitive and independent of Rag and Ragulator, but not Rheb, function . Thus, Rag-Ragulator-mediated translocation of mTORC1 to lysosomal membranes is the...understanding how impairment of TSC1/2 function results in the activation of mTORC1 is critical. With the long-term goal of developing cancer
2010-10-28
which underlies many syndromes including mental retardation, epilepsy, schizophrenia, and autism [7,8,9]. In rodents, neurogenesis and neuronal...Jossin Y, Goffinet AM (2007) Reelin signals through phosphatidylinositol 3- kinase and Akt to control cortical development and through mTor to regulate...the PI3K-AKT- mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4): 393–412. 60. Nadarajah B, Alifragis P, Wong RO, Parnavelas JG
The role of mTOR signaling in Alzheimer disease.
Oddo, Salvatore
2012-01-01
The buildup of Abeta and tau is believed to directly cause or contribute to the progressive cognitive deficits characteristic of Alzheimer disease. However, the molecular pathways linking Abeta and tau accumulation to learning and memory deficits remain elusive. There is growing evidence that soluble forms of Abeta and tau can obstruct learning and memory by interfering with several signaling cascades. In this review, I will present data showing that the mammalian target of rapamycin (mTOR) may play a role in Abeta and tau induced neurodegeneration.
Jhaveri, Komal; Teplinsky, Eleonora; Silvera, Deborah; Valeta-Magara, Amanda; Arju, Rezina; Giashuddin, Shah; Sarfraz, Yasmeen; Alexander, Melissa; Darvishian, Farbod; Levine, Paul H; Hashmi, Salman; Zolfaghari, Ladan; Hoffman, Heather J; Singh, Baljit; Goldberg, Judith D; Hochman, Tsivia; Formenti, Silvia; Esteva, Francisco J; Moran, Meena S; Schneider, Robert J
2016-04-01
Inflammatory breast cancer (IBC) is an aggressive and rare cancer with a poor prognosis and a need for novel targeted therapeutic strategies. Preclinical IBC data showed strong activation of the phosphatidylinositide-3-kinase/mammalian target of rapamycin (mTOR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, and expression of inflammatory cytokines and tumor-associated macrophages (TAMs). Archival tumor tissue from 3 disease types (IBC treated with neoadjuvant chemotherapy [NAC], n = 45; invasive ductal carcinoma [IDC] treated with NAC [n = 24; 'treated IDC'; and untreated IDC [n = 27; 'untreated IDC']) was analyzed for the expression of biomarkers phospho-S6 (pS6) (mTOR), phospho-JAK2 (pJAK2), pSTAT3, interleukin (IL)-6, CD68 (monocytes, macrophages), and CD163 (TAMs). Surrounding nontumor tissue was also analyzed. Biomarker levels and surrogate activity according to site-specific phosphorylation were shown in the tumor tissue of all 3 disease types but were greatest in IBC and treated IDC and least in untreated IDC for pS6, pJAK2, pSTAT3, and IL-6. Of 37 IBC patients with complete biomarker data available, 100% were pS6-positive and 95% were pJAK2-positive. In nontumor tissue, biomarker levels were observed in all groups but were generally greatest in untreated IDC and least in IBC, except for JAK2. IBC and treated IDC display similar levels of mTOR and JAK2 biomarker activation, which suggests a potential mechanism of resistance after NAC. Biomarker levels in surrounding nontumor tissue suggested that the stroma might be activated by chemotherapy and resembles the oncogenic tumor-promoting environment. Activation of pS6 and pJAK2 in IBC might support dual targeting of the mTOR and JAK/STAT pathways, and the need for prospective studies to investigate combined targeted therapies in IBC. Copyright © 2016 Elsevier Inc. All rights reserved.
Ribeiro, Carolina B.; Christofoletti, Daiane C.; Pezolato, Vitor A.; de Cássia Marqueti Durigan, Rita; Prestes, Jonato; Tibana, Ramires A.; Pereira, Elaine C. L.; de Sousa Neto, Ivo V.; Durigan, João L. Q.; da Silva, Carlos A.
2015-01-01
The aim of the present study was to evaluate the effect of leucine treatment (0.30 mM) on muscle weight and signaling of myoproteins related to synthesis and degradation pathways of soleus muscle following seven days of complete sciatic nerve lesion. Wistar rats (n = 24) of 3–4 months of age (192 ± 23 g) were used. The animals were randomly distributed into four experimental groups (n = 6/group): control, treated with leucine (L), denervated (D) and denervated treated with leucine (DL). Dependent measures were proteins levels of AKT, AMPK, mTOR, and ACC performed by Western blot. Leucine induced a reduction in the phosphorylation of AMPK (p < 0.05) by 16% in the L and by 68% in the DL groups as compared with control group. Denervation increased AMPK by 24% in the D group as compared with the control group (p < 0.05). AKT was also modulated by denervation and leucine treatment, highlighted by the elevation of AKT phosphorylation in the D (65%), L (98%) and DL (146%) groups as compared with the control group (p < 0.05). AKT phosphorylation was 49% higher in the D group as compared with the DL group. Furthermore, denervation decreased mTOR phosphorylation by 29% in the D group as compared with the control group. However, leucine treatment induced an increase of 49% in the phosphorylation of mTOR in the L group as compared with the control group, and an increase of 154% in the DL as compared with the D group (p < 0.05). ACC phosphorylation was 20% greater in the D group than the control group. Furthermore, ACC in the soleus was 22% lower in the in the L group and 50% lower in the DL group than the respective control group (p < 0.05). In conclusion, leucine treatment minimized the deleterious effects of denervation on rat soleus muscle by increasing anabolic (AKT and mTOR) and decreasing catabolic (AMPK) pathways. These results may be interesting for muscle recovery following acute denervation, which may contribute to musculoskeletal rehabilitation after denervation. PMID:25852565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de; Penke, Melanie; Gorski, Theresa
Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1more » (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPKα and downregulates mTOR signaling. • NMN abrogates the effects of FK866-induced NAMPT inhibition. • Non-cancerous human hepatocytes are less sensitive to FK866.« less
Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.
Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia
2013-11-01
The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5) mecamylamine plus scopolamine treatment did not impair long term memory formation; (6) in vitro treatment with carbachol activated mTOR and p70S6K and this effect was blocked by scopolamine and mecamylamine. Taken together our data reinforce the idea that distinct molecular mechanisms are at the basis of the two different forms of memory and are in accordance with data presented by other groups that there exist molecular mechanisms that underlie short term memory, others that underlie long term memories, but some mechanisms are involved in both. Copyright © 2013 Elsevier Inc. All rights reserved.
Petrakis, Ioannis; Stylianou, Kostas; Katsarou, Theodora; Giannakakis, Konstantinos; Perakis, Kostas; Vardaki, Eleftheria; Stratigis, Spyridon; Ganotakis, Emmanuel; Papavasiliou, Stathis; Daphnis, Eugenios
2013-01-01
The AKT-mTOR pathway is activated in diabetic nephropathy. Renin-angiotensin system modulators exert beneficial effects on the diabetic kidney. We explored the action of losartan on AKT-mTOR phosphorylation in glomeruli and podocytes. Diabetes mellitus was induced to Sprague-Dawley rats by streptozotocin. Five months later, the rats were commenced on losartan and euthanized 2 months later. Kidneys were processed for immunofluorescence studies. Glomeruli were isolated for Western blot analysis. Diabetes increased activated forms of AKT and mTOR both in glomeruli and podocytes. In diabetic rats, losartan decreased phosphorylated/activated forms of AKT (Thr308) and mTOR (Ser2448) in glomeruli but decreased only activated mTOR in podocytes. However, in both glomeruli and podocytes of healthy animals, an inverse pattern was evident. In conclusion, a new body of evidence indicates the differential activation of AKT-mTOR in glomeruli and podocytes of healthy and diabetic animals in response to losartan. PMID:23456824
Oaks, Zachary; Winans, Thomas; Huang, Nick; Banki, Katalin; Perl, Andras
2017-01-01
The mechanistic target of rapamycin (mTOR) is a central regulator in cell growth, activation, proliferation, and survival. Activation of the mTOR pathway underlies the pathogenesis of systemic lupus erythematosus (SLE). While mTOR activation and its therapeutic reversal were originally discovered in T cells, recent investigations have also uncovered roles in other cell subsets including B cells, macrophages, and “non-immune” organs such as the liver and the kidney. Activation of mTOR complex 1 (mTORC1) precedes the onset of SLE and associated co-morbidities, such as anti-phospholipid syndrome (APS), and may act as an early marker of disease pathogenesis. Six case reports have now been published that document the development of SLE in patients with genetic activation of mTORC1. Targeting mTORC1 over-activation with N-acetylcysteine, rapamycin, and rapalogs provides an opportunity to supplant current therapies with severe side effect profiles such as prednisone or cyclophosphamide. In the present review, we will discuss the recent explosion of findings in support for a central role for mTOR activation in SLE. PMID:27812954
Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco
2017-01-01
Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration. PMID:28418837
Ferrucci, Michela; Biagioni, Francesca; Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco
2017-05-02
Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.
Zhu, Zhe; Wang, Cun-Ping; Zhang, Yin-Feng; Nie, Lin
2014-01-01
Chondrosarcomas are malignant cartilage-forming tumors of bone which exhibit resistance to both chemotherapy and radiation treatment. miRNAs have been well demonstrated to regulate gene expression and play essential roles in a variety of biological processes, including proliferation, differentiation, migration, cell cycling and apoptosis. In this study, we obtained evidence that miR-100 acts as a tumor suppressor in human chondrosarcomas. Interestingly, cisplatin resistant chondrosarcoma cells exhibit decreased expression of miR-100 compared with parental cells. In addition, we identified mTOR as a direct target of miR-100. Overexpression of miR-100 complementary pairs to the 3' untranslated region (UTR) of mTOR, resulted in sensitization of cisplatin resistant cells to cisplatin. Moreover, recovery of the mTOR pathway by overexpression of S6K desensitized the chondrosarcoma cells to cisplatin, suggesting the miR-100-mediated sensitization to cisplatin dependent on inhibition of mTOR. In summary, the present studies highlight miR-100 as a tumor suppressor in chondrosarcoma contributing to anti-chemoresistance. Overexpression of miR-100 might be exploited as a therapeutic strategy along with cisplatin-based combined chemotherapy for the treatment of clinical chondrosarcoma patients.
Perl, Alexander E.; Kasner, Margaret T.; Shank, Doris; Luger, Selina M.; Carroll, Martin
2011-01-01
Purpose Integration of signal transduction inhibitors into chemotherapy regimens generally has generally not led to anticipated increases in response and survival. However, it remains unclear whether this is because of inadequate or inconsistent inhibition of target or other complex biology. The mammalian target of rapamycin (mTOR) signaling pathway is frequently activated in acute myelogenous leukemia (AML) and we previously demonstrated the safety of combining the mTOR inhibitor, sirolimus, with mitoxantrone, etoposide, and cytarabine (MEC) chemotherapy. However, we did not reliably determine the extent of mTOR inhibition on that study. Here we sought to develop an assay that allowed us to serially quantify mTOR kinase’s activation state during therapy. Experimental design To provide evidence of mTOR kinase activation and inhibition, we applied a validated whole blood fixation/permeabilization technique for flow cytometry in order to serially monitor S6 ribosomal protein (S6) phosphorylation in immunophenotypically-identified AML blasts. Results With this approach, we demonstrate activation of mTOR signaling in 8/10 subjects’ samples (80%) and conclusively show inhibition of mTOR in the majority of subjects’ tumor cell during therapy. Of note, S6 phosphorylation in AML blasts is heterogeneous and, in some cases, intrinsically resistant to rapamycin at clinically achieved concentrations. Conclusions The methodology described is rapid and reproducible. We demonstrate the feasibility of real-time, direct pharmacodynamic monitoring by flow cytometry during clinical trials combining intensive chemotherapy and signal transduction inhibitors. This approach greatly clarifies pharmacokinetic/pharmacodynamic relationships and has broad application to pre-clinical and clinical testing of drugs whose direct or downstream effects disrupt PI3K/AKT/mTOR signaling. PMID:22167413
Magryś, Agnieszka; Bogut, Agnieszka; Kiełbus, Michał; Olender, Alina
2018-04-01
The objective of this study was to analyze how Staphylococcus epidermidis SCV and WT strains manipulate the PI3K/Akt/mTOR signaling pathway. Six S. epidermidis strains with normal phenotype (WT) and six S. epidermidis strains with SCV phenotype were isolated in parallel from six patients with the prosthetic hip joint infections. THP-1 activated cells were incubated with or without PI3K inhibitor-wortmannin or with mTOR inhibitor-rapamycin. Next, macrophages were exposed to S. epidermidis WT and SCV strains. After 4 h incubation, bacterial survival inside macrophages as well as PI3K-mTOR activation was analyzed. SCV strains of S. epidermidis increased the level of Akt phosphorylation, compared to uninfected macrophages and to their parental WT forms. Wild type variants of S. epidermidis phosphorylated Akt at similar or lower levels as control uninfected cells. Next, the induction of mTOR target, phosphorylated ribosomal protein S6, was measured in bacteria-infected macrophages. The level of phosphorylation was significantly reduced when the cells were exposed to WT strains of S. epidermidis. In contrast, the SCV strains activated S6 protein mostly at a level comparable to the control cells. Rapamycin inhibited mTOR activation as the number of p-S6 positive cells decreased in the tested cases. To conclude, the SCV strains activate the PI3K-Akt signaling pathway in opposite to WT strains. This fact however did not influence the increase in the number of live SCV bacteria as compared to the WT strains. Knowing that the PI3K-Akt pathway is involved in proinflammatory cytokines suppression, SCVs seem to use this pathway to reduce the inflammatory response during the infection.
Mannová, Petra; Beretta, Laura
2005-01-01
The hepatitis C virus (HCV) replication complex is localized within detergent-resistant membranes or lipid rafts. We analyzed the protein contents of detergent-resistant fractions isolated from Huh7 cells expressing a self-replicating full-length HCV-1b genome. Using two-dimensional gel electrophoresis followed by mass spectrometry, we identified N-Ras as one of the proteins in which expression was increased in the detergent-resistant fractions from HCV genomic replicon clones compared to control cells. N-Ras is an activator of the phosphatidylinositol-3-kinase (PI3K)-Akt pathway. We found that the activities of PI3K and Akt, as well as the activity of their downstream target, mTOR, in the HCV-replicating cells were increased. Both PI3K-Akt- and mTOR-dependent pathways have been shown to promote cell survival. In agreement with this, HCV replicon cells were resistant to serum starvation-induced apoptosis. We also characterized the role of this pathway in HCV replication. Reduction of N-Ras expression by transfection of N-Ras small interfering RNA (siRNA) resulted in increased replication of HCV. We observed a similar increase in HCV replication in cells treated with the PI3K inhibitor LY294002 and in cells transfected with mTOR siRNA. Taken together, these data suggest that increased N-Ras levels in subcellular sites of HCV replication and stimulation of the prosurvival PI3K-Akt pathway and mTOR by HCV not only protect cells against apoptosis but also contribute to the maintenance of steady-state levels of HCV replication. These effects may contribute to the establishment of persistent infection by HCV. PMID:15994768
Rapamycin inhibits anal carcinogenesis in two preclinical animal models.
Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Lee, Denis; Kennedy, Gregory D; Lambert, Paul F
2010-12-01
The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. ©2010 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James
Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppressionmore » of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.« less
Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui
2015-02-01
Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong
2014-01-01
The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal−/−) mice. We found that Ly6G+ cells transmigrated more efficiently across lal−/− ECs than wild-type (lal+/+) ECs, which was associated with increased level of platelet endothelial cell adhesion molecule-1 (PECAM-1) and monocyte chemoattractant protein-1 (MCP-1) in lal−/− ECs. In addition, lal−/−ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal−/− ECs also suppressed T cell proliferation in vitro. Interestingly, lal−/− Ly6G+ cells promoted in vivo angiogenesis (including a tumor model), EC tube formation and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal−/− ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G+ cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species (ROS). Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL-deficiency related diseases. PMID:25000979
Wagner, Andrew J.; Malinowska-Kolodziej, Izabela; Morgan, Jeffrey A.; Qin, Wei; Fletcher, Christopher D.M.; Vena, Natalie; Ligon, Azra H.; Antonescu, Cristina R.; Ramaiya, Nikhil H.; Demetri, George D.; Kwiatkowski, David J.; Maki, Robert G.
2010-01-01
Purpose Perivascular epithelioid cell tumors (PEComas) represent a family of mesenchymal neoplasms, mechanistically linked through activation of the mTOR signaling pathway. There is no known effective therapy for PEComa, and the molecular pathophysiology of aberrant mTOR signaling provided us with a scientific rationale to target this pathway therapeutically. On this mechanistic basis, we treated three consecutive patients with metastatic PEComa with an oral mTOR inhibitor, sirolimus. Patients and Methods Patients with advanced PEComa were treated with sirolimus and consented to retrospective collection of data from their medical records and analysis of archival tumor specimens. Tumor response was determined by computed tomography scans obtained at the clinical discretion of the treating physicians. Tumors were assessed for immunohistochemical evidence of mTORC1 activation and genetic evidence of alterations in TSC1 and TSC2. Results Radiographic responses to sirolimus were observed in all patients. PEComas demonstrated loss of TSC2 protein expression and evidence of baseline mTORC1 activation. Homozygous loss of TSC1 was identified in one PEComa. Conclusion Inhibition of mTORC1, pathologically activated by loss of the TSC1/TSC2 tumor suppressor complex, is a rational mechanistic target for therapy in PEComas. The clinical activity of sirolimus in PEComa additionally strengthens the pathobiologic similarities linking PEComas to other neoplasms related to the tuberous sclerosis complex. PMID:20048174
Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne
2013-06-01
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects.
Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne
2013-01-01
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects. PMID:23919981
Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations
LoPiccolo, Jaclyn; Blumenthal, Gideon M.; Bernstein, Wendy B.; Dennis, Phillip A.
2008-01-01
The PI3K/Akt/mTOR pathway is a prototypic survival pathway that is constitutively activated in many types of cancer. Mechanisms for pathway activation include loss of tumor suppressor PTEN function, amplification or mutation of PI3K, amplification or mutation of Akt, activation of growth factor receptors, and exposure to carcinogens. Once activated, signaling through Akt can be propagated to a diverse array of substrates, including mTOR, a key regulator of protein translation. This pathway is an attractive therapeutic target in cancer because it serves as a convergence point for many growth stimuli, and through its downstream substrates, controls cellular processes that contribute to the initiation and maintenance of cancer. Moreover, activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy, and is a poor prognostic factor for many types of cancers. This review will provide an update on the clinical progress of various agents that target the pathway, such as the Akt inhibitors perifosine and PX-866 and mTOR inhibitors (rapamycin, CCI-779, RAD-001) and discuss strategies to combine these pathway inhibitors with conventional chemotherapy, radiotherapy, as well as newer targeted agents. We will also discuss how the complex regulation of the PI3K/Akt/mTOR pathway poses practical issues concerning the design of clinical trials, potential toxicities and criteria for patient selection. PMID:18166498
Novel Directions for Diabetes Mellitus Drug Discovery
Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui
2012-01-01
Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114
Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR
Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong
2016-01-01
Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655
2016-01-01
Mammalian target of rapamycin (mTOR) signaling is a core pathway in cellular metabolism, and control of the mTOR pathway by rapamycin shows potential for the treatment of metabolic diseases. In this study, we employed a new proximity biotin-labeling method using promiscuous biotin ligase (pBirA) to identify unknown elements in the rapamycin-induced interactome on the FK506-rapamycin binding (FRB) domain in living cells. FKBP25 showed the strongest biotin labeling by FRB–pBirA in the presence of rapamycin. Immunoprecipitation and immunofluorescence experiments confirmed that endogenous FKBP25 has a rapamycin-induced physical interaction with the FRB domain. Furthermore, the crystal structure of the ternary complex of FRB–rapamycin–FKBP25 was determined at 1.67-Å resolution. In this crystal structure we found that the conformational changes of FRB generate a hole where there is a methionine-rich space, and covalent metalloid coordination was observed at C2085 of FRB located at the bottom of the hole. Our results imply that FKBP25 might have a unique physiological role related to metallomics in mTOR signaling. PMID:27610411
Qu, Yanhua; Tian, Shilin; Han, Naijian; Zhao, Hongwei; Gao, Bin; Fu, Jun; Cheng, Yalin; Song, Gang; Ericson, Per G. P.; Zhang, Yong E.; Wang, Dawei; Quan, Qing; Jiang, Zhi; Li, Ruiqiang; Lei, Fumin
2015-01-01
Species that undertake altitudinal migrations are exposed to a considerable seasonal variation in oxygen levels and temperature. How they cope with this was studied in a population of great tit (Parus major) that breeds at high elevations and winters at lower elevations in the eastern Himalayas. Comparison of population genomics of high altitudinal great tits and those living in lowlands revealed an accelerated genetic selection for carbohydrate energy metabolism (amino sugar, nucleotide sugar metabolism and insulin signaling pathways) and hypoxia response (PI3K-akt, mTOR and MAPK signaling pathways) in the high altitudinal population. The PI3K-akt, mTOR and MAPK pathways modulate the hypoxia-inducible factors, HIF-1α and VEGF protein expression thus indirectly regulate hypoxia induced angiogenesis, erythropoiesis and vasodilatation. The strategies observed in high altitudinal great tits differ from those described in a closely related species on the Tibetan Plateau, the sedentary ground tit (Parus humilis). This species has enhanced selection in lipid-specific metabolic pathways and hypoxia-inducible factor pathway (HIF-1). Comparative population genomics also revealed selection for larger body size in high altitudinal great tits. PMID:26404527
Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.
Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui
2017-12-09
Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.
Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith
2016-06-01
Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei
2017-09-01
Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam cell egress via suppression of SIRT1 signaling.
Silva, Elena; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas
2017-07-01
Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we propose that the underlying mechanisms involve trophoblast mTOR folate sensing resulting in inhibition of mTORC1 and mTORC2 and downregulation of placental amino acid transporters. © 2017 American Society for Nutrition.
Marshall, Stephen
2006-08-01
Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.
Maxwell, Thressi; Lee, Kyu Shik; Kim, Soyoung; Nam, Kyung-Soo
2018-04-01
Arctigenin, a member of the Asteraceae family, is a biologically active lignan that is consumed worldwide due to its several health benefits. However, its use may pose a problem for patients with estrogen receptor (ER)α-positive breast cancer, since studies have shown that arctigenin is a phytoestrogen that exerts a proliferative effect by binding to the ER. Thus, in this study, we examined the effect of arctigenin on ERα-positive MCF-7 human breast cancer cells to determine whether the consumption of arctigenin is safe for patients with breast cancer. First, we found that arctigenin inhibited the viability of the MCF-7 cells, and colony formation assay confirmed that this effect was cytotoxic rather than cytostatic. The cytotoxic effects were not mediated by cell cycle arrest, apoptosis, or necroptosis, despite DNA damage, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and phosphorylated H2A.X. An increase in lipidated LC3, a marker of autophagosome formation, was observed, indicating that autophagy was induced by arctigenin, which was found to be triggered by the inhibition of the mechanistic target of rapamycin (mTOR) pathway. We then examined the effects of arctigenin on ERα expression and determined whether it affects the sensitivity of the cells to tamoxifen, as tamoxifen is commonly used against hormone-responsive cancers and is known to act via the ERα. We found that treatment with arctigenin effectively downregulated ERα expression, which was found to be a consequence of the inhibition of the mTOR pathway. However, treatment with arctigenin in combination with tamoxifen did not affect the sensitivity of the cells to tamoxifen, but instead, exerted a synergistic effect. On the whole, our data indicate that the phytoestrogen, arctigenin, mainly targeted the mTOR pathway in ERα-positive MCF-7 human breast cancer cells, leading to autophagy-induced cell death and the downregulation of ERα expression. Furthermore, the synergistic effects between arctigenin and tamoxifen suggest that the consumption of arctigenin is not only safe for patients with hormone-sensitive cancers, but may also be an effective co-treatment.
Yu, Changning; Li, Yanjiao; Zhang, Bolin; Lin, Meng; Li, Jiaolong; Zhang, Lin; Wang, Tianjiao; Gao, Feng; Zhou, Guanghong
2016-02-24
Three iso-energetic and iso-nitrogenous diets were fed to finishing pigs for 28 days to investigate the mammalian target of rapamycin (mTOR) and ubiquitin-proteasome signaling pathways of skeletal muscle by altering compositions of dietary energy sources. Diet A, diet B, and diet C contained 44.1%, 37.6%, and 30.9% starch; 5.9%, 9.5%, and 14.3% ether extract (EE); and 12.6%, 15.4%, and 17.8% neutral detergent fiber (NDF), respectively. An increase of mRNA expression of MuRF1 (1.09 ± 0.10 vs 1.00 ± 0.08) and MAFbx (1.10 ± 0.06 vs 1.00 ± 0.11) and a decrease of concentrations of plasma insulin (8.2 ± 0.8 vs 10.8 ± 1.2) and glucose (5.76 ± 0.12 vs 6.43 ± 0.33) together with mRNA expression of IRS (0.78 ± 0.19 vs 1.01 ± 0.05) and Akt (0.92 ± 0.01 vs 1.00 ± 0.05) were observed in pigs fed diet C compared with diet A. Protein levels of total and phosphorylated mTOR (0.31 ± 0.04 vs 0.48 ± 0.03 and 0.39 ± 0.01 vs 0.56 ± 0.02), 4EBP1 (0.66 ± 0.06 vs 0.90 ± 0.09 and 0.60 ± 0.12 vs 0.84 ± 0.09), and S6K1 (0.66 ± 0.01 vs 0.89 ± 0.01 and 0.48 ± 0.03 vs 0.79 ± 0.02) were decreased; however, total and phosphorylated AMPK (0.96 ± 0.06 vs 0.64 ± 0.04 and 0.97 ± 0.09 vs 0.61 ± 0.09) were increased in pigs fed diet C compared with diet A. In conclusion, diet C suppressed the mTOR pathway and accelerated the ubiquitin-proteasome pathway in skeletal muscle of finishing pigs.
Ji, Jie; Tang, Junwei; Deng, Lei; Xie, Yu; Jiang, Runqiu; Li, Guoqiang; Sun, Beicheng
2015-12-15
Hepatocellular carcinoma (HCC) is well known as the sixth most common malignant tumor and the third leading cause of cancer-related deaths globally. LINC00152 was documented as an important long non-coding RNA (lncRNA) involved in the pathogenesis of gastric cancer; however, the detailed mechanism of action of LINC00152 remains unknown. Here, based on the increased level of LINC00152 in HCC tissues, we found that LINC00152 could promote cell proliferation in vitro and tumor growth in vivo. Furthermore, microarray-based analysis indicated that LINC00152 could activate the mechanistic target of rapamycin(mTOR) pathway by binding to the promoter of EpCAM through a cis-regulation, as confirmed by Gal4-λN/BoxB reporter system. Thus, LINC00152 might be involved in the oncogenesis of HCC by activating the mTOR signaling pathway and might be a novel index for clinical diagnosis in the future.
Huang, Shile
2014-01-01
Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.
Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissuemore » sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis. Interestingly, the mechanism by which rapamycin diminished RMS tumor growth involved simultaneous inhibition of mTOR and hedgehog (Hh) pathways. Diminution in these pathways in this model of RMS also inhibited epithelial mesenchymal transition (EMT) which then dampened the invasiveness of these tumors. Our data provide bases for using rapamycin either alone or in combination with traditional chemotherapeutic drugs to block the pathogenesis of high risk RMS.« less
Agarwal, Swati; Tiwari, Shashi Kant; Seth, Brashket; Yadav, Anuradha; Singh, Anshuman; Mudawal, Anubha; Chauhan, Lalit Kumar Singh; Gupta, Shailendra Kumar; Choubey, Vinay; Tripathi, Anurag; Kumar, Amit; Ray, Ratan Singh; Shukla, Shubha; Parmar, Devendra; Chaturvedi, Rajnish Kumar
2015-01-01
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell's compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure. PMID:26139607
Broekaart, Diede W M; van Scheppingen, Jackelien; Geijtenbeek, Karlijne W; Zuidberg, Mark R J; Anink, Jasper J; Baayen, Johannes C; Mühlebner, Angelika; Aronica, Eleonora; Gorter, Jan A; van Vliet, Erwin A
2017-08-01
Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome system, we investigated (immuno)proteasome expression during epileptogenesis, as well as the effects of the mTOR inhibitor rapamycin. The expression of constitutive (β1, β5) and immunoproteasome (β1i, β5i) subunits was investigated during epileptogenesis using immunohistochemistry in the electrical post-status epilepticus (SE) rat model for temporal lobe epilepsy (TLE). The effect of rapamycin was studied on (immuno)proteasome subunit expression in post-SE rats that were treated for 6 weeks. (Immuno)proteasome expression was validated in the brain tissue of patients who had SE or drug-resistant TLE and the effect of rapamycin was studied in primary human astrocyte cultures. In post-SE rats, increased (immuno)proteasome expression was detected throughout epileptogenesis in neurons and astrocytes within the hippocampus and piriform cortex and was most evident in rats that developed a progressive form of epilepsy. Rapamycin-treated post-SE rats had reduced (immuno)proteasome protein expression and a lower number of spontaneous seizures compared to vehicle-treated rats. (Immuno)proteasome expression was also increased in neurons and astrocytes within the human hippocampus after SE and in patients with drug-resistant TLE. In vitro studies using cultured human astrocytes showed that interleukin (IL)-1β-induced (immuno)proteasome gene expression could be attenuated by rapamycin. Because dysregulation of the (immuno)proteasome system is observed before the occurrence of spontaneous seizures in rats, is associated with progression of epilepsy, and can be modulated via the mTOR pathway, it may represent an interesting novel target for drug treatment in epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Dow, Eryn; Winship, Ingrid
2016-12-01
Birt-Hogg-Dube syndrome (BHD) is an autosomal dominant disease characterised by benign cutaneous lesions, pulmonary cysts, and an increased risk of renal tumors. This rare condition is due to a mutation in the folliculin (FLCN) gene on chromosome 17q11.2, which has a role in the mechanistic/mammalian target of rapamycin (mTOR) signaling pathway of tumorigenesis. This case illustrates a patient with BHD and a renal angiomyolipoma, a neoplastic lesion not usually associated with BHD but common in Tuberous Sclerosis Complex (TSC). There is both clinical and molecular overlap between BHD and TSC, which may arise from similarities in function of the TSC and FLCN proteins in the mTOR pathway; this case further demonstrates this potential correlation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
"Immune TOR-opathies," a Novel Disease Entity in Clinical Immunology.
Jung, Sophie; Gámez-Díaz, Laura; Proietti, Michele; Grimbacher, Bodo
2018-01-01
Primary immunodeficiencies (PIDs) represent a group of mostly monogenic disorders caused by loss- or gain-of-function mutations in over 340 known genes that lead to abnormalities in the development and/or the function of the immune system. However, mutations in different genes can affect the same cell-signaling pathway and result in overlapping clinical phenotypes. In particular, mutations in the genes encoding for members of the phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) signaling cascade or for molecules interacting with this pathway have been associated with different PIDs that are often characterized by the coexistence of both immune deficiency and autoimmunity. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR), which acts downstream of PI3K and AKT, is emerging as a key regulator of immune responses. It integrates a variety of signals from the microenvironment to control cell growth, proliferation, and metabolism. mTOR plays therefore a central role in the regulation of immune cells' differentiation and functions. Here, we review the different PIDs that share an impairment of the PI3K/AKT/mTOR/S6K pathway and we propose to name them "immune TOR-opathies" by analogy with a group of neurological disorders that has been originally defined by PB Crino and that are due to aberrant mTOR signaling (1). A better understanding of the role played by this complex intracellular cascade in the pathophysiology of "immune TOR-opathies" is crucial to develop targeted therapies.
The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells
Wang, Hai; Yu, Cuijuan; Gao, Xia; Welte, Thomas; Muscarella, Aaron M.; Tian, Lin; Zhao, Hong; Zhao, Zhen; Du, Shiyu; Tao, Jianning; Lee, Brendan; Westbrook, Thomas F.; Wong, Stephen T. C.; Jin, Xin; Rosen, Jeffrey M.; Osborne, C. Kent; Zhang, Xiang H.-F.
2014-01-01
Summary Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We further elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human datasets analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases. Significance In advanced stages, breast cancer bone metastases are driven by paracrine crosstalk among cancer cells, osteoblasts, and osteoclasts, which constitute a vicious osteolytic cycle. Current therapies targeting this process limit tumor progression, but do not improve patient survival. On the other hand, bone micrometastases may remain indolent for years before activating the vicious cycle, providing a therapeutic opportunity to prevent macrometastases. Here, we show that bone colonization is initiated in a microenvironment niche exhibiting active osteogenesis. Cancer and osteogenic cells form heterotypic adherens junctions, which enhance mTOR activity and drive early-stage bone colonization prior to osteolysis. These results reveal a strong connection between osteogenesis and micrometastasis and suggest potential therapeutic targets to prevent bone macrometastases. PMID:25600338
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.
Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R
2016-03-15
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.
Hung, Chao-Ming; Lin, Ying-Chao; Liu, Liang-Chih; Kuo, Sheng-Chu; Ho, Chi-Tang; Way, Tzong-Der
2016-12-25
CWF-145, a synthetic 2-phenyl-4-quinolone derivative exerted potent cytotoxicity against prostate cancer. CWF-145 inhibited prostate cancer cell lines PC-3, DU-145 and LNCap. It had a very low IC 50 about 200 nM against castrate-resistant prostate cancer (CRPC) PC-3. We found that CWF-145 had a similar effect to clinical trial antimitotic agents in cancer cells and normal cells. CWF-145 arrested cell cycle at G2/M phase by binding to the β-tubulin at the colchicine-binding site then disrupted microtubule polymerization. Furthermore, the damaged microtubule affected the Akt/mammalian target of rapamycin (mTOR) signaling pathway. Our data showed that CWF-145 activated Akt and mTOR expression to increase emi1 accumulation and inhibit APC. The increased cyclin B1 and securin arrested cell cycle at G2/M phase. Moreover, we showed that Akt activation markedly increased resistance to microtubule-directed agents, including CWF-145, colchicine, and paclitaxel. Interestingly, rapamycin inhibited Akt-mediated therapeutic resistance, indicating that these effects were dependent on mTOR. Taken together, these observations suggest that activation of the Akt/mTOR signaling pathway can promote resistance to chemotherapeutic agents that do not directly target metabolic regulation. These data may provide insight into potentially synergistic combinations of anticancer therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload
Riedl, Isabelle; Osler, Megan E.; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A.; Chibalin, Alexander V.
2016-01-01
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5′-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3225Q and AMPKγ3-knockout (Prkag3−/−) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. PMID:26758685
AMPK induced memory improvements in the diabetic population: A case study.
Halikas, Alicia; Gibas, Kelly J
2018-04-27
Diabetics in mid-life carry a 1.5 times higher risk of developing Alzheimer's disease than those diagnosed with diabetes (T2D) later in life [1]. Recent research points to accelerated cognitive decline within a range of 20%-50% for middle-aged diabetics as compared to non-diabetic populations [2,3]. Metabolic syndrome (MetS), a type 2 diabetes (T2D) precursor, is also linked to MCI and AD pathologies via hypo-metabolic brain circuitry that inhibits glucose metabolism and attenuates cognitive function [4]. Dysregulation of intracellular and extracellular signaling as mediated by the mTOR and AMPK pathways is the result. These critical nutrient sensing pathways modulate epigenetic shifts in the genome by channeling fuel substrates either towards mitochondrial fatty acid oxidation (AMPK) or cytosolic glycolysis and substrate level phosphorylation (mTOR) [5]. This case study was designed to examine the link between peripheral insulin resistance and early stage memory loss in a type 2 diabetic male. Reactivating the AMPK pathway via induced and controlled nutritional ketosis combined with high intensity interval training (HIIT) (in order to inhibit mTOR signaling) were primary features of the 10 week intervention. Post intervention results revealed statistically significant reductions in HgA1c, fasting insulin and HOMA-IR (homeostatic model assessment of insulin resistance). Restoring peripheral and hypothalamic insulin sensitivity by way of AMPK activation may restore memory function, improve neuroplasticity, and normalize MetS biomarkers (Demetrius and Driver, 2014; [4,6]). Copyright © 2018. Published by Elsevier Ltd.
Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro
2018-06-01
Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Effect of beta-agonists on LAM progression and treatment.
Le, Kang; Steagall, Wendy K; Stylianou, Mario; Pacheco-Rodriguez, Gustavo; Darling, Thomas N; Vaughan, Martha; Moss, Joel
2018-01-30
Lymphangioleiomyomatosis (LAM), a rare disease of women, is associated with cystic lung destruction resulting from the proliferation of abnormal smooth muscle-like LAM cells with mutations in the tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2 The mutant genes and encoded proteins are responsible for activation of the mechanistic target of rapamycin (mTOR), which is inhibited by sirolimus (rapamycin), a drug used to treat LAM. Patients who have LAM may also be treated with bronchodilators for asthma-like symptoms due to LAM. We observed stabilization of forced expiratory volume in 1 s over time in patients receiving sirolimus and long-acting beta-agonists with short-acting rescue inhalers compared with patients receiving only sirolimus. Because beta-agonists increase cAMP and PKA activity, we investigated effects of PKA activation on the mTOR pathway. Human skin TSC2 +/- fibroblasts or LAM lung cells incubated short-term with isoproterenol (beta-agonist) showed a sirolimus-independent increase in phosphorylation of S6, a downstream effector of the mTOR pathway, and increased cell growth. Cells incubated long-term with isoproterenol, which may lead to beta-adrenergic receptor desensitization, did not show increased S6 phosphorylation. Inhibition of PKA blocked the isoproterenol effect on S6 phosphorylation. Thus, activation of PKA by beta-agonists increased phospho-S6 independent of mTOR, an effect abrogated by beta-agonist-driven receptor desensitization. In agreement, retrospective clinical data from patients with LAM suggested that a combination of bronchodilators in conjunction with sirolimus may be preferable to sirolimus alone for stabilization of pulmonary function.
IDO inhibits a tryptophan sufficiency signal that stimulates mTOR
Metz, Richard; Rust, Sonja; DuHadaway, James B.; Mautino, Mario R.; Munn, David H.; Vahanian, Nicholas N.; Link, Charles J.; Prendergast, George C.
2012-01-01
Tryptophan catabolism by indoleamine 2,3-dioxygenase (IDO) alters inflammation and favors T-cell tolerance in cancer, but the underlying molecular mechanisms remain poorly understood. The integrated stress response kinase GCN2, a sensor of uncharged tRNA that is activated by amino acid deprivation, is recognized as an important effector of the IDO pathway. However, in a mouse model of inflammatory carcinogenesis, ablation of Gcn2 did not promote resistance against tumor development like the absence of IDO does, implying the existence of additional cancer-relevant pathways that operate downstream of IDO. Addressing this gap in knowledge, we report that the IDO-mediated catabolism of tryptophan also inhibits the immunoregulatory kinases mTOR and PKC-Θ, along with the induction of autophagy. These effects were relieved specifically by tryptophan but also by the experimental agent 1-methyl-D-tryptophan (D-1MT, also known as NLG8189), the latter of which reversed the inhibitory signals generated by IDO with higher potency. Taken together, our results implicate mTOR and PKC-Θ in IDO-mediated immunosuppressive signaling, and they provide timely insights into the unique mechanism of action of D-1MT as compared with traditional biochemical inhibitors of IDO. These findings are important translationally, because they suggest broader clinical uses for D-1MT against cancers that overexpress any tryptophan catabolic enzyme (IDO, IDO2 or TDO). Moreover, they define mTOR and PKC-Θ as candidate pharmacodynamic markers for D-1MT responses in patients recruited to ongoing phase IB/II cancer trials, addressing a current clinical need. PMID:23264892
WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian
2017-01-01
Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439
Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yang; Pang, Xiaoyan; Dong, Mei
Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less
Long-lived rodents reveal signatures of positive selection in genes associated with lifespan
Görlach, Matthias; Müller, Christine; Schwab, Matthias; Kraus, Johann; Cellerino, Alessandro; Hildebrandt, Thomas
2018-01-01
The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were “cellular respiration” and “metal ion homeostasis”, as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination. PMID:29570707
Long-lived rodents reveal signatures of positive selection in genes associated with lifespan.
Sahm, Arne; Bens, Martin; Szafranski, Karol; Holtze, Susanne; Groth, Marco; Görlach, Matthias; Calkhoven, Cornelis; Müller, Christine; Schwab, Matthias; Kraus, Johann; Kestler, Hans A; Cellerino, Alessandro; Burda, Hynek; Hildebrandt, Thomas; Dammann, Philip; Platzer, Matthias
2018-03-01
The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were "cellular respiration" and "metal ion homeostasis", as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination.
Das, Ranjan; Xu, Shanhua; Nguyen, Tuyet Thi; Quan, Xianglan; Choi, Seong-Kyung; Kim, Soo-Jin; Lee, Eun Young; Cha, Seung-Kuy; Park, Kyu-Sang
2015-12-25
TGF-β is a pleiotropic cytokine that accumulates during kidney injuries, resulting in various renal diseases. We have reported previously that TGF-β1 induces the selective up-regulation of mitochondrial Nox4, playing critical roles in podocyte apoptosis. Here we investigated the regulatory mechanism of Nox4 up-regulation by mTORC1 activation on TGF-β1-induced apoptosis in immortalized podocytes. TGF-β1 treatment markedly increased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream targets p70S6K and 4EBP1. Blocking TGF-β receptor I with SB431542 completely blunted the phosphorylation of mTOR, p70S6K, and 4EBP1. Transient adenoviral overexpression of mTOR-WT and constitutively active mTORΔ augmented TGF-β1-treated Nox4 expression, reactive oxygen species (ROS) generation, and apoptosis, whereas mTOR kinase-dead suppressed the above changes. In addition, knockdown of mTOR mimicked the effect of mTOR-KD. Inhibition of mTORC1 by low-dose rapamycin or knockdown of p70S6K protected podocytes through attenuation of Nox4 expression and subsequent oxidative stress-induced apoptosis by TGF-β1. Pharmacological inhibition of the MEK-ERK cascade, but not the PI3K-Akt-TSC2 pathway, abolished TGF-β1-induced mTOR activation. Inhibition of either ERK1/2 or mTORC1 did not reduce the TGF-β1-stimulated increase in Nox4 mRNA level but significantly inhibited total Nox4 expression, ROS generation, and apoptosis induced by TGF-β1. Moreover, double knockdown of Smad2 and 3 or only Smad4 completely suppressed TGF-β1-induced ERK1/2-mTORactivation. Our data suggest that TGF-β1 increases translation of Nox4 through the Smad-ERK1/2-mTORC1 axis, which is independent of transcriptional regulation. Activation of this pathway plays a crucial role in ROS generation and mitochondrial dysfunction, leading to podocyte apoptosis. Therefore, inhibition of the ERK1/2-mTORC1 pathway could be a potential therapeutic and preventive target in proteinuric and chronic kidney diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jintao; Zhu, Dexiao; Zhang, Jing
Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less
Sarkar, Sovan
2013-10-01
Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.
Jerusalem, Guy; Rorive, Andree; Collignon, Joelle
2014-01-01
Many systemic treatment options are available for advanced breast cancer, including endocrine therapy, chemotherapy, anti-human epidermal growth factor receptor 2 (HER2) therapy, and other targeted agents. Recently, everolimus, a mammalian target of rapamycin (mTOR) inhibitor, combined with exemestane, an aromatase inhibitor, has been approved in Europe and the USA for patients suffering from estrogen receptor-positive, HER2-negative advanced breast cancer previously treated by a nonsteroidal aromatase inhibitor, based on the results of BOLERO-2 (Breast cancer trials of OraL EveROlimus). This study showed a statistically significant and clinically meaningful improvement in median progression-free survival. Results concerning the impact on overall survival are expected in the near future. This clinically oriented review focuses on the use of mTOR inhibitors in breast cancer. Results reported with first-generation mTOR inhibitors (ridaforolimus, temsirolimus, everolimus) are discussed. The current and potential role of mTOR inhibitors is reported according to breast cancer subtype (estrogen receptor-positive HER2-negative, triple-negative, and HER2-positive ER-positive/negative disease). Everolimus is currently being evaluated in the adjuvant setting in high-risk estrogen receptor-positive, HER2-negative early breast cancer. Continuing mTOR inhibition or alternatively administering other drugs targeting the phosphatidylinositol-3-kinase/protein kinase B-mTOR pathway after progression on treatments including an mTOR inhibitor is under evaluation. Potential biomarkers to select patients showing a more pronounced benefit are reviewed, but we are not currently using these biomarkers in routine practice. Subgroup analysis of BOLERO 2 has shown that the benefit is consistent in all subgroups and that it is impossible to select patients not benefiting from addition of everolimus to exemestane. Side effects and impact on quality of life are other important issues discussed in this review. Second-generation mTOR inhibitors and dual mTOR-phosphatidylinositol-3-kinase inhibitors are currently being evaluated in clinical trials. PMID:24833916
Shives, Katherine D; Beatman, Erica L; Chamanian, Mastooreh; O'Brien, Caitlin; Hobson-Peters, Jody; Beckham, J David
2014-08-01
Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states of the United States and is now the leading cause of epidemic encephalitis in North America. As a member of the family Flaviviridae, WNV is part of a group of clinically important human pathogens, including dengue virus and Japanese encephalitis virus. The members of this family of positive-sense, single-stranded RNA viruses have limited coding capacity and are therefore obligated to co-opt a significant amount of cellular factors to translate their genomes effectively. Our previous work has shown that WNV growth was independent of macroautophagy activation, but the role of the evolutionarily conserved mammalian target of rapamycin (mTOR) pathway during WNV infection was not well understood. mTOR is a serine/threonine kinase that acts as a central cellular censor of nutrient status and exercises control of vital anabolic and catabolic cellular responses such as protein synthesis and autophagy, respectively. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection and that pharmacologic inhibition of mTOR (KU0063794) significantly reduced WNV growth. We used an inducible Raptor and Rictor knockout mouse embryonic fibroblast (MEF) system to further define the role of mTOR complexes 1 and 2 in WNV growth and viral protein synthesis. Following inducible genetic knockout of the major mTOR cofactors raptor (TOR complex 1 [TORC1]) and rictor (TORC2), we now show that TORC1 supports flavivirus protein synthesis via cap-dependent protein synthesis pathways and supports subsequent WNV growth. Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states in the United States and is now the leading cause of epidemic encephalitis in North America. Currently, the mechanism by which flaviviruses such as WNV translate their genomes in host cells is incompletely understood. Elucidation of the host mechanisms required to support WNV genome translation will provide broad understanding for the basic mechanisms required to translate capped viral RNAs. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection. Following inducible genetic knockout of the major mTOR complex cofactors raptor (TORC1) and rictor (TORC2), we now show that TORC1 supports WNV growth and protein synthesis. This study demonstrates the requirement for TORC1 function in support of WNV RNA translation and provides insight into the mechanisms underlying flaviviral RNA translation in mammalian cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Huang, H; Qiu, W; Zhu, M; Zhang, Y; Cui, W H; Xing, W; Li, X Y; An, T C; Chen, M J; Guo, W; Xu, X
2016-10-20
Objective: To explore the changes in the expressions of key proteins of the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway in skin tissue and wound tissue of diabetic rats, and to elucidate the associated mechanisms. Methods: Seventy-eight SD rats aged from 7 to 8 weeks were divided into diabetes group and non-diabetes group according to the random number table, with 39 rats in each group. Rats in diabetes group were intraperitoneally injected with 20 mg/mL streptozotocin fluid in the dose of 65 mg/kg (dissolved in citrate buffer solution) for once to establish the model of diabetes mellitus. Rats in non-diabetes group were injected with the equivalent volume of citrate buffer solution in the same way. Three rats of each group were respectively selected in each week from post injection week (PIW) 1 to 8 for collection of full-thickness skin samples on the back with area approximately of 1.0 cm×1.0 cm to determine epidermal thickness with HE staining. Fifteen rats of each group were inflicted with full-thickness skin defect by resection of skin as above in PIW 1. Three rats of each group were respectively sacrificed immediately after injury and on post injury day (PID) 1, 3, 5 and 7. One piece of skin tissue around the wound edge in each rat was cut off immediately after injury, and wound tissue in each rat was cut off from PID 1 to 7. One part of the tissue was used for determination of protein expression levels of Akt, phosphorylated Akt, mTOR, and phosphorylated mTOR in skin tissue and wound tissue with Western blotting. Surplus tissue was used for observation of expressions of phosphorylated Akt and vimentin in skin tissue and wound tissue with immunofluorescent staining. Data were processed with analysis of variance of factorial design and multiple t test. Results: (1) The epidermal thicknesses in rats between the two groups were similar in PIW 1 and 2 (with t values respectively 0.25 and 1.33, P values above 0.05). From PIW 3 on, the epidermal thicknesses were significantly thinned in rats of diabetes group as compared with those of non-diabetes group (with t values from 4.44 to 9.71, P <0.05 or P <0.01). (2) Compared with those in skin tissue immediately after injury, the protein expression levels of Akt, phosphorylated Akt, mTOR, and phosphorylated mTOR in wound tissue of rats in non-diabetes group were increased remarkably from PID 1 to 7 (except for mTOR on PID 3, with t values from 3.75 to 21.44, P <0.05 or P <0.01). Compared with those in skin tissue immediately after injury, the protein expression levels of Akt and mTOR in wound tissue of rats in diabetes group were not significantly changed from PID 1 to 7 (except for mTOR on PID 1, with t values from 0.03 to 2.32, P values above 0.05), but the protein expression levels of phosphorylated Akt and phosphorylated mTOR in wound tissue were increased remarkably from PID 1 to 7 (except for phosphorylated Akt on PID 1, with t values from 3.79 to 8.11, P <0.05 or P <0.01). The protein expression levels of Akt in skin tissue of rats between the two groups were similar immediately after injury ( t =0.66, P >0.05). However, the protein expression level of phosphorylated Akt in skin tissue of rats in diabetes group immediately after injury (0.310±0.035) was significantly decreased as compared with that in non-diabetes group (0.790±0.032, t =6.20, P < 0.05). Compared with those in non-diabetes group, the protein expression levels of mTOR and phosphorylated mTOR in skin tissue of rats in diabetes group immediately after injury and the protein expression levels of Akt, phosphorylated Akt, mTOR, and phosphorylated mTOR in wound tissue from PID 1 to 7 were all significantly decreased (with t values from 3.52 to 13.44, P <0.05 or P <0.01). (3) Compared with those in skin tissue immediately after injury, the expressions of phosphorylated Akt and vimentin in wound tissue of rats in the two groups from PID 1 to 7 presented a gradually increased tendency, however, the expressions of these indexes in skin tissue and wound tissue of rats in diabetes group were significantly weaker than those in non-diabetes group. Conclusions: Trauma can stimulate activation of Akt/mTOR signaling pathway, and upregulate the expression of key proteins. The attenuation of this signaling pathway in skin tissue and wound tissue of diabetes mellitus may be the key mechanism for causing impaired healing of wound.
New targeted therapies for indolent B-cell malignancies in older patients.
Krem, Maxwell M; Gopal, Ajay K
2015-01-01
Molecularly targeted agents have become an established component of the treatment of indolent B-cell malignancies (iNHL). iNHL disproportionately affects older adults, so treatments that have excellent tolerability and efficacy across multiple lines of therapy are in demand. The numbers and classes of targeted therapies for iNHL have proliferated rapidly in recent years; classes of agents that show promise for older patients with iNHL include anti-CD20 antibodies, phosphatidyl-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway inhibitors, immunomodulators, proteasome inhibitors, epigenetic modulators, and immunotherapies. Here, we review the proposed mechanisms of action, efficacy, and tolerability of novel agents for iNHL, with an emphasis on their applicability to older patients.
Gedaly, Roberto; Angulo, Paul; Hundley, Jonathan; Daily, Michael F; Chen, Changguo; Evers, B Mark
2012-08-01
Deregulated Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation. (3)H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) phosphorylation. EGF-stimulated AKT (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited all the tested kinases in the Ras/Raf /MAPK and PI3K/AKT/mTOR pathways. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.
The GSK3 Signaling Axis Regulates Adaptive Glutamine Metabolism in Lung Squamous Cell Carcinoma.
Momcilovic, Milica; Bailey, Sean T; Lee, Jason T; Fishbein, Michael C; Braas, Daniel; Go, James; Graeber, Thomas G; Parlati, Francesco; Demo, Susan; Li, Rui; Walser, Tonya C; Gricowski, Michael; Shuman, Robert; Ibarra, Julio; Fridman, Deborah; Phelps, Michael E; Badran, Karam; St John, Maie; Bernthal, Nicholas M; Federman, Noah; Yanagawa, Jane; Dubinett, Steven M; Sadeghi, Saman; Christofk, Heather R; Shackelford, David B
2018-05-14
Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/β signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/β protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase. Copyright © 2018 Elsevier Inc. All rights reserved.
Beauchamp, Elspeth M.; Kosciuczuk, Ewa M.; Serrano, Ruth; Nanavati, Dhaval; Swindell, Elden P.; Viollet, Benoit; O'Halloran, Thomas V.; Altman, Jessica K.; Platanias, Leonidas C.
2014-01-01
Arsenic trioxide (As2O3) exhibits potent antineoplastic effects and is used extensively in clinical oncology for the treatment of a subset of patients with acute myeloid leukemia (AML). Although As2O3 is known to regulate activation of several signaling cascades, the key events, accounting for its anti-leukemic properties, remain to be defined. We provide evidence that arsenic can directly bind to cysteine 299 in AMPKα and inhibit its activity. This inhibition of AMPK by arsenic is required in part for its cytotoxic effects on primitive leukemic progenitors from patients with AML, while concomitant treatment with an AMPK activator antagonizes in vivo the arsenic-induced antileukemic effects in a xenograft AML mouse model. A consequence of AMPK inhibition is activation of the mTOR pathway as a negative regulatory feedback loop. However, when AMPK expression is lost, arsenic-dependent activation of the kinase RSK downstream of MAPK activity compensates the generation of regulatory feedback signals through phosphorylation of downstream mTOR targets. Thus, therapeutic regimens with arsenic trioxide will need to include inhibitors of both the mTOR and RSK pathways in combination to prevent engagement of negative feedback loops and maximize antineoplastic responses. PMID:25344585
2012-01-01
Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle) mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy) in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP) and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1. PMID:22974011
Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.
2007-01-01
New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454
Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan
2018-04-06
Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder.
Onore, Charity; Yang, Houa; Van de Water, Judy; Ashwood, Paul
2017-01-01
Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.
Subbiah, Vivek; Brown, Robert E; Jiang, Yunyun; Buryanek, Jamie; Hayes-Jordan, Andrea; Kurzrock, Razelle; Anderson, Pete M
2013-01-01
Desmoplastic small round cell tumor (DSRCT) is a rare sarcoma in adolescents and young adults. The hallmark of this disease is a EWS-WT1 translocation resulting from apposition of the Ewing's sarcoma (EWS) gene with the Wilms' tumor (WT1) gene. We performed morphoproteomic profiling of DSRCT (EWS-WT1), Ewing's sarcoma (EWS-FLI1) and Wilms' tumor (WT1) to better understand the signaling pathways for selecting future targeted therapies. This pilot study assessed patients with DSRCT, Wilms' tumor and Ewing's sarcoma. Morphoproteomics and immunohistochemical probes were applied to detect: p-mTOR (Ser2448); p-Akt (Ser473); p-ERK1/2 (Thr202/Tyr204); p-STAT3 (Tyr 705); and cell cycle-related analytes along with their negative controls. In DSRCT the PI3K/Akt/mTOR pathway is constitutively activated by p-Akt (Ser 473) expression in the nuclear compartment of the tumor cells and p-mTOR phosphorylated on Ser 2448, suggesting mTORC2 (rictor+mTOR) as the dominant form. Ewing's sarcoma had upregulated p-Akt and p-mTOR, predominantly mTORC2. In Wilm's tumor, the mTOR pathway is also activated with most tumor cells moderately expressing p-mTOR (Ser 2448) in plasmalemmal and cytoplasmic compartments. This coincides with the constitutive activation of one of the downstream effectors of the mTORC1 signaling pathway, namely p-p70S6K (Thr 389). There was constitutive activation of the Ras/Raf/ERK pathway p-ERK 1/2 (Thr202/Tyr204) expression in the Wilms tumor and metastatic Ewing's sarcoma, but not in the DSRCT. MORPHOPROTEOMIC TUMOR ANALYSES REVEALED CONSTITUTIVE ACTIVATION OF THE MTOR PATHWAY AS EVIDENCED BY: (a) expression of phosphorylated (p)-mTOR, p-p70S6K; (b) mTORC 2 in EWS and DSRCT; (c) ERK signaling was seen in the advanced setting indicating these as resistance pathways to IGF1R related therapies. This is the first morphoproteomic study of such pathways in these rare malignancies and may have potential therapeutic implications. Further study using morphoproteomic assessments of these tumors are warranted.
Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu
2016-01-01
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.
Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu
2016-01-01
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640
Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells
Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.
2013-01-01
Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148
Nishitani, Shinobu; Horie, Mayumi; Ishizaki, Sonoko; Yano, Hirohisa
2013-01-01
Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy. PMID:24312415
MTOR-driven quasi-programmed aging as a disposable soma theory
2013-01-01
If life were created by intelligent design, we would indeed age from accumulation of molecular damage. Repair is costly and limited by energetic resources, and we would allocate resources rationally. But, albeit elegant, this design is fictional. Instead, nature blindly selects for short-term benefits of robust developmental growth. “Quasi-programmed” by the blind watchmaker, aging is a wasteful and aimless continuation of developmental growth, driven by nutrient-sensing, growth-promoting signaling pathways such as MTOR (mechanistic target of rapamycin). A continuous post-developmental activity of such gerogenic pathways leads to hyperfunctions (aging), loss of homeostasis, age-related diseases, non-random organ damage and death. This model is consistent with a view that (1) soma is disposable, (2) aging and menopause are not programmed and (3) accumulation of random molecular damage is not a cause of aging as we know it. PMID:23708516
Blagosklonny, Mikhail V
2013-06-15
If life were created by intelligent design, we would indeed age from accumulation of molecular damage. Repair is costly and limited by energetic resources, and we would allocate resources rationally. But, albeit elegant, this design is fictional. Instead, nature blindly selects for short-term benefits of robust developmental growth. "Quasi-programmed" by the blind watchmaker, aging is a wasteful and aimless continuation of developmental growth, driven by nutrient-sensing, growth-promoting signaling pathways such as MTOR (mechanistic target of rapamycin). A continuous post-developmental activity of such gerogenic pathways leads to hyperfunctions (aging), loss of homeostasis, age-related diseases, non-random organ damage and death. This model is consistent with a view that (1) soma is disposable, (2) aging and menopause are not programmed and (3) accumulation of random molecular damage is not a cause of aging as we know it.
Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian
2014-10-01
The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.
Curi, Dany A.; Beauchamp, Elspeth M.; Blyth, Gavin T.; Arslan, Ahmet Dirim; Donato, Nicholas J.; Giles, Francis J.; Altman, Jessica K.; Platanias, Leonidas C.
2015-01-01
We investigated the efficacy of targeting the PIM kinase pathway in Philadelphia chromosome-positive (Ph+) leukemias. We provide evidence that inhibition of PIM, with the pan-PIM inhibitor SGI-1776, results in suppression of classic PIM effectors and also elements of the mTOR pathway, suggesting interplay between PIM and mTOR signals. Our data demonstrate that PIM inhibition enhances the effects of imatinib mesylate on Ph+ leukemia cells. We also found that PIM inhibition results in suppression of leukemic cell proliferation and induction of apoptosis of Ph+ leukemia cells, including those resistant to imatinib mesylate. Importantly, inhibition of PIM results in enhanced suppression of primary leukemic progenitors from patients with CML. Altogether these findings suggest that pharmacological PIM targeting may provide a unique therapeutic approach for the treatment of Ph+ leukemias. PMID:26375673
Yui, Kunio; Sato, Atsushi; Imataka, George
2015-01-01
Mitochondria are organelles that play a central role in processes related to cellular viability, such as energy production, cell growth, cell death via apoptosis, and metabolism of reactive oxygen species (ROS). We can observe behavioral abnormalities relevant to autism spectrum disorders (ASDs) and their recovery mediated by the mTOR inhibitor rapamycin in mouse models. In Tsc2(+/-) mice, the transcription of multiple genes involved in mTOR signaling is enhanced, suggesting a crucial role of dysregulated mTOR signaling in the ASD model. This review proposes that the mTOR inhibitor may be useful for the pharmacological treatment of ASD. This review offers novel insights into mitochondrial dysfunction and the related impaired glutathione synthesis and lower detoxification capacity. Firstly, children with ASD and concomitant mitochondrial dysfunction have been reported to manifest clinical symptoms similar to those of mitochondrial disorders, and it therefore shows that the clinical manifestations of ASD with a concomitant diagnosis of mitochondrial dysfunction are likely due to these mitochondrial disorders. Secondly, the adenosine triphosphate (ATP) production/oxygen consumption pathway may be a potential candidate for preventing mitochondrial dysfunction due to oxidative stress, and disruption of ATP synthesis alone may be related to impaired glutathione synthesis. Finally, a decrease in total antioxidant capacity may account for ASD children who show core social and behavioral impairments without neurological and somatic symptoms.
Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo
2016-01-01
An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601
Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy.
Wang, Zhao-Jun; Zhang, Hai-Bin; Chen, Cheng; Huang, Hao; Liang, Jian-Xia
2018-02-17
Accumulation of advanced glycation end products (AGEs) in articular cartilage is thought to represent a major risk factor for osteoarthritis development. In this study we aimed to probe the role of AGEs in human chondrocytes and to determine the impact of the peroxisome proliferator-activated receptor-γ (PPARG) on AGEs-induced cell autophagy. Cell viability was measured after human chondrocytes were treated with different concentrations of AGEs with or without the PPARG inhibitor, T0070907, or agonist, pioglitazone. Autophagy activation markers (MAP2LC3, BECN1 and SQSTM1/P62), expression of PPARG and the phosphorylation levels of Akt/MTOR were determined by Western blotting; autophagosome formation was analyzed by transmission electron microscopy (TEM); autophagic flux was detected with mRFP-GFP-LC3 tandem construct. Low doses of AGEs over a short amount of time stimulated chondrocyte proliferation and autophagy by limiting phosphorylation of Akt/MTOR signaling. The addition of PPARG inhibitor T0070907 lead to defective autophagy. High dose and long exposure to AGEs inhibited cell viability and autophagy by increasing phosphorylation levels of Akt/MTOR signaling. The agonist, pioglitazone, was shown to protect cell autophagy in a dose-dependent manner. Our findings suggest AGEs can downregulate PPARG and that PPARG maintains cell viability by activating the Akt/MTOR signaling pathway as well as inducing chondrocyte autophagy. © 2018 International Federation for Cell Biology.
NASA Astrophysics Data System (ADS)
Dai, Jie; Wu, Shan; Kong, Yan; Chi, Zhihong; Si, Lu; Sheng, Xinan; Cui, Chuanliang; Fang, Jing; Zhang, Jue; Guo, Jun
2017-01-01
The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma.
Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing.
Castilho, R M; Squarize, C H; Gutkind, J S
2013-09-01
The molecular circuitries controlling the process of skin wound healing have gained new significant insights in recent years. This knowledge is built on landmark studies on skin embryogenesis, maturation, and differentiation. Furthermore, the identification, characterization, and elucidation of the biological roles of adult skin epithelial stem cells and their influence in tissue homeostasis have provided the foundation for the overall understanding of the process of skin wound healing and tissue repair. Among numerous signaling pathways associated with epithelial functions, the PI3K/Akt/mTOR signaling route has gained substantial attention with the generation of animal models capable of dissecting individual components of the pathway, thereby providing a novel insight into the molecular framework underlying skin homeostasis and tissue regeneration. In this review, we focus on recent findings regarding the mechanisms involved in wound healing associated with the upregulation of the activity of the PI3K/Akt/mTOR circuitry. This review highlights critical findings on the molecular mechanisms controlling the activation of mTOR, a downstream component of the PI3K-PTEN pathway, which is directly involved in epithelial migration and proliferation. We discuss how this emerging information can be exploited for the development of novel pharmacological intervention strategies to accelerate the healing of critical size wounds. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Practical management of everolimus-related toxicities in patients with advanced solid tumors.
Grünwald, Viktor; Weikert, Steffen; Pavel, Marianne E; Hörsch, Dieter; Lüftner, Diana; Janni, Wolfgang; Geberth, Matthias; Weber, Matthias M
2013-01-01
Everolimus is an orally administered inhibitor of the mammalian target of rapamycin (mTOR), an intracellular protein kinase downstream of the phosphatidylinositol 3-kinase/AKT pathway involved in key components of tumorigenesis, including cell growth, proliferation, and angiogenesis. In the advanced cancer setting, based on favorable results from phase III trials, everolimus is indicated for the treatment of advanced renal cell carcinoma, advanced neuroendocrine tumors of pancreatic origin, and advanced hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. Additional oncology indications for everolimus include renal angiomyolipoma with tuberous sclerosis complex and subependymal giant-cell astrocytoma. Although it is generally well tolerated, with most adverse events of mild to moderate severity and manageable, everolimus exhibits a distinct adverse event profile that warrants guidance for proper diagnostic and medical management. This guidance is particularly important given the potential for widespread long-term use of everolimus. This review will focus on the most relevant toxicities associated with mTOR inhibitors and on their management. Practical treatment recommendations are presented for stomatitis, noninfectious pneumonitis, rash, selected metabolic abnormalities, and infections. Provided these events are rapidly identified and treated, the vast majority should resolve with minimal effect on treatment outcomes and patients' quality of life. Copyright © 2013 S. Karger AG, Basel.
Peng, Ke-Zheng; Ke, Yu; Zhao, Qi; Tian, Fei; Liu, Hong-Min; Hou, Guiqin; Lu, Zhaoming
2017-09-15
Hyperactivation of mTOR signaling pathway has been viewed as a significant molecular pathogenesis of cancer. However, inhibition of mTOR by rapamycin and its analogs could induce numerous negative feedback loops to attenuate their therapeutic efficacy. As a traditional Chinese herbal medicine, Rabdosia rubescens has been used to treat esophageal squamous cell carcinoma (ESCC) for hundreds of years, and its major effective component is oridonin. Here we reported that OP16, a novel analog of oridonin, showed potent inhibition of cell proliferation and Akt phosphorylation in ESCC cells. The combination of OP16 and rapamycin possesses synergistic anti-proliferative and pro-apoptotic effects both in ESCC cells and ESCC xenografts, and no obvious adverse effect was observed in vivo. Mechanistic analysis revealed that OP16 could inhibit rapamycin-induced Akt activation through the p70S6K-mediated negative feedback loops, and the combination of OP16 and rapamycin was more effective in activating caspase-dependent apoptotic signaling cascade. This study supports the combined use of OP16 with rapamycin as a feasible and effective therapeutic approach for future treatment of ESCC. Copyright © 2017 Elsevier Inc. All rights reserved.
You, Jae-Sung; Lincoln, Hannah C; Kim, Chan-Ran; Frey, John W; Goodman, Craig A; Zhong, Xiao-Ping; Hornberger, Troy A
2014-01-17
The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.
Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil
Menendez, Javier A.; Joven, Jorge; Aragonès, Gerard; Barrajón-Catalán, Enrique; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Camps, Jordi; Corominas-Faja, Bruna; Cufí, Sílvia; Fernández-Arroyo, Salvador; Garcia-Heredia, Anabel; Hernández-Aguilera, Anna; Herranz-López, María; Jiménez-Sánchez, Cecilia; López-Bonet, Eugeni; Lozano-Sánchez, Jesús; Luciano-Mateo, Fedra; Martin-Castillo, Begoña; Martin-Paredero, Vicente; Pérez-Sánchez, Almudena; Oliveras-Ferraros, Cristina; Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Quirantes-Piné, Rosa; Rull, Anna; Tomás-Menor, Laura; Vazquez-Martin, Alejandro; Alonso-Villaverde, Carlos; Micol, Vicente; Segura-Carretero, Antonio
2013-01-01
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the “defective design” of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the “xenohormesis hypothesis,” which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of “immortal” cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly “repair” the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer. PMID:23370395
Bullova, Petra; Nölting, Svenja; Turkova, Hana; Powers, James F.; Liu, Qingsong; Guichard, Sylvie; Tischler, Arthur S.; Grossman, Ashley B.
2013-01-01
Several lines of evidence, including the recent discovery of novel susceptibility genes, point out an important role for the mammalian target of rapamycin (mTOR) signaling pathway in the development of pheochromocytoma. Analyzing a set of pheochromocytomas from patients with different genetic backgrounds, we observed and confirmed a significant overexpression of key mTOR complex (mTORC) signaling mediators. Using selective ATP-competitive inhibitors targeting both mTORC1 and mTORC2, we significantly arrested the in vitro cell proliferation and blocked migration of pheochromocytoma cells as a result of the pharmacological suppression of the Akt/mTOR signaling pathway. Moreover, AZD8055, a selective ATP-competitive dual mTORC1/2 small molecular inhibitor, significantly reduced the tumor burden in a model of metastatic pheochromocytoma using female athymic nude mice. This study suggests that targeting both mTORC1 and mTORC2 is a potentially rewarding strategy and supports the application of selective inhibitors in combinatorial drug regimens for metastatic pheochromocytoma. PMID:23307788
Abdel-Aleem, Ghada A; Khaleel, Eman F
2017-12-07
This study aimed at studying the potential neuroprotective effect of Rutin hydrate (RH) alone or in conjugation with α-tocopherol against cadmium chloride (CdCl 2 )-induced neurotoxicity and cognitive impairment in rats and to investigate the mechanisms of action. Rats intoxicated with CdCl 2 were treated with the vehicle, RH, α-tocopherol or combined treatment were examined, and compared to control rats received vehicle or individual doses of either drug. Data confirmed that RH improves spatial memory function by increasing acetylcholine availability, boosting endogenous antioxidant potential, activating cell survival and inhibiting apoptotic pathways, an effect that is more effective when RH was conjugated with α-tocopherol. Mechanism of RH action includes activation of PP2A mediated inhibiting of ERK1/2 and JNK apoptotic pathways and inhibition of PTEN mediated activation of mTOR survival pathway. In conclusion, RH affords a potent neuroprotection against CdCl 2 -induced brain damage and memory dysfunction and co-administration of α-tocopherol enhances its activity.
Pantovic, Aleksandar; Bosnjak, Mihajlo; Arsikin, Katarina; Kosic, Milica; Mandic, Milos; Ristic, Biljana; Tosic, Jelena; Grujicic, Danica; Isakovic, Aleksandra; Micic, Nikola; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica
2017-02-01
We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G 2 M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zarogoulidis, Paul; Darwiche, Kaid; Tsakiridis, Kosmas; Teschler, Helmut; Yarmus, Lonny; Zarogoulidis, Konstantinos; Freitag, Lutz
2014-01-01
Tracheal stenosis due to either benign or malignant disease is a situation that the pulmonary physicians and thoracic surgeons have to cope in their everyday clinical practice. In the case where tracheal stenosis is caused due to malignancy mini-interventional interventions with laser, apc, cryoprobe, balloon dilation or with combination of more than one equipment and technique can be used. On the other hand, in the case of a benign disease such as; tracheomalacia the clinician can immediately upon diagnosis proceed to the stent placement. In both situations however; it has been observed that the stents induce formation of granuloma tissue in both or one end of the stent. Therefore a frequent evaluation of the patient is necessary, taking also into account the nature of the primary disease. Evaluation methodologies identifying different types and extent of the trachea stenosis have been previously published. However; we still do not have an effective adjuvant therapy to prevent granuloma tissue formation or prolong already treated granuloma lesions. There have been proposed many mechanisms which induce the abnormal growth of the local tissue, such as; local pressure, local stress, inflammation and vascular endothelial growth factor overexpression. Immunomodulatory agents inhibiting the mTOR pathway are capable of inhibiting the inflammatory cascade locally. In the current mini-review we will try to present the current knowledge of drug eluting stents inhibiting the mTOR pathway and propose a future application of these stents as a local anti-proliferative treatment. PMID:24454525
Chaux, Alcides; Munari, Enrico; Cubilla, Antonio L; Hicks, Jessica; Lecksell, Kristen; Burnett, Arthur L; Netto, George J
2014-05-01
The aim of this study was to evaluate the immunohistochemical expression of mammalian target of rapamycin (mTOR) pathway-related biomarkers in penile carcinomas, and to assess associations with histological type, histological grade, and human papillomavirus (HPV) infection. We built four tissue microarrays from 112 invasive penile squamous cell carcinomas, and evaluated the immunohistochemical expression of PTEN, phospho-AKT, phospho-mTOR, and phospho-S6. We found decreased or loss of PTEN expression in 87% of cases. Warty and/or basaloid carcinomas had a higher proportion of PTEN loss (P = 0.02), whereas keratinizing tumours showed higher levels of phospho-S6 (P = 0.009); phospho-AKT and phospho-mTOR levels were not significantly different between warty/basaloid and keratinizing carcinomas (P = 0.75 and P = 0.77, respectively). PTEN was not associated with histological grade (P = 0.18). Expression levels of phospho-S6 were significantly higher in low-grade tumours (P = 0.001), whereas expression levels of phospho-AKT and phospho-mTOR were slightly higher in high-grade tumours (P = 0.01 and P = 0.35, respectively). We did not find any association between HPV infection and mTOR markers (P ≥ 0.2 in all cases). Our results provide evidence of dysregulation of the mTOR pathway in penile carcinomas independently of HPV infection. Future clinical studies should further evaluate the prognostic and predictive usefulness of these markers in patients with penile cancer. © 2013 John Wiley & Sons Ltd.
Zarogoulidis, Paul; Darwiche, Kaid; Tsakiridis, Kosmas; Teschler, Helmut; Yarmus, Lonny; Zarogoulidis, Konstantinos; Freitag, Lutz
2013-08-26
Tracheal stenosis due to either benign or malignant disease is a situation that the pulmonary physicians and thoracic surgeons have to cope in their everyday clinical practice. In the case where tracheal stenosis is caused due to malignancy mini-interventional interventions with laser, apc, cryoprobe, balloon dilation or with combination of more than one equipment and technique can be used. On the other hand, in the case of a benign disease such as; tracheomalacia the clinician can immediately upon diagnosis proceed to the stent placement. In both situations however; it has been observed that the stents induce formation of granuloma tissue in both or one end of the stent. Therefore a frequent evaluation of the patient is necessary, taking also into account the nature of the primary disease. Evaluation methodologies identifying different types and extent of the trachea stenosis have been previously published. However; we still do not have an effective adjuvant therapy to prevent granuloma tissue formation or prolong already treated granuloma lesions. There have been proposed many mechanisms which induce the abnormal growth of the local tissue, such as; local pressure, local stress, inflammation and vascular endothelial growth factor overexpression. Immunomodulatory agents inhibiting the mTOR pathway are capable of inhibiting the inflammatory cascade locally. In the current mini-review we will try to present the current knowledge of drug eluting stents inhibiting the mTOR pathway and propose a future application of these stents as a local anti-proliferative treatment.
Yang, Diqi; Jiang, Tingting; Liu, Jianguo; Hong, Jin; Lin, Pengfei; Chen, Huatao; Zhou, Dong; Tang, Keqiong; Wang, Aihua; Jin, Yaping
2017-12-05
In ruminant, the receptive endometrium and the elongation of the hatched blastocyst are required to complete the process of implantation. However, the mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. In this study, EECs were treated with progesterone, estradiol, and interferon-tau (IFNT). We have found that endoplasmic reticulum (ER) stress was activated under hormones treatment. To identify the cellular mechanism of regulation of endometrial function, we investigated the effect of ER stress activator thapsigargin (TG) and inhibitor 4 phenyl butyric acid (4-PBA) on EECs. We found that TG, which activated the three branches of UPR, increased the expression of genes associated with promoting conceptus elongation and cellular attachment, significantly up-regulated the spheroid attachment rate and PGE 2 /PGF 2α ratio. 4-PBA pre-treatment inhibited UPR and inhibited promoting conceptus elongation and cellular attachment related genes, but the spheroid attachment rate and PGE 2 /PGF 2α ratio were not changed significantly. Moreover, knockdown of ATF6 via shATF6 promoted the conceptus elongation related genes, but increased the dissolution of the corpus luteum. Besides, blocking ATF6 attenuated autophagy by activating mammalian target of rapamycin (mTOR) pathway. Moreover, rapamycin (mTOR inhibitor) pre-treatment inhibited the expression of promoting conceptus elongation and increased PGE 2 /PGF 2α ratio. Taken together, our study indicated that physiological level of ER stress may contribute to early pregnancy success, and ATF6 signaling pathway cooperated with autophagy to regulate endometrial function by modulating mTOR pathway. © 2017 Wiley Periodicals, Inc.
Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao
2017-05-01
L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70 S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.
Kar, Soumya K.; Jansman, Alfons J. M.; Benis, Nirupama; Ramiro-Garcia, Javier; Schokker, Dirkjan; Kruijt, Leo; Stolte, Ellen H.; Taverne-Thiele, Johanna J.; Smits, Mari A.; Wells, Jerry M.
2017-01-01
Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g) were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis): soybean meal (SBM), casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic) target of rapamycin (mTOR) activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05) concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05) abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM. PMID:29149221
Chen, Kuang-Ti; Wu, Ching-Hsiang; Tsai, Mang-Hung; Wu, Ya-Chieh; Jou, Ming-Jia; Huang, Chih-Chia; Wei, I-Hua
2017-01-01
Sarcosine, an N-methyl-d-aspartate receptor enhancer, can improve depression-like behavior in rodent models and depression in humans. We found that a single dose of sarcosine exerted antidepressant-like effects with rapid concomitant increases in the mammalian target of rapamycin (mTOR) signaling pathway activation and enhancement of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) membrane insertion. Sarcosine may play a crucial role in developing novel therapy for depression. For a detailed understanding of sarcosine, this study examined the effects of long-term sarcosine treatment on the forced swim test (FST), mTOR signaling, and AMPAR membrane insertion in rats. The effects of long-term sarcosine treatment were examined in naive rats and rats exposed to chronic unpredictable stress (CUS). Long-term sarcosine treatment (560mg/kg/d for 21 d) significantly ameliorated the increased immobility induced by CUS in the FST, reaffirming the potential role of sarcosine as an antidepressant for depressed patients. The same long-term treatment exhibited no such effect in naive rats despite increased mTOR activation and AMPAR membrane insertion in both groups. Our findings clearly show CUS-exposed rats are sensitive to long-term sarcosine treatment in FST and the response at the same dose is absent in naïve rats. Nevertheless, the distinct sensitivity to long-term sarcosine treatment in rats with or without CUS is not associated with the activated mTOR signaling pathway or increased AMPAR membrane insertion. Additionally, understanding the behavioral and molecular basis of distinct responses is vital important for developing personalized treatment programs to increase the probability of success when treating depression. Copyright © 2016. Published by Elsevier B.V.
Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.
Wang, Qingding; Zhou, Yuning; Rychahou, Piotr; Harris, Jennifer W; Zaytseva, Yekaterina Y; Liu, Jinpeng; Wang, Chi; Weiss, Heidi L; Liu, Chunming; Lee, Eun Y; Evers, B Mark
2018-06-15
Activation of the Wnt/β-catenin signaling pathway drives colorectal cancer growth by deregulating expression of downstream target genes, including the c-myc proto-oncogene. The critical targets that mediate the functions of oncogenic c-Myc in colorectal cancer have yet to be fully elucidated. Previously, we showed that activation of PI3K/Akt/mTOR contributes to colorectal cancer growth and metastasis. Here, we show that Deptor, a suppressor of mTOR, is a direct target of Wnt/β-catenin/c-Myc signaling in colorectal cancer cells. Inhibition of Wnt/β-catenin or knockdown of c-Myc decreased, while activation of Wnt/β-catenin or overexpression of c-Myc increased the expression of Deptor. c-Myc bound the promoter of Deptor and transcriptionally regulated Deptor expression. Inhibition of Wnt/β-catenin/c-Myc signaling increased mTOR activation, and the combination of Wnt and Akt/mTOR inhibitors enhanced inhibition of colorectal cancer cell growth in vitro and in vivo Deptor expression was increased in colorectal cancer cells; knockdown of Deptor induced differentiation, decreased expression of B lymphoma Mo-MLV insertion region 1 (Bmi1), and decreased proliferation in colorectal cancer cell lines and primary human colorectal cancer cells. Importantly, our work identifies Deptor as a downstream target of the Wnt/β-catenin/c-Myc signaling pathway, acting as a tumor promoter in colorectal cancer cells. Moreover, we provide a molecular basis for the synergistic combination of Wnt and mTOR inhibitors in treating colorectal cancer with elevated c-Myc. Significance: The mTOR inhibitor DEPTOR acts as a tumor promoter and could be a potential therapeutic target in colorectal cancer. Cancer Res; 78(12); 3163-75. ©2018 AACR . ©2018 American Association for Cancer Research.
Rapamycin slows IgA nephropathy progression in the rat.
Tian, Jihua; Wang, Yanhong; Zhou, Xiaoshuang; Li, Yanjiao; Wang, Chen; Li, Jiaming; Li, Rongshan
2014-01-01
IgA nephropathy (IgAN) is the most frequent glomerulonephritis worldwide. Different therapeutic approaches have been tested against IgAN. The present study was designed to explore the renoprotective potential of low-dose mammalian target of rapamycin (mTOR) inhibitor rapamycin in an IgAN rat model and the possible mechanism of action. After establishing an IgAN model, the rats were randomly divided into four groups: control, control with rapamycin treatment, IgAN model, and IgAN model with rapamycin treatment. Coomassie Brilliant Blue was utilized to measure 24-hour urinary protein levels. Hepatic and renal function was determined with an autoanalyzer. Proliferation was assayed via 5-bromo-2'-deoxyuridine incorporation. Real-time PCR and immunohistochemistry were utilized to detect the expression of α-SMA, collagen I, collagen III, TGF-β1 and platelet-derived growth factor. Western blotting and immunohistochemistry were performed to determine p-S6 protein levels. Low-dose mTOR inhibitor rapamycin prevented an additional increase in proteinuria and protected kidney function in a model of IgAN. Rapamycin directly or indirectly interfered with multiple key pathways in the progression of IgAN to end-stage renal disease: (1) reduced the deposition of IgA and inhibited cell proliferation; (2) decreased the expression of fibrosis markers α-SMA and type III collagen, and (3) downregulated the expression of the profibrotic growth factors platelet-derived growth factor and TGF-β1. The expression of p-S6 was significantly elevated in IgAN rats. The mTOR pathway was activated in IgAN rats and the early application of low-dose mTOR inhibitor rapamycin may slow the renal injury of IgAN in rats.
Tavares, Catarina; Eloy, Catarina; Melo, Miguel; Gaspar da Rocha, Adriana; Pestana, Ana; Batista, Rui; Rios, Elisabete; Sobrinho Simões, Manuel
2018-01-01
The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression. PMID:29757257
Tavares, Catarina; Eloy, Catarina; Melo, Miguel; Gaspar da Rocha, Adriana; Pestana, Ana; Batista, Rui; Bueno Ferreira, Luciana; Rios, Elisabete; Sobrinho Simões, Manuel; Soares, Paula
2018-05-13
The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression.
Carling, Phillippa J.; Buist, Thomas; Zhang, Chaolin; Grellscheid, Sushma N.; Armstrong, Kelly; Stockley, Jacqueline; Simillion, Cedric; Gaughan, Luke; Kalna, Gabriela; Zhang, Michael Q.; Robson, Craig N.; Leung, Hing Y.; Elliott, David J.
2011-01-01
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa. PMID:22194994
Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo.
Xu, Dong-Qing; Toyoda, Hidemi; Yuan, Xiao-Jun; Qi, Lei; Chelakkot, Vipin Shankar; Morimoto, Mari; Hanaki, Ryo; Kihira, Kentarou; Hori, Hiroki; Komada, Yoshihiro; Hirayama, Masahiro
2018-04-15
Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Xi; He, Xiaosong; Li, Qingqing; Kong, Xuejian; Ou, Zhenri; Zhang, Le; Gong, Zhuo; Long, Dahong; Li, Jianhua; Zhang, Meng; Ji, Weidong; Zhang, Wenjuan; Xu, Liping; Xuan, Aiguo
2017-05-09
Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Dickson, Mark A.; Schwartz, Gary K.; Antonescu, Cristina R.; Kwiatkowski, David J.; Malinowska, Izabela A.
2012-01-01
Perivascular epithelioid cell tumors (PEComas) are a group of rare mesenchymal tumors that typically show both melanocytic and smooth muscle cell features. Some types of PEComa are seen at high frequency in tuberous sclerosis complex (TSC). The TSC1 and TSC2 genes are commonly mutated in both TSC-associated and sporadic PEComas, and mTOR signaling pathway activation is also common in these tumors. Preliminary reports have indicated that the mTOR inhibitors sirolimus and related drugs have activity in some patients with non-TSC-associated PEComa. Here we report on the use of these medications in the treatment of five consecutive patients with extrarenal non-pulmonary PEComas seen at one institution. Three complete responses, one partial response and one case of progression were seen. Molecular studies identified TSC2 aberrations in four of these patients, and TFE3 translocation was excluded in the resistant case. A review of all published cases as well as those reported here indicates that partial or complete response was seen in 6 of 11 PEComas, with 5 of the 6 having a complete response. These findings highlight the consistent though incomplete activity of mTOR inhibitors in the treatment of PEComas. PMID:22927055
TSC1 regulates the balance between effector and regulatory T cells.
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine; Elly, Chris; Kim, Gisen; Murai, Masako; Kronenberg, Mitchell; Liu, Yun-Cai
2013-12-01
Mammalian target of rapamycin (mTOR) plays a crucial role in the control of T cell fate determination; however, the precise regulatory mechanism of the mTOR pathway is not fully understood. We found that T cell-specific deletion of the gene encoding tuberous sclerosis 1 (TSC1), an upstream negative regulator of mTOR, resulted in augmented Th1 and Th17 differentiation and led to severe intestinal inflammation in a colitis model. Conditional Tsc1 deletion in Tregs impaired their suppressive activity and expression of the Treg marker Foxp3 and resulted in increased IL-17 production under inflammatory conditions. A fate-mapping study revealed that Tsc1-null Tregs that lost Foxp3 expression gained a stronger effector-like phenotype compared with Tsc1-/- Foxp3+ Tregs. Elevated IL-17 production in Tsc1-/- Treg cells was reversed by in vivo knockdown of the mTOR target S6K1. Moreover, IL-17 production was enhanced by Treg-specific double deletion of Tsc1 and Foxo3a. Collectively, these studies suggest that TSC1 acts as an important checkpoint for maintaining immune homeostasis by regulating cell fate determination.
Xue, Qi; Hopkins, Benjamin; Perruzzi, Carole; Udayakumar, Durga; Sherris, David; Benjamin, Laura E.
2009-01-01
It has become clear that the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is central for promoting both tumor and tumor stroma and is therefore a major target for anticancer drug development. First- and second-generation rapalogs (prototypical mTOR inhibitors) have shown promise but, due to the complex nature of mTOR signaling, can result in counterproductive feedback signaling to potentiate upstream Akt signaling. We present a novel PI3K/Akt/mTOR inhibitor, Palomid 529 (P529), which inhibits the TORC1 and TORC2 complexes and shows both inhibition of Akt signaling and mTOR signaling similarly in tumor and vasculature. We show that P529 inhibits tumor growth, angiogenesis, and vascular permeability. It retains the beneficial aspects of tumor vascular normalization that rapamycin boasts. However, P529 has the additional benefit of blocking pAktS473 signaling consistent with blocking TORC2 in all cells and thus bypassing feedback loops that lead to increased Akt signaling in some tumor cells. [Cancer Res 2008;68(22):9551–7] PMID:19010932
A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model.
Wesseling, Hendrik; Elgersma, Ype; Bahn, Sabine
2017-01-01
Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1 +/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits. Molecular alterations in the frontal cortex and hippocampus of Tsc1 +/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MS E ) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways. LC-MS E analysis of Tsc1 +/- mice and controls ( n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways "myelination", "dendrite," and "oxidative stress", an upregulation of ribosomal proteins and the mTOR kinase. LC-MS E analysis was also employed on Tsc1 +/- and wildtype mice ( n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1 +/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways "oxidative stress" and "apoptosis" were found to be affected in Tsc1 +/- mice and the cellular compartments "myelin sheet" and "neurofilaments" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1 +/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins. Molecular changes in the Tsc1 +/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.
SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians
González-Estévez, Cristina; Felix, Daniel A.; Smith, Matthew D.; Paps, Jordi; Morley, Simon J.; James, Victoria; Sharp, Tyson V.; Aboobaker, A. Aziz
2012-01-01
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. PMID:22479207
Dual mTORC1/2 inhibition in a preclinical xenograft tumor model of endometrial cancer
Korets, Sharmilee Bansal; Musa, Fernanda; Curtin, John; Blank, Stephanie V.; Schneider, Robert J.
2015-01-01
Objectives Up to 70% of endometrioid endometrial cancers carry PTEN gene deletions that can upregulate mTOR activity. Investigational mTOR kinase inhibitors may provide a novel therapeutic approach for these tumors. Using a xenograft tumor model of endometrial cancer, we assessed the activity of mTOR and downstream effector proteins in the mTOR translational control pathway after treatment with a dual mTOR Complex 1 and 2 (mTORC1/2) catalytic inhibitor (PP242) compared to that of an allosteric mTOR Complex 1 (mTORC1) inhibitor (everolimus, RAD001). Methods Grade 3 endometrioid endometrial cancer cells (AN3CA) were xenografted into nude mice. Animals were treated with PP242; PP242 and carboplatin; carboplatin; RAD001; RAD001 and carboplatin. Mean tumor volume was compared across groups by ANOVA. Immunoblot analysis was performed to assess mTORC1/2 activity using P-Akt, P-S6 and P-4E-BP1. Results The mean tumor volume of PP242 + carboplatin was significantly lower than in all other treatment groups, P<0.001 (89% smaller). The RAD001 + carboplatin group was also smaller, but this did not reach statistical significance (P=0.097). Immunoblot analysis of tumor lysates treated with PP242 demonstrated inhibition of activated P-Akt. Conclusions Catalytic mTORC1/2 inhibition demonstrates clear efficacy in tumor growth control that is enhanced by the addition of a DNA damage agent, carboplatin. Targeting mTORC1/2 leads to inhibition of Akt activation and strong downregulation of effectors of mTORC1, resulting in downregulation of protein synthesis. Based on this study, mTORC1/2 kinase inhibitors warrant further investigation as a potential treatment for endometrial cancer. PMID:24316308
Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan
2014-01-01
The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012
Wu, Can; Ma, Xiaoyu; Zhou, Yang; Liu, Yv; Shao, Ying; Wang, Qiuyue
2018-06-11
Anti-aging protein Klotho is closely associated with a variety of chronic diseases and age-related diseases. And Klotho gene deficiency enhances the phosphorylation of mammalian target of rapamycin (mTOR), resulting in exacerbating streptozotocin-stimulated diabetic glomerular injury and promoting the progression of early diabetic kidney disease (DKD). However, it has not yet been elucidated that the mechanism of Klotho function on the pathogenesis of diabetic glomerular injury. What's more, insulin represents the antilipolytic effect via the mTOR-early growth response factor 1 (Egr1) regulatory axis in mammalian organism. Valsartan reduced the high glucose-activated toll like report 4 (TLR4) expression and inflammatory cytokines via inhibiting Egr1 expression. In this study, we aim to explore the effects of Klotho on Egr1 expression and TLR4/mTOR pathways activity in high glucose cultured rat mesangial cells (RMCs) in vitro. Our study revealed that high glucose upregulated Egr1 to aggravate the inflammation and fibrosis in RMCs. And high glucose activates Egr1/TLR4/mTOR regulatory axis in MCs, indicating that one coherent feedforward loop is formed. Anti-aging protein Klotho may attenuate glomerular inflammation and fibrosis to provide protection against diabetic kidney injury via inhibiting the activity of Egr1/TLR4/mTOR regulatory axis in high glucose conditions. This study complements the function mechanism of Egr1/TLR4/mTOR regulatory axis playing in the pathogenesis of DKD, and provides a new direction and theoretical basis for anti-aging protein Klotho in DKD treatment. © Georg Thieme Verlag KG Stuttgart · New York.
Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan
2014-06-01
The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.
Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels
2014-01-01
Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061
Boylan, Joan M; Sanders, Jennifer A; Neretti, Nicola; Gruppuso, Philip A
2015-07-01
The mechanistic target of rapamycin (mTOR) integrates growth factor signaling, nutrient abundance, cell growth, and proliferation. On the basis of our interest in somatic growth in the late gestation fetus, we characterized the role of mTOR in the regulation of hepatic gene expression and translation initiation in fetal and adult rats. Our strategy was to manipulate mTOR signaling in vivo and then characterize the transcriptome and translating mRNA in liver tissue. In adult rats, we used the nonproliferative growth model of refeeding after a period of fasting and the proliferative model of liver regeneration following partial hepatectomy. We also studied livers from preterm fetal rats (embryonic day 19) in which fetal hepatocytes are asynchronously proliferating. All three models employed rapamycin to inhibit mTOR signaling. Analysis of the transcriptome in fasted-refed animals showed rapamycin-mediated induction of genes associated with oxidative phosphorylation. Genes associated with RNA processing were downregulated. In liver regeneration, rapamycin induced genes associated with lysosomal metabolism, steroid metabolism, and the acute phase response. In fetal animals, rapamycin inhibited expression of genes in several functional categories that were unrelated to effects in the adult animals. Translation control showed marked fetal-adult differences. In both adult models, rapamycin inhibited the translation of genes with complex 5' untranslated regions, including those encoding ribosomal proteins. Fetal translation was resistant to the effects of rapamycin. We conclude that the mTOR pathway in liver serves distinct physiological roles in the adult and fetus, with the latter representing a condition of rapamycin resistance. Copyright © 2015 the American Physiological Society.
Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes
Zhou, Qiong L.; Jiang, Zhen Y.; Holik, John; Chawla, Anil; Hagan, G. Nana; Leszyk, John; Czech, Michael P.
2010-01-01
Multiple studies have suggested that the protein kinase Akt/PKB (protein kinase B) is required for insulin-stimulated glucose transport in skeletal muscle and adipose cells. In an attempt to understand links between Akt activation and glucose transport regulation, we applied mass spectrometry-based proteomics and bioinformatics approaches to identify potential Akt substrates containing the phospho-Akt substrate motif RXRXXpS/T. The present study describes the identification of the Rab GAP (GTPase-activating protein)-domain containing protein TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1], which is closely related to TBC1D4 [TBC domain family, member 4, also denoted AS160 (Akt substrate of 160 kDa)], as an Akt substrate that is phosphorylated at Thr590. RNAi (RNA interference)-me-diated silencing of TBC1D1 elevated basal deoxyglucose uptake by approx. 61% in 3T3-L1 mouse embryo adipocytes, while the suppression of TBC1D4 and RapGAP220 under the same conditions had little effect on basal and insulin-stimulated deoxy-glucose uptake. Silencing of TBC1D1 strongly increased expression of the GLUT1 glucose transporter but not GLUT4 in cultured adipocytes, whereas the decrease in TBC1D4 had no effect. Remarkably, loss of TBC1D1 in 3T3-L1 adipocytes activated the mTOR (mammalian target of rapamycin)-p70 S6 protein kinase pathway, and the increase in GLUT1 expression in the cells treated with TBC1D1 siRNA (small interfering RNA) was blocked by the mTOR inhibitor rapamycin. Furthermore, overexpression of the mutant TBC1D1-T590A, lacking the putative Akt/PKB phosphorylation site, inhibited insulin stimulation of p70 S6 kinase phosphorylation at Thr389, a phosphorylation induced by mTOR. Taken together, our data suggest that TBC1D1 may be involved in controlling GLUT1 glucose transporter expression through the mTOR-p70 S6 kinase pathway. PMID:18215134
Yarahmadi, Amir; Khademi, Fatemeh; Mostafavi-Pour, Zohreh; Zal, Fatemeh
2018-05-21
Some types of cancers show a strong relationship with diabetes and play a central role in mortality in the patient population suffering from diabetes mellitus. In this study, HepG2 cells have been used to investigate the toxic effects of hyperglycemia and/or quercetin (Q) on mammalian target of rapamycin (m-TOR) and nuclear factor erythroid 2-related factor 2 (Nrf-2) expression as central molecules involved in cancer. HepG2 cells were cultured with different concentrations of glucose (5.5, 30, and 50 mM) and/or Q (25 µM) for 48 and 72 h. Effects of glucose and/or Q on m-TOR and Nrf-2 expression were assayed by quantitative real-time PCR (qRT-PCR). qRT-PCR results revealed that 30 and 50 mM of glucose increased m-TOR expression at 48 h, although after 72 h, only 30 mM had an increasing effect. At 50 mM, glucose-induced Nrf-2 gene expression after both 48 and 72 h. The results also showed that 25 µM of Q reduced m-TOR and Nrf-2 expression at both 30 and 50 mM after 48 and 72 h incubation. Q has potential effects on reducing oxidative stress caused by hyperglycemia and during diabetes may be able to modulate some carcinogenic signaling pathways.
Niessner, Heike; Kosnopfel, Corinna; Sinnberg, Tobias; Beck, Daniela; Krieg, Kathrin; Wanke, Ines; Lasithiotakis, Konstantinos; Bonin, Michael; Garbe, Claus; Meier, Friedegund
2017-07-01
The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gobira, Pedro H; Vilela, Luciano R; Gonçalves, Bruno D C; Santos, Rebeca P M; de Oliveira, Antonio C; Vieira, Luciene B; Aguiar, Daniele C; Crippa, José A; Moreira, Fabricio A
2015-09-01
Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders. Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties. Its effects against cocaine neurotoxicity, however, have remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms. CBD (30 mg/kg) pre-treatment increased the latency and reduced the duration of cocaine (75 mg/kg)-induced seizures in mice. The CB1 receptor antagonist, AM251 (1 and 3mg/kg), and the CB2 receptor antagonist, AM630 (2 and 4 mg/kg), failed to reverse this protective effect, suggesting that alternative mechanisms are involved. Synaptosome studies with the hippocampus of drug-treated animals revealed that cocaine increases glutamate release, whereas CBD induces the opposite effect. Finally, the protective effect of this cannabinoid against cocaine-induced seizure was reversed by rapamycin (1 and 5mg/kg), an inhibitor of the mammalian target of rapamycin (mTOR) intracellular pathway. In conclusion, CBD protects against seizures in a model of cocaine intoxication. These effects possibly occur through activation of mTOR with subsequent reduction in glutamate release. CBD should be further investigated as a strategy for alleviating psychostimulant toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Mao, Xiangbing; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing
2016-09-01
Mucin 2 and occludin play a crucial role in preserving the intestinal mucosal integrity. However, the role for leucine mediating intestinal mucin 2 and occludin expression has little been investigated. The current study was conducted to test the hypothesis that leucine treatment could increase mucin 2 and occludin levels in LS174T cells. The LS174T cells were incubated in the Dulbecco's Modified Eagle Medium (DMEM) supplementing 0, 0.5 and 5 mmol/L L-leucine for the various durations. Two hours after the leucine treatment, the inhibitor of mammalian target of rapamycin (mTOR) and protein kinase B (Akt) phosphorylation in LS174T cells were significantly increased ( P < 0.05), and the mucin 2 and occludin levels were also significantly enhanced ( P < 0.05). However, the pretreatment of 10 nmol/L rapamycin, which was an mTOR inhibitor, or 1 μmol/L wortmanin, which was an inhibitor of phosphatidylinositol 3-kinase (PI3K), completely inhibited leucine-induced mTOR or Akt phosphorylation ( P < 0.05), and significantly reduced leucine-stimulated mucin 2 and occludin levels ( P < 0.05). These results suggest that leucine treatment promotes the mucin 2 and occludin levels in LS174T cells partially through the PI3K-Akt-mTOR signaling pathway.
Dai, Jie-Min; Yu, Mu-Xue; Shen, Zhen-Yu; Guo, Chu-Yi; Zhuang, Si-Qi; Qiu, Xiao-Shan
2015-01-01
Signaling through the mammalian target of rapamycin (mTOR) in response to leucine modulates many cellular and developmental processes. However, in the context of satellite cell proliferation and differentiation, the role of leucine and mTORC1 is less known. This study investigates the role of leucine in the process of proliferation and differentiation of primary preterm rat satellite cells, and the relationship with mammalian target of rapamycin complex 1 (mTORC1) activation. Dissociation of primary satellite cells occurred with type I collagenase and trypsin, and purification, via different speed adherence methods. Satellite cells with positive expression of Desmin were treated with leucine and rapamycin. We observed that leucine promoted proliferation and differentiation of primary satellite cells and increased the phosphorylation of mTOR. Rapamycin inhibited proliferation and differentiation, as well as decreased the phosphorylation level of mTOR. Furthermore, leucine increased the expression of MyoD and myogenin while the protein level of MyoD decreased due to rapamycin. However, myogenin expressed no affect by rapamycin. In conclusion, leucine may up-regulate the activation of mTORC1 to promote proliferation and differentiation of primary preterm rat satellite cells. We have shown that leucine promoted the differentiation of myotubes in part through the mTORC1-MyoD signal pathway. PMID:26007333
Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells
NASA Astrophysics Data System (ADS)
Fateye, Babasola; Chen, Bin
2011-02-01
The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.
Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele
2012-06-01
The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade.
The Lin28/let-7 axis regulates glucose metabolism
Zhu, Hao; Shyh-Chang, Ng; Segrè, Ayellet V.; Shinoda, Gen; Shah, Samar P.; Einhorn, William S.; Takeuchi, Ayumu; Engreitz, Jesse M.; Hagan, John P.; Kharas, Michael G; Urbach, Achia; Thornton, James E.; Triboulet, Robinson; Gregory, Richard I.; Altshuler, David; Daley, George Q.
2012-01-01
SUMMARY The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by blocking let-7 biogenesis. In studies of the Lin28/let-7 pathway, we discovered unexpected roles in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promoted an insulin-sensitized state that resisted high fat diet-induced diabetes, whereas muscle-specific loss of Lin28a and overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance. These phenomena occurred in part through let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. The mTOR inhibitor rapamycin abrogated the enhanced glucose uptake and insulin-sensitivity conferred by Lin28a in vitro and in vivo. In addition, we found that let-7 targets were enriched for genes that contain SNPs associated with type 2 diabetes and fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. PMID:21962509
Novel metabolic and physiological functions of branched chain amino acids: a review.
Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan
2017-01-01
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.
Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci
2018-06-01
The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.
Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes
Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia
2015-01-01
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292
McCormick, Mark A.; Delaney, Joe R.; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; Shemorry, Anna; Sim, Sylvia; Chou, Annie Chia-Zong; Ahmed, Umema; Carr, Daniel; Murakami, Christopher J.; Schleit, Jennifer; Sutphin, George L.; Wasko, Brian M.; Bennett, Christopher F.; Wang, Adrienne M.; Olsen, Brady; Beyer, Richard P.; Bammler, Theodor K.; Prunkard, Donna; Johnson, Simon C.; Pennypacker, Juniper K.; An, Elroy; Anies, Arieanna; Castanza, Anthony S.; Choi, Eunice; Dang, Nick; Enerio, Shiena; Fletcher, Marissa; Fox, Lindsay; Goswami, Sarani; Higgins, Sean A.; Holmberg, Molly A.; Hu, Di; Hui, Jessica; Jelic, Monika; Jeong, Ki-Soo; Johnston, Elijah; Kerr, Emily O.; Kim, Jin; Kim, Diana; Kirkland, Katie; Klum, Shannon; Kotireddy, Soumya; Liao, Eric; Lim, Michael; Lin, Michael S.; Lo, Winston C.; Lockshon, Dan; Miller, Hillary A.; Moller, Richard M.; Muller, Brian; Oakes, Jonathan; Pak, Diana N.; Peng, Zhao Jun; Pham, Kim M.; Pollard, Tom G.; Pradeep, Prarthana; Pruett, Dillon; Rai, Dilreet; Robison, Brett; Rodriguez, Ariana A.; Ros, Bopharoth; Sage, Michael; Singh, Manpreet K.; Smith, Erica D.; Snead, Katie; Solanky, Amrita; Spector, Benjamin L.; Steffen, Kristan K.; Tchao, Bie Nga; Ting, Marc K.; Wende, Helen Vander; Wang, Dennis; Welton, K. Linnea; Westman, Eric A.; Brem, Rachel B.; Liu, Xin-guang; Suh, Yousin; Zhou, Zhongjun; Kaeberlein, Matt; Kennedy, Brian K.
2015-01-01
SUMMARY Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is non-additive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging. PMID:26456335
Manor, Meghan L; Cleveland, Beth M; Kenney, P Brett; Yao, Jianbo; Leeds, Tim
2015-04-01
Sexual maturation occurs at the expense of stored energy and nutrients, including lipids; however, little is known regarding sex effects on nutrient regulatory mechanisms in rainbow trout prior to maturity. Thirty-two, 14-month-old, male and female rainbow trout were sampled for growth, carcass yield, fillet composition, and gene expression of liver, white muscle, and visceral adipose tissue. Growth parameters, including gonadosomatic index, were not affected by sex. Females had higher percent separable muscle yield, but there were no sex effects on fillet proximate composition. Fillet shear force indicated females produce firmer fillets than males. Male livers had greater expression of three cofactors within the mTOR signaling pathway that act to inhibit TORC1 assembly; mo25, rictor, and pras40. Male liver also exhibited increased expression of β-oxidation genes cpt1b and ehhadh. These findings are indicative of increased mitochondrial β-oxidation in male liver. Females exhibited increased expression of the mTOR cofactor raptor in white muscle and had higher expression levels of several genes within the fatty acid synthesis pathway, including gpat, srebp1, scd1, and cd36. Female muscle also had increased expression of β-oxidation genes cpt1d and cpt2. Increased expression of both fatty acid synthesis and β-oxidation genes suggests female muscle may have greater fatty acid turnover. Differences between sexes were primarily associated with variation of gene expression within the mTOR signaling pathway. Overall, data suggest there is differential regulation of gene expression in male and female rainbow trout tissues prior to the onset of sexual maturity that may lead to nutrient repartitioning during maturation.
SREBF1 Activity is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer.
Audet-Walsh, Etienne; Vernier, Mathieu; Yee, Tracey; Laflamme, Chloe E; Li, Susan; Chen, Yonghong; Giguere, Vincent
2018-05-21
Reprogramming of cellular metabolism is an important feature of prostate cancer (PCa), including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of PCa cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element binding transcription factor 1 (SREBF1) to control its expression, while dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacological and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1). Consistent with these observations, the expression of SREBF1, FASN and SCD1 is significantly correlated in human PCa tumor clinical specimens. Functionally, blockade of SREBF1 activity reduces the androgen-driven lipid accumulation. Interestingly, decreased triglyceride accumulation observed upon SREBF1 inhibition is paralleled by an increase in mitochondrial respiration, indicating a potential rewiring of citrate metabolism in PCa cells. Altogether, these data define an AR/mTOR nuclear axis, in the context of PCa, as a novel pathway regulating SREBF1 activity and citrate metabolism. The finding that an AR/mTOR complex promotes SREBP expression and activity enhances our understanding of the metabolic adaptation necessary for prostate cancer cell growth and suggests novel therapeutic approaches to target metabolic vulnerabilities in tumors. Copyright ©2018, American Association for Cancer Research.
Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling
LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.
2014-01-01
Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472
Layne, Andrew S; Nasrallah, Sami; South, Mark A; Howell, Mary E A; McCurry, Melanie P; Ramsey, Michael W; Stone, Michael H; Stuart, Charles A
2011-06-01
Strength training induces muscle remodeling and may improve insulin responsiveness. This study will quantify the impact of resistance training on insulin sensitivity in subjects with the metabolic syndrome and correlate this with activation of intramuscular pathways mediating mitochondrial biogenesis and muscle fiber hypertrophy. Ten subjects with the metabolic syndrome (MS) and nine sedentary controls underwent 8 wk of supervised resistance exercise training with pre- and posttraining anthropometric and muscle biochemical assessments. Resistance exercise training took place in a sports laboratory on a college campus. Pre- and posttraining insulin responsiveness was quantified using a euglycemic clamp. Changes in expression of muscle 5-AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathways were quantified using immunoblots. Strength and stamina increased in both groups. Insulin sensitivity increased in controls (steady-state glucose infusion rate = 7.0 ± 2.0 mg/kg · min pretraining training vs. 8.7 ± 3.1 mg/kg · min posttraining; P < 0.01) but did not improve in MS subjects (3.3 ± 1.3 pre vs. 3.1 ± 1.0 post). Muscle glucose transporter 4 increased 67% in controls and 36% in the MS subjects. Control subjects increased muscle phospho-AMPK (43%), peroxisome proliferator-activated receptor γ coactivator 1α (57%), and ATP synthase (60%), more than MS subjects (8, 28, and 21%, respectively). In contrast, muscle phospho-mTOR increased most in the MS group (57 vs. 32%). Failure of resistance training to improve insulin responsiveness in MS subjects was coincident with diminished phosphorylation of muscle AMPK, but increased phosphorylation of mTOR, suggesting activation of the mTOR pathway could be involved in inhibition of exercise training-related increases in AMPK and its activation and downstream events.
Song, Shaoming; Abdelmohsen, Kotb; Zhang, Yongqing; Becker, Kevin G.; Gorospe, Myriam
2011-01-01
Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4. PMID:21917559
Ichikawa, Atsuko; Nakahara, Tsutomu; Kurauchi, Yuki; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio
2014-06-01
Recent studies have demonstrated that inhibition of the mammalian target of rapamycin (mTOR) protects against neuronal injury, but the mechanisms underlying this protection are not fully understood. The present study investigates whether rapamycin, an inhibitor of the mTOR pathway, protects against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity and whether the extracellular signal-regulated kinase (ERK) pathway contributes to this protective effect in rats. Significant cell loss in the ganglion cell layer and a reduction in thickness of the inner plexiform layer were observed 7 days after a single intravitreal injection of NMDA (200 nmol/eye). These NMDA-induced morphological changes were significantly reduced by rapamycin (20 nmol/eye). The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells had increased 6 hr after NMDA injection, an effect that was significantly attenuated by rapamycin. The ERK inhibitor U0126 (1 nmol/eye) almost completely abolished rapamycin's inhibition of NMDA-induced apoptosis. Immunohistochemical studies showed that NMDA caused a time-dependent increase in levels of the phosphorylated form of the ribosomal protein S6 (pS6), a downstream indicator of mTOR activity. The increased pS6 levels were markedly decreased by rapamycin. Both NMDA and rapamycin increased the level of phosphorylated ERK (pERK) in Müller cells, and coinjection of both agents further increased pERK levels. These results suggest that rapamycin has a neuroprotective effect against NMDA-induced retinal neurotoxicity and that this effect could be patially mediated by activation of the ERK pathway in retinal Müller cells. Copyright © 2014 Wiley Periodicals, Inc.
Setia, Shruti; Nehru, Bimla; Sanyal, Sankar Nath
2014-07-01
Oncogenesis and angiogenesis are the two major pathways involved in tumorigenesis. Oncogenesis involves the PI3K/Akt and Wnt/β-catenin pathways, both of which are upregulated in several types of cancers. We established animal model of ulcerative colitis, colon cancer and colitis associated colon cancer by the incorporation of dextran sufate sodium (DSS) and dimethyl hydrazine (DMH), alone as well as in combination. Apart from the gross morphological analysis, we presently explored the role of various components of the oncogenic pathways, including PI3K, p-Akt, PTEN, PDK1, mTOR, GSK-3β, Wnt and β-catenin and found the elevated levels of these proteins, except the tumor suppressors PTEN and GSK-3β, whose levels were downregulated in both inflammatory and carcinogenic conditions. We also studied the protein expression of some major angiogenic agents, such as Vegf, MMP-2, MMP-9 and iNOS. The angiogenic pathway was also upregulated presently in the DSS, DMH and DSS+DMH groups. Also, the reactive oxygen and nitrogen species, which lead to oxidative stress, were found to be elevated in these groups. All these effects were brought towards normal by the co-administration of celecoxib, a second generation non-steroidal anti-inflammatory drug (NSAID), with DSS, DMH and their combinatorial group. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Chen, Yun; Lee, Cheng-Hung; Tseng, Bor-Yuan; Tsai, Ya-Hui; Tsai, Huang-Wen; Yao, Chao-Ling; Tseng, Sheng-Hong
2018-03-01
AZD8055 is an inhibitor of mammalian target of rapamycin (mTOR) that can suppress both mTOR complex 1 (mTORC1) and mTORC2. This study investigated the antitumor effects of AZD8055 on colon cancer. The effects of AZD8055 on proliferation, apoptosis, and cell cycle of colon cancer cells, and tumor growth in a mouse colon cancer model were studied. AZD8055 significantly inhibited proliferation and induced apoptosis of colon cancer cells (p<0.05). The phosphorylation of both AKT and S6 kinase 1 (S6K1) was suppressed by AZD8055. AZD8055 also induced G 0 /G 1 cell-cycle arrest, reduced cyclin D1 and increased p27 expression, and suppressed the levels of phospho-cyclin-dependent kinase 2 and phospho-retinoblastoma. Compared to the control, oral administration of AZD8055 significantly suppressed tumor growth in mice (p<0.05). AZD8055 induces cytotoxicity, apoptosis, and cell-cycle arrest of colon cancer cells, and exerts an antitumor effect in mice. It also inhibits the mTOR signaling pathway and mTOR-dependent cell-cycle progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Perl, Andras
2010-02-01
Systemic lupus erythematosus (SLE) is characterized by the dysfunction of T cells, B cells, and dendritic cells, the release of pro-inflammatory nuclear materials from necrotic cells, and the formation of antinuclear antibodies (ANA) and immune complexes of ANA with DNA, RNA, and nuclear proteins. Activation of the mammalian target of rapamycin (mTOR) has recently emerged as a key factor in abnormal activation of T and B cells in SLE. In T cells, increased production of nitric oxide and mitochondrial hyperpolarization (MHP) were identified as metabolic checkpoints upstream of mTOR activation. mTOR controls the expression T-cell receptor-associated signaling proteins CD4 and CD3zeta through increased expression of the endosome recycling regulator Rab5 and HRES-1/Rab4 genes, enhances Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B cells, and blocks the expression of Foxp3 and the generation of regulatory T cells. MHP, increased activity of mTOR, Rab GTPases, and Syk kinases, and enhanced Ca2+ flux have emerged as common T and B cell biomarkers and targets for treatment in SLE.
Yin, Tao; Wang, Guoping; He, Sisi; Shen, Guobo; Su, Chao; Zhang, Yan; Wei, Xiawei; Ye, Tinghong; Li, Ling; Yang, Shengyong; Li, Dan; Guo, Fuchun; Mo, Zeming; Wan, Yang; Ai, Ping; Zhou, Xiaojuan; Liu, Yantong; Wang, Yongsheng; Wei, Yuquan
2016-01-01
Malignant pleural effusion (PE) and ascites, common clinical manifestations in advanced cancer patients, are associated with a poor prognosis. However, the biological characteristics of malignant PE and ascites are not clarified. Here we report that malignant PE and ascites can induce a frequent epithelial-mesenchymal transition program and endow tumor cells with stem cell properties with high efficiency, which promotes tumor growth, chemoresistance, and immune evasion. We determine that this epithelial-mesenchymal transition process is mainly dependent on VEGF, one initiator of the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway. From the clinical observation, we define a therapeutic option with VEGF antibody for malignant PE and ascites. Taken together, our findings clarify a novel biological characteristic of malignant PE and ascites in cancer progression and provide a promising and available strategy for cancer patients with recurrent/refractory malignant PE and ascites. PMID:27756837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Ying, E-mail: peiying-19802@163.com; Chen, Zhen-Ping, E-mail: 530670663@qq.com; Ju, Huai-Qiang, E-mail: 344464448@qq.com
2011-02-11
Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impairedmore » significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.« less
Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg
2012-01-01
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991
M(o)TOR of aging: MTOR as a universal molecular hypothalamus.
Blagosklonny, Mikhail V
2013-07-01
A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.
2006-02-01
Morgan, K., Hasz, D. E., Mao, Z., and Largaespada, D. A. (2005). Nf1 gene inactivation in acute myeloid leukemia cells confers cytarabine resistance through MAPK and mTOR pathways. Leukemia. VII. Appendices: None
Figueira, Inês; Tavares, Lucélia; Jardim, Carolina; Costa, Inês; Terrasso, Ana P; Almeida, Andreia F; Govers, Coen; Mes, Jurriaan J; Gardner, Rui; Becker, Jörg D; McDougall, Gordon J; Stewart, Derek; Filipe, Augusto; Kim, Kwang S; Brites, Dora; Brito, Catarina; Brito, M Alexandra; Santos, Cláudia N
2017-11-18
Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MS n . BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
Ghrelin Inhibits the Differentiation of T Helper 17 Cells through mTOR/STAT3 Signaling Pathway
Xu, Yanhui; Li, Ziru; Yin, Yue; Lan, He; Wang, Jun; Zhao, Jing; Feng, Juan; Li, Yin; Zhang, Weizhen
2015-01-01
Enhanced activity of interleukin 17 (IL-17) producing T helper 17 (Th17) cells plays an important role in autoimmune and inflammatory diseases. Significant loss of body weight and appetite is associated with chronic inflammation and immune activation, suggesting the cross talk between immune and neuroendocrine systems. Ghrelin has been shown to regulate the organism immune function. However, the effects of ghrelin on the differentiation of Th17 cells remain elusive. In the present study, we observed the enhanced differentiation of Th17 cells in spleens of growth hormone secretagogue receptor 1a (GHSR1a)-/- mice. Treatment of ghrelin repressed Th17 cell differentiation in a time- and concentration-dependent manner. Phosphorylation of mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) was increased in the spleens of GHSR1a-/- mice. Activation of mTOR signaling by injection of Cre-expressiong adenovirus into tuberous sclerosis complex 1 (TSC1) loxp/loxp mice increased the differentiation of Th17 cells in spleen, which was associated with an increment in the phosphorylation of STAT3. Activation of mTOR signaling by leucine or overexpression of p70 ribosome protein subunit 6 kinase 1 (S6K1) activated mTOR signaling in isolated T cells, while reversed the ghrelin-induced inhibition of iTh17 cell differentiation. In conclusion, mTOR mediates the inhibitory effect of ghrelin on the differentiation of Th17 cells by interacting with STAT3. PMID:25658305
Akt-RSK-S6-kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases
Moritz, Albrecht; Li, Yu; Guo, Ailan; Villén, Judit; Wang, Yi; MacNeill, Joan; Kornhauser, Jon; Sprott, Kam; Zhou, Jing; Possemato, Anthony; Ren, Jian Min; Hornbeck, Peter; Cantley, Lewis C.; Gygi, Steven P.; Rush, John; Comb, Michael J.
2011-01-01
Receptor tyrosine kinases (RTKs) activate pathways mediated by serine/threonine (Ser/Thr) kinases such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmit signals by phosphorylating substrates on a RxRxxS/T motif. Here, we developed a large-scale proteomic approach to identify over 200 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor a (PDGFRα) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTKIs as well as by inhibitors of the PI3K, mTOR, and MAPK pathways and determined the effects of siRNA directed against these substrates on cell viability. We found that phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at Ser305 is essential for PDGFRα stabilization and cell survival in PDGFRα-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing many previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs. PMID:20736484
Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases
Devkota, Sushil; Jeong, Hyobin; Kim, Yunmi; Ali, Muhammad; Roh, Jae-il; Hwang, Daehee; Lee, Han-Woong
2016-01-01
ABSTRACT Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases. PMID:27541728
Moon, Jeong Yong; Kim, Hyeonji; Cho, Somi Kim
2015-01-01
The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE) of phalsak (Citrus hassaku Hort ex Tanaka) fruits was analyzed by gas chromatography-mass spectrometry (GC-MS). Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP) protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells. PMID:26351512
Jang, Jinsil; Jeong, Soo-Jin; Kwon, Hee-Young; Jung, Ji Hoon; Sohn, Eun Jung; Lee, Hyo-Jung; Kim, Ji-Hyun; Kim, Sun-Hee; Kim, Jin Hyoung; Kim, Sung-Hoon
2013-01-01
Background. Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, we investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. Methodology/Principal Findings. Combined treatment of decursin and doxorubicin significantly exerted significant cytotoxicity compared to doxorubicin or decursin in U266, RPMI8226, and MM.1S cells. Furthermore, the combination treatment enhanced the activation of caspase-9 and -3, the cleavage of PARP, and the sub G1 population compared to either drug alone in three multiple myeloma cells. In addition, the combined treatment downregulated the phosphorylation of mTOR and its downstream S6K1 and activated the phosphorylation of ERK in three multiple myeloma cells. Furthermore, the combined treatment reduced mitochondrial membrane potential, suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells. Conversely, tyrosine phosphatase inhibitor pervanadate reversed STAT3 inactivation and also PARP cleavage and caspase-3 activation induced by combined treatment of doxorubicin and decursin in U266 cells. Conclusions/Significance. Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells. PMID:23818927
Jang, Jinsil; Jeong, Soo-Jin; Kwon, Hee-Young; Jung, Ji Hoon; Sohn, Eun Jung; Lee, Hyo-Jung; Kim, Ji-Hyun; Kim, Sun-Hee; Kim, Jin Hyoung; Kim, Sung-Hoon
2013-01-01
Background. Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, we investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. Methodology/Principal Findings. Combined treatment of decursin and doxorubicin significantly exerted significant cytotoxicity compared to doxorubicin or decursin in U266, RPMI8226, and MM.1S cells. Furthermore, the combination treatment enhanced the activation of caspase-9 and -3, the cleavage of PARP, and the sub G1 population compared to either drug alone in three multiple myeloma cells. In addition, the combined treatment downregulated the phosphorylation of mTOR and its downstream S6K1 and activated the phosphorylation of ERK in three multiple myeloma cells. Furthermore, the combined treatment reduced mitochondrial membrane potential, suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells. Conversely, tyrosine phosphatase inhibitor pervanadate reversed STAT3 inactivation and also PARP cleavage and caspase-3 activation induced by combined treatment of doxorubicin and decursin in U266 cells. Conclusions/Significance. Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells.
Metabolic control of the epigenome in systemic Lupus erythematosus
Oaks, Zachary; Perl, Andras
2014-01-01
Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression. PMID:24128087
Virgilio, Maria; Narla, Anupama; Sun, Hong; Levine, Michelle; Paw, Barry H.; Berliner, Nancy; Look, A. Thomas; Ebert, Benjamin L.
2012-01-01
Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34+ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS. PMID:22734070
Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong
2017-10-25
This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.
García-Martínez, J M; Wullschleger, S; Preston, G; Guichard, S; Fleming, S; Alessi, D R; Duce, S L
2011-03-29
The PI3K-mTOR (phosphoinositide 3-kinase-mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN(+/-)LKB1(+/hypo) mice. The PTEN(+/-)LKB1(+/hypo) mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours.
García-Martínez, J M; Wullschleger, S; Preston, G; Guichard, S; Fleming, S; Alessi, D R; Duce, S L
2011-01-01
Background: The PI3K–mTOR (phosphoinositide 3-kinase–mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN+/−LKB1+/hypo mice. Methods: The PTEN+/−LKB1+/hypo mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. Results: The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. Conclusion: These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours. PMID:21407213
Zhang, Bolin; Lin, Meng; Yu, Changning; Li, Jiaolong; Zhang, Lin; Zhou, Ping; Yang, Wenwei; Gao, Feng; Zhou, Guanghong
2016-10-01
The aim of the present study was to investigate the effects of the alanyl-glutamine dipeptide (Ala-Gln) or the combination supplementation of free alanine and glutamine (Ala+Gln) on the mammalian target of rapamycin (mTOR) and ubiquitin-proteasome proteolysis (UPP) signaling pathways in piglets. We randomly allocated 180 piglets to three treatments with three replicates of 20 piglets each, fed with diets containing 0.62% Ala, 0.5% Ala-Gln, 0.21% Ala+0.34% Gln, respectively. The duration of the experiment was 28 d. The results showed that Ala-Gln increased average daily gain of piglets, and decreased the ratio of feed to gain (P < 0.05). Ala-Gln supplementation increased the concentrations of Gln and glutamate and decreased the activity of glutamine synthetase in liver and skeletal muscle (P < 0.05). Ala-Gln increased the expression of glutaminase and glutamate dehydrogenate (P < 0.05). The increased phosphorylation of eIF-4 E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1) in Ala-Gln treatment were associated with phosphorylation of the mTOR in liver and skeletal muscle. Ala+Gln did not affect the phosphorylation abundances of mTOR, 4E-BP1, or S6K1 (P > 0.05). Ala-Gln supplementation inhibited the mRNA expressions of MAFbx and MuRF1 in skeletal muscle of piglets (P < 0.05). Taken together, Ala-Gln supplementation improved the growth performance of piglets, enhanced the metabolism of Gln, upregulated protein synthetic signaling in liver and skeletal muscle and decreased protein degradative signaling in muscle of piglets. Moreover, these effects of Ala-Gln were more effective than those of Ala+Gln. Copyright © 2016 Elsevier Inc. All rights reserved.
Saeedi Saravi, Seyed Soheil; Arefidoust, Alireza; Saeedi Saravi, Seyed Sobhan; Yaftian, Rahele; Bayati, Mahdi; Salehi, Milad; Dehpour, Ahmad Reza
2017-05-01
Due to a close association between depressive disorders and altered estrogen levels, this study was conducted to examine the hypothesis that antidepressant-like effect of ethinyl estradiol (EE 2) in ovariectomized mice is modulated by mammalian target of rapamycin (mTOR)/nitric oxide pathways. Female mice were undergone bilateral ovariectomy and different doses of EE 2 were intraperitoenally injected alone and combined with specific mTOR inhibitor, rapamycin, non-specific NOS inhibitor, L-NAME, nNOS inhibitor, 7-NI, NO precursor, l-arginine, and selective PDE5I, sildenafil. After locomotion assessment, immobility times were recorded in FST and TST. Moreover, hippocampal mTOR expression was assessed using western blot assay. The hippocampal concentrations of nitrite, a major metabolite of NO, were measured. Although EE 2 demonstrated a significant antidepressant-like activity in OVX mice, acute rapamycin exerted an unmarked decrease of the anti-immobility effect of EE 2 in FST and TST (P>0.05). In contrast, combination of minimal effective dose of EE 2 with sub- effective doses of either L-NAME (10mg/kg) or 7-NI (25mg/kg) resulted in a robust antidepressant-like effect in OVX mice. Administration of either L-NAME or 7-NI enhanced the decreased antidepressant activity of EE 2 induced by combination with rapamycin. Moreover, decrement of hippocampal mTOR expression in OVX mice was significantly enhanced by acute EE 2 . The increased hippocampal nitrite concentrations caused by ovariectomy were also reversed by EE 2 administration. The study demonstrated that acute treatment with lowest dose of EE 2 exerts significant antidepressant-like behavior in OVX mice, possibly, through mTOR activation. This effect seems to be also mediated by the suppression of nitric oxide pathway. Copyright © 2017. Published by Elsevier Masson SAS.
Banerjee, Nivedita; Kim, Hyemee; Talcott, Stephen T; Turner, Nancy D; Byrne, David H; Mertens-Talcott, Susanne U
2016-10-01
The nutritional prevention of aberrant crypt foci by polyphenols may be a crucial step to dietary cancer prevention. The objective of this study was to determine the underlying mechanisms that contribute to the anti-inflammatory and antitumorigenic properties of plum (Prunus salicina L.) polyphenols, including chlorogenic acid and neochlorogenic acid, in azoxymethane (AOM)-treated rats. The hypothesis was that plum polyphenolics suppress AOM-induced aberrant crypt foci formation through alterations in the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and relative micro-RNA expressions. Sprague-Dawley rats (n=10/group) received plum beverage (1346mg gallic acid equivalents/L) or a control beverage ad libitum for 10 weeks with subcutaneous injections of AOM (15mg/kg) at weeks 2 and 3. Results show that the consumption of the plum beverage decreased the number of dysplastic aberrant crypt foci by 48% (P<.05) and lowered proliferation of mucosal cells by 24% (P<.05). The plum beverage decreased the activity of glutathione peroxidase, superoxide dismutase, and catalase in mucosal scrapings, as well as the superoxide dismutase activity in serum. The results were accompanied by a down-regulation of proinflammatory enzymes nuclear factor κB, nitric oxide synthase, cyclooxygenase-2, and vascular cell adhesion molecule 1 messenger RNA. Plum inhibited the expression of AKT and mTOR messenger RNA, phosphorylated AKT, mTOR, and hypoxia-inducible factor-1α protein levels, and the ratio of the phosphorylated/total protein expression of mTOR. Also, the plum beverage increased the expression of miR-143, which is involved in the regulation of AKT. These results suggest that plum polyphenols may exhibit a chemopreventive potential against colon carcinogenesis by impacting the AKT/mTOR pathway and miR-143. Copyright © 2016 Elsevier Inc. All rights reserved.
Cao, Lei; Tian, Ye; Jiang, Yi; Zhang, Ge-Juan; Lei, Hui; Di, Zheng-Li
2015-01-01
Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability. To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA) to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX) or pentylenetetrazole (PTZ) administration. The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR) and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5) agonist CHPG. Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway. © 2015 S. Karger AG, Basel.
Manjarín, Rodrigo; Columbus, Daniel A; Suryawan, Agus; Nguyen, Hanh V; Hernandez-García, Adriana D; Hoang, Nguyet-Minh; Fiorotto, Marta L; Davis, Teresa
2016-01-01
Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.
Chaube, Udit; Chhatbar, Dhara; Bhatt, Hardik
2016-02-01
According to WHO statistics, lung cancer is one of the leading causes of death among all other types of cancer. Many genes get mutated in lung cancer but involvement of EGFR and KRAS are more common. Unavailability of drugs or resistance to the available drugs is the major problem in the treatment of lung cancer. In the present research, mTOR was selected as an alternative target for the treatment of lung cancer which involves PI3K/AKT/mTOR pathway. 28 synthetic mTOR inhibitors were selected from the literature. Ligand based approach (CoMFA and CoMSIA) and structure based approach (molecular dynamics simulations assisted molecular docking study) were applied for the identification of important features of benzoxazepine moiety, responsible for mTOR inhibition. Three different alignments were tried to obtain best QSAR model, of which, distil was found to be the best method, as it gave good statistical results. In CoMFA, Leave One Out (LOO) cross validated coefficients (q(2)), conventional coefficient (r(2)) and predicted correlation coefficient (r(2)pred) values were found to be 0.615, 0.990 and 0.930, respectively. Similarly in CoMSIA, q(2), r(2)ncv and r(2)pred values were found to be 0.748, 0.986 and 0.933, respectively. Molecular dynamics and simulations study revealed that B-chain of mTOR protein was stable at and above 500 FS with respect to temperature (at and above 298 K), Potential energy (at and above 7669.72 kJ/mol) and kinetic energy (at and above 4009.77 kJ/mol). Molecular docking study was performed on simulated protein of mTOR which helped to correlate interactions of amino acids surrounded to the ligand with contour maps generated by QSAR method. Important features of benzoxazepine were identified by contour maps and molecular docking study which would be useful to design novel molecules as mTOR inhibitors for the treatment of lung cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Guodong; Zou, Bingyu; Lv, Jianzhen; Li, Tongyu; Huai, Guoli; Xiang, Shaowei; Lu, Shilong; Luo, Huan; Zhang, Yaping; Jin, Yi; Wang, Yi
2017-01-01
Injury to terminally differentiated podocytes contributes ignificantly to proteinuria and glomerulosclerosis. The aim of this study was to examine the protective effects of notoginsenoside R1 (NR1) on the maintenance of podocyte number and foot process architecture via the inhibition of apoptosis, the induction of autophagy and the maintenance pf podocyte biology in target cells. The effects of NR1 on conditionally immortalized human podocytes under high glucose conditions were evaluated by determining the percentage apoptosis, the percentage autophagy and the expression levels of slit diaphragm proteins. Our results revealed that NR1 protected the podocytes against high glucose-induced injury by decreasing apoptosis, increasing autophagy and by promoting cytoskeletal recovery. The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was further investigated in order to elucidate the mechanisms responsible for the protective effects of NR1 on podocytes. Our data indicated that treatment with NR increased the phosphorylation levels of PI3K, Akt and mTOR, leading to the activation of the PI3K/Akt/mTOR signaling pathway in podocytes. To the best of our knowledge, this is the first in vitro study to demonstrate that NR1 protects podocytes by activating the PI3K/Akt/mTOR pathway. PMID:28112381
mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.
Deming, Dustin A; Leystra, Alyssa A; Farhoud, Mohammed; Nettekoven, Laura; Clipson, Linda; Albrecht, Dawn; Washington, Mary Kay; Sullivan, Ruth; Weichert, Jamey P; Halberg, Richard B
2013-01-01
The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.
Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi
2013-01-01
To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.
Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs
USDA-ARS?s Scientific Manuscript database
Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal...
Batistel, Fernanda; Alharthi, Abdulrahman Sm; Wang, Ling; Parys, Claudia; Pan, Yuan-Xiang; Cardoso, Felipe C; Loor, Juan J
2017-09-01
Background: To our knowledge, most research demonstrating a link between maternal nutrition and both fetal growth and offspring development after birth has been performed with nonruminants. Whether such relationships exist in large ruminants is largely unknown. Objective: We aimed to investigate whether increasing the methionine supply during late pregnancy would alter uteroplacental tissue nutrient transporters and mammalian target of rapamycin (mTOR) and their relation with newborn body weight. Methods: Multiparous Holstein cows were used in a randomized complete block design experiment. During the last 28 d of pregnancy, cows were fed a control diet or the control diet plus ethylcellulose rumen-protected methionine (0.9 g/kg dry matter intake) (Mepron; Evonik Nutrition & Care GmbH) to achieve a 2.8:1 ratio of lysine to methionine in the metabolizable protein reaching the small intestine. We collected placentome samples at parturition and used them to assess mRNA and protein expression and the phosphorylation status of mTOR pathway proteins. Results: Newborn body weight was greater in the methionine group than in the control group (44.1 kg and 41.8 kg, respectively; P ≤ 0.05). Increasing the methionine supply also resulted in greater feed intake (15.8 kg/d and 14.6 kg/d), plasma methionine (11.9 μM and 15.3 μM), and plasma insulin (1.16 μg/L and 0.81 μg/L) in cows during late pregnancy. As a result, mRNA expression of genes involved in neutral amino acid transport [solute carrier (SLC) family members SLC3A2 , SLC7A5 , SLC38A1 , and SLC38A10 ], glucose transport [ SLC2A1 , SLC2A3 , and SLC2A4 ], and the mTOR pathway [mechanistic target of rapamycin and ribosomal protein S6 kinase B1] were upregulated ( P ≤ 0.07) in methionine-supplemented cows. Among 6 proteins in the mTOR pathway, increasing the methionine supply led to greater ( P ≤ 0.09) protein expression of α serine-threonine kinase (AKT), phosphorylated (p)-AKT, p-eukaryotic elongation factor 2, and the p-mTOR:mTOR ratio. Conclusion: Supplemental methionine during late gestation increases feed intake and newborn body weight in dairy cows, and this effect may be mediated by alterations in the uteroplacental transport of nondispensable and dispensable amino acids and glucose at least in part through changes in gene transcription and mTOR signaling. © 2017 American Society for Nutrition.
Jin, Ying; Sui, Hai-juan; Dong, Yan; Ding, Qi; Qu, Wen-hui; Yu, Sheng-xue; Jin, Ying-xin
2012-01-01
Aim: To investigate whether atorvastatin can promote formation of neurites in cultured cortical neurons and the signaling mechanisms responsible for this effect. Methods: Cultured rat cerebral cortical neurons were incubated with atorvastatin (0.05–10 μmol/L) for various lengths of time. For pharmacological experiments, inhibitors were added 30 min prior to addition of atorvastatin. Control cultures received a similar amount of DMSO. Following the treatment period, phase-contrast digital images were taken. Digital images of neurons were analyzed for total neurite branch length (TNBL), neurite number, terminal branch number, and soma area by SPOT Advanced Imaging software. After incubation with atorvastatin for 48 h, the levels of phosphorylated 3-phosphoinoside-dependent protein kinase-1 (PDK1), phospho-Akt, phosphorylated mammalian target of rapamycin (mTOR), phosphorylated 4E-binding protein 1 (4E-BP1), p70S6 kinase (p70S6K), and glycogen synthase kinase-3β (GSK-3β) in the cortical neurons were evaluated using Western blotting analyses. Results: Atorvastatin (0.05–10 μmol/L) resulted in dose-dependent increase in neurite number and length in these neurons. Pretreatment of the cortical neurons with phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 (30 μmol/L) and wortmannin (5 μmol/L), Akt inhibitor tricribine (1 μmol/L) or mTOR inhibitor rapamycin (100 nmol/L) blocked the atorvastatin-induced increase in neurite outgrowth, suggesting that atorvastatin promoted neurite outgrowth via activating the PI3K/Akt/mTOR signaling pathway. Atorvastatin (10 μmol/L) significantly increased the levels of phosphorylated PDK1, Akt and mTOR in the cortical neurons, which were prevented by LY294002 (30 μmol/L). Moreover, atorvastatin (10 μmol/L) stimulated the phosphorylation of 4E-BP1 and p70S6K, the substrates of mTOR, in the cortical neurons. In addition, atorvastatin (10 μmol/L) significantly increased the phosphorylated GSK-3β level in the cortical neurons, which was prevented by both LY294002 and tricribine. Conclusion: These results suggest that activation of both the PI3K/Akt/mTOR and Akt/GSK-3β signaling pathways is responsible for the atorvastatin-induced neurite outgrowth in cultured cortical neurons. PMID:22705730
Giovannini, Maria Grazia; Lana, Daniele; Pepeu, Giancarlo
2015-03-01
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.
Mohd Rehan
2015-11-01
The PI3K/AKT/mTOR signaling pathway has been identified as an important target for cancer therapy. Attempts are increasingly made to design the inhibitors against the key proteins of this pathway for anti-cancer therapy. The PI3K/mTOR dual inhibitors have proved more effective than the inhibitors against only single protein targets. Recently discovered PKI-179, an orally effective compound, is one such dual inhibitor targeting both PI3K and mTOR. This anti-cancer compound is efficacious both in vitro and in vivo. However, the binding mechanisms and the molecular interactions of PKI-179 with PI3K and mTOR are not yet available. The current study investigated the exact binding mode and the molecular interactions of PKI-179 with PI3Kγ and mTOR using molecular docking and (un)binding simulation analyses. The study identified PKI-179 interacting residues of both the proteins and their importance in binding was ranked by the loss in accessible surface area, number of molecular interactions of the residue, and consistent appearance of the residue in (un)binding simulation analysis. The key residues involved in binding of PKI-179 were Ala-805 in PI3Kγ and Ile-2163 in mTOR as they have lost maximum accessible surface area due to binding. In addition, the residues which played a role in binding of the drug but were away from the catalytic site were also identified using (un)binding simulation analyses. Finally, comparison of the interacting residues in the respective catalytic sites was done for the difference in the binding of the drug to the two proteins. Thus, the pairs of the residues falling at the similar location with respect to the docked drug were identified. The striking similarity in the interacting residues of the catalytic site explains the concomitant inhibition of both proteins by a number of inhibitors. In conclusion, the docking and (un)binding simulation analyses of dual inhibitor PKI-179 with PI3K and mTOR will provide a suitable multi-target model for studying drug-protein interactions and thus help in designing the novel drugs with higher potency. Copyright © 2015 Elsevier Inc. All rights reserved.
de Paula, Tassiana Gutierrez; Zanella, Bruna Tereza Thomazini; Fantinatti, Bruno Evaristo de Almeida; de Moraes, Leonardo Nazário; Duran, Bruno Oliveira da Silva; de Oliveira, Caroline Bredariol; Salomão, Rondinelle Artur Simões; da Silva, Rafaela Nunes; Padovani, Carlos Roberto; dos Santos, Vander Bruno; Mareco, Edson Assunção; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli
2017-01-01
Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance. PMID:28505179
Fernandez, David R.; Telarico, Tiffany; Bonilla, Eduardo; Li, Qing; Banerjee, Sanjay; Middleton, Frank A.; Phillips, Paul E.; Crow, Mary K.; Oess, Stefanie; Muller-Esterl, Werner; Perl, Andras
2008-01-01
Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T-cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. Here, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR causes the over-expression of the Rab5A and HRES-1/Rab4 small GTPases that regulate endocytic recycling of surface receptors. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with the T-cell receptor/CD3ζ chain (TCRζ). Importantly, the deficiency of the TCRζ chain and Lck and compensatory upregulation of the Fcε receptor type I γ chain (FcεRIγ) and Syk, which mediate enhanced calcium fluxing in lupus T cells, was reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by siRNA and inhibitors of lysosomal function augmented TCRζ protein levels. The results suggest that activation of mTOR causes the loss of TCRζ in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation. PMID:19201859
Wu, Kejia; Tian, Rui; Huang, Jing; Yang, Yongqiang; Dai, Jie; Jiang, Rong; Zhang, Li
2018-05-31
Inflammation requires intensive metabolic support and modulation of the metabolic pathways might become a novel strategy to limit inflammatory injury. Recent studies have revealed the anti-inflammatory effects of the anti-diabetic reagent metformin, but the underlying mechanisms remain unclear. In the present study, the potential effects of metformin on endotoxemia-induced acute lung injury (ALI) and their relationship with the representative metabolic regulator, including AMPK, sirtuin 1 and mTOR, were investigated. The results indicated that treatment with metformin suppressed LPS-induced upregulation of IL-6 and TNF-α, alleviated pulmonary histological abnormalities, improved the survival rate of LPS-challenged mice. Treatment with metformin reversed LPS-induced decline of AMPK phosphorylation. Co-administration of the AMPK inhibitor compound C abolished the stimulatory effects of metformin on AMPK phosphorylation, the suppressive effects of metformin on IL-6 induction and pulmonary lesions. In addition, co-administration of the mTOR activator 3BDO but not the sirtuin 1 inhibitor EX-527 abolished the effects of metformin on IL-6 induction and pulmonary lesions. Finally, treatment with metformin suppressed LPS-induced p70S6K1 phosphorylation, which was abolished by the AMPK inhibitor. These data suggest that metformin might provide anti-inflammatory benefits in endotoxemia-induced inflammatory lung injury via restoring AMPK-dependent suppression of mTOR. Copyright © 2018. Published by Elsevier B.V.