Sample records for mtrap pairwise sequence

  1. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.

  2. Genetic parameters for image analysis traits on M. longissimus thoracis and M. trapezius of carcass cross section in Japanese Black steers.

    PubMed

    Osawa, T; Kuchida, K; Hidaka, S; Kato, T

    2008-01-01

    In Japan, the degree of marbling in ribeye (M. longissimus thoracis) is evaluated in the beef meat grading process. However, other muscles (e.g., M. trapezius) are also important in determining the meat quality and carcass market prices. The purpose of this study was to estimate genetic parameters for M. longissimus thoracis (M-LONG) and M. trapezius (M-TRAP) of carcass cross section of Japanese Black steers by computer image analysis. The number of records of Japanese Black steers and the number of pedigree records were 2,925 and 10,889, respectively. Digital images of the carcass cross section were taken between the sixth and seventh ribs by photographing equipment. Muscle area (MA), fat area ratio (FAR), overall coarseness of marbling particles (OCM), and coarseness of maximum marbling particle (MMC) in M-LONG and M-TRAP were calculated by image analysis. Genetic parameters for these traits were estimated using the AIREMLF90 program with an animal model. Fixed effects that were included in the model were dates of arrival at the carcass market and slaughter age (mo), and random effects of fattening farms, additive genetic effects and residuals were included in the model. For M-LONG, heritability estimates (+/-SE) were 0.46 +/- 0.06, 0.59 +/- 0.06, 0.47 +/- 0.06, and 0.20 +/- 0.05 for MA, FAR, OCM, and MMC, respectively. Heritability estimates (+/-SE) in M-TRAP were 0.47 +/- 0.06, 0.57 +/- 0.07, 0.49 +/- 0.07, and 0.13 +/- 0.04 for the same traits. Genetic correlations between subcutaneous fat thickness and FAR for M-LONG and M-TRAP were negative (-0.21 and -0.19, respectively). Those correlations between M-LONG and M-TRAP were moderate to high for MA, FAR, OCM, and MMC (0.38, 0.52, 0.39, and 0.60, respectively). These results indicate that other muscles including M-LONG should be evaluated for more efficient genetic improvement.

  3. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  4. Beyond Solar-B: MTRAP, the Magnetic Transition Region Probe

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Moore, Ronald L.; Hathaway, David H.

    2003-01-01

    The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, 'High-Resolution Solar Magnetography from Space: Beyond Solar-B,' held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (less than 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (less than 50km) over a large FOV (approximately 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of less than 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: (1) Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals; (2) The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.

  5. Beyond Solar-B: MTRAP, the Magnetic TRAnsition Region Probe

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Moore, R. L.; Hathaway, D. H.; Science Definition CommitteeHigh-Resolution Solar Magnetography Beyond Solar-B Team

    2003-05-01

    The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, "High-Resolution Solar Magnetography from Space: Beyond Solar-B," held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (< 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (< 50km) over a large FOV ( 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of < 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: 1. Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals. 2. The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.

  6. CombAlign: a code for generating a one-to-many sequence alignment from a set of pairwise structure-based sequence alignments.

    PubMed

    Zhou, Carol L Ecale

    2015-01-01

    In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.

  7. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.

  8. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.

    PubMed

    Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric

    2005-03-10

    Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  9. SVM-dependent pairwise HMM: an application to protein pairwise alignments.

    PubMed

    Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F

    2017-12-15

    Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    PubMed

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  11. Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil

    2014-03-01

    Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.

  12. Breaking the computational barriers of pairwise genome comparison.

    PubMed

    Torreno, Oscar; Trelles, Oswaldo

    2015-08-11

    Conventional pairwise sequence comparison software algorithms are being used to process much larger datasets than they were originally designed for. This can result in processing bottlenecks that limit software capabilities or prevent full use of the available hardware resources. Overcoming the barriers that limit the efficient computational analysis of large biological sequence datasets by retrofitting existing algorithms or by creating new applications represents a major challenge for the bioinformatics community. We have developed C libraries for pairwise sequence comparison within diverse architectures, ranging from commodity systems to high performance and cloud computing environments. Exhaustive tests were performed using different datasets of closely- and distantly-related sequences that span from small viral genomes to large mammalian chromosomes. The tests demonstrated that our solution is capable of generating high quality results with a linear-time response and controlled memory consumption, being comparable or faster than the current state-of-the-art methods. We have addressed the problem of pairwise and all-versus-all comparison of large sequences in general, greatly increasing the limits on input data size. The approach described here is based on a modular out-of-core strategy that uses secondary storage to avoid reaching memory limits during the identification of High-scoring Segment Pairs (HSPs) between the sequences under comparison. Software engineering concepts were applied to avoid intermediate result re-calculation, to minimise the performance impact of input/output (I/O) operations and to modularise the process, thus enhancing application flexibility and extendibility. Our computationally-efficient approach allows tasks such as the massive comparison of complete genomes, evolutionary event detection, the identification of conserved synteny blocks and inter-genome distance calculations to be performed more effectively.

  13. Preliminary Classification of Novel Hemorrhagic Fever-Causing Viruses Using Sequence-Based PAirwise Sequence Comparison (PASC) Analysis.

    PubMed

    Bào, Yīmíng; Kuhn, Jens H

    2018-01-01

    During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.

  14. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  15. Multiple alignment-free sequence comparison

    PubMed Central

    Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine

    2013-01-01

    Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418

  16. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  17. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  18. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Grainger, Munira; Howell, Steven A; Green, Judith L; Holder, Anthony A

    2014-10-01

    The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  20. Remarkable sequence conservation of the last intron in the PKD1 gene.

    PubMed

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  1. Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models.

    PubMed

    Jacquin, Hugo; Gilson, Amy; Shakhnovich, Eugene; Cocco, Simona; Monasson, Rémi

    2016-05-01

    Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred effective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of 'true' LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.

  2. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  3. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.

    PubMed

    Gil, Manuel

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  4. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances

    PubMed Central

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263

  5. DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.

    PubMed

    Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard

    2004-09-09

    Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  6. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  7. Saving the Best for Last? A Cross-Species Analysis of Choices between Reinforcer Sequences

    ERIC Educational Resources Information Center

    Andrade, Leonardo F.; Hackenberg, Timothy D.

    2012-01-01

    Two experiments were conducted to compare choices between sequences of reinforcers in pigeon (Experiment 1) and human (Experiment 2) subjects, using functionally analogous procedures. The subjects made pairwise choices among 3 sequence types, all of which provided the same overall reinforcement rate, but differed in their temporal patterning.…

  8. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.

    PubMed

    Parente, Daniel J; Ray, J Christian J; Swint-Kruse, Liskin

    2015-12-01

    As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. © 2015 Wiley Periodicals, Inc.

  9. Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold

    PubMed Central

    Li, Weizhong; Lopez, Rodrigo

    2017-01-01

    Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999

  10. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis

    PubMed Central

    Roelens, Baptiste; Schvarzstein, Mara; Villeneuve, Anne M.

    2015-01-01

    Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination. PMID:26500263

  11. Improving pairwise comparison of protein sequences with domain co-occurrence

    PubMed Central

    Gascuel, Olivier

    2018-01-01

    Comparing and aligning protein sequences is an essential task in bioinformatics. More specifically, local alignment tools like BLAST are widely used for identifying conserved protein sub-sequences, which likely correspond to protein domains or functional motifs. However, to limit the number of false positives, these tools are used with stringent sequence-similarity thresholds and hence can miss several hits, especially for species that are phylogenetically distant from reference organisms. A solution to this problem is then to integrate additional contextual information to the procedure. Here, we propose to use domain co-occurrence to increase the sensitivity of pairwise sequence comparisons. Domain co-occurrence is a strong feature of proteins, since most protein domains tend to appear with a limited number of other domains on the same protein. We propose a method to take this information into account in a typical BLAST analysis and to construct new domain families on the basis of these results. We used Plasmodium falciparum as a case study to evaluate our method. The experimental findings showed an increase of 14% of the number of significant BLAST hits and an increase of 25% of the proteome area that can be covered with a domain. Our method identified 2240 new domains for which, in most cases, no model of the Pfam database could be linked. Moreover, our study of the quality of the new domains in terms of alignment and physicochemical properties show that they are close to that of standard Pfam domains. Source code of the proposed approach and supplementary data are available at: https://gite.lirmm.fr/menichelli/pairwise-comparison-with-cooccurrence PMID:29293498

  12. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    PubMed

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  13. Population and forensic genetic analyses of mitochondrial DNA control region variation from six major provinces in the Korean population.

    PubMed

    Hong, Seung Beom; Kim, Ki Cheol; Kim, Wook

    2015-07-01

    We generated complete mitochondrial DNA (mtDNA) control region sequences from 704 unrelated individuals residing in six major provinces in Korea. In addition to our earlier survey of the distribution of mtDNA haplogroup variation, a total of 560 different haplotypes characterized by 271 polymorphic sites were identified, of which 473 haplotypes were unique. The gene diversity and random match probability were 0.9989 and 0.0025, respectively. According to the pairwise comparison of the 704 control region sequences, the mean number of pairwise differences between individuals was 13.47±6.06. Based on the result of mtDNA control region sequences, pairwise FST genetic distances revealed genetic homogeneity of the Korean provinces on a peninsular level, except in samples from Jeju Island. This result indicates there may be a need to formulate a local mtDNA database for Jeju Island, to avoid bias in forensic parameter estimates caused by genetic heterogeneity of the population. Thus, the present data may help not only in personal identification but also in determining maternal lineages to provide an expanded and reliable Korean mtDNA database. These data will be available on the EMPOP database via accession number EMP00661. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    PubMed Central

    2007-01-01

    Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273

  15. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  16. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    PubMed

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  17. Phylogenetic Relationship of Necoclí Virus to Other South American Hantaviruses (Bunyaviridae: Hantavirus).

    PubMed

    Montoya-Ruiz, Carolina; Cajimat, Maria N B; Milazzo, Mary Louise; Diaz, Francisco J; Rodas, Juan David; Valbuena, Gustavo; Fulhorst, Charles F

    2015-07-01

    The results of a previous study suggested that Cherrie's cane rat (Zygodontomys cherriei) is the principal host of Necoclí virus (family Bunyaviridae, genus Hantavirus) in Colombia. Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences in this study confirmed that Necoclí virus is phylogenetically closely related to Maporal virus, which is principally associated with the delicate pygmy rice rat (Oligoryzomys delicatus) in western Venezuela. In pairwise comparisons, nonidentities between the complete amino acid sequence of the nucleocapsid protein of Necoclí virus and the complete amino acid sequences of the nucleocapsid proteins of other hantaviruses were ≥8.7%. Likewise, nonidentities between the complete amino acid sequence of the glycoprotein precursor of Necoclí virus and the complete amino acid sequences of the glycoprotein precursors of other hantaviruses were ≥11.7%. Collectively, the unique association of Necoclí virus with Z. cherriei in Colombia, results of the Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences, and results of the pairwise comparisons of amino acid sequences strongly support the notion that Necoclí virus represents a novel species in the genus Hantavirus. Further work is needed to determine whether Calabazo virus (a hantavirus associated with Z. brevicauda cherriei in Panama) and Necoclí virus are conspecific.

  18. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  19. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  20. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    PubMed

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  1. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  2. ScaffoldSeq: Software for characterization of directed evolution populations.

    PubMed

    Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J

    2016-07-01

    ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing.

    PubMed

    Bergin, Sarah M; Periaswamy, Balamurugan; Barkham, Timothy; Chua, Hong Choon; Mok, Yee Ming; Fung, Daniel Shuen Sheng; Su, Alex Hsin Chuan; Lee, Yen Ling; Chua, Ming Lai Ivan; Ng, Poh Yong; Soon, Wei Jia Wendy; Chu, Collins Wenhan; Tan, Siyun Lucinda; Meehan, Mary; Ang, Brenda Sze Peng; Leo, Yee Sin; Holden, Matthew T G; De, Partha; Hsu, Li Yang; Chen, Swaine L; de Sessions, Paola Florez; Marimuthu, Kalisvar

    2018-05-09

    OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;1-9.

  4. Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts.

    PubMed

    Göke, Jonathan; Schulz, Marcel H; Lasserre, Julia; Vingron, Martin

    2012-03-01

    The identity of cells and tissues is to a large degree governed by transcriptional regulation. A major part is accomplished by the combinatorial binding of transcription factors at regulatory sequences, such as enhancers. Even though binding of transcription factors is sequence-specific, estimating the sequence similarity of two functionally similar enhancers is very difficult. However, a similarity measure for regulatory sequences is crucial to detect and understand functional similarities between two enhancers and will facilitate large-scale analyses like clustering, prediction and classification of genome-wide datasets. We present the standardized alignment-free sequence similarity measure N2, a flexible framework that is defined for word neighbourhoods. We explore the usefulness of adding reverse complement words as well as words including mismatches into the neighbourhood. On simulated enhancer sequences as well as functional enhancers in mouse development, N2 is shown to outperform previous alignment-free measures. N2 is flexible, faster than competing methods and less susceptible to single sequence noise and the occurrence of repetitive sequences. Experiments on the mouse enhancers reveal that enhancers active in different tissues can be separated by pairwise comparison using N2. N2 represents an improvement over previous alignment-free similarity measures without compromising speed, which makes it a good candidate for large-scale sequence comparison of regulatory sequences. The software is part of the open-source C++ library SeqAn (www.seqan.de) and a compiled version can be downloaded at http://www.seqan.de/projects/alf.html. Supplementary data are available at Bioinformatics online.

  5. Evolution of biological sequences implies an extreme value distribution of type I for both global and local pairwise alignment scores.

    PubMed

    Bastien, Olivier; Maréchal, Eric

    2008-08-07

    Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the information hazard rate, and that pairwise sequence alignment scores should follow a Gumbel distribution, which parameters could find some theoretical rationale. In particular, one parameter corresponds to the information hazard rate. Extreme value distribution of alignment scores, assessed from high scoring segments pairs following the Karlin-Altschul model, can also be deduced from the Reliability Theory applied to molecular sequences. It reflects the redundancy of information between homologous sequences, under functional conservative pressure. This model also provides a link between concepts of biological sequence analysis and of systems biology.

  6. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.

    PubMed

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-03-01

    Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org

  7. Comparison of the ITS1 and ITS2 rDNA in Emeria callospermophili (Apicomplexa: Eimeriidae) from Sciurid Rodents

    PubMed Central

    Motriuk-Smith, Dagmara; Seville, R Scott; Quealy, Leah; Oliver, Clinton E.

    2011-01-01

    The taxonomy of the coccidia has historically been morphologically based. The purpose of this study was to establish if conspecificity of isolates of Eimeria callospermophili from 4 ground-dwelling squirrel hosts (Rodentia: Sciuridae) is supported by comparison of rDNA sequence data and to examine how this species relates to eimerian species from other sciurid hosts. Eimeria callospermophili was isolated from 4 wild caught hosts, i.e., Urocitellus elegans, Cynomys leucurus, Marmota flaviventris, and Cynomys ludovicianus. The ITS1 and ITS2 genomic rDNA sequences were PCR generated, sequenced, and analyzed. The highest intraspecific pairwise distance values of 6.0% in ITS1 and 7.1% in ITS2 were observed in C. leucurus. Interspecific pairwise distance values greater than 5% do not support E. callospermophili conspecificity. Generated E. callospermophili sequences were compared to Eimeria lancasterensis from Sciuris niger and Sciurus niger cinereus, and Eimeria ontarioensis from S. niger. A single well-supported clade was formed by E. callospermophili amplicons in Neighbor Joining and Maximum Parsimony analyses. However, within the clade there was little evidence of host or geographic structuring of the species. PMID:21506777

  8. Solution to urn models of pairwise interaction with application to social, physical, and biological sciences

    NASA Astrophysics Data System (ADS)

    Pickering, William; Lim, Chjan

    2017-07-01

    We investigate a family of urn models that correspond to one-dimensional random walks with quadratic transition probabilities that have highly diverse applications. Well-known instances of these two-urn models are the Ehrenfest model of molecular diffusion, the voter model of social influence, and the Moran model of population genetics. We also provide a generating function method for diagonalizing the corresponding transition matrix that is valid if and only if the underlying mean density satisfies a linear differential equation and express the eigenvector components as terms of ordinary hypergeometric functions. The nature of the models lead to a natural extension to interaction between agents in a general network topology. We analyze the dynamics on uncorrelated heterogeneous degree sequence networks and relate the convergence times to the moments of the degree sequences for various pairwise interaction mechanisms.

  9. High-speed multiple sequence alignment on a reconfigurable platform.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf

    2006-01-01

    Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.

  10. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes

    PubMed Central

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-01-01

    Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515

  11. Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis.

    PubMed

    Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš

    2012-05-01

    Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.

  12. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    PubMed

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  13. Sequence determination and analysis of the NSs genes of two tospoviruses.

    PubMed

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  14. Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling

    PubMed Central

    Adam, Benoit; Charloteaux, Benoit; Beaufays, Jerome; Vanhamme, Luc; Godfroid, Edmond; Brasseur, Robert; Lins, Laurence

    2008-01-01

    Background Lipocalins are widely distributed in nature and are found in bacteria, plants, arthropoda and vertebra. In hematophagous arthropods, they are implicated in the successful accomplishment of the blood meal, interfering with platelet aggregation, blood coagulation and inflammation and in the transmission of disease parasites such as Trypanosoma cruzi and Borrelia burgdorferi. The pairwise sequence identity is low among this family, often below 30%, despite a well conserved tertiary structure. Under the 30% identity threshold, alignment methods do not correctly assign and align proteins. The only safe way to assign a sequence to that family is by experimental determination. However, these procedures are long and costly and cannot always be applied. A way to circumvent the experimental approach is sequence and structure analyze. To further help in that task, the residues implicated in the stabilisation of the lipocalin fold were determined. This was done by analyzing the conserved interactions for ten lipocalins having a maximum pairwise identity of 28% and various functions. Results It was determined that two hydrophobic clusters of residues are conserved by analysing the ten lipocalin structures and sequences. One cluster is internal to the barrel, involving all strands and the 310 helix. The other is external, involving four strands and the helix lying parallel to the barrel surface. These clusters are also present in RaHBP2, a unusual "outlier" lipocalin from tick Rhipicephalus appendiculatus. This information was used to assess assignment of LIR2 a protein from Ixodes ricinus and to build a 3D model that helps to predict function. FTIR data support the lipocalin fold for this protein. Conclusion By sequence and structural analyzes, two conserved clusters of hydrophobic residues in interactions have been identified in lipocalins. Since the residues implicated are not conserved for function, they should provide the minimal subset necessary to confer the lipocalin fold. This information has been used to assign LIR2 to lipocalins and to investigate its structure/function relationship. This study could be applied to other protein families with low pairwise similarity, such as the structurally related fatty acid binding proteins or avidins. PMID:18190694

  15. SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments

    PubMed Central

    Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric

    2014-01-01

    This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831

  16. Analysis of Neuronal Sequences Using Pairwise Biases

    DTIC Science & Technology

    2015-08-27

    semantic memory (knowledge of facts) and implicit memory (e.g., how to ride a bike ). Evidence for the participation of the hippocampus in the formation of...hippocampal formation in an attempt to be cured of severe epileptic seizures. Although the surgery was successful in regards to reducing the frequency and...very different from each other in many ways including duration and number of spikes. Still, these sequences share a similar trend in the general order

  17. Multiple alignment analysis on phylogenetic tree of the spread of SARS epidemic using distance method

    NASA Astrophysics Data System (ADS)

    Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.

    2017-09-01

    Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.

  18. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

    PubMed

    Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania

    2015-01-01

    This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

  19. Lunatimonas lonarensis gen. nov., sp. nov., a haloalkaline bacterium of the family Cyclobacteriaceae with nitrate reducing activity.

    PubMed

    Srinivas, T N R; Aditya, S; Bhumika, V; Kumar, P Anil

    2014-02-01

    Novel pinkish-orange pigmented, Gram-negative staining, half-moon shaped, non-motile, strictly aerobic strains designated AK24(T) and AK26 were isolated from water and sediment samples of Lonar Lake, Buldhana district, Maharahstra, India. Both strains were positive for oxidase, catalase and β-galactosidase activities. The predominant fatty acids were iso-C15:0 (41.5%), anteiso-C15:0 (9.7%), iso-C17:0 3OH (9.6%), iso-C17:1 ω9c (10.2%) and C16:1 ω7c/C16:1 ω6c/iso-C15:0 2OH (summed feature 3) (14.4%). The strains contained MK-7 as the major respiratory quinone, and phosphatidylethanolamine and five unidentified lipids as the polar lipids. Blast analysis of the 16S rRNA gene sequence of strain AK24(T) showed that it was closely related to Aquiflexum balticum, with a pair-wise sequence similarity of 91.6%, as well as to Fontibacter ferrireducens, Belliella baltica and Indibacter alkaliphilus (91.3, 91.2 and 91.2% pair-wise sequence similarity, respectively), but it only had between 88.6 and 91.0% pair-wise sequence similarity to the rest of the family members. The MALDI-TOF assay reported no significant similarities for AK24(T) and AK26, since they potentially represented a new species. A MALDI MSP dendrogram showed close similarity between the two strains, but they maintained a distance from their phylogenetic neighbors. The genome of AK24(T) showed the presence of heavy metal tolerance genes, including the genes providing resistance to arsenic, cadmium, cobalt and zinc. A cluster of heat shock resistance genes was also found in the genome. Two lantibiotic producing genes, LanR and LasB, were also found in the genome of AK24(T). Strains AK24(T) and AK26 were very closely related to each other with 99.5% pair-wise sequence similarity. Phylogenetic analysis indicated that the strains were members of the family Cyclobacteriaceae and they clustered with the genus Mariniradius, as well as with the genera Aquiflexum, Cecembia, Fontibacter, Indibacter, and Shivajiella. DNA-DNA hybridization between strains AK24(T) and AK26 showed a relatedness of 82% and their rep-PCR banding patterns were very similar. Based on data from the current polyphasic study, it is proposed that the isolates be placed in a new genus and species with the name Lunatimonas lonarensis gen. nov., sp. nov. The type strain of Lunatimonas lonarensis is AK24(T) (=JCM 18822(T)=MTCC 11627(T)). Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites.

    PubMed

    Briddon, Rob W; Martin, Darren P; Roumagnac, Philippe; Navas-Castillo, Jesús; Fiallo-Olivé, Elvira; Moriones, Enrique; Lett, Jean-Michel; Zerbini, F Murilo; Varsani, Arvind

    2018-05-09

    Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.

  1. Dynamic facial expression recognition based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  2. Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.

    PubMed

    Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel

    2011-05-20

    Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.

  3. Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes

    PubMed Central

    2012-01-01

    Background Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods. Results We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. Conclusions Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem. PMID:22759433

  4. GATA: A graphic alignment tool for comparative sequenceanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less

  5. Risk of breast cancer with CXCR4-using HIV defined by V3 loop sequencing.

    PubMed

    Goedert, James J; Swenson, Luke C; Napolitano, Laura A; Haddad, Mojgan; Anastos, Kathryn; Minkoff, Howard; Young, Mary; Levine, Alexandra; Adeyemi, Oluwatoyin; Seaberg, Eric C; Aouizerat, Bradley; Rabkin, Charles S; Harrigan, P Richard; Hessol, Nancy A

    2015-01-01

    Evaluate the risk of female breast cancer associated with HIV-CXCR4 (X4) tropism as determined by various genotypic measures. A breast cancer case-control study, with pairwise comparisons of tropism determination methods, was conducted. From the Women's Interagency HIV Study repository, one stored plasma specimen was selected from 25 HIV-infected cases near the breast cancer diagnosis date and 75 HIV-infected control women matched for age and calendar date. HIV-gp120 V3 sequences were derived by Sanger population sequencing (PS) and 454-pyro deep sequencing (DS). Sequencing-based HIV-X4 tropism was defined using the geno2pheno algorithm, with both high-stringency DS [false-positive rate (3.5) and 2% X4 cutoff], and lower stringency DS (false-positive rate, 5.75 and 15% X4 cutoff). Concordance of tropism results by PS, DS, and previously performed phenotyping was assessed with kappa (κ) statistics. Case-control comparisons used exact P values and conditional logistic regression. In 74 women (19 cases, 55 controls) with complete results, prevalence of HIV-X4 by PS was 5% in cases vs 29% in controls (P = 0.06; odds ratio, 0.14; confidence interval: 0.003 to 1.03). Smaller case-control prevalence differences were found with high-stringency DS (21% vs 36%, P = 0.32), lower stringency DS (16% vs 35%, P = 0.18), and phenotyping (11% vs 31%, P = 0.10). HIV-X4 tropism concordance was best between PS and lower stringency DS (93%, κ = 0.83). Other pairwise concordances were 82%-92% (κ = 0.56-0.81). Concordance was similar among cases and controls. HIV-X4 defined by population sequencing (PS) had good agreement with lower stringency DS and was significantly associated with lower odds of breast cancer.

  6. POEM: Identifying Joint Additive Effects on Regulatory Circuits.

    PubMed

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such "modularization" approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. The software described in this article is available at csgi.tau.ac.il/POEM/.

  7. POEM: Identifying Joint Additive Effects on Regulatory Circuits

    PubMed Central

    Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit

    2016-01-01

    Motivation: Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such “modularization” approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Results: Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. Availability: The software described in this article is available at csgi.tau.ac.il/POEM/. PMID:27148351

  8. Phylogeny of the Genus Flavivirus

    PubMed Central

    Kuno, Goro; Chang, Gwong-Jen J.; Tsuchiya, K. Richard; Karabatsos, Nick; Cropp, C. Bruce

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses. PMID:9420202

  9. Phylogeny of the genus Flavivirus.

    PubMed

    Kuno, G; Chang, G J; Tsuchiya, K R; Karabatsos, N; Cropp, C B

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.

  10. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens.

    PubMed

    Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O

    2018-01-31

    In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  12. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  13. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  14. Scalable Creation of Long-Lived Multipartite Entanglement

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-10-01

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  15. Complete Genome Sequence of a Genomovirus Associated with Common Bean Plant Leaves in Brazil.

    PubMed

    Lamas, Natalia Silva; Fontenele, Rafaela Salgado; Melo, Fernando Lucas; Costa, Antonio Felix; Varsani, Arvind; Ribeiro, Simone Graça

    2016-11-10

    A new genomovirus has been identified in three common bean plants in Brazil. This virus has a circular genome of 2,220 nucleotides and 3 major open reading frames. It shares 80.7% genome-wide pairwise identity with a genomovirus recovered from Tongan fruit bat guano. Copyright © 2016 Lamas et al.

  16. Structured prediction models for RNN based sequence labeling in clinical text.

    PubMed

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  17. Structured prediction models for RNN based sequence labeling in clinical text

    PubMed Central

    Jagannatha, Abhyuday N; Yu, Hong

    2016-01-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies1 for structured prediction in order to improve the exact phrase detection of various medical entities. PMID:28004040

  18. Classification and evolution of human rhinoviruses.

    PubMed

    Palmenberg, Ann C; Gern, James E

    2015-01-01

    The historical classification of human rhinoviruses (RV) by serotyping has been replaced by a logical system of comparative sequencing. Given that strains must diverge within their capsid sequenced by a reasonable degree (>12-13 % pairwise base identities) before becoming immunologically distinct, the new nomenclature system makes allowances for the addition of new, future types, without compromising historical designations. Currently, three species, the RV-A, RV-B, and RV-C, are recognized. Of these, the RV-C, discovered in 2006, are the most unusual in terms of capsid structure, receptor use, and association with severe disease in children.

  19. Species detection and identification in sexual organisms using population genetic theory and DNA sequences.

    PubMed

    Birky, C William

    2013-01-01

    Phylogenetic trees of DNA sequences of a group of specimens may include clades of two kinds: those produced by stochastic processes (random genetic drift) within a species, and clades that represent different species. The ratio of the mean pairwise sequence difference between a pair of clades (K) to the mean pairwise sequence difference within a clade (θ) can be used to determine whether the clades are samples from different species (K/θ ≥ 4) or the same species (K/θ<4) with probability ≥ 0.95. Previously I applied this criterion to delimit species of asexual organisms. Here I use data from the literature to show how it can also be applied to delimit sexual species using four groups of sexual organisms as examples: ravens, spotted leopards, sea butterflies, and liverworts. Mitochondrial or chloroplast genes are used because these segregate earlier during speciation than most nuclear genes and hence detect earlier stages of speciation. In several cases the K/θ ratio was greater than 4, confirming the original authors' intuition that the clades were sufficiently different to be assigned to different species. But the K/θ ratio split each of two liverwort species into two evolutionary species, and showed that support for the distinction between the common and Chihuahuan raven species is weak. I also discuss some possible sources of error in using the K/θ ratio; the most significant one would be cases where males migrate between different populations but females do not, making the use of maternally inherited organelle genes problematic. The K/θ ratio must be used with some caution, like all other methods for species delimitation. Nevertheless, it is a simple theory-based quantitative method for using DNA sequences to make rigorous decisions about species delimitation in sexual as well as asexual eukaryotes.

  20. Risk of Breast Cancer with CXCR4-using HIV Defined by V3-Loop Sequencing

    PubMed Central

    Goedert, James J.; Swenson, Luke C.; Napolitano, Laura A.; Haddad, Mojgan; Anastos, Kathryn; Minkoff, Howard; Young, Mary; Levine, Alexandra; Adeyemi, Oluwatoyin; Seaberg, Eric C.; Aouizerat, Bradley; Rabkin, Charles S.; Harrigan, P. Richard; Hessol, Nancy A.

    2014-01-01

    Objective Evaluate the risk of female breast cancer associated with HIV-CXCR4 (X4) tropism as determined by various genotypic measures. Methods A breast cancer case-control study, with pairwise comparisons of tropism determination methods, was conducted. From the Women's Interagency HIV Study repository, one stored plasma specimen was selected from 25 HIV-infected cases near the breast cancer diagnosis date and 75 HIV-infected control women matched for age and calendar date. HIVgp120-V3 sequences were derived by Sanger population sequencing (PS) and 454-pyro deep sequencing (DS). Sequencing-based HIV-X4 tropism was defined using the geno2pheno algorithm, with both high-stringency DS [False-Positive-Rate (FPR 3.5) and 2% X4 cutoff], and lower stringency DS (FPR 5.75, 15% X4 cut-off). Concordance of tropism results by PS, DS, and previously performed phenotyping was assessed with kappa (κ) statistics. Case-control comparisons used exact P-values and conditional logistic regression. Results In 74 women (19 cases, 55 controls) with complete results, prevalence of HIV-X4 by PS was 5% in cases vs 29% in controls (P=0.06, odds ratio 0.14, confidence interval 0.003-1.03). Smaller case-control prevalence differences were found with high-stringency DS (21% vs 36%, P=0.32), lower-stringency DS (16% vs 35%, P=0.18), and phenotyping (11% vs 31%, P=0.10). HIV-X4-tropism concordance was best between PS and lower-stringency DS (93%, κ=0.83). Other pairwise concordances were 82%-92% (κ=0.56-0.81). Concordance was similar among cases and controls. Conclusions HIV-X4 defined by population sequencing (PS) had good agreement with lower stringency deep sequencing and was significantly associated with lower odds of breast cancer. PMID:25321183

  1. N -term pairwise-correlation inequalities, steering, and joint measurability

    NASA Astrophysics Data System (ADS)

    Karthik, H. S.; Devi, A. R. Usha; Tej, J. Prabhu; Rajagopal, A. K.; Sudha, Narayanan, A.

    2017-05-01

    Chained inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed based on the positivity of a sequence of moment matrices. When a jointly measurable set of positive-operator-valued measures (POVMs) is employed in the first measurement of every pair of sequential measurements, the chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We find that incompatibility of the set of POVMs employed in first measurements is only necessary, but not sufficient, in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit POVMs and the optimal violation of a nonlocal steering inequality, proposed by Jones and Wiseman [S. J. Jones and H. M. Wiseman, Phys. Rev. A 84, 012110 (2011), 10.1103/PhysRevA.84.012110]. To this end, we construct a local analog of this steering inequality in a single-qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.

  2. Molecular characterization of echovirus 30-associated outbreak of aseptic meningitis in Korea in 2008.

    PubMed

    Choi, Young Jin; Park, Kwi Sung; Baek, Kyoung Ah; Jung, Eun Hye; Nam, Hae Seon; Kim, Yong Bae; Park, Joon Soo

    2010-03-01

    Evaluation of the primary etiologic agents that cause aseptic meningitis outbreaks may provide valuable information regarding the prevention and management of aseptic meningitis. In Korea, an outbreak of aseptic meningitis caused by echovirus type 30 (E30) occurred from May to October in 2008. In order to determine the etiologic agent, CSF and/or stool specimens from 140 children hospitalized for aseptic meningitis at Soonchunhyang University Cheonan Hospital between June and October of 2008 were tested for virus isolation and identification. E30 accounted for 61.7% (37 cases) and echovirus 6 accounted for 21.7% (13 cases) of all the human enteroviruses (HEVs) isolates (60 cases in total). For the molecular characterization of the isolates, the VP1 gene sequence of 18 Korean E30 isolates was compared pairwise using the MegAlign with 34 reference strains from the GenBank database. The pairwise comparison of the nucleotide sequences of the VP1 genes demonstrated that the sequences of the Korean strains differed from those of lineage groups A, B, C, D, E, F and G. Reconstruction of the phylogenetic tree based on the complete VP1 nucleotide sequences resulted in a monophyletic tree, with eight clustered lineage groups. All Korean isolates were segregated from other lineage groups, thus suggesting that the Korean strains were a distinct lineage of E30, and a probable cause of this outbreak. This manuscript is the first report, to the best of our knowledge, of the molecular characteristics of E30 strains associated with an aseptic meningitis outbreak in Korea, and their respective phylogenetic relationships.

  3. Object-oriented sequence analysis: SCL--a C++ class library.

    PubMed

    Vahrson, W; Hermann, K; Kleffe, J; Wittig, B

    1996-04-01

    SCL (Sequence Class Library) is a class library written in the C++ programming language. Designed using object-oriented programming principles, SCL consists of classes of objects performing tasks typically needed for analyzing DNA or protein sequences. Among them are very flexible sequence classes, classes accessing databases in various formats, classes managing collections of sequences, as well as classes performing higher-level tasks like calculating a pairwise sequence alignment. SCL also includes classes that provide general programming support, like a dynamically growing array, sets, matrices, strings, classes performing file input/output, and utilities for error handling. By providing these components, SCL fosters an explorative programming style: experimenting with algorithms and alternative implementations is encouraged rather than punished. A description of SCL's overall structure as well as an overview of its classes is given. Important aspects of the work with SCL are discussed in the context of a sample program.

  4. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  5. ‘Candidatus Phytoplasma palmicola’, a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique

    USDA-ARS?s Scientific Manuscript database

    In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise sequence similarity values based on alignment of near full-length 16SrRNA genes (1530 bp) reve...

  6. Fuzzy measures on the Gene Ontology for gene product similarity.

    PubMed

    Popescu, Mihail; Keller, James M; Mitchell, Joyce A

    2006-01-01

    One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.

  7. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Scalable Creation of Long-Lived Multipartite Entanglement.

    PubMed

    Kaufmann, H; Ruster, T; Schmiegelow, C T; Luda, M A; Kaushal, V; Schulz, J; von Lindenfels, D; Schmidt-Kaler, F; Poschinger, U G

    2017-10-13

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in ^{40}Ca^{+}, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ⟩=(1/sqrt[2])(|0000⟩+|1111⟩), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  9. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    PubMed Central

    2010-01-01

    Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572

  10. Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.

    PubMed

    Li, Guang; Wang, Yadong; Su, Xiaohong

    2012-10-01

    When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene.

    PubMed

    Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh

    2009-11-01

    The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.

  12. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  13. Differences in the second internal transcribed spacer of four species of Nematodirus (Nematoda: Molineidae).

    PubMed

    Newton, L A; Chilton, N B; Beveridge, I; Gasser, R B

    1998-02-01

    Genetic differences among Nematodirus spathiger, Nematodirus filicollis, Nematodirus helvetianus and Nematodirus battus in the nucleotide sequence of the second internal transcribed spacer (ITS-2) of ribosomal DNA ranged from 3.9 to 24.7%. Pairwise comparisons of their ITS-2 sequences indicated that the most genetically similar species were N. spathiger and N. helvetianus. N. battus was the most genetically distinct species, with differences ranging from 22.8 to 24.7% with respect to the other three species. Some of the nucleotide differences among species provided different endonuclease restriction sites that could be used in restriction fragment length polymorphism studies. The ITS-2 sequence data may prove useful in studies of the systematics of molineid nematodes.

  14. Impact of Sampling Density on the Extent of HIV Clustering

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor

    2014-01-01

    Abstract Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with broad confidence intervals. HIV clustering increased linearly at sampling density >10%, and was accompanied by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local concentrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ≥10%. Pairwise distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal genotyping density of 10% and sampling density of 50–70% are suggested for HIV-1 V1C5 cluster analysis. PMID:25275430

  15. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    PubMed

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  16. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis.

    PubMed

    Riojas, Marco A; McGough, Katya J; Rider-Riojas, Cristin J; Rastogi, Nalin; Hazbón, Manzour Hernando

    2018-01-01

    The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37Rv T were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37Rv T . Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37Rv T (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.

  17. HLA Diversity in the 1000 Genomes Dataset

    PubMed Central

    Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; D. Rioux, John; Hauser, Stephen; Oksenberg, Jorge

    2014-01-01

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies. PMID:24988075

  18. HLA diversity in the 1000 genomes dataset.

    PubMed

    Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; Rioux, John D; Hauser, Stephen; Oksenberg, Jorge

    2014-01-01

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.

  19. A pluggable framework for parallel pairwise sequence search.

    PubMed

    Archuleta, Jeremy; Feng, Wu-chun; Tilevich, Eli

    2007-01-01

    The current and near future of the computing industry is one of multi-core and multi-processor technology. Most existing sequence-search tools have been designed with a focus on single-core, single-processor systems. This discrepancy between software design and hardware architecture substantially hinders sequence-search performance by not allowing full utilization of the hardware. This paper presents a novel framework that will aid the conversion of serial sequence-search tools into a parallel version that can take full advantage of the available hardware. The framework, which is based on a software architecture called mixin layers with refined roles, enables modules to be plugged into the framework with minimal effort. The inherent modular design improves maintenance and extensibility, thus opening up a plethora of opportunities for advanced algorithmic features to be developed and incorporated while routine maintenance of the codebase persists.

  20. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  1. Genetic and Antigenic Evidence Supports the Separation of Hepatozoon canis and Hepatozoon americanum at the Species Level

    PubMed Central

    Baneth, Gad; Barta, John R.; Shkap, Varda; Martin, Donald S.; Macintire, Douglass K.; Vincent-Johnson, Nancy

    2000-01-01

    Recognition of Hepatozoon canis and Hepatozoon americanum as distinct species was supported by the results of Western immunoblotting of canine anti-H. canis and anti-H. americanum sera against H. canis gamonts. Sequence analysis of 368 bases near the 3′ end of the 18S rRNA gene from each species revealed a pairwise difference of 13.59%. PMID:10699047

  2. Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Ruiz de Escudero, Iñigo; Caballero, Primitivo

    2014-01-01

    This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC50 = 32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm2. This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests. PMID:25384108

  3. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

    NASA Astrophysics Data System (ADS)

    Ordóñez Cabrera, Manuel; Volodin, Andrei I.

    2005-05-01

    From the classical notion of uniform integrability of a sequence of random variables, a new concept of integrability (called h-integrability) is introduced for an array of random variables, concerning an array of constantsE We prove that this concept is weaker than other previous related notions of integrability, such as Cesàro uniform integrability [Chandra, Sankhya Ser. A 51 (1989) 309-317], uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121-132] and Cesàro [alpha]-integrability [Chandra and Goswami, J. Theoret. ProbabE 16 (2003) 655-669]. Under this condition of integrability and appropriate conditions on the array of weights, mean convergence theorems and weak laws of large numbers for weighted sums of an array of random variables are obtained when the random variables are subject to some special kinds of dependence: (a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c) when the sequence of random variables in every row is [phi]-mixing. Finally, we consider the general weak law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49-52] under this new condition of integrability for a Banach space setting.

  4. A statistical view of FMRFamide neuropeptide diversity.

    PubMed

    Espinoza, E; Carrigan, M; Thomas, S G; Shaw, G; Edison, A S

    2000-01-01

    FMRFamide-like peptide (FLP) amino acid sequences have been collected and statistically analyzed. FLP amino acid composition as a function of position in the peptide is graphically presented for several major phyla. Results of total amino acid composition and frequencies of pairs of FLP amino acids have been computed and compared with corresponding values from the entire GenBank protein sequence database. The data for pairwise distributions of amino acids should help in future structure-function studies of FLPs. To aid in future peptide discovery, a computer program and search protocol was developed to identify FLPs from the GenBank protein database without the use of keywords.

  5. Molecular characterization of a novel orthomyxovirus from rainbow and steelhead trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Batts, William N.; LaPatra, Scott E.; Katona, Ryan; Leis, Eric; Fei Fan Ng, Terry; Bruieuc, Marine S.O.; Breyta, Rachel; Purcell, Maureen; Waltzek, Thomas B.; Delwart, Eric; Winton, James

    2017-01-01

    A novel virus, rainbow trout orthomyxovirus (RbtOV), was isolated in 1997 and again in 2000 from commercially-reared rainbow trout (Oncorhynchus mykiss) in Idaho, USA. The virus grew optimally in the CHSE-214 cell line at 15°C producing a diffuse cytopathic effect; however, juvenile rainbow trout exposed to cell culture-grown virus showed no mortality or gross pathology. Electron microscopy of preparations from infected cell cultures revealed the presence of typical orthomyxovirus particles. The complete genome of RbtOV is comprised of eight linear segments of single-stranded, negative-sense RNA having highly conserved 5′ and 3′-terminal nucleotide sequences. Another virus isolated in 2014 from steelhead trout (also O. mykiss) in Wisconsin, USA, and designated SttOV was found to have eight genome segments with high amino acid sequence identities (89–99%) to the corresponding genes of RbtOV, suggesting these new viruses are isolates of the same virus species and may be more widespread than currently realized. The new isolates had the same genome segment order and the closest pairwise amino acid sequence identities of 16–42% with Infectious salmon anemia virus (ISAV), the type species and currently only member of the genus Isavirus in the family Orthomyxoviridae. However, pairwise comparisons of the predicted amino acid sequences of the 10 RbtOV and SttOV proteins with orthologs from representatives of the established orthomyxoviral genera and a phylogenetic analysis using the PB1 protein showed that while RbtOV and SttOV clustered most closely with ISAV, they diverged sufficiently to merit consideration as representatives of a novel genus. A set of PCR primers was designed using conserved regions of the PB1 gene to produce amplicons that may be sequenced for identification of similar fish orthomyxoviruses in the future.

  6. The recent emergence in hospitals of multidrug-resistant community-associated sequence type 1 and spa type t127 methicillin-resistant Staphylococcus aureus investigated by whole-genome sequencing: Implications for screening

    PubMed Central

    Earls, Megan R.; Kinnevey, Peter M.; Brennan, Gráinne I.; Lazaris, Alexandros; Skally, Mairead; O’Connell, Brian; Humphreys, Hilary; Shore, Anna C.

    2017-01-01

    Community-associated spa type t127/t922 methicillin-resistant Staphylococcus aureus (MRSA) prevalence increased from 1%-7% in Ireland between 2010–2015. This study tracked the spread of 89 such isolates from June 2013-June 2016. These included 78 healthcare-associated and 11 community associated-MRSA isolates from a prolonged hospital outbreak (H1) (n = 46), 16 other hospitals (n = 28), four other healthcare facilities (n = 4) and community-associated sources (n = 11). Isolates underwent antimicrobial susceptibility testing, DNA microarray profiling and whole-genome sequencing. Minimum spanning trees were generated following core-genome multilocus sequence typing and pairwise single nucleotide variation (SNV) analysis was performed. All isolates were sequence type 1 MRSA staphylococcal cassette chromosome mec type IV (ST1-MRSA-IV) and 76/89 were multidrug-resistant. Fifty isolates, including 40/46 from H1, were high-level mupirocin-resistant, carrying a conjugative 39 kb iles2-encoding plasmid. Two closely related ST1-MRSA-IV strains (I and II) and multiple sporadic strains were identified. Strain I isolates (57/89), including 43/46 H1 and all high-level mupirocin-resistant isolates, exhibited ≤80 SNVs. Two strain I isolates from separate H1 healthcare workers differed from other H1/strain I isolates by 7–47 and 12–53 SNVs, respectively, indicating healthcare worker involvement in this outbreak. Strain II isolates (19/89), including the remaining H1 isolates, exhibited ≤127 SNVs. For each strain, the pairwise SNVs exhibited by healthcare-associated and community-associated isolates indicated recent transmission of ST1-MRSA-IV within and between multiple hospitals, healthcare facilities and communities in Ireland. Given the interchange between healthcare-associated and community-associated isolates in hospitals, the risk factors that inform screening for MRSA require revision. PMID:28399151

  7. Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific

    PubMed Central

    Geraghty, Pascal T.; Williamson, Jane E.; Macbeth, William G.; Wintner, Sabine P.; Harry, Alastair V.; Ovenden, Jennifer R.; Gillings, Michael R.

    2013-01-01

    Background Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04). Conclusions The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific. PMID:24086462

  8. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    PubMed

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein.

    PubMed

    Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Otomaru, Konosuke; Aoki, Hiroshi; Kishimoto, Mai; Naoi, Yuki; Omatsu, Tsutomu; Sano, Kaori; Okazaki-Terashima, Sachiko; Katayama, Yukie; Oba, Mami; Nagai, Makoto; Mizutani, Tetsuya

    2017-01-17

    Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.

  10. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data.

    PubMed

    Chen, Li; Reeve, James; Zhang, Lujun; Huang, Shengbing; Wang, Xuefeng; Chen, Jun

    2018-01-01

    Normalization is the first critical step in microbiome sequencing data analysis used to account for variable library sizes. Current RNA-Seq based normalization methods that have been adapted for microbiome data fail to consider the unique characteristics of microbiome data, which contain a vast number of zeros due to the physical absence or under-sampling of the microbes. Normalization methods that specifically address the zero-inflation remain largely undeveloped. Here we propose geometric mean of pairwise ratios-a simple but effective normalization method-for zero-inflated sequencing data such as microbiome data. Simulation studies and real datasets analyses demonstrate that the proposed method is more robust than competing methods, leading to more powerful detection of differentially abundant taxa and higher reproducibility of the relative abundances of taxa.

  11. Molecular epidemiology of Plum pox virus in Japan.

    PubMed

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  12. The Use of Weighted Graphs for Large-Scale Genome Analysis

    PubMed Central

    Zhou, Fang; Toivonen, Hannu; King, Ross D.

    2014-01-01

    There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061

  13. NoFold: RNA structure clustering without folding or alignment.

    PubMed

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Pairwise Sequence Alignment Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  15. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale.

    PubMed

    Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto

    2010-03-09

    An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at http://www.paccanarolab.org/software/scps.

  16. The tapeworm Atractolytocestus tenuicollis (Cestoda: Caryophyllidea)--a sister species or ancestor of an invasive A. huronensis?

    PubMed

    Králová-Hromadová, Ivica; Štefka, Jan; Bazsalovicsová, Eva; Bokorová, Silvia; Oros, Mikuláš

    2013-10-01

    Atractolytocestus tenuicollis (Li, 1964) Xi, Wang, Wu, Gao et Nie, 2009 is a monozoic, non-segmented tapeworm of the order Caryophyllidea, parasitizing exclusively common carp (Cyprinus carpio L.). In the current work, the first molecular data, in particular complete ribosomal internal transcribed spacer 2 (ITS2) and partial mitochondrial cytochrome c oxidase subunit I (cox1) on A. tenuicollis from Niushan Lake, Wuhan, China, are provided. In order to evaluate molecular interrelationships within Atractolytocestus, the data on A. tenuicollis were compared with relevant data on two other congeners, Atractolytocestus huronensis and Atractolytocestus sagittatus. Divergent intragenomic copies (ITS2 paralogues) were detected in the ITS2 ribosomal spacer of A. tenuicollis; the same phenomenon has previously been observed also in two other congeners. ITS2 structure of A. tenuicollis was very similar to that of A. huronensis from Slovakia, USA and UK; overall pairwise sequence identity was 91.7-95.2%. On the other hand, values of sequence identity between A. tenuicollis and A. sagittatus were lower, 69.7-70.9%. Cox1 sequence, analysed in five A. tenuicollis individuals, were 100 % identical and no intraspecific variation was observed. Comparison of A. tenuicollis cox1 with respective sequences of two other Atractolytocestus species showed that the mitochondrial haplotype found in Chinese A. tenuicollis is structurally specific (haplotype 4; Ha4) and differs from all so far determined Atractolytocestus haplotypes (Ha1 and Ha2 for A. huronensis; Ha3 for A. sagittatus). Pairwise sequence identity between A. tenuicollis cox1 haplotype and remaining three haplotypes followed the same pattern as in ITS2. The nucleotide and amino acide (aa) sequence comparison with A. huronensis Ha1 and Ha2 revealed higher sequence identity, 90.3-90.8% (96.9% in aa), while lower values were achieved between A. tenuicollis haplotype and Ha3 of Japanese A. sagittatus-75.2 % (81.9 % in aa). The phylogenetic analyses using cox1, ITS2 and combined cox1 + ITS2 sequences revealed close genetic interrelationship between A. tenuicollis and A. huronensis. Independently of a type of analysis and DNA region used, the topology of obtained trees was always identical; A. tenuicollis formed separate clade with A. huronensis forming a closely related sister group.

  17. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    PubMed

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  18. Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Dizney, Laurie; Sumibcay, Laarni; Arai, Satoru; Ruedas, Luis A.; Song, Jin-Won; Yanagihara, Richard

    2009-01-01

    A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission. PMID:19394994

  19. Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M

    NASA Technical Reports Server (NTRS)

    Lee, H.; Divsalar, D.; Weber, C.

    1994-01-01

    This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.

  20. Synthetic Progress toward Azadirachtins. 1. Enantio- and Diastereoselective Synthesis of the Left-Wing Fragment of 11-epi-Azadirachtin I.

    PubMed

    Shi, Hang; Tan, Ceheng; Zhang, Weibin; Zhang, Zichun; Long, Rong; Luo, Tuoping; Yang, Zhen

    2015-05-15

    A highly enantio- and diastereoselective synthesis of the left-wing fragment of 11-epi-azadirachtin I characterized with the pairwise use of palladium- and gold-catalyzed cascade reactions is presented. By enlisting a sequence of stereocontrolled transformations, our 21-step route established the stereocenters of the left-wing fragment from one chiral starting material, (-)-carvone, which would significantly facilitate the synthetic studies of the azadirachtin-type limonoids.

  1. Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI)

    NASA Astrophysics Data System (ADS)

    Donoghue, C.; Rao, A.; Bull, A. M. J.; Rueckert, D.

    2011-03-01

    Osteoarthritis (OA) is a degenerative, debilitating disease with a large socio-economic impact. This study looks to manifold learning as an automatic approach to harness the plethora of data provided by the Osteoarthritis Initiative (OAI). We construct several Laplacian Eigenmap embeddings of articular cartilage appearance from MR images of the knee using multiple MR sequences. A region of interest (ROI) defined as the weight bearing medial femur is automatically located in all images through non-rigid registration. A pairwise intensity based similarity measure is computed between all images, resulting in a fully connected graph, where each vertex represents an image and the weight of edges is the similarity measure. Spectral analysis is then applied to these pairwise similarities, which acts to reduce the dimensionality non-linearly and embeds these images in a manifold representation. In the manifold space, images that are close to each other are considered to be more "similar" than those far away. In the experiment presented here we use manifold learning to automatically predict the morphological changes in the articular cartilage by using the co-ordinates of the images in the manifold as independent variables for multiple linear regression. In the study presented here five manifolds are generated from five sequences of 390 distinct knees. We find statistically significant correlations (up to R2 = 0.75), between our predictors and the results presented in the literature.

  2. Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins.

    PubMed Central

    Zhu, H.; Braun, W.

    1999-01-01

    A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets. PMID:10048326

  3. Web-Beagle: a web server for the alignment of RNA secondary structures.

    PubMed

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-07-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Sequence-Selective Formation of Synthetic H-Bonded Duplexes

    PubMed Central

    2017-01-01

    Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M–1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor–acceptor sequences are avoided. PMID:28857551

  5. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases. PMID:26226014

  6. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    PubMed

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  7. A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica.

    PubMed

    Varsani, Arvind; Kraberger, Simona; Jennings, Scott; Porzig, Elizabeth L; Julian, Laurel; Massaro, Melanie; Pollard, Annie; Ballard, Grant; Ainley, David G

    2014-06-01

    Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing de novo assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Adélie penguins (Pygoscelis adeliae) nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date. This novel papillomavirus genome shared ~60 % pairwise identity with the genomes of the other three known avian papillomaviruses: Fringilla coelebs papillomavirus 1 (FcPV1), Francolinus leucoscepus papillomavirus 1 (FlPV1) and Psittacus erithacus papillomavirus 1. Pairwise identity analysis and phylogenetic analysis of the major capsid protein gene clearly indicated that it represents a novel species, which we named Pygoscelis adeliae papillomavirus 1 (PaCV1). No evidence of recombination was detected in the genome of PaCV1, but we did detect a recombinant region (119 nt) in the E6 gene of FlPV1 with the recombinant region being derived from ancestral FcPV1-like sequences. Previously only paramyxoviruses, orthomyxoviruses and avian pox viruses have been genetically identified in penguins; however, the majority of penguin viral identifications have been based on serology or histology. This is the first report, to our knowledge, of a papillomavirus associated with a penguin species. © 2014 The Authors.

  8. Molecular basis for specificity in the druggable kinome: sequence-based analysis.

    PubMed

    Chen, Jianping; Zhang, Xi; Fernández, Ariel

    2007-03-01

    Rational design of kinase inhibitors remains a challenge partly because there is no clear delineation of the molecular features that direct the pharmacological impact towards clinically relevant targets. Standard factors governing ligand affinity, such as potential for intermolecular hydrophobic interactions or for intermolecular hydrogen bonding do not provide good markers to assess cross reactivity. Thus, a core question in the informatics of drug design is what type of molecular similarity among targets promotes promiscuity and what type of molecular difference governs specificity. This work answers the question for a sizable screened sample of the human pharmacokinome including targets with unreported structure. We show that drug design aimed at promoting pairwise interactions between ligand and kinase target actually fosters promiscuity because of the high conservation of the partner groups on or around the ATP-binding site of the kinase. Alternatively, we focus on a structural marker that may be reliably determined from sequence and measures dehydration propensities mostly localized on the loopy regions of kinases. Based on this marker, we construct a sequence-based kinase classifier that enables the accurate prediction of pharmacological differences. Our indicator is a microenvironmental descriptor that quantifies the propensity for water exclusion around preformed polar pairs. The results suggest that targeting polar dehydration patterns heralds a new generation of drugs that enable a tighter control of specificity than designs aimed at promoting ligand-kinase pairwise interactions. The predictor of polar hot spots for dehydration propensity, or solvent-accessible hydrogen bonds in soluble proteins, named YAPView, may be freely downloaded from the University of Chicago website http://protlib.uchicago.edu/dloads.html. Supplementary data are available at Bioinformatics online.

  9. Humans and Great Apes Cohabiting the Forest Ecosystem in Central African Republic Harbour the Same Hookworms

    PubMed Central

    Hasegawa, Hideo; Modrý, David; Kitagawa, Masahiro; Shutt, Kathryn A.; Todd, Angelique; Kalousová, Barbora; Profousová, Ilona; Petrželková, Klára J.

    2014-01-01

    Background Hookworms are important pathogens of humans. To date, Necator americanus is the sole, known species of the genus Necator infecting humans. In contrast, several Necator species have been described in African great apes and other primates. It has not yet been determined whether primate-originating Necator species are also parasitic in humans. Methodology/Principal Findings The infective larvae of Necator spp. were developed using modified Harada-Mori filter-paper cultures from faeces of humans and great apes inhabiting Dzanga-Sangha Protected Areas, Central African Republic. The first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA and partial cytochrome c oxidase subunit 1 (cox1) gene of mtDNA obtained from the hookworm larvae were sequenced and compared. Three sequence types (I–III) were recognized in the ITS region, and 34 cox1 haplotypes represented three phylogenetic groups (A–C). The combinations determined were I-A, II-B, II-C, III-B and III-C. Combination I-A, corresponding to N. americanus, was demonstrated in humans and western lowland gorillas; II-B and II-C were observed in humans, western lowland gorillas and chimpanzees; III-B and III-C were found only in humans. Pairwise nucleotide difference in the cox1 haplotypes between the groups was more than 8%, while the difference within each group was less than 2.1%. Conclusions/Significance The distinctness of ITS sequence variants and high number of pairwise nucleotide differences among cox1 variants indicate the possible presence of several species of Necator in both humans and great apes. We conclude that Necator hookworms are shared by humans and great apes co-habiting the same tropical forest ecosystems. PMID:24651493

  10. fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information

    DTIC Science & Technology

    2007-04-04

    machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel

  11. Using sobol sequences for planning computer experiments

    NASA Astrophysics Data System (ADS)

    Statnikov, I. N.; Firsov, G. I.

    2017-12-01

    Discusses the use for research of problems of multicriteria synthesis of dynamic systems method of Planning LP-search (PLP-search), which not only allows on the basis of the simulation model experiments to revise the parameter space within specified ranges of their change, but also through special randomized nature of the planning of these experiments is to apply a quantitative statistical evaluation of influence of change of varied parameters and their pairwise combinations to analyze properties of the dynamic system.Start your abstract here...

  12. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    PubMed

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  13. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  14. The twilight zone of cis element alignments

    PubMed Central

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-01-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451

  15. Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach

    NASA Astrophysics Data System (ADS)

    Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.

    2012-10-01

    In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.

  16. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses.

    PubMed

    Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H

    2017-05-11

    The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.

  17. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  18. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    PubMed

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.

  20. Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis).

    PubMed

    Arif, I A; Khan, H A; Shobrak, M; Williams, J

    2011-10-21

    DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.

  1. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  2. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions

    PubMed Central

    Momeni, Babak; Xie, Li; Shou, Wenying

    2017-01-01

    Pairwise models are commonly used to describe many-species communities. In these models, an individual receives additive fitness effects from pairwise interactions with each species in the community ('additivity assumption'). All pairwise interactions are typically represented by a single equation where parameters reflect signs and strengths of fitness effects ('universality assumption'). Here, we show that a single equation fails to qualitatively capture diverse pairwise microbial interactions. We build mechanistic reference models for two microbial species engaging in commonly-found chemical-mediated interactions, and attempt to derive pairwise models. Different equations are appropriate depending on whether a mediator is consumable or reusable, whether an interaction is mediated by one or more mediators, and sometimes even on quantitative details of the community (e.g. relative fitness of the two species, initial conditions). Our results, combined with potential violation of the additivity assumption in many-species communities, suggest that pairwise modeling will often fail to predict microbial dynamics. DOI: http://dx.doi.org/10.7554/eLife.25051.001 PMID:28350295

  3. Detecting Earthquakes over a Seismic Network using Single-Station Similarity Measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-03-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected move-out. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to two weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalog (including 95% of the catalog events), and less than 1% of these candidate events are false detections.

  4. Comparison of predicted binders in Rhipicephalus (Boophilus) microplus intestine protein variants Bm86 Campo Grande strain, Bm86 and Bm95.

    PubMed

    Andreotti, Renato; Pedroso, Marisela S; Caetano, Alexandre R; Martins, Natália F

    2008-01-01

    This paper reports the sequence analysis of Bm86 Campo Grande strain comparing it with Bm86 and Bm95 antigens from the preparations TickGardPLUS and Gavac, respectively. The PCR product was cloned into pMOSBlue and sequenced. The secondary structure prediction tool PSIPRED was used to calculate alpha helices and beta strand contents of the predicted polypeptide. The hydrophobicity profile was calculated using the algorithms from the Hopp and Woods method, in addition to identification of potential MHC class-I binding regions in the antigens. Pair-wise alignment revealed that the similarity between Bm86 Campo Grande strain and Bm86 is 0.2% higher than that between Bm86 Campo Grande strain and Bm95 antigens. The identities were 96.5% and 96.3% respectively. Major suggestive differences in hydrophobicity were predicted among the sequences in two specific regions.

  5. Diversity among Tacaribe serocomplex viruses (family Arenaviridae) naturally associated with the Mexican woodrat (Neotoma mexicana)

    PubMed Central

    Cajimat, Maria N. B.; Milazzo, Mary Louise; Borchert, Jeff N.; Abbott, Ken D.; Bradley, Robert D.; Fulhorst, Charles F.

    2008-01-01

    The results of analyses of glycoprotein precursor and nucleocapsid protein gene sequences indicated that an arenavirus isolated from a Mexican woodrat (Neotoma mexicana) captured in Arizona is a strain of a novel species (proposed name Skinner Tank virus) and that arenaviruses isolated from Mexican woodrats captured in Colorado, New Mexico, and Utah are strains of Whitewater Arroyo virus or species phylogenetically closely related to Whitewater Arroyo virus. Pairwise comparisons of glycoprotein precursor sequences and nucleocapsid protein sequences revealed a high level of divergence among the viruses isolated from the Mexican woodrats captured in Colorado, New Mexico, and Utah and the Whitewater Arroyo virus prototype strain AV 9310135, which originally was isolated from a white-throated woodrat (Neotoma albigula) captured in New Mexico. Conceptually, the viruses from Colorado, New Mexico, and Utah and strain AV 9310135 could be grouped together in a species complex in the family Arenaviridae, genus Arenavirus. PMID:18304671

  6. Orthology detection combining clustering and synteny for very large datasets.

    PubMed

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K; Prohaska, Sonja J; Stadler, Peter F

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.

  7. Orthology Detection Combining Clustering and Synteny for Very Large Datasets

    PubMed Central

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K.; Prohaska, Sonja J.; Stadler, Peter F.

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets. PMID:25137074

  8. BrucellaBase: Genome information resource.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. mESAdb: microRNA Expression and Sequence Analysis Database

    PubMed Central

    Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657

  10. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  11. mESAdb: microRNA expression and sequence analysis database.

    PubMed

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  12. Amino Acid Properties Conserved in Molecular Evolution

    PubMed Central

    Rudnicki, Witold R.; Mroczek, Teresa; Cudek, Paweł

    2014-01-01

    That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts – one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications. PMID:24967708

  13. Biological, serological and molecular typing of potato virus Y (PVY) isolates from Tunisia.

    PubMed

    Tayahi, M; Gharsallah, C; Khamassy, N; Fakhfakh, H; Djilani-Khouadja, F

    2016-10-17

    In Tunisia, potato virus Y (PVY) currently presents a significant threat to potato production, reducing tuber yield and quality. Three hundred and eighty-five potato samples (six different cultivars) collected in autumn 2007 from nine regions in Tunisia were tested for PVY infection by DAS-ELISA. The virus was detected in all regions surveyed, with an average incidence of 80.26%. Subsequently, a panel of 82 Tunisian PVY isolates (PVY-TN) was subjected to systematic biological, serological and molecular typing using immunocapture reverse-transcription polymerase chain reaction and a series of PVY OC - and PVY N -specific monoclonal antibodies. Combined analyses revealed ~67% of PVY NTN variants of which 17 were sequenced in the 5'NTR-P1 region to assess the genetic diversity and phylogenetic relationship of PVY-TN against other worldwide PVY isolates. To investigate whether selective constraints could act on viral genomic RNA, synonymous and non-synonymous substitution rates and their ratio were analyzed. Averages of all pairwise comparisons obtained in the 5'NTR-P1 region allowed more synonymous changes, suggesting selective constraint acting in this region. Selective neutrality test was significantly negative, suggesting a rapid expansion of PVY isolates. Pairwise mismatch distribution gave a bimodal pattern and pointed to an eventually early evolution characterizing these sequences. Genetic haplotype network topology provided evidence of the existence of a distinct geographical structure. This is the first report of such genetic analyses conducted on PVY isolates from Tunisia.

  14. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.

    PubMed

    Sheth, Bhavisha P; Thaker, Vrinda S

    2015-10-01

    Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.

  15. Flexbar 3.0 - SIMD and multicore parallelization.

    PubMed

    Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut

    2017-09-15

    High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Fast alignment-free sequence comparison using spaced-word frequencies.

    PubMed

    Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard

    2014-07-15

    Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.

  17. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    PubMed

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  18. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, W.; Attaway, H.

    1995-12-31

    Perchlorate and chlorate salts are widely used by the chemical, aerospace and defense industries as oxidizers in propellant, explosives and pyrotechnics. The authors have isolated a anaerobic bacterium which is capable of the dissimilatory reduction of both perchlorate and chlorate for energy and growth. Strain HAP-1 is a gram negative, thin rod, non-sporeforming, highly motile strict anaerobe. Antibiotic resistance profiles, utilization of carbon substrates and electron acceptors demonstrated similar physiological characteristics to Wolinella succinogenes. Pairwise comparisons of 16S RNA sequences showed only a 0.75% divergence between strain HAP-1 and W. succinogenes. Physiological, morphological and 16S RRNA sequence data indicate strainmore » HAP-1 is a subspecies of W. succinogenes that can utilize perchlorate and chlorate as terminal electron acceptors.« less

  19. Tertiary Structural studies of Myotoxin a from Crotalus viridis viridis Venom by Nuclear Magnetic Resonance

    DTIC Science & Technology

    1993-05-01

    in real time. RMSDs were calculated only to a single structure on which the others were then superimposed. To get a pairwise listing of RMSDs, a group...to fix the chirality, minimize and anneal in 4-D (if necessary) an increasing number of residues until the entire structure is treated as one get /sym...nstr "Number of structures to create: get /sym refseq "Sequence to use: . get /sym refbmx "Bounds matrix to use: get /sym fname "Filename for written

  20. The prediction of biogenic magnetic nanoparticles biomineralization in human tissues and organs

    NASA Astrophysics Data System (ADS)

    Medviediev, O.; Gorobets, O. Yu; Gorobets, S. V.; Yadrykhins'ky, V. S.

    2017-10-01

    In this study, human homologs of magnetosome island proteins basing on pairwise and multiple alignment of amino acid sequences were found. The expression levels of genes, which encode magnetosome island proteins of M. gryphiswaldense MSR-1, that were cultured under oxygen deficiency conditions and also under microaerobic conditions were compared to the expression levels of genes that encode the relevant homologs in human organism. The possibility of BMN biomineralization in human tissues and organs, in which BMN were not experimentally found before, was predicted.

  1. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  2. Evolutionary distances in the twilight zone--a rational kernel approach.

    PubMed

    Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian

    2010-12-31

    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.

  3. cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.

    PubMed

    Zhang, Jing; Wang, Hao; Feng, Wu-Chun

    2017-01-01

    BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.

  4. Detecting earthquakes over a seismic network using single-station similarity measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  5. Experimental characterization of pairwise correlations from triple quantum correlated beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai

    2018-01-01

    We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.

  6. Exact calculation of distributions on integers, with application to sequence alignment.

    PubMed

    Newberg, Lee A; Lawrence, Charles E

    2009-01-01

    Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.

  7. The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Stian; Karlsen, Marius; Nylund, Are

    2008-03-30

    The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses,more » which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.« less

  8. Genotype to Phenotype Mapping of the E. coli lac Promoter

    NASA Astrophysics Data System (ADS)

    Otwinowski, Jakub; Nemenman, Ilya

    2014-03-01

    Genotype-to-phenotype maps and the related fitness landscapes that include epistatic interactions are difficult to measure because of their high dimensional structure. Here we construct such a map using the recently collected corpora of high-throughput sequence data from the 75 base pairs long mutagenized E. coli lac promoter region, where each sequence is associated with induced transcriptional activity measured by a fluorescent reporter. We find that the additive (non-epistatic) contributions of individual mutations account for about two-thirds of the explainable phenotype variance, while pairwise epistasis explains about 7% of the variance for the full mutagenized sequence and about 15% for the subsequence associated with protein binding sites. Surprisingly, there is no evidence for third order epistatic contributions, and our inferred fitness landscape is essentially single peaked, with a small amount of antagonistic epistasis. We identify transcription factor (CRP) and RNA polymerase binding sites in the promotor region and their interactions. We conclude with a cautionary note that inferred properties of fitness landscapes may be severely influenced by biases in the sequence data. Funded in part by HFSP and James S. McDonnell Foundation.

  9. Identification and Characterization of a Pesticide Degrading Flavobacterium Species EMBS0145 by 16S rRNA Gene Sequencing.

    PubMed

    Nayarisseri, Anuraj; Suppahia, Anjana; Nadh, Anuroopa G; Nair, Achuthsankar S

    2015-06-01

    Organophosphates like chlorpyrifos, diazinon, or malathion have become most common and indisputably most toxic pest control agents that adversely affects the human nervous system even at low levels of exposure. Because of their relatively low cost and ability to be applied on a wide range of target insects and crop, organophosphorus pesticides account for a large share of all insecticides used in India, and this in turn raises severe health concerns. In this view, the present investigation was aimed to identify novel species of Flavobacterium bacteria which is bestowed with the capacity to degrade pesticides like chlorpyrifos, diazinon, or malathion. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted, and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rRNA gene sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel species of Flavobacterium later which was named as EMBS0145 and sequence was deposited in GenBank with Accession Number: JN794045.

  10. Identification and characterization of a pesticide degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Nayarisseri, Anuraj; Suppahia, Anjana; Nadh, Anuroopa G; Nair, Achuthsankar S

    2014-08-09

    Organophosphates (OPs) like chlorpyrifos, diazinon, or malathion have become most common and indisputably most toxic pest-control agents that adversely affects the human nervous system even at low levels of exposure. Because of their relatively low cost and ability to be applied on a wide range of target insects and crop, organophosphorus pesticides account for a large share of all insecticides used in India, this in turn raises severe health concerns. In this view, the present investigation was aimed to identify novel species of Flavobacterium bacteria which is bestowed with the capacity to degrade pesticides like chlorpyrifos, diazinon or malathion. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rRNA gene sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel species of Flavobacterium later which was named as EMBS0145 and sequence was deposited in GenBank with accession number JN794045.

  11. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  12. SSMap: a new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase.

    PubMed

    David, Fabrice P A; Yip, Yum L

    2008-09-23

    Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap - a new UniProt-PDB residue-residue level mapping - was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps. SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings. SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.

  13. A protein block based fold recognition method for the annotation of twilight zone sequences.

    PubMed

    Suresh, V; Ganesan, K; Parthasarathy, S

    2013-03-01

    The description of protein backbone was recently improved with a group of structural fragments called Structural Alphabets instead of the regular three states (Helix, Sheet and Coil) secondary structure description. Protein Blocks is one of the Structural Alphabets used to describe each and every region of protein backbone including the coil. According to de Brevern (2000) the Protein Blocks has 16 structural fragments and each one has 5 residues in length. Protein Blocks fragments are highly informative among the available Structural Alphabets and it has been used for many applications. Here, we present a protein fold recognition method based on Protein Blocks for the annotation of twilight zone sequences. In our method, we align the predicted Protein Blocks of a query amino acid sequence with a library of assigned Protein Blocks of 953 known folds using the local pair-wise alignment. The alignment results with z-value ≥ 2.5 and P-value ≤ 0.08 are predicted as possible folds. Our method is able to recognize the possible folds for nearly 35.5% of the twilight zone sequences with their predicted Protein Block sequence obtained by pb_prediction, which is available at Protein Block Export server.

  14. Towards comprehensive structural motif mining for better fold annotation in the "twilight zone" of sequence dissimilarity

    PubMed Central

    Jia, Yi; Huan, Jun; Buhr, Vincent; Zhang, Jintao; Carayannopoulos, Leonidas N

    2009-01-01

    Background Automatic identification of structure fingerprints from a group of diverse protein structures is challenging, especially for proteins whose divergent amino acid sequences may fall into the "twilight-" or "midnight-" zones where pair-wise sequence identities to known sequences fall below 25% and sequence-based functional annotations often fail. Results Here we report a novel graph database mining method and demonstrate its application to protein structure pattern identification and structure classification. The biologic motivation of our study is to recognize common structure patterns in "immunoevasins", proteins mediating virus evasion of host immune defense. Our experimental study, using both viral and non-viral proteins, demonstrates the efficiency and efficacy of the proposed method. Conclusion We present a theoretic framework, offer a practical software implementation for incorporating prior domain knowledge, such as substitution matrices as studied here, and devise an efficient algorithm to identify approximate matched frequent subgraphs. By doing so, we significantly expanded the analytical power of sophisticated data mining algorithms in dealing with large volume of complicated and noisy protein structure data. And without loss of generality, choice of appropriate compatibility matrices allows our method to be easily employed in domains where subgraph labels have some uncertainty. PMID:19208148

  15. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA.

    PubMed

    Drummond, A; Rodrigo, A G

    2000-12-01

    Reconstruction of evolutionary relationships from noncontemporaneous molecular samples provides a new challenge for phylogenetic reconstruction methods. With recent biotechnological advances there has been an increase in molecular sequencing throughput, and the potential to obtain serial samples of sequences from populations, including rapidly evolving pathogens, is fast being realized. A new method called the serial-sample unweighted pair grouping method with arithmetic means (sUPGMA) is presented that reconstructs a genealogy or phylogeny of sequences sampled serially in time using a matrix of pairwise distances. The resulting tree depicts the terminal lineages of each sample ending at a different level consistent with the sample's temporal order. Since sUPGMA is a variant of UPGMA, it will perform best when sequences have evolved at a constant rate (i.e., according to a molecular clock). On simulated data, this new method performs better than standard cluster analysis under a variety of longitudinal sampling strategies. Serial-sample UPGMA is particularly useful for analysis of longitudinal samples of viruses and bacteria, as well as ancient DNA samples, with the minimal requirement that samples of sequences be ordered in time.

  16. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition.

    PubMed

    Valinsky, Lea; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2002-12-01

    Thorough assessments of fungal diversity are currently hindered by technological limitations. Here we describe a new method for identifying fungi, oligonucleotide fingerprinting of rRNA genes (OFRG). ORFG sorts arrayed rRNA gene (ribosomal DNA [rDNA]) clones into taxonomic clusters through a series of hybridization experiments, each using a single oligonucleotide probe. A simulated annealing algorithm was used to design an OFRG probe set for fungal rDNA. Analysis of 1,536 fungal rDNA clones derived from soil generated 455 clusters. A pairwise sequence analysis showed that clones with average sequence identities of 99.2% were grouped into the same cluster. To examine the accuracy of the taxonomic identities produced by this OFRG experiment, we determined the nucleotide sequences for 117 clones distributed throughout the tree. For all but two of these clones, the taxonomic identities generated by this OFRG experiment were consistent with those generated by a nucleotide sequence analysis. Eighty-eight percent of the clones were affiliated with Ascomycota, while 12% belonged to BASIDIOMYCOTA: A large fraction of the clones were affiliated with the genera Fusarium (404 clones) and Raciborskiomyces (176 clones). Smaller assemblages of clones had high sequence identities to the Alternaria, Ascobolus, Chaetomium, Cryptococcus, and Rhizoctonia clades.

  17. Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae, Meliponini) from northeastern Brazil determined using the first internal transcribed spacer (ITS1).

    PubMed

    Pereira, J O P; Freitas, B M; Jorge, D M M; Torres, D C; Soares, C E A; Grangeiro, T B

    2009-01-01

    Melipona quinquefasciata is a ground-nesting South American stingless bee whose geographic distribution was believed to comprise only the central and southern states of Brazil. We obtained partial sequences (about 500-570 bp) of first internal transcribed spacer (ITS1) nuclear ribosomal DNA from Melipona specimens putatively identified as M. quinquefasciata collected from different localities in northeastern Brazil. To confirm the taxonomic identity of the northeastern samples, specimens from the state of Goiás (Central region of Brazil) were included for comparison. All sequences were deposited in GenBank (accession numbers EU073751-EU073759). The mean nucleotide divergence (excluding sites with insertions/deletions) in the ITS1 sequences was only 1.4%, ranging from 0 to 4.1%. When the sites with insertions/deletions were also taken into account, sequence divergences varied from 0 to 5.3%. In all pairwise comparisons, the ITS1 sequence from the specimens collected in Goiás was most divergent compared to the ITS1 sequences of the bees from the other locations. However, neighbor-joining phylogenetic analysis showed that all ITS1 sequences from northeastern specimens along with the sample of Goiás were resolved in a single clade with a bootstrap support of 100%. The ITS1 sequencing data thus support the occurrence of M. quinquefasciata in northeast Brazil.

  18. Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.

    PubMed Central

    Elder, J F; Turner, B J

    1994-01-01

    The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879

  19. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    PubMed Central

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  20. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  1. The OGCleaner: filtering false-positive homology clusters.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Molecular systematics of higher primates: genealogical relations and classification.

    PubMed Central

    Miyamoto, M M; Koop, B F; Slightom, J L; Goodman, M; Tennant, M R

    1988-01-01

    We obtained 5' and 3' flanking sequences (5.4 kilobase pairs) from the psi eta-globin gene region of the rhesus macaque (Macaca mulatta) and combined them with available nucleotide data. The completed sequence, representing 10.8 kilobase pairs of contiguous noncoding DNA, was compared to the same orthologous regions available for human (Homo sapiens, as represented by five different alleles), common chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus). The nucleotide sequence for Macaca mulatta provided the outgroup perspective needed to evaluate better the relationships of humans and great apes. Pairwise comparisons and parsimony analysis of these orthologues clearly demonstrated (i) that humans and great apes share a high degree of genetic similarity and (ii) that humans, chimpanzees, and gorillas form a natural monophyletic group. These conclusions strongly favor a genealogical classification for higher primates consisting of a single family (Hominidae) with two subfamilies (Homininae for Homo, Pan, and Gorilla and Ponginae for Pongo). PMID:3174657

  3. Diversity of partial RNA-dependent RNA polymerase gene sequences of soybean blotchy mosaic virus isolates from different host-, geographical- and temporal origins.

    PubMed

    Strydom, Elrea; Pietersen, Gerhard

    2018-05-01

    Infection of soybean by the plant cytorhabdovirus soybean blotchy mosaic virus (SbBMV) results in significant yield losses in the temperate, lower-lying soybean production regions of South Africa. A 277 bp portion of the RNA-dependent RNA polymerase gene of 66 SbBMV isolates from different: hosts, geographical locations in South Africa, and times of collection (spanning 16 years) were amplified by RT-PCR and sequenced to investigate the genetic diversity of isolates. Phylogenetic reconstruction revealed three main lineages, designated Groups A, B and C, with isolates grouping primarily according to geographic origin. Pairwise nucleotide identities ranged between 85.7% and 100% among all isolates, with isolates in Group A exhibiting the highest degree of sequence identity, and isolates of Groups A and B being more closely related to each other than to those in Group C. This is the first study investigating the genetic diversity of SbBMV.

  4. SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment

    PubMed Central

    Coan, Heather B.; Youker, Robert T.

    2017-01-01

    Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656

  5. Structure based alignment and clustering of proteins (STRALCP)

    DOEpatents

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  6. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation

    PubMed Central

    Casadio, Rita

    2017-01-01

    Abstract BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. PMID:28453653

  7. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): A novel paramyxovirus associated with proliferative gill inflammation

    USGS Publications Warehouse

    Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.

    2008-01-01

    Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.

  8. Dali server update.

    PubMed

    Holm, Liisa; Laakso, Laura M

    2016-07-08

    The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Length Variation, Heteroplasmy and Sequence Divergence in the Mitochondrial DNA of Four Species of Sturgeon (Acipenser)

    PubMed Central

    Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.

    1996-01-01

    The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850

  10. Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing

    PubMed Central

    Dasgupta, Modhumita Ghosh; Dharanishanthi, Veeramuthu; Agarwal, Ishangi; Krutovsky, Konstantin V.

    2015-01-01

    The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus. PMID:25602379

  11. High-throughput sequence alignment using Graphics Processing Units

    PubMed Central

    Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh

    2007-01-01

    Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356

  12. Registration of 4D time-series of cardiac images with multichannel Diffeomorphic Demons.

    PubMed

    Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Pennec, Xavier; Xu, Chenyang; Ayache, Nicholas

    2008-01-01

    In this paper, we propose a generic framework for intersubject non-linear registration of 4D time-series images. In this framework, spatio-temporal registration is defined by mapping trajectories of physical points as opposed to spatial registration that solely aims at mapping homologous points. First, we determine the trajectories we want to register in each sequence using a motion tracking algorithm based on the Diffeomorphic Demons algorithm. Then, we perform simultaneously pairwise registrations of corresponding time-points with the constraint to map the same physical points over time. We show this trajectory registration can be formulated as a multichannel registration of 3D images. We solve it using the Diffeomorphic Demons algorithm extended to vector-valued 3D images. This framework is applied to the inter-subject non-linear registration of 4D cardiac CT sequences.

  13. A new graph-based method for pairwise global network alignment

    PubMed Central

    Klau, Gunnar W

    2009-01-01

    Background In addition to component-based comparative approaches, network alignments provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to NP-hard problems. Most previous algorithmic work on network alignments is heuristic in nature. Results We introduce the graph-based maximum structural matching formulation for pairwise global network alignment. We relate the formulation to previous work and prove NP-hardness of the problem. Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee. Conclusion Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the LISA library. PMID:19208162

  14. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    PubMed Central

    Galpert, Deborah; del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification. PMID:26605337

  15. New Measurement for Correlation of Co-evolution Relationship of Subsequences in Protein.

    PubMed

    Gao, Hongyun; Yu, Xiaoqing; Dou, Yongchao; Wang, Jun

    2015-12-01

    Many computational tools have been developed to measure the protein residues co-evolution. Most of them only focus on co-evolution for pairwise residues in a protein sequence. However, number of residues participate in co-evolution might be multiple. And some co-evolved residues are clustered in several distinct regions in primary structure. Therefore, the co-evolution among the adjacent residues and the correlation between the distinct regions offer insights into function and evolution of the protein and residues. Subsequence is used to represent the adjacent multiple residues in one distinct region. In the paper, co-evolution relationship in each subsequence is represented by mutual information matrix (MIM). Then, Pearson's correlation coefficient: R value is developed to measure the similarity correlation of two MIMs. MSAs from Catalytic Data Base (Catalytic Site Atlas, CSA) are used for testing. R value characterizes a specific class of residues. In contrast to individual pairwise co-evolved residues, adjacent residues without high individual MI values are found since the co-evolved relationship among them is similar to that among another set of adjacent residues. These subsequences possess some flexibility in the composition of side chains, such as the catalyzed environment.

  16. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species.

    PubMed

    Galpert, Deborah; Del Río, Sara; Herrera, Francisco; Ancede-Gallardo, Evys; Antunes, Agostinho; Agüero-Chapin, Guillermin

    2015-01-01

    Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.

  17. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises.

    PubMed

    Raupach, Michael J; Hendrich, Lars; Küchler, Stefan M; Deister, Fabian; Morinière, Jérome; Gossner, Martin M

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).

  18. Leveraging CyVerse Resources for De Novo Comparative Transcriptomics of Underserved (Non-model) Organisms

    PubMed Central

    Joyce, Blake L.; Haug-Baltzell, Asher K.; Hulvey, Jonathan P.; McCarthy, Fiona; Devisetty, Upendra Kumar; Lyons, Eric

    2017-01-01

    This workflow allows novice researchers to leverage advanced computational resources such as cloud computing to carry out pairwise comparative transcriptomics. It also serves as a primer for biologists to develop data scientist computational skills, e.g. executing bash commands, visualization and management of large data sets. All command line code and further explanations of each command or step can be found on the wiki (https://wiki.cyverse.org/wiki/x/dgGtAQ). The Discovery Environment and Atmosphere platforms are connected together through the CyVerse Data Store. As such, once the initial raw sequencing data has been uploaded there is no more need to transfer large data files over an Internet connection, minimizing the amount of time needed to conduct analyses. This protocol is designed to analyze only two experimental treatments or conditions. Differential gene expression analysis is conducted through pairwise comparisons, and will not be suitable to test multiple factors. This workflow is also designed to be manual rather than automated. Each step must be executed and investigated by the user, yielding a better understanding of data and analytical outputs, and therefore better results for the user. Once complete, this protocol will yield de novo assembled transcriptome(s) for underserved (non-model) organisms without the need to map to previously assembled reference genomes (which are usually not available in underserved organism). These de novo transcriptomes are further used in pairwise differential gene expression analysis to investigate genes differing between two experimental conditions. Differentially expressed genes are then functionally annotated to understand the genetic response organisms have to experimental conditions. In total, the data derived from this protocol is used to test hypotheses about biological responses of underserved organisms. PMID:28518075

  19. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    PubMed Central

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  20. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    PubMed Central

    2018-01-01

    Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA) is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%), all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal. PMID:29682424

  1. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable themore » differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene, isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the “electron transport chain” and neuronal differentiation, emphasizing that “tissue important” genes are regulated at several levels. Furthermore, our analysis shows that the “across tissue approach” has a promising potential when screening for possible explanations for variations, such as those observed at the gene expression levels.« less

  2. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    PubMed

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  3. Pairwise-Comparison Software

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1995-01-01

    Pairwise comparison (PWC) is computer program that collects data for psychometric scaling techniques now used in cognitive research. It applies technique of pairwise comparisons, which is one of many techniques commonly used to acquire the data necessary for analyses. PWC administers task, collects data from test subject, and formats data for analysis. Written in Turbo Pascal v6.0.

  4. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    PubMed Central

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  5. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    PubMed

    Osmundson, Todd W; Robert, Vincent A; Schoch, Conrad L; Baker, Lydia J; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  6. SALAD database: a motif-based database of protein annotations for plant comparative genomics

    PubMed Central

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named ‘SALAD on ARRAYs’ to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis. PMID:19854933

  7. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains.

    PubMed

    Wytynck, Pieter; Rougé, Pierre; Van Damme, Els J M

    2017-11-01

    Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SANSparallel: interactive homology search against Uniprot

    PubMed Central

    Somervuo, Panu; Holm, Liisa

    2015-01-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811

  9. SALAD database: a motif-based database of protein annotations for plant comparative genomics.

    PubMed

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209,529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named 'SALAD on ARRAYs' to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis.

  10. Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas.

    PubMed

    Alabi, Olufemi J; Villegas, Cecilia; Gregg, Lori; Murray, K Daniel

    2016-06-01

    Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.

  11. CoCoNUT: an efficient system for the comparison and analysis of genomes

    PubMed Central

    2008-01-01

    Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477

  12. Protein contact prediction using patterns of correlation.

    PubMed

    Hamilton, Nicholas; Burrage, Kevin; Ragan, Mark A; Huber, Thomas

    2004-09-01

    We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. Copyright 2004 Wiley-Liss, Inc.

  13. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00620a Click here for additional data file.

    PubMed Central

    Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.

    2017-01-01

    Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890

  14. CAFE: aCcelerated Alignment-FrEe sequence analysis

    PubMed Central

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.

    2017-01-01

    Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388

  15. Zygosaccharomyces favi sp. nov., an obligate osmophilic yeast species from bee bread and honey.

    PubMed

    Čadež, Neža; Fülöp, László; Dlauchy, Dénes; Péter, Gábor

    2015-03-01

    Five yeast strains representing a hitherto undescribed yeast species were isolated from bee bread and honey in Hungary. They are obligate osmophilic, i.e. they are unable to grow in/on high water activity culture media. Following isogamous conjugation, they form 1-4 spheroid or subspheroid ascospores in persistent asci. The analysis of the sequences of their large subunit rRNA gene D1/D2 domain placed the new species in the Zygosaccharomyces clade. In terms of pairwise sequence similarity, Zygosaccharomyces gambellarensis is the most closely related species. Comparisons of D1/D2, internal transcribed spacer and translation elongation factor-1α (EF-1α) gene sequences of the five strains with that of the type strain of Z. gambellarensis revealed that they represent a new yeast species. The name Zygosaccharomyces favi sp. nov. (type strain: NCAIM Y.01994(T) = CBS 13653(T) = NRRL Y-63719(T) = ZIM 2551(T)) is proposed for this new yeast species, which based on phenotype can be distinguished from related Zygosaccharomyces species by its obligate osmophilic nature. Some intragenomic sequence variability, mainly indels, was detected among the ITS copies of the strains of the new species.

  16. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation.

    PubMed

    Profiti, Giuseppe; Martelli, Pier Luigi; Casadio, Rita

    2017-07-03

    BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas?

    PubMed

    Alasaad, S; Soglia, D; Spalenza, V; Maione, S; Soriguer, R C; Pérez, J M; Rasero, R; Degiorgis, M P Ryser; Nimmervoll, H; Zhu, X Q; Rossi, L

    2009-02-05

    The present study examined the relationship among individual Sarcoptes scabiei mites from 13 wild mammalian populations belonging to nine species in four European countries using the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) as genetic marker. The ITS-2 plus primer flanking 5.8S and 28S rDNA (ITS-2+) was amplified from individual mites by polymerase chain reaction (PCR) and the amplicons were sequenced directly. A total of 148 ITS-2+ sequences of 404bp in length were obtained and 67 variable sites were identified (16.59%). UPGMA analyses did not show any geographical or host-specific clustering, and a similar outcome was obtained using population pairwise Fst statistics. These results demonstrated that ITS-2 rDNA does not appear to be suitable for examining genetic diversity among mite populations.

  18. Cytochrome b sequences in black-crowned night-herons (Nycticorax nycticorax) from heronries exposed to genotoxic contaminants

    USGS Publications Warehouse

    Dahl, Christopher R.; Bickham, John W.; Wickliffe, Jeffery K.; Custer, Thomas W.

    2001-01-01

    DNA sequence analysis of a 215 base-pair region of the mitochondrial cytochrome b gene was used to examine genetic variation and search for evidence of an increased mutation rate in black-crowned night-herons. We examined five populations exposed to environmental contamination (primarily PAHs and PCBs) and one reference population from the eastern U.S. There was no evidence of a high mutation rate even within populations previously shown to exhibit increased variation in DNA content among somatic cells as a result of petroleum exposure. Three haplotypes were observed among 99 individuals. The low level of variability could be evidence for a genetic bottleneck, or that cytochrome b is too conservative for use in population genetic studies of this species. With the exception of one population from Louisiana, pair-wise Phist estimates were very low, indicative of little population structure and potentially high rates of effective migration among populations.

  19. DNA Barcodes for Species Identification in the Hyperdiverse Ant Genus Pheidole (Formicidae: Myrmicinae)

    PubMed Central

    Ng'endo, R.N.; Osiemo, Z.B.; Brandl, R.

    2013-01-01

    DNA sequencing is increasingly being used to assist in species identification in order to overcome taxonomic impediment. However, few studies attempt to compare the results of these molecular studies with a more traditional species delineation approach based on morphological characters. Mitochondrial DNA Cytochrome oxidase subunit 1 (CO1) gene was sequenced, measuring 636 base pairs, from 47 ants of the genus Pheidole (Formicidae: Myrmicinae) collected in the Brazilian Atlantic Forest to test whether the morphology-based assignment of individuals into species is supported by DNA-based species delimitation. Twenty morphospecies were identified, whereas the barcoding analysis identified 19 Molecular Operational Taxonomic Units (MOTUs). Fifteen out of the 19 DNA-based clusters allocated, using sequence divergence thresholds of 2% and 3%, matched with morphospecies. Both thresholds yielded the same number of MOTUs. Only one MOTU was successfully identified to species level using the CO1 sequences of Pheidole species already in the Genbank. The average pairwise sequence divergence for all 47 sequences was 19%, ranging between 0–25%. In some cases, however, morphology and molecular based methods differed in their assignment of individuals to morphospecies or MOTUs. The occurrence of distinct mitochondrial lineages within morphological species highlights groups for further detailed genetic and morphological studies, and therefore a pluralistic approach using several methods to understand the taxonomy of difficult lineages is advocated. PMID:23902257

  20. Bioinformatic mining of EST-SSR loci in the Pacific oyster, Crassostrea gigas.

    PubMed

    Wang, Y; Ren, R; Yu, Z

    2008-06-01

    A set of expressed sequence tag-simple sequence repeat (EST-SSR) markers of the Pacific oyster, Crassostrea gigas, was developed through bioinformatic mining of the GenBank public database. As of June 30, 2007, a total of 5132 EST sequences from GenBank were downloaded and screened for di-, tri- and tetra-nucleotide repeats, with criteria set at a minimum of 5, 4 and 4 repeats for the three categories of SSRs respectively. Seventeen polymorphic microsatellite markers were characterized. Allele numbers ranged from 3 to 10, and the observed and expected heterozygosity values varied from 0.125 to 0.770 and from 0.113 to 0.732 respectively. Eleven loci were at Hardy-Weinberg equilibrium (HWE); the other six loci showed significant departure from HWE (P < 0.01), suggesting possible presence of null alleles. Pairwise check of linkage disequilibrium (LD) indicated that 11 of 136 pairs of loci showed significant LD (P < 0.01), likely due to HWE present in single markers. Cross-species amplification was examined for five other Crassostrea species and reasonable results were obtained, promising usefulness of these markers in oyster genetics.

  1. SODa: an Mn/Fe superoxide dismutase prediction and design server.

    PubMed

    Kwasigroch, Jean Marc; Wintjens, René; Gilis, Dimitri; Rooman, Marianne

    2008-06-02

    Superoxide dismutases (SODs) are ubiquitous metalloenzymes that play an important role in the defense of aerobic organisms against oxidative stress, by converting reactive oxygen species into nontoxic molecules. We focus here on the SOD family that uses Fe or Mn as cofactor. The SODa webtool http://babylone.ulb.ac.be/soda predicts if a target sequence corresponds to an Fe/Mn SOD. If so, it predicts the metal ion specificity (Fe, Mn or cambialistic) and the oligomerization mode (dimer or tetramer) of the target. In addition, SODa proposes a list of residue substitutions likely to improve the predicted preferences for the metal cofactor and oligomerization mode. The method is based on residue fingerprints, consisting of residues conserved in SOD sequences or typical of SOD subgroups, and of interaction fingerprints, containing residue pairs that are in contact in SOD structures. SODa is shown to outperform and to be more discriminative than traditional techniques based on pairwise sequence alignments. Moreover, the fact that it proposes selected mutations makes it a valuable tool for rational protein design.

  2. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    PubMed

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  3. Classification of HCV and HIV-1 Sequences with the Branching Index

    PubMed Central

    Hraber, Peter; Kuiken, Carla; Waugh, Mark; Geer, Shaun; Bruno, William J.; Leitner, Thomas

    2009-01-01

    SUMMARY Classification of viral sequences should be fast, objective, accurate, and reproducible. Most methods that classify sequences use either pairwise distances or phylogenetic relations, but cannot discern when a sequence is unclassifiable. The branching index (BI) combines distance and phylogeny methods to compute a ratio that quantifies how closely a query sequence clusters with a subtype clade. In the hypothesis-testing framework of statistical inference, the BI is compared with a threshold to test whether sufficient evidence exists for the query sequence to be classified among known sequences. If above the threshold, the null hypothesis of no support for the subtype relation is rejected and the sequence is taken as belonging to the subtype clade with which it clusters on the tree. This study evaluates statistical properties of the branching index for subtype classification in HCV and HIV-1. Pairs of BI values with known positive and negative test results were computed from 10,000 random fragments of reference alignments. Sampled fragments were of sufficient length to contain phylogenetic signal that groups reference sequences together properly into subtype clades. For HCV, a threshold BI of 0.71 yields 95.1% agreement with reference subtypes, with equal false positive and false negative rates. For HIV-1, a threshold of 0.66 yields 93.5% agreement. Higher thresholds can be used where lower false positive rates are required. In synthetic recombinants, regions without breakpoints are recognized accurately; regions with breakpoints do not uniquely represent any known subtype. Web-based services for viral subtype classification with the branching index are available online. PMID:18753218

  4. Differential Item Functioning Detection across Two Methods of Defining Group Comparisons: Pairwise and Composite Group Comparisons

    ERIC Educational Resources Information Center

    Sari, Halil Ibrahim; Huggins, Anne Corinne

    2015-01-01

    This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…

  5. BioWord: A sequence manipulation suite for Microsoft Word

    PubMed Central

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  6. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  7. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran.

    PubMed

    Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B

    2015-07-01

    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.

  8. BioWord: a sequence manipulation suite for Microsoft Word.

    PubMed

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  9. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system.

    PubMed

    Niira, Kazutaka; Ito, Mika; Masuda, Tsuneyuki; Saitou, Toshiya; Abe, Tadatsugu; Komoto, Satoshi; Sato, Mitsuo; Yamasato, Hiroshi; Kishimoto, Mai; Naoi, Yuki; Sano, Kaori; Tuchiaka, Shinobu; Okada, Takashi; Omatsu, Tsutomu; Furuya, Tetsuya; Aoki, Hiroshi; Katayama, Yukie; Oba, Mami; Shirai, Junsuke; Taniguchi, Koki; Mizutani, Tetsuya; Nagai, Makoto

    2016-10-01

    Porcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes. Therefore, we determined nearly full-length whole-genome sequences of nine Japanese porcine RVCs from seven piglets with diarrhea and two healthy pigs and compared them with published RVC sequences from a database. The VP7 genes of two Japanese RVCs from healthy pigs were highly divergent from other known RVC strains and were provisionally classified as G12 and G13 based on the 86% nucleotide identity cut-off value. Pairwise sequence identity calculations and phylogenetic analyses revealed that candidate novel genotypes of porcine Japanese RVC were identified in the NSP1, NSP2 and NSP3 encoding genes, respectively. Furthermore, VP3 of Japanese porcine RVCs was shown to be closely related to human RVCs, suggesting a gene reassortment event between porcine and human RVCs and past interspecies transmission. The present study demonstrated that porcine RVCs show greater genetic diversity among strains than human and bovine RVCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man

    PubMed Central

    Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.

    2000-01-01

    The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409

  11. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web.

    PubMed

    Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C

    1996-05-01

    The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.

  12. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.

    PubMed

    Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe

    2015-08-01

    The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Multidrug resistant pathogens respond differently to the presence of co-pathogen, commensal, probiotic and host cells.

    PubMed

    Chan, Agnes P; Choi, Yongwook; Brinkac, Lauren M; Krishnakumar, Radha; DePew, Jessica; Kim, Maria; Hinkle, Mary K; Lesho, Emil P; Fouts, Derrick E

    2018-06-05

    In light of the ongoing antimicrobial resistance crisis, there is a need to understand the role of co-pathogens, commensals, and the local microbiome in modulating virulence and antibiotic resistance. To identify possible interactions that influence the expression of virulence or survival mechanisms in both the multidrug-resistant organisms (MDROs) and human host cells, unique cohorts of clinical isolates were selected for whole genome sequencing with enhanced assembly and full annotation, pairwise co-culturing, and transcriptome profiling. The MDROs were co-cultured in pairwise combinations either with: (1) another MDRO, (2) skin commensals (Staphylococcus epidermidis and Corynebacterium jeikeium), (3) the common probiotic Lactobacillus reuteri, and (4) human fibroblasts. RNA-Seq analysis showed distinct regulation of virulence and antimicrobial resistance gene responses across different combinations of MDROs, commensals, and human cells. Co-culture assays demonstrated that microbial interactions can modulate gene responses of both the target and pathogen/commensal species, and that the responses are specific to the identity of the pathogen/commensal species. In summary, bacteria have mechanisms to distinguish between friends, foe and host cells. These results provide foundational data and insight into the possibility of manipulating the local microbiome when treating complicated polymicrobial wound, intra-abdominal, or respiratory infections.

  14. Discovery of the first maize-infecting mastrevirus in the Americas using a vector-enabled metagenomics approach.

    PubMed

    Fontenele, Rafaela S; Alves-Freitas, Dione M T; Silva, Pedro I T; Foresti, Josemar; Silva, Paulo R; Godinho, Márcio T; Varsani, Arvind; Ribeiro, Simone G

    2018-01-01

    The genus Mastrevirus (family Geminiviridae) is composed of single-stranded DNA viruses that infect mono- and dicotyledonous plants and are transmitted by leafhoppers. In South America, there have been only two previous reports of mastreviruses, both identified in sweet potatoes (from Peru and Uruguay). As part of a general viral surveillance program, we used a vector-enabled metagenomics (VEM) approach and sampled leafhoppers (Dalbulus maidis) in Itumbiara (State of Goiás), Brazil. High-throughput sequencing of viral DNA purified from the leafhopper sample revealed mastrevirus-like contigs. Using a set of abutting primers, a 2746-nt circular genome was recovered. The circular genome has a typical mastrevirus genome organization and shares <63% pairwise identity with other mastrevirus isolates from around the world. Therefore, the new mastrevirus was tentatively named "maize striate mosaic virus". Seventeen maize leaf samples were collected in the same field as the leafhoppers, and ten samples were found to be positive for this mastrevirus. Furthermore, the ten genomes recovered from the maize samples share >99% pairwise identity with the one from the leafhopper. This is the first report of a maize-infecting mastrevirus in the Americas, the first identified in a non-vegetatively propagated mastrevirus host in South America, and the first mastrevirus to be identified in Brazil.

  15. Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets.

    PubMed

    Deiana, Antonio; Giansanti, Andrea

    2010-04-21

    Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i) belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii) are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii) have a mean flexibility intermediate between that of folded and that of unfolded proteins. Our results show that proteins unclassified by SSU belong to a twilight zone. Proteins left unclassified by the consensus score SSU have physical properties intermediate between those of folded and those of natively unfolded proteins and their structural properties and evolutionary history are worth to be investigated.

  16. Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets

    PubMed Central

    2010-01-01

    Background Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. Results In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i) belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii) are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii) have a mean flexibility intermediate between that of folded and that of unfolded proteins. Conclusions Our results show that proteins unclassified by SSU belong to a twilight zone. Proteins left unclassified by the consensus score SSU have physical properties intermediate between those of folded and those of natively unfolded proteins and their structural properties and evolutionary history are worth to be investigated. PMID:20409339

  17. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms.

    PubMed

    Ortegon, Patricia; Poot-Hernández, Augusto C; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya

    2015-01-01

    In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.

  18. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms

    PubMed Central

    Ortegon, Patricia; Poot-Hernández, Augusto C.; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya

    2015-01-01

    In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. PMID:25973143

  19. Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

    PubMed Central

    2013-01-01

    Background Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species. PMID:24261823

  20. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  1. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

    PubMed

    Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.

  2. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies

    PubMed Central

    Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441

  3. Determinants of HIV Phylogenetic Clustering in Chicago Among Young Black Men Who Have Sex With Men From the uConnect Cohort.

    PubMed

    Morgan, Ethan; Nyaku, Amesika N; DʼAquila, Richard T; Schneider, John A

    2017-07-01

    Phylogenetic analysis determines similarities among HIV genetic sequences from persons infected with HIV, identifying clusters of transmission. We determined characteristics associated with both membership in an HIV transmission cluster and the number of clustered sequences among a cohort of young black men who have sex with men (YBMSM) in Chicago. Pairwise genetic distances of HIV-1 pol sequences were collected during 2013-2016. Potential transmission ties were identified among HIV-infected persons whose sequences were ≤1.5% genetically distant. Putative transmission pairs were defined as ≥1 tie to another sequence. We then determined demographic and risk attributes associated with both membership in an HIV transmission cluster and the number of ties to the sequences from other persons in the cluster. Of 86 available sequences, 31 (36.0%) were tied to ≥1 other sequence. Through multivariable analyses, we determined that those who reported symptoms of depression and those who had a higher number of confidants in their network had significantly decreased odds of membership in transmission clusters. We found that those who had unstable housing and who reported heavy marijuana use had significantly more ties to other individuals within transmission clusters, whereas those identifying as bisexual, those participating in group sex, and those with higher numbers of sexual partners had significantly fewer ties. This study demonstrates the potential for combining phylogenetic and individual and network attributes to target HIV control efforts to persons with potentially higher transmission risk, as well as suggesting some unappreciated specific predictors of transmission risk among YBMSM in Chicago for future study.

  4. Pair-Wise Trajectory Management-Oceanic (PTM-O) . [Concept of Operations—Version 3.9

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.

    2014-01-01

    This document describes the Pair-wise Trajectory Management-Oceanic (PTM-O) Concept of Operations (ConOps). Pair-wise Trajectory Management (PTM) is a concept that includes airborne and ground-based capabilities designed to enable and to benefit from, airborne pair-wise distance-monitoring capability. PTM includes the capabilities needed for the controller to issue a PTM clearance that resolves a conflict for a specific pair of aircraft. PTM avionics include the capabilities needed for the flight crew to manage their trajectory relative to specific designated aircraft. Pair-wise Trajectory Management PTM-Oceanic (PTM-O) is a regional specific application of the PTM concept. PTM is sponsored by the National Aeronautics and Space Administration (NASA) Concept and Technology Development Project (part of NASA's Airspace Systems Program). The goal of PTM is to use enhanced and distributed communications and surveillance along with airborne tools to permit reduced separation standards for given aircraft pairs, thereby increasing the capacity and efficiency of aircraft operations at a given altitude or volume of airspace.

  5. A pairwise maximum entropy model accurately describes resting-state human brain networks

    PubMed Central

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410

  6. Why rate when you could compare? Using the "EloChoice" package to assess pairwise comparisons of perceived physical strength.

    PubMed

    Clark, Andrew P; Howard, Kate L; Woods, Andy T; Penton-Voak, Ian S; Neumann, Christof

    2018-01-01

    We introduce "EloChoice", a package for R which uses Elo rating to assess pairwise comparisons between stimuli in order to measure perceived stimulus characteristics. To demonstrate the package and compare results from forced choice pairwise comparisons to those from more standard single stimulus rating tasks using Likert (or Likert-type) items, we investigated perceptions of physical strength from images of male bodies. The stimulus set comprised images of 82 men standing on a raised platform with minimal clothing. Strength-related anthropometrics and grip strength measurements were available for each man in the set. UK laboratory participants (Study 1) and US online participants (Study 2) viewed all images in both a Likert rating task, to collect mean Likert scores, and a pairwise comparison task, to calculate Elo, mean Elo (mElo), and Bradley-Terry scores. Within both studies, Likert, Elo and Bradley-Terry scores were closely correlated to mElo scores (all rs > 0.95), and all measures were correlated with stimulus grip strength (all rs > 0.38) and body size (all rs > 0.59). However, mElo scores were less variable than Elo scores and were hundreds of times quicker to compute than Bradley-Terry scores. Responses in pairwise comparison trials were 2/3 quicker than in Likert tasks, indicating that participants found pairwise comparisons to be easier. In addition, mElo scores generated from a data set with half the participants randomly excluded produced very comparable results to those produced with Likert scores from the full participant set, indicating that researchers require fewer participants when using pairwise comparisons.

  7. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA

    PubMed Central

    Kelly, Brendan J.; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D.; Collman, Ronald G.; Bushman, Frederic D.; Li, Hongzhe

    2015-01-01

    Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. Results: We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. Availability and implementation: http://github.com/brendankelly/micropower. Contact: brendank@mail.med.upenn.edu or hongzhe@upenn.edu PMID:25819674

  8. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations.

    PubMed Central

    Comas, D; Calafell, F; Mateu, E; Pérez-Lezaun, A; Bosch, E; Martínez-Arias, R; Clarimon, J; Facchini, F; Fiori, G; Luiselli, D; Pettener, D; Bertranpetit, J

    1998-01-01

    Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations. PMID:9837835

  10. Problems of classification in the family Paramyxoviridae.

    PubMed

    Rima, Bert; Collins, Peter; Easton, Andrew; Fouchier, Ron; Kurath, Gael; Lamb, Robert A; Lee, Benhur; Maisner, Andrea; Rota, Paul; Wang, Lin-Fa

    2018-05-01

    A number of unassigned viruses in the family Paramyxoviridae need to be classified either as a new genus or placed into one of the seven genera currently recognized in this family. Furthermore, numerous new paramyxoviruses continue to be discovered. However, attempts at classification have highlighted the difficulties that arise by applying historic criteria or criteria based on sequence alone to the classification of the viruses in this family. While the recent taxonomic change that elevated the previous subfamily Pneumovirinae into a separate family Pneumoviridae is readily justified on the basis of RNA dependent -RNA polymerase (RdRp or L protein) sequence motifs, using RdRp sequence comparisons for assignment to lower level taxa raises problems that would require an overhaul of the current criteria for assignment into genera in the family Paramyxoviridae. Arbitrary cut off points to delineate genera and species would have to be set if classification was based on the amino acid sequence of the RdRp alone or on pairwise analysis of sequence complementarity (PASC) of all open reading frames (ORFs). While these cut-offs cannot be made consistent with the current classification in this family, resorting to genus-level demarcation criteria with additional input from the biological context may afford a way forward. Such criteria would reflect the increasingly dynamic nature of virus taxonomy even if it would require a complete revision of the current classification.

  11. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    PubMed Central

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  12. The structural basis of actinomycin D–binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats

    PubMed Central

    Lo, Yu-Sheng; Tseng, Wen-Hsuan; Chuang, Chien-Ying; Hou, Ming-Hon

    2013-01-01

    The potent anticancer drug actinomycin D (ActD) functions by intercalating into DNA at GpC sites, thereby interrupting essential biological processes including replication and transcription. Certain neurological diseases are correlated with the expansion of (CGG)n trinucleotide sequences, which contain many contiguous GpC sites separated by a single G:G mispair. To characterize the binding of ActD to CGG triplet repeat sequences, the structural basis for the strong binding of ActD to neighbouring GpC sites flanking a G:G mismatch has been determined based on the crystal structure of ActD bound to ATGCGGCAT, which contains a CGG triplet sequence. The binding of ActD molecules to GCGGC causes many unexpected conformational changes including nucleotide flipping out, a sharp bend and a left-handed twist in the DNA helix via a two site-binding model. Heat denaturation, circular dichroism and surface plasmon resonance analyses showed that adjacent GpC sequences flanking a G:G mismatch are preferred ActD-binding sites. In addition, ActD was shown to bind the hairpin conformation of (CGG)16 in a pairwise combination and with greater stability than that of other DNA intercalators. Our results provide evidence of a possible biological consequence of ActD binding to CGG triplet repeat sequences. PMID:23408860

  13. Assessment of sequence variability in a p23 gene region within and among three genotypes of the Theileria orientalis complex from south-eastern Australia.

    PubMed

    Perera, Piyumali K; Gasser, Robin B; Jabbar, Abdul

    2015-03-01

    Oriental theileriosis is a tick-borne, protozoan disease of cattle caused by one or more genotypes of Theileria orientalis complex. In this study, we assessed sequence variability in a region of the 23kDa piroplasm membrane protein (p23) gene within and among three T. orientalis genotypes (designated buffeli, chitose and ikeda) in south-eastern Australia. Genomic DNA (n=100) was extracted from blood of infected cattle from various locations endemic for oriental theileriosis and tested by polymerase chain reaction (PCR)-coupled mutation scanning (single-strand conformation polymorphism (SSCP)) and targeted sequencing analysis. Eight distinct sequences represented all DNA samples, and three genotypes were found: buffeli (n=3), chitose (3) and ikeda (2). Nucleotide pairwise comparisons among these eight sequences revealed considerably higher variability among the genotypes (6.6-11.7%) than within them (0-1.9%), indicating that the p23 gene region allows the accurate identification of T. orientalis genotypes. In the future, we will combine this gene with other molecular markers to study the genetic structure of T. orientalis populations in Australasia, which will pave the way to establish a highly sensitive and specific PCR-based assay for genotypic diagnosis of infection and for assessing levels of parasitaemia in cattle. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  15. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.

    PubMed

    Yap, Jia-Yee S; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y H; Wilton, Alan; Wilkins, Marc R; Rossetto, Maurizio; Delaney, Sven K

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  16. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Characterization of Adelphocoris suturalis (Hemiptera: Miridae) Transcriptome from Different Developmental Stages

    NASA Astrophysics Data System (ADS)

    Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping

    2015-06-01

    Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs.

  18. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  19. Characterization of Adelphocoris suturalis (Hemiptera: Miridae) Transcriptome from Different Developmental Stages

    PubMed Central

    Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping

    2015-01-01

    Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs. PMID:26047353

  20. Accelerated probabilistic inference of RNA structure evolution

    PubMed Central

    Holmes, Ian

    2005-01-01

    Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387

  1. Molecular epidemiology of early and acute HIV type 1 infections in the United States Navy and Marine Corps, 2005-2010.

    PubMed

    Heipertz, Richard A; Sanders-Buell, Eric; Kijak, Gustavo; Howell, Shana; Lazzaro, Michelle; Jagodzinski, Linda L; Eggleston, John; Peel, Sheila; Malia, Jennifer; Armstrong, Adam; Michael, Nelson L; Kim, Jerome H; O'Connell, Robert J; Scott, Paul T; Brett-Major, David M; Tovanabutra, Sodsai

    2013-10-01

    The U.S. military represents a unique population within the human immunodeficiency virus 1 (HIV-1) pandemic. The last comprehensive study of HIV-1 in members of the U.S. Navy and Marine Corps (Sea Services) was completed in 2000, before large-scale combat operations were taking place. Here, we present molecular characterization of HIV-1 from 40 Sea Services personnel who were identified during their seroconversion window and initially classified as HIV-1 negative during screening. Protease/reverse transcriptase (pro/rt) and envelope (env) sequences were obtained from each member of the cohort. Phylogenetic analyses were carried out on these regions to determine relatedness within the cohort and calculate the most recent common ancestor for the related sequences. We identified 39 individuals infected with subtype B and one infected with CRF01_AE. Comparison of the pairwise genetic distance of Sea Service sequences and reference sequences in the env and pro/rt regions showed that five samples were part of molecular clusters, a group of two and a group of three, confirmed by single genome amplification. Real-time molecular monitoring of new HIV-1 acquisitions in the Sea Services may have a role in facilitating public health interventions at sites where related HIV-1 infections are identified.

  2. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  3. Phylogenetic Characterizations of Highly Mutated EV-B106 Recombinants Showing Extensive Genetic Exchanges with Other EV-B in Xinjiang, China.

    PubMed

    Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo

    2017-02-23

    Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5-80.8% nucleotide identity and 95.4-97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China.

  4. Phylogenetic Characterizations of Highly Mutated EV-B106 Recombinants Showing Extensive Genetic Exchanges with Other EV-B in Xinjiang, China

    PubMed Central

    Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo

    2017-01-01

    Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5–80.8% nucleotide identity and 95.4–97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China. PMID:28230168

  5. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.

  6. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  7. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  8. Statistical method to compare massive parallel sequencing pipelines.

    PubMed

    Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P

    2017-03-01

    Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.

  9. Why rate when you could compare? Using the “EloChoice” package to assess pairwise comparisons of perceived physical strength

    PubMed Central

    Howard, Kate L.; Woods, Andy T.; Penton-Voak, Ian S.; Neumann, Christof

    2018-01-01

    We introduce “EloChoice”, a package for R which uses Elo rating to assess pairwise comparisons between stimuli in order to measure perceived stimulus characteristics. To demonstrate the package and compare results from forced choice pairwise comparisons to those from more standard single stimulus rating tasks using Likert (or Likert-type) items, we investigated perceptions of physical strength from images of male bodies. The stimulus set comprised images of 82 men standing on a raised platform with minimal clothing. Strength-related anthropometrics and grip strength measurements were available for each man in the set. UK laboratory participants (Study 1) and US online participants (Study 2) viewed all images in both a Likert rating task, to collect mean Likert scores, and a pairwise comparison task, to calculate Elo, mean Elo (mElo), and Bradley-Terry scores. Within both studies, Likert, Elo and Bradley-Terry scores were closely correlated to mElo scores (all rs > 0.95), and all measures were correlated with stimulus grip strength (all rs > 0.38) and body size (all rs > 0.59). However, mElo scores were less variable than Elo scores and were hundreds of times quicker to compute than Bradley-Terry scores. Responses in pairwise comparison trials were 2/3 quicker than in Likert tasks, indicating that participants found pairwise comparisons to be easier. In addition, mElo scores generated from a data set with half the participants randomly excluded produced very comparable results to those produced with Likert scores from the full participant set, indicating that researchers require fewer participants when using pairwise comparisons. PMID:29293615

  10. A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.

    PubMed

    Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem

    2018-06-12

    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.

  11. Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea

    PubMed Central

    Arai, Satoru; Gu, Se Hun; Baek, Luck Ju; Tabara, Kenji; Bennett, Shannon; Oh, Hong-Shik; Takada, Nobuhiro; Kang, Hae Ji; Tanaka-Taya, Keiko; Morikawa, Shigeru; Okabe, Nobuhiko; Yanagihara, Richard; Song, Jin-Won

    2012-01-01

    Spurred by the recent isolation of a novel hantavirus, named Imjin virus (MJNV), from the Ussuri white-toothed shrew (Crocidura lasiura), targeted trapping was conducted for the phylogenetically related Asian lesser white-toothed shrew (Crocidura shantungensis). Pair-wise alignment and comparison of the S, M and L segments of a newfound hantavirus, designated Jeju virus (JJUV), indicated remarkably low nucleotide and amino acid sequence similarity with MJNV. Phylogenetic analyses, using maximum likelihood and Bayesian methods, showed divergent ancestral lineages for JJUV and MJNV, despite the close phylogenetic relationship of their reservoir soricid hosts. Also, no evidence of host switching was apparent in tanglegrams, generated by TreeMap 2.0β. PMID:22230701

  12. Candida ficus sp. nov., a novel yeast species from the gut of Apriona germari larvae.

    PubMed

    Hui, Feng-Li; Niu, Qiu-Hong; Ke, Tao; Liu, Zheng

    2012-11-01

    A novel yeast species is described based on three strains from the gut of wood-boring larvae collected in a tree trunk of Ficus carica cultivated in parks near Nanyang, central China. Phylogenetic analysis based on sequences of the D1/D2 domains of the large subunit rRNA gene showed that these strains occurred in a separate clade that was genetically distinct from all known ascomycetous yeasts. In terms of pairwise sequence divergence, the novel strains differed by 15.3% divergence from the type strain of Pichia terricola, and by 15.8% divergence from the type strains of Pichia exigua and Candida rugopelliculosa in the D1/D2 domains. All three are ascomycetous yeasts in the Pichia clade. Unlike P. terricola, P. exigua and C. rugopelliculosa, the novel isolates did not ferment glucose. The name Candida ficus sp. nov. is proposed to accommodate these highly divergent organisms, with STN-8(T) (=CICC 1980(T)=CBS 12638(T)) as the type strain.

  13. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider

    PubMed Central

    Goodman, Laura B.; Lawton, Marie R.; Franklin-Guild, Rebecca J.; Anderson, Renee R.; Schaan, Lynn; Thachil, Anil J.; Wiedmann, Martin; Miller, Claire B.; Alcaine, Samuel D.; Kovac, Jasna

    2017-01-01

    A strain of lactic acid bacteria, designated 159469T, isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469T was closely related to Lactococcus garvieae ATCC 43921T, showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA–DNA hybridization value of 50.7  % were determined for the genome of strain 159469T, when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469T (=LMG 30040T=DSM 104842T). PMID:28945531

  14. ExoLocator--an online view into genetic makeup of vertebrate proteins.

    PubMed

    Khoo, Aik Aun; Ogrizek-Tomas, Mario; Bulovic, Ana; Korpar, Matija; Gürler, Ece; Slijepcevic, Ivan; Šikic, Mile; Mihalek, Ivana

    2014-01-01

    ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.

  15. Listeria costaricensis sp. nov.

    PubMed

    Núñez-Montero, Kattia; Leclercq, Alexandre; Moura, Alexandra; Vales, Guillaume; Peraza, Johnny; Pizarro-Cerdá, Javier; Lecuit, Marc

    2018-03-01

    A bacterial strain isolated from a food processing drainage system in Costa Rica fulfilled the criteria as belonging to the genus Listeria, but could not be assigned to any of the known species. Phylogenetic analysis based on the 16S rRNA gene revealed highest sequence similarity with the type strain of Listeria floridensis (98.7 %). Phylogenetic analysis based on Listeria core genomes placed the novel taxon within the Listeria fleishmannii, L. floridensis and Listeria aquatica clade (Listeria sensu lato). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<80 %) indicated that this isolate belonged to a novel species. Results of pairwise amino acid identity (AAI>70 %) and percentage of conserved proteins (POCP>68 %) with currently known Listeria species, as well as of biochemical characterization, confirmed that the strain constituted a novel species within the genus Listeria. The name Listeria costaricensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2016/00682 T (=CIP 111400 T =DSM 105474 T ).

  16. Alignment of RNA molecules: Binding energy and statistical properties of random sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com

    2012-02-15

    A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less

  17. Model for calculation of electrostatic contribution into protein stability

    NASA Astrophysics Data System (ADS)

    Kundrotas, Petras; Karshikoff, Andrey

    2003-03-01

    Existing models of the denatured state of proteins consider only one possible spatial distribution of protein charges and therefore are applicable to a limited number of cases. In this presentation a more general framework for the modeling of the denatured state is proposed. It is based on the assumption that the titratable groups of an unfolded protein can adopt a quasi-random distribution, restricted by the protein sequence. The model was tested on two proteins, barnase and N-terminal domain of the ribosomal protein L9. The calculated free energy of denaturation, Δ G( pH), reproduces the experimental data essentially better than the commonly used null approximation (NA). It was demonstrated that the seemingly good agreement with experimental data obtained by NA originates from the compensatory effect between the pair-wise electrostatic interactions and the desolvation energy of the individual sites. It was also found that the ionization properties of denatured proteins are influenced by the protein sequence.

  18. Brief Note :Variability in the cathelicidin 6 (CATHL-6) gene in Tianzhu white yak from Tibetan area in China.

    PubMed

    E, G X; Na, R S; Zhao, Y J; Chen, L P; Qiu, X Y; Huang, Y F

    2015-04-10

    Cathelicidins are a major family of antimicrobial peptides (AMPs), an important component of innate immune system, playing a critical role in host defense and disease resistance in virtually all living species. Polymorphism and functional studies on cathelicidin of Tianzhu white yak contribute to understanding the specific innate immune mechanism in animals living at high altitudes in comparison to cattle and domesticated white yak. Thirty-six individuals of Tianzhu white yak, originating from the area of three ecotypes (Gansu in China), were investigated. The total length of the aligned Yak cathelicidin 6 (CATHL-6) sequences was 1923 bp, including six single nucleotide polymorphisms and one indel. Ten haplotypes were identified, and phylogenetic analyses resolved those 10 haplotypes in two clusters. The results indicate that the white yak originated from two domestication sites. In addition, lack of significant pairwise difference between sequences (Tajima's D = 0.92865, P > 0.10) in the CATHL-6 region indicates absence of population size expansion in current white yak population.

  19. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations.

    PubMed

    Su, B; Fu, Y; Wang, Y; Jin, L; Chakraborty, R

    2001-06-01

    The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 53 red pandas from two populations in southwestern China. Seventeen polymorphic sites were found, together with a total of 25 haplotypes, indicating a high level of genetic diversity in the red panda. However, no obvious genetic divergence was detected between the Sichuan and Yunnan populations. The consensus phylogenetic tree of the 25 haplotypes was starlike. The pairwise mismatch distribution fitted into a pattern of populations undergoing expansion. Furthermore, Fu's F(S) test of neutrality was significant for the total population (F(S) = -7.573), which also suggests a recent population expansion. Interestingly, the effective population size in the Sichuan population was both larger and more stable than that in the Yunnan population, implying a southward expansion from Sichuan to Yunnan.

  20. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    PubMed

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  1. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider.

    PubMed

    Goodman, Laura B; Lawton, Marie R; Franklin-Guild, Rebecca J; Anderson, Renee R; Schaan, Lynn; Thachil, Anil J; Wiedmann, Martin; Miller, Claire B; Alcaine, Samuel D; Kovac, Jasna

    2017-11-01

    A strain of lactic acid bacteria, designated 159469 T , isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469 T was closely related to Lactococcus garvieae ATCC 43921 T , showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA-DNA hybridization value of 50.7  % were determined for the genome of strain 159469 T , when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469 T (=LMG 30040 T =DSM 104842 T ).

  2. Mobile phones and computer keyboards: unlikely reservoirs of multidrug-resistant organisms in the tertiary intensive care unit.

    PubMed

    Smibert, O C; Aung, A K; Woolnough, E; Carter, G P; Schultz, M B; Howden, B P; Seemann, T; Spelman, D; McGloughlin, S; Peleg, A Y

    2018-03-02

    Few studies have used molecular epidemiological methods to study transmission links to clinical isolates in intensive care units. Ninety-four multidrug-resistant organisms (MDROs) cultured from routine specimens from intensive care unit (ICU) patients over 13 weeks were stored (11 meticillin-resistant Staphylococcus aureus (MRSA), two vancomycin-resistant enterococci and 81 Gram-negative bacteria). Medical staff personal mobile phones, departmental phones, and ICU keyboards were swabbed and cultured for MDROs; MRSA was isolated from two phones. Environmental and patient isolates of the same genus were selected for whole genome sequencing. On whole genome sequencing, the mobile phone isolates had a pairwise single nucleotide polymorphism (SNP) distance of 183. However, >15,000 core genome SNPs separated the mobile phone and clinical isolates. In a low-endemic setting, mobile phones and keyboards appear unlikely to contribute to hospital-acquired MDROs. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences.

    PubMed

    Lee, J; Hymowitz, T

    2001-11-01

    Phylogenetic relationships among 13 genera of the subtribe Glycininae, two genera of the allied subtribe Diocleinae that were included within Glycininae by Polhill, and two genera of the subtribe Erythrininae as outgroups were inferred from chloroplast DNA rps16 intron sequence variation. Pairwise sequence divergence values ranged from identity between Teramnus mollis and T. micans and between T. flexilis and T. labialis to 7.89% between Pueraria wallichii and Pseudeminia comosa across all accessions. Phylogenies estimated using parsimony and neighbor-joining methods revealed that (1) Glycininae is monophyletic if Pachyrhizus and Calopogonium (both Diocleinae) are included within Glycininae; (2) the genus Teramnus is closely related to Glycine, and Amphicarpaea showed a sister relationship to the clade comprising Teramnus and Glycine; (3) the expanded Glycininae including two genera of Diocleinae is divided into three branches, temporarily named I (comprising the rest of the examined taxa), II (Pueraria wallichii), and III (Mastersia), but their relationships are equivocal; and (4) the genus Pueraria, regarded as a closely related genus to Glycine, is not monophyletic and should be divided into at least four genera (a hypothesis supported previously by Lackey).

  4. Minimap2: pairwise alignment for nucleotide sequences.

    PubMed

    Li, Heng

    2018-05-10

    Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.

  5. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.

    PubMed

    Danisman, Selahattin; van Dijk, Aalt D J; Bimbo, Andrea; van der Wal, Froukje; Hennig, Lars; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H

    2013-12-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.

  6. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    PubMed Central

    Danisman, Selahattin; de Folter, Stefan; Immink, Richard G. H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein–protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein–protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family. PMID:24129704

  7. STELLAR: fast and exact local alignments

    PubMed Central

    2011-01-01

    Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882

  8. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans.

    PubMed Central

    Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D

    1988-01-01

    beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077

  9. Morphology and phylogeny of Bryophryoides ocellatus n. g., n. sp. (Ciliophora, Colpodea) from in situ soil percolates of Idaho, U.S.A.

    PubMed

    Bourland, William A; Wendell, Laura; Hampikian, Greg; Vďačný, Peter

    2014-02-01

    We describe the morphology and 18S rDNA phylogeny of Bryophryoides ocellatus n. g., n. sp., a bryophryid ciliate inhabiting in situ soil percolates from Idaho, U.S.A. The new genus is distinguished from other bryophryid genera by a combination of the following features: (1) kreyellid (irregularly meshed) silverline pattern, (2) polymorphic adoral organelles in the preoral suture, (3) absence of vestibular kineties. In phylogenetic analyses, Bryophryoides ocellatus is most closely related to Bryophrya gemmea. The 18S rDNA sequence pairwise distance of 2% between these genera, while similar to that between many colpodidan species, exceeds that between some colpodidan genera (e.g. Mykophagophrys and Pseudoplatyophrya, 1.1%), further supporting establishment of the new genus. Topology hypothesis testing strongly supports the monophyly of the Colpodida including the bryophryids. Despite weak nodal support, tests of topology constraints narrowly reject the non-monophyly of the sequenced Bryophryidae (Bryophrya+Bryophryoides+Notoxoma). Likewise, the monophyletic origin of the sequenced Bryophryidae is indicated in the phylogenetic networks though with low support. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less

  11. Selection of a DNA barcode for Nectriaceae from fungal whole-genomes.

    PubMed

    Zeng, Zhaoqing; Zhao, Peng; Luo, Jing; Zhuang, Wenying; Yu, Zhihe

    2012-01-01

    A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough variation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for estimation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates (96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi.

  12. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  13. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family proteins contributed to the diversification of animal body organization.

  14. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.

    PubMed

    Fang, Chao; Zhong, Huanzi; Lin, Yuxiang; Chen, Bing; Han, Mo; Ren, Huahui; Lu, Haorong; Luber, Jacob M; Xia, Min; Li, Wangsheng; Stein, Shayna; Xu, Xun; Zhang, Wenwei; Drmanac, Radoje; Wang, Jian; Yang, Huanming; Hammarström, Lennart; Kostic, Aleksandar D; Kristiansen, Karsten; Li, Junhua

    2018-03-01

    More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance with that of 2 Illumina platforms. Using fecal samples from 20 healthy individuals, we evaluated the intra-platform reproducibility for metagenomic sequencing on the BGISEQ-500 platform in a setup comprising 8 library replicates and 8 sequencing replicates. Cross-platform consistency was evaluated by comparing 20 pairwise replicates on the BGISEQ-500 platform vs the Illumina HiSeq 2000 platform and the Illumina HiSeq 4000 platform. In addition, we compared the performance of the 2 Illumina platforms against each other. By a newly developed overall accuracy quality control method, an average of 82.45 million high-quality reads (96.06% of raw reads) per sample, with 90.56% of bases scoring Q30 and above, was obtained using the BGISEQ-500 platform. Quantitative analyses revealed extremely high reproducibility between BGISEQ-500 intra-platform replicates. Cross-platform replicates differed slightly more than intra-platform replicates, yet a high consistency was observed. Only a low percentage (2.02%-3.25%) of genes exhibited significant differences in relative abundance comparing the BGISEQ-500 and HiSeq platforms, with a bias toward genes with higher GC content being enriched on the HiSeq platforms. Our study provides the first set of performance metrics for human gut metagenomic sequencing data using BGISEQ-500. The high accuracy and technical reproducibility confirm the applicability of the new platform for metagenomic studies, though caution is still warranted when combining metagenomic data from different platforms.

  15. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Development and Characterization of 18 Novel EST-SSRs from the Western Flower Thrips, Frankliniella occidentalis (Pergande)

    PubMed Central

    Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue

    2012-01-01

    The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (HO) and expected (HE) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy–Weinberg equilibrium (HWE). Pairwise FST analysis showed a low but significant differentiation (0.026 < FST < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies. PMID:22489130

  17. Development and characterization of 18 novel EST-SSRs from the western flower Thrips, Frankliniella occidentalis (Pergande).

    PubMed

    Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue

    2012-01-01

    The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (H(O)) and expected (H(E)) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy-Weinberg equilibrium (HWE). Pairwise F(ST) analysis showed a low but significant differentiation (0.026 < F(ST) < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies.

  18. MultiSETTER: web server for multiple RNA structure comparison.

    PubMed

    Čech, Petr; Hoksza, David; Svozil, Daniel

    2015-08-12

    Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.

  19. Non-pairwise additivity of the leading-order dispersion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollett, Joshua W., E-mail: j.hollett@uwinnipeg.ca

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained inmore » terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is −0.11 kJ mol{sup −1} well{sup −1}, which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.« less

  20. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

    PubMed

    Wang, Sheng; Sun, Siqi; Li, Zhen; Zhang, Renyu; Xu, Jinbo

    2017-01-01

    Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. http://raptorx.uchicago.edu/ContactMap/.

  1. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/ PMID:28056090

  2. Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences.

    PubMed

    Godoy, Oscar; Stouffer, Daniel B; Kraft, Nathan J B; Levine, Jonathan M

    2017-05-01

    Intransitive competition is often projected to be a widespread mechanism of species coexistence in ecological communities. However, it is unknown how much of the coexistence we observe in nature results from this mechanism when species interactions are also stabilized by pairwise niche differences. We combined field-parameterized models of competition among 18 annual plant species with tools from network theory to quantify the prevalence of intransitive competitive relationships. We then analyzed the predicted outcome of competitive interactions with and without pairwise niche differences. Intransitive competition was found for just 15-19% of the 816 possible triplets, and this mechanism was never sufficient to stabilize the coexistence of the triplet when the pair-wise niche differences between competitors were removed. Of the transitive and intransitive triplets, only four were predicted to coexist and these were more similar in multidimensional trait space defined by 11 functional traits than non-coexisting triplets. Our results argue that intransitive competition may be less frequent than recently posed, and that even when it does operate, pairwise niche differences may be key to possible coexistence. © 2017 by the Ecological Society of America.

  3. Dynamics of pairwise motions in the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.

    2016-10-01

    We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simulation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities v 12 as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics.

  4. Mhc class II B gene evolution in East African cichlid fishes.

    PubMed

    Figueroa, F; Mayer, W E; Sültmann, H; O'hUigin, C; Tichy, H; Satta, Y; Takezaki, N; Takahata, N; Klein, J

    2000-06-01

    A distinctive feature of essential major histocompatibility complex (Mhc) loci is their polymorphism characterized by large genetic distances between alleles and long persistence times of allelic lineages. Since the lineages often span several successive speciations, we investigated the behavior of the Mhc alleles during or close to the speciation phase. We sequenced exon 2 of the class II B locus 4 from 232 East African cichlid fishes representing 32 related species. The divergence times of the (sub)species ranged from 6,000 to 8.4 million years. Two types of evolutionary analysis were used to elucidate the pattern of exon 2 sequence divergence. First, phylogenetic methods were applied to reconstruct the most likely evolutionary pathways leading from the last common ancestor of the set to the extant sequences, and to assess the probable mechanisms involved in allelic diversification. Second, pairwise comparisons of sequences were carried out to detect differences seemingly incompatible with origin by nonparallel point mutations. The analysis revealed point mutations to be the most important mechanism behind allelic divergences, with recombination playing only an auxiliary part. Comparison of sequences from related species revealed evidence of random allelic (lineage) losses apparently associated with speciation. Sharing of identical alleles could be demonstrated between species that diverged 2 million years ago. The phylogeny of the exon was incongruent with that of the flanking introns, indicating either a high degree of convergent evolution at the peptide-binding region-encoding sites, or intron homogenization.

  5. How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case.

    PubMed

    Shahaf, Nir; Pappalardo, Matteo; Basile, Livia; Guccione, Salvatore; Rayan, Anwar

    2016-09-01

    G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Population genetic implications from sequence variation in four Y chromosome genes.

    PubMed

    Shen, P; Wang, F; Underhill, P A; Franco, C; Yang, W H; Roxas, A; Sung, R; Lin, A A; Hyman, R W; Vollrath, D; Davis, R W; Cavalli-Sforza, L L; Oefner, P J

    2000-06-20

    Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 x 10(-5), 5. 07 x 10(-5), and 8.54 x 10(-5) for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9. 16 x 10(-5) to 14.2 x 10(-5) for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to approximately 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals.

  7. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  8. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution

    PubMed Central

    Yap, Jia-Yee S.; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y. H.; Wilkins, Marc R.; Rossetto, Maurizio; Delaney, Sven K.

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine. PMID:26061691

  9. A galaxy of folds.

    PubMed

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.

  10. High-accuracy identification of incident HIV-1 infections using a sequence clustering based diversity measure.

    PubMed

    Xia, Xia-Yu; Ge, Meng; Hsi, Jenny H; He, Xiang; Ruan, Yu-Hua; Wang, Zhi-Xin; Shao, Yi-Ming; Pan, Xian-Ming

    2014-01-01

    Accurate estimates of HIV-1 incidence are essential for monitoring epidemic trends and evaluating intervention efforts. However, the long asymptomatic stage of HIV-1 infection makes it difficult to effectively distinguish incident infections from chronic ones. Current incidence assays based on serology or viral sequence diversity are both still lacking in accuracy. In the present work, a sequence clustering based diversity (SCBD) assay was devised by utilizing the fact that viral sequences derived from each transmitted/founder (T/F) strain tend to cluster together at early stage, and that only the intra-cluster diversity is correlated with the time since HIV-1 infection. The dot-matrix pairwise alignment was used to eliminate the disproportional impact of insertion/deletions (indels) and recombination events, and so was the proportion of clusterable sequences (Pc) as an index to identify late chronic infections with declined viral genetic diversity. Tested on a dataset containing 398 incident and 163 chronic infection cases collected from the Los Alamos HIV database (last modified 2/8/2012), our SCBD method achieved 99.5% sensitivity and 98.8% specificity, with an overall accuracy of 99.3%. Further analysis and evaluation also suggested its performance was not affected by host factors such as the viral subtypes and transmission routes. The SCBD method demonstrated the potential of sequencing based techniques to become useful for identifying incident infections. Its use may be most advantageous for settings with low to moderate incidence relative to available resources. The online service is available at http://www.bioinfo.tsinghua.edu.cn:8080/SCBD/index.jsp.

  11. Stability of Tandem Repeats in the Drosophila Melanogaster HSR-Omega Nuclear RNA

    PubMed Central

    Hogan, N. C.; Slot, F.; Traverse, K. L.; Garbe, J. C.; Bendena, W. G.; Pardue, M. L.

    1995-01-01

    The Drosophila melanogaster Hsr-omega locus produces a nuclear RNA containing >5 kb of tandem repeat sequences. These repeats are unique to Hsr-omega and show concerted evolution similar to that seen with classical satellite DNAs. In D. melanogaster the monomer is ~280 bp. Sequences of 191/2 monomers differ by 8 +/- 5% (mean +/- SD), when all pairwise comparisons are considered. Differences are single nucleotide substitutions and 1-3 nucleotide deletions/insertions. Changes appear to be randomly distributed over the repeat unit. Outer repeats do not show the decrease in monomer homogeneity that might be expected if homogeneity is maintained by recombination. However, just outside the last complete repeat at each end, there are a few fragments of sequence similar to the monomer. The sequences in these flanking regions are not those predicted for sequences decaying in the absence of recombination. Instead, the fragmentation of the sequence homology suggests that flanking regions have undergone more severe disruptions, possibly during an insertion or amplification event. Hsr-omega alleles differing in the number of repeats are detected and appear to be stable over a few thousand generations; however, both increases and decreases in repeat numbers have been observed. The new alleles appear to be as stable as their predecessors. No alleles of less than ~5 kb nor more than ~16 kb of repeats were seen in any stocks examined. The evidence that there is a limit on the minimum number of repeats is consistent with the suggestion that these repeats are important in the function of the unusual Hsr-omega nuclear RNA. PMID:7540581

  12. The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data.

    PubMed

    Vrbik, Irene; Stephens, David A; Roger, Michel; Brenner, Bluma G

    2015-11-04

    In the context of infectious disease, sequence clustering can be used to provide important insights into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback, especially when a large number of sequences are being considered. In addition, this method requires a skilled user to specify the appropriate threshold values which may vary widely depending on the application. This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on both real and simulated data, closely agree with those found using the threshold approach, while only requiring a fraction of the time to complete the analysis. Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1 transmission and thereby aid in the prevention, treatment and containment of the disease.

  13. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. How Good Are Statistical Models at Approximating Complex Fitness Landscapes?

    PubMed Central

    du Plessis, Louis; Leventhal, Gabriel E.; Bonhoeffer, Sebastian

    2016-01-01

    Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. PMID:27189564

  15. Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits.

    PubMed

    Dunfield, Kari E; King, Gary M

    2004-07-01

    Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approximately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocarboxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations. Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands contains substantial and previously unsuspected diversity.

  16. Molecular Analysis of Carbon Monoxide-Oxidizing Bacteria Associated with Recent Hawaiian Volcanic Deposits†

    PubMed Central

    Dunfield, Kari E.; King, Gary M.

    2004-01-01

    Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approximately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocarboxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations. Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands contains substantial and previously unsuspected diversity. PMID:15240307

  17. DNA-based watermarks using the DNA-Crypt algorithm.

    PubMed

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  18. DNA-based watermarks using the DNA-Crypt algorithm

    PubMed Central

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  19. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.

    PubMed

    Jones, David T; Kandathil, Shaun M

    2018-04-26

    In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.

  20. Effect of interacting second- and third-order stimulus-dependent correlations on population-coding asymmetries.

    PubMed

    Montangie, Lisandro; Montani, Fernando

    2016-10-01

    Spike correlations among neurons are widely encountered in the brain. Although models accounting for pairwise interactions have proved able to capture some of the most important features of population activity at the level of the retina, the evidence shows that pairwise neuronal correlation analysis does not resolve cooperative population dynamics by itself. By means of a series expansion for short time scales of the mutual information conveyed by a population of neurons, the information transmission can be broken down into firing rate and correlational components. In a proposed extension of this framework, we investigate the information components considering both second- and higher-order correlations. We show that the existence of a mixed stimulus-dependent correlation term defines a new scenario for the interplay between pairwise and higher-than-pairwise interactions in noise and signal correlations that would lead either to redundancy or synergy in the information-theoretic sense.

  1. Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.

    PubMed

    Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond

    2018-04-01

    We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.

  2. Shaped Ceria Nanocrystals Catalyze Efficient and Selective Para-Hydrogen-Enhanced Polarization.

    PubMed

    Zhao, Evan W; Zheng, Haibin; Zhou, Ronghui; Hagelin-Weaver, Helena E; Bowers, Clifford R

    2015-11-23

    Intense para-hydrogen-enhanced NMR signals are observed in the hydrogenation of propene and propyne over ceria nanocubes, nano-octahedra, and nanorods. The well-defined ceria shapes, synthesized by a hydrothermal method, expose different crystalline facets with various oxygen vacancy densities, which are known to play a role in hydrogenation and oxidation catalysis. While the catalytic activity of the hydrogenation of propene over ceria is strongly facet-dependent, the pairwise selectivity is low (2.4% at 375 °C), which is consistent with stepwise H atom transfer, and it is the same for all three nanocrystal shapes. Selective semi-hydrogenation of propyne over ceria nanocubes yields hyperpolarized propene with a similar pairwise selectivity of (2.7% at 300 °C), indicating product formation predominantly by a non-pairwise addition. Ceria is also shown to be an efficient pairwise replacement catalyst for propene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static andmore » dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.« less

  4. libgapmis: extending short-read alignments

    PubMed Central

    2013-01-01

    Background A wide variety of short-read alignment programmes have been published recently to tackle the problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches in the alignment; however, their ability to allow for gaps varies greatly, with many performing poorly or not allowing them at all. The seed-and-extend strategy is applied in most short-read alignment programmes. After aligning a substring of the reference sequence against the high-quality prefix of a short read--the seed--an important problem is to find the best possible alignment between a substring of the reference sequence succeeding and the remaining suffix of low quality of the read--extend. The fact that the reads are rather short and that the gap occurrence frequency observed in various studies is rather low suggest that aligning (parts of) those reads with a single gap is in fact desirable. Results In this article, we present libgapmis, a library for extending pairwise short-read alignments. Apart from the standard CPU version, it includes ultrafast SSE- and GPU-based implementations. libgapmis is based on an algorithm computing a modified version of the traditional dynamic-programming matrix for sequence alignment. Extensive experimental results demonstrate that the functions of the CPU version provided in this library accelerate the computations by a factor of 20 compared to other programmes. The analogous SSE- and GPU-based implementations accelerate the computations by a factor of 6 and 11, respectively, compared to the CPU version. The library also provides the user the flexibility to split the read into fragments, based on the observed gap occurrence frequency and the length of the read, thereby allowing for a variable, but bounded, number of gaps in the alignment. Conclusions We present libgapmis, a library for extending pairwise short-read alignments. We show that libgapmis is better-suited and more efficient than existing algorithms for this task. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any short-read alignment pipeline. The open-source code of libgapmis is available at http://www.exelixis-lab.org/gapmis. PMID:24564250

  5. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .

  6. Online Pairwise Learning Algorithms.

    PubMed

    Ying, Yiming; Zhou, Ding-Xuan

    2016-04-01

    Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.

  7. Cosmology with the pairwise kinematic SZ effect: Calibration and validation using hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Soergel, Bjoern; Saro, Alexandro; Giannantonio, Tommaso; Efstathiou, George; Dolag, Klaus

    2018-05-01

    We study the potential of the kinematic SZ effect as a probe for cosmology, focusing on the pairwise method. The main challenge is disentangling the cosmologically interesting mean pairwise velocity from the cluster optical depth and the associated uncertainties on the baryonic physics in clusters. Furthermore, the pairwise kSZ signal might be affected by internal cluster motions or correlations between velocity and optical depth. We investigate these effects using the Magneticum cosmological hydrodynamical simulations, one of the largest simulations of this kind performed to date. We produce tSZ and kSZ maps with an area of ≃ 1600 deg2, and the corresponding cluster catalogues with M500c ≳ 3 × 1013 h-1M⊙ and z ≲ 2. From these data sets we calibrate a scaling relation between the average Compton-y parameter and optical depth. We show that this relation can be used to recover an accurate estimate of the mean pairwise velocity from the kSZ effect, and that this effect can be used as an important probe of cosmology. We discuss the impact of theoretical and observational systematic effects, and find that further work on feedback models is required to interpret future high-precision measurements of the kSZ effect.

  8. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610

  9. Scalable Parallel Methods for Analyzing Metagenomics Data at Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    2015-05-01

    The field of bioinformatics and computational biology is currently experiencing a data revolution. The exciting prospect of making fundamental biological discoveries is fueling the rapid development and deployment of numerous cost-effective, high-throughput next-generation sequencing technologies. The result is that the DNA and protein sequence repositories are being bombarded with new sequence information. Databases are continuing to report a Moore’s law-like growth trajectory in their database sizes, roughly doubling every 18 months. In what seems to be a paradigm-shift, individual projects are now capable of generating billions of raw sequence data that need to be analyzed in the presence of alreadymore » annotated sequence information. While it is clear that data-driven methods, such as sequencing homology detection, are becoming the mainstay in the field of computational life sciences, the algorithmic advancements essential for implementing complex data analytics at scale have mostly lagged behind. Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or “homologous”) on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. In this dissertation, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for a collection of 2.56M sequences show parallel efficiencies of ~75-100% on up to 8K cores, representing a time-to-solution of 33 seconds. We extend this work with a detailed analysis of single-node sequence alignment performance using the latest CPU vector instruction set extensions. Preliminary results reveal that current sequence alignment algorithms are unable to fully utilize widening vector registers.« less

  10. Distance education through the Internet: the GNA-VSNS biocomputing course.

    PubMed

    de la Vega, F M; Giegerich, R; Fuellen, G

    1996-01-01

    A prototype course on biocomputing was delivered via international computer networks in early summer 1995. The course lasted 11 weeks, and was offered free of charge. It was organized by the BioComputing Division of the Virtual School of Natural Sciences, which is a member school of the Globewide Network Academy. It brought together 34 students and 7 instructors from all over the world, and covered the basics of sequence analysis. Five authors from Germany and USA prepared a hypertext book which was discussed in weekly study sessions that took place in a virtual classroom at the BioMOO electronic conferencing system. The course aimed at students with backgrounds in molecular biology, biomedicine or computer science, complementing and extending their skills with an interdisciplinary curriculum. Special emphasis was placed on the use of Internet resources, and the development of new teaching tools. The hypertext book includes direct links to sequence analysis and databank search services on the Internet. A tool for the interactive visualization of unit-cost pairwise sequence alignment was developed for the course. All course material will stay accessible at the World Wide Web address (Uniform Resource Locator) http://+www.techfak.uni-bielefeld.de/bcd/welcome .html. This paper describes the aims and organization of the course, and gives a preliminary account of this novel experience in distance education.

  11. Analysis Tool Web Services from the EMBL-EBI.

    PubMed

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-07-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

  12. Analysis Tool Web Services from the EMBL-EBI

    PubMed Central

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-01-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338

  13. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa

    PubMed Central

    Raupach, Michael J.; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    Abstract As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well. PMID:27408547

  14. Application of convolutional artificial neural networks to echocardiograms for differentiating congenital heart diseases in a pediatric population

    NASA Astrophysics Data System (ADS)

    Perrin, Douglas P.; Bueno, Alejandra; Rodriguez, Andrea; Marx, Gerald R.; del Nido, Pedro J.

    2017-03-01

    In this paper we describe a pilot study, where machine learning methods are used to differentiate between congenital heart diseases. Our approach was to apply convolutional neural networks (CNNs) to echocardiographic images from five different pediatric populations: normal, coarctation of the aorta (CoA), hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and single ventricle (SV). We used a single network topology that was trained in a pairwise fashion in order to evaluate the potential to differentiate between patient populations. In total we used 59,151 echo frames drawn from 1,666 clinical sequences. Approximately 80% of the data was used for training, and the remainder for validation. Data was split at sequence boundaries to avoid having related images in the training and validation sets. While training was done with echo images/frames, evaluation was performed for both single frame discrimination as well as sequence discrimination (by majority voting). In total 10 networks were generated and evaluated. Unlike other domains where this network topology has been used, in ultrasound there is low visual variation between classes. This work shows the potential for CNNs to be applied to this low-variation domain of medical imaging for disease discrimination.

  15. A combination of PhP typing and β-d-glucuronidase gene sequence variation analysis for differentiation of Escherichia coli from humans and animals.

    PubMed

    Masters, N; Christie, M; Katouli, M; Stratton, H

    2015-06-01

    We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.

  16. Genetic characterization and phylogenetic analysis of Eimeria arloingi in Iranian native kids.

    PubMed

    Khodakaram-Tafti, A; Hashemnia, M; Razavi, S M; Sharifiyazdi, H; Nazifi, S

    2013-09-01

    Among the 16 species of Eimeria from goats, Eimeria arloingi and Eimeria ninakohlyakimovae are regarded as the most pathogenic species in the world and cause clinical caprine coccidiosis. E. arloingi is known to be an important cause of coccidiosis in Iranian kids. Molecular analyses of two portions of nuclear ribosomal DNA (internal transcribed spacer1 (ITS1) and 18S rDNA) were used for the genetic characterization of the E. arloingi. Comparison of the sequencing data of E. arloingi obtained in the present study (ITS1: KC507793 and 18S rDNA: KC507792) with other Eimeria species in the GenBank database revealed a particularly close relationship between E. arloingi and Eimeria spp. from the cattle and sheep. The phylogram based on the ITS1 sequences shows that the E. arloingi, Eimeria bovis, and Eimeria zuernii formed a distinct group separate from the other remaining Eimeria spp. in cattle and poultry. In pairwise alignment, 18S rDNA sequence derived from E. arloingi showed 99% similarity to Eimeria ahsata with differences observed at only three nucleotides. This study showed that the ITS1 and 18S rDNA gene are useful genetic markers for the specific identification and differentiation of Eimeria spp. in ruminants.

  17. BAYESIAN PROTEIN STRUCTURE ALIGNMENT.

    PubMed

    Rodriguez, Abel; Schmidler, Scott C

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.

  18. [Genetic characterization of different populations of Rhopilema esculentum based on the mitochondrial COI sequence.

    PubMed

    Li, Yu Long; Dong, Jing; Wang, Bin; Li, Yi Ping; Yu, Xu Guang; Fu, Jie; Wang, Wen Bo

    2016-07-01

    To investigate the genetic characterization and population genetic structure of Rhopilema esculentum, we sequenced the mtDNA COI gene (624 bp) in 56 individuals collected from Liaodong Bay and the Ganghwado Island in the estuarine waters of the Han River. In addition, the homologous sequences of other 15 individuals which were sampled from the Bohai and Yellow seas and Sea of Japan were analyzed. A total of 28 polymorphic nucleotide sites were detected among the 71 individuals, which defined 32 haplotypes. Haplotype diversity levels were high (0.91±0.06-0.94±0.01) in R. esculentum populations, whereas those of nucleotide diversity were moderate to low [(0.60±0.34)%-(0.68±0.40)%]. Compared with several other giant jellyfish species, the variation level of R. esculentum was high. Phylogeographic analysis of the COI region revealed two lineages. The pairwise F ST comparison and hierarchical molecular variance analysis (AMOVA) showed that significant population structure existed throughout the range of R. esculentum. The results of this study indicated that the life-cycle characteristics, together with possible anthropogenic introduction such as stock enhancement and the prevailing ocean currents in this region, were proposed as the main factors that determined the genetic patterns of R. esculentum.

  19. Nucleotide sequence and phylogenetic analysis of Cucurbit yellow stunting disorder virus RNA 2.

    PubMed

    Livieratos, Ioannis C; Coutts, Robert H A

    2002-06-01

    The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.

  20. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  1. Maximally informative pairwise interactions in networks

    PubMed Central

    Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.

    2010-01-01

    Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153

  2. Threesomes destabilise certain relationships: multispecies interactions between wood decay fungi in natural resources

    PubMed Central

    Savoury, Melanie; Toledo, Selin; Kingscott-Edmunds, James; Bettridge, Aimee; Waili, Nasra Al; Boddy, Lynne

    2017-01-01

    Abstract Understanding interspecific interactions is key to explaining and modelling community development and associated ecosystem function. Most interactions research has focused on pairwise combinations, overlooking the complexity of multispecies communities. This study investigated three-way interactions between saprotrophic fungi in wood and across soil, and indicated that pairwise combinations are often inaccurate predictors of the outcomes of multispecies competition in wood block interactions. This inconsistency was especially true of intransitive combinations, resulting in increased species coexistence within the resource. Furthermore, the addition of a third competitor frequently destabilised the otherwise consistent outcomes of pairwise combinations in wood blocks, which occasionally resulted in altered resource decomposition rates, depending on the relative decay abilities of the species involved. Conversely, interaction outcomes in soil microcosms were unaffected by the presence of a third combatant. Multispecies interactions promoted species diversity within natural resources, and made community dynamics less consistent than could be predicted from pairwise interaction studies. PMID:28175239

  3. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.

    PubMed

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.

  4. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies.

    PubMed

    O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P

    2015-07-07

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.

  5. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  6. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    USGS Publications Warehouse

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  7. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223

  8. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.

    PubMed

    Pagan, Rafael F; Massey, Steven E

    2014-02-01

    Proteins are regarded as being robust to the deleterious effects of mutations. Here, the neutral emergence of mutational robustness in a population of single domain proteins is explored using computer simulations. A pairwise contact model was used to calculate the ΔG of folding (ΔG folding) using the three dimensional protein structure of leech eglin C. A random amino acid sequence with low mutational robustness, defined as the average ΔΔG resulting from a point mutation (ΔΔG average), was threaded onto the structure. A population of 1,000 threaded sequences was evolved under selection for stability, using an upper and lower energy threshold. Under these conditions, mutational robustness increased over time in the most common sequence in the population. In contrast, when the wild type sequence was used it did not show an increase in robustness. This implies that the emergence of mutational robustness is sequence specific and that wild type sequences may be close to maximal robustness. In addition, an inverse relationship between ∆∆G average and protein stability is shown, resulting partly from a larger average effect of point mutations in more stable proteins. The emergence of mutational robustness was also observed in the Escherichia coli colE1 Rop and human CD59 proteins, implying that the property may be common in single domain proteins under certain simulation conditions. The results indicate that at least a portion of mutational robustness in small globular proteins might have arisen by a process of neutral emergence, and could be an example of a beneficial trait that has not been directly selected for, termed a "pseudaptation."

  9. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica.

    PubMed

    Pitt, Alexandra; Schmidt, Johanna; Lang, Elke; Whitman, William B; Woyke, Tanja; Hahn, Martin W

    2018-06-01

    Strain AP-Melu-1000-B4 was isolated from a lake located in the mountains of the Mediterranean island of Corsica (France). Phenotypic, chemotaxonomic and genomic traits were investigated. Phylogenetic analyses based on 16S rRNA gene sequencing referred the strain to the cryptic species complex PnecC within the genus Polynucleobacter. The strain encoded genes for biosynthesis of proteorhodopsin and retinal. When pelleted by centrifugation the strain showed an intense rose colouring. Major fatty acids were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and summed feature 2 (C16 : 1 isoI and C14 : 0-3OH). The sequence of the 16S rRNA gene contained an indel which was not present in any previously described Polynucleobacter species. Genome sequencing revealed a genome size of 1.89 Mbp and a G+C content of 46.6 mol%. In order to resolve the phylogenetic position of the new strain within subcluster PnecC, its phylogeny was reconstructed from sequences of 319 shared genes. To represent all currently described Polynucleobacter species by whole genome sequences, three type strains were additionally sequenced. Our phylogenetic analysis revealed that strain AP-Melu-100-B4 occupied a basal position compared with previously described PnecC strains. Pairwise determined whole genome average nucleotide identity (gANI) values suggested that strain AP-Melu-1000-B4 represents a new species, for which we propose the name Polynucleobacter meluiroseus sp. nov. with the type strain AP-Melu-1000-B4 T (=DSM 103591 T =CIP 111329 T ).

  10. DNA Barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii)

    PubMed Central

    Arif, Ibrahim A.; Khan, Haseeb A.; Williams, Joseph B.; Shobrak, Mohammad; Arif, Waad I.

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia. PMID:22408462

  11. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    PubMed Central

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  12. Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field

    PubMed Central

    Buck, Patrick M.; Bystroff, Christopher

    2015-01-01

    Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613

  13. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints.

    PubMed

    Glusman, Gustavo; Mauldin, Denise E; Hood, Leroy E; Robinson, Max

    2017-01-01

    We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into "genome fingerprints" via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics.

  14. Improved localisation for 2-hydroxyglutarate detection at 3T using long-TE semi-LASER.

    PubMed

    Berrington, Adam; Voets, Natalie L; Plaha, Puneet; Larkin, Sarah J; Mccullagh, James; Stacey, Richard; Yildirim, Muhammed; Schofield, Christopher J; Jezzard, Peter; Cadoux-Hudson, Tom; Ansorge, Olaf; Emir, Uzay E

    2016-06-01

    2-hydroxyglutarate (2-HG) has emerged as a biomarker of tumour cell IDH mutations that may enable the differential diagnosis of glioma patients. At 3 Tesla, detection of 2-HG with magnetic resonance spectroscopy is challenging because of metabolite signal overlap and a spectral pattern modulated by slice selection and chemical shift displacement. Using density matrix simulations and phantom experiments, an optimised semi-LASER scheme (TE = 110 ms) improves localisation of the 2-HG spin system considerably compared to an existing PRESS sequence. This results in a visible 2-HG peak in the in vivo spectra at 1.9 ppm in the majority of IDH mutated tumours. Detected concentrations of 2-HG were similar using both sequences, although the use of semi-LASER generated narrower confidence intervals. Signal overlap with glutamate and glutamine, as measured by pairwise fitting correlation was reduced. Lactate was readily detectable across glioma patients using the method presented here (mean CLRB: (10±2)%). Together with more robust 2-HG detection, long TE semi-LASER offers the potential to investigate tumour metabolism and stratify patients in vivo at 3T.

  15. Horizontal transfers of Mariner transposons between mammals and insects.

    PubMed

    Oliveira, Sarah G; Bao, Weidong; Martins, Cesar; Jurka, Jerzy

    2012-09-26

    Active transposable elements (TEs) can be passed between genomes of different species by horizontal transfer (HT). This may help them to avoid vertical extinction due to elimination by natural selection or silencing. HT is relatively frequent within eukaryotic taxa, but rare between distant species. Closely related Mariner-type DNA transposon families, collectively named as Mariner-1_Tbel families, are present in the genomes of two ants and two mammalian genomes. Consensus sequences of the four families show pairwise identities greater than 95%. In addition, mammalian Mariner1_BT family shows a close evolutionary relationship with some insect Mariner families. Mammalian Mariner1_BT type sequences are present only in species from three groups including ruminants, tooth whales (Odontoceti), and New World leaf-nosed bats (Phyllostomidae). Horizontal transfer accounts for the presence of Mariner_Tbel and Mariner1_BT families in mammals. Mariner_Tbel family was introduced into hedgehog and tree shrew genomes approximately 100 to 69 million years ago (MYA). Most likely, these TE families were transferred from insects to mammals, but details of the transfer remain unknown.

  16. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    PubMed Central

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  18. A comparison of different functions for predicted protein model quality assessment.

    PubMed

    Li, Juan; Fang, Huisheng

    2016-07-01

    In protein structure prediction, a considerable number of models are usually produced by either the Template-Based Method (TBM) or the ab initio prediction. The purpose of this study is to find the critical parameter in assessing the quality of the predicted models. A non-redundant template library was developed and 138 target sequences were modeled. The target sequences were all distant from the proteins in the template library and were aligned with template library proteins on the basis of the transformation matrix. The quality of each model was first assessed with QMEAN and its six parameters, which are C_β interaction energy (C_beta), all-atom pairwise energy (PE), solvation energy (SE), torsion angle energy (TAE), secondary structure agreement (SSA), and solvent accessibility agreement (SAE). Finally, the alignment score (score) was also used to assess the quality of model. Hence, a total of eight parameters (i.e., QMEAN, C_beta, PE, SE, TAE, SSA, SAE, score) were independently used to assess the quality of each model. The results indicate that SSA is the best parameter to estimate the quality of the model.

  19. Synthesis and NMR Analysis of a Conformationally Controlled β-Turn Mimetic Torsion Balance.

    PubMed

    Lypson, Alyssa B; Wilcox, Craig S

    2017-01-20

    The molecular torsion balance concept was applied to a new conformationally controlled scaffold and synthesized to accurately evaluate pairwise amino acid interactions in an antiparallel β-sheet motif. The scaffold's core design combines (ortho-tolyl)amide and o,o,o'-trisubstituted biphenyl structural units to provide a geometry better-suited for intramolecular hydrogen bonding. Like the dibenzodiazocine hinge of the traditional torsion balance, the (ortho-tolyl)amide unit offers restricted rotation around an N-aryl bond. The resulting two-state folding model is a powerful template for measuring hydrogen bond stability between two competing sequences. The aim of this study was to improve the alignment between the amino acid sequences attached to the upper and lower aromatic rings in order to promote hydrogen bond formation at the correct distance and antiparallel orientation. Bromine substituents were introduced ortho to the upper side chains and compared to a control to test our hypothesis. Hydrogen bond formation has been identified between the NH amide proton of the upper side chain (proton donor) and glycine acetamide of the lower side chain (proton acceptor).

  20. ChIP-PIT: Enhancing the Analysis of ChIP-Seq Data Using Convex-Relaxed Pair-Wise Interaction Tensor Decomposition.

    PubMed

    Zhu, Lin; Guo, Wei-Li; Deng, Su-Ping; Huang, De-Shuang

    2016-01-01

    In recent years, thanks to the efforts of individual scientists and research consortiums, a huge amount of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experimental data have been accumulated. Instead of investigating them independently, several recent studies have convincingly demonstrated that a wealth of scientific insights can be gained by integrative analysis of these ChIP-seq data. However, when used for the purpose of integrative analysis, a serious drawback of current ChIP-seq technique is that it is still expensive and time-consuming to generate ChIP-seq datasets of high standard. Most researchers are therefore unable to obtain complete ChIP-seq data for several TFs in a wide variety of cell lines, which considerably limits the understanding of transcriptional regulation pattern. In this paper, we propose a novel method called ChIP-PIT to overcome the aforementioned limitation. In ChIP-PIT, ChIP-seq data corresponding to a diverse collection of cell types, TFs and genes are fused together using the three-mode pair-wise interaction tensor (PIT) model, and the prediction of unperformed ChIP-seq experimental results is formulated as a tensor completion problem. Computationally, we propose efficient first-order method based on extensions of coordinate descent method to learn the optimal solution of ChIP-PIT, which makes it particularly suitable for the analysis of massive scale ChIP-seq data. Experimental evaluation the ENCODE data illustrate the usefulness of the proposed model.

  1. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain

    PubMed Central

    Olson, C. Anders; Wu, Nicholas C.; Sun, Ren

    2014-01-01

    SUMMARY Background Non-additivity in fitness effects from two or more mutations, termed epistasis, can result in compensation of deleterious mutations or negation of beneficial mutations. Recent evidence shows the importance of epistasis in individual evolutionary pathways. However, an unresolved question in molecular evolution is how often and how significantly fitness effects change in alternative genetic backgrounds. Results To answer this question we quantified the effects of all single mutations and double mutations between all positions in the IgG-binding domain of protein G (GB1). By observing the first two steps of all possible evolutionary pathways, this fitness profile enabled the characterization of the extent and magnitude of pairwise epistasis throughout an entire protein molecule. Furthermore, we developed a novel approach to quantitatively determine the effects of single mutations on structural stability (ΔΔGU). This enabled determination of the importance of stability effects in functional epistasis. Conclusions Our results illustrate common biophysical mechanisms for occurrences of positive and negative epistasis. Our results show pervasive positive epistasis within a conformationally dynamic network of residues. The stability analysis shows that significant negative epistasis, which is more common than positive epistasis, mostly occurs between combinations of destabilizing mutations. Furthermore, we show that although significant positive epistasis is rare, many deleterious mutations are beneficial in at least one alternative mutational background. The distribution of conditionally beneficial mutations throughout the domain demonstrates that the functional portion of sequence space can be significantly expanded by epistasis. PMID:25455030

  2. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns

    PubMed Central

    Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.

    2014-01-01

    Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182

  3. Sequencing and Characterization of the Invasive Sycamore Lace Bug Corythucha ciliata (Hemiptera: Tingidae) Transcriptome

    PubMed Central

    Qu, Cheng; Fu, Ningning; Xu, Yihua

    2016-01-01

    The sycamore lace bug, Corythucha ciliata (Hemiptera: Tingidae), is an invasive forestry pest rapidly expanding in many countries. This pest poses a considerable threat to the urban forestry ecosystem, especially to Platanus spp. However, its molecular biology and biochemistry are poorly understood. This study reports the first C. ciliata transcriptome, encompassing three different life stages (Nymphs, adults female (AF) and adults male (AM)). In total, 26.53 GB of clean data and 60,879 unigenes were obtained from three RNA-seq libraries. These unigenes were annotated and classified by Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Ortholog database). After all pairwise comparisons between these three different samples, a large number of differentially expressed genes were revealed. The dramatic differences in global gene expression profiles were found between distinct life stages (nymphs and AF, nymphs and AM) and sex difference (AF and AM), with some of the significantly differentially expressed genes (DEGs) being related to metamorphosis, digestion, immune and sex difference. The different express of unigenes were validated through quantitative Real-Time PCR (qRT-PCR) for 16 randomly selected unigenes. In addition, 17,462 potential simple sequence repeat molecular markers were identified in these transcriptome resources. These comprehensive C. ciliata transcriptomic information can be utilized to promote the development of environmentally friendly methodologies to disrupt the processes of metamorphosis, digestion, immune and sex differences. PMID:27494615

  4. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

    PubMed Central

    Lumkul, Lalita; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2018-01-01

    Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS. PMID:29742870

  5. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Molecular diagnostics and ITS-based phylogenic analysis of Streptococcus suis serotype 2 in central Vietnam.

    PubMed

    Nguyen, Bach Hoang; Phan, Dieu Hong Nu; Nguyen, Hien Xuan; Le, An Van; Alberti, Alberto

    2015-07-04

    Streptococcus suis (S. suis) serotype 2 has recently become the most prevalent cause of meningitis in adults in many areas of Vietnam. This study provides data on S. suis molecular diagnosis in central Vietnam using a real-time polymerase chain reaction (PCR) assay targeting the S. suis serotype 2 cps2J gene. Additionally, 16S-23S rDNA intragenic spacer (ITS)-based phylogenic analysis of strains isolated from cerebrospinal fluid (CSF) in Thua Thien Hue Province, Vietnam, is presented and discussed. Pathogenic bacteria were isolated from 40 CSF samples, and 18 were identified as S. suis by culture-dependent methods. Capsular serotyping was assessed by real-time PCR. ITS sequences were obtained after traditional PCR and were used in phylogenic analyses. Pathogenic bacteria were isolated from 36 out of 40 CSF samples. A total of 18 S. suis strains were isolated and assigned to serotype 2 by real-time PCR. One CSF sample, negative when tested by culture-dependent methods, was positive to S. suis serotype 2 by real-time PCR. Pairwise alignments of the 18 ITS sequences did not reveal any variable nucleotide position, and resulted in a single sequence type. Sequences were similar to S. suis serotype 2 reference ITS sequences (> 98.1%), and there was no lack of an ITS spacer region in the isolates. S. suis serotype 2 is the most prevalent serotype in central Vietnam. Real-time PCR assay proved to be a reliable diagnostic method for early detection of S. suis 2 in CSF samples.

  7. Molecular identification and first description of the male of Neoechinorhynchus schmidti (Acanthocephala: Neoechinorhynchidae), a parasite of Trachemys scripta (Testudines) in México.

    PubMed

    García-Varela, Martín; García-Prieto, Luís; Rodríguez, Rodolfo Pérez

    2011-12-01

    The morphology of the males of Neoechinorhynchus schmidti (Acanthocephala: Neoechinorhynchidae) is unknown, because this species was described based exclusively on females. However, recently we collected 2 common slider turtles Trachemys scripta in Centla swamps, Tabasco, Mexico, parasitized by 27 specimens of an acanthocephalan whose females were morphologically identical to N. schmidti. The domains D2 and D3 of the large subunit of the nuclear ribosomal RNA (LSU) of 3 males and 2 females of this material were sequenced. The sequences of both sexes were identical, and based on this result, we described for the first time the morphology of the males of N. schmidti. In addition, 6 sequences of a congeneric species, also parasite of turtles (Neoechinorhynchus emyditoides) were generated in the current research. The 11 sequences of these 2 species were aligned with 13 sequences of another 4 species of the same genus, producing a data set of 24 taxa with 674 nucleotides. The genetic divergence between N. schmidti and N. emyditoides was 4% and intraspecific differences ranged from 0.01 to 0.02%. Pairwise differences between either of these species and 4 other congeners parasitic in fresh and brackish water fishes (Neoechinorhynchus golvani, Neoechinorhynchus roseum, Neoechinorhynchus saginatus, and Neoechinorhynchus sp.) varied from 9.5 to 33%. Maximum likelihood and maximum parsimony analyses show that N. schmidti and N. emyditoides are sister taxa. Bootstrap analysis also indicates that the sister relationship is reliably supported. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Blazing Signature Filter: a library for fast pairwise similarity comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon-Yong; Fujimoto, Grant M.; Wilson, Ryan

    Identifying similarities between datasets is a fundamental task in data mining and has become an integral part of modern scientific investigation. Whether the task is to identify co-expressed genes in large-scale expression surveys or to predict combinations of gene knockouts which would elicit a similar phenotype, the underlying computational task is often a multi-dimensional similarity test. As datasets continue to grow, improvements to the efficiency, sensitivity or specificity of such computation will have broad impacts as it allows scientists to more completely explore the wealth of scientific data. A significant practical drawback of large-scale data mining is the vast majoritymore » of pairwise comparisons are unlikely to be relevant, meaning that they do not share a signature of interest. It is therefore essential to efficiently identify these unproductive comparisons as rapidly as possible and exclude them from more time-intensive similarity calculations. The Blazing Signature Filter (BSF) is a highly efficient pairwise similarity algorithm which enables extensive data mining within a reasonable amount of time. The algorithm transforms datasets into binary metrics, allowing it to utilize the computationally efficient bit operators and provide a coarse measure of similarity. As a result, the BSF can scale to high dimensionality and rapidly filter unproductive pairwise comparison. Two bioinformatics applications of the tool are presented to demonstrate the ability to scale to billions of pairwise comparisons and the usefulness of this approach.« less

  9. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2014-10-01

    Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't

    PubMed Central

    Roudi, Yasser; Nirenberg, Sheila; Latham, Peter E.

    2009-01-01

    One of the most critical problems we face in the study of biological systems is building accurate statistical descriptions of them. This problem has been particularly challenging because biological systems typically contain large numbers of interacting elements, which precludes the use of standard brute force approaches. Recently, though, several groups have reported that there may be an alternate strategy. The reports show that reliable statistical models can be built without knowledge of all the interactions in a system; instead, pairwise interactions can suffice. These findings, however, are based on the analysis of small subsystems. Here, we ask whether the observations will generalize to systems of realistic size, that is, whether pairwise models will provide reliable descriptions of true biological systems. Our results show that, in most cases, they will not. The reason is that there is a crossover in the predictive power of pairwise models: If the size of the subsystem is below the crossover point, then the results have no predictive power for large systems. If the size is above the crossover point, then the results may have predictive power. This work thus provides a general framework for determining the extent to which pairwise models can be used to predict the behavior of large biological systems. Applied to neural data, the size of most systems studied so far is below the crossover point. PMID:19424487

  11. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassessment of chironomid communities.

  12. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassesment of chironomid communities.

  13. Design, Implementation and Deployment of PAIRwise

    ERIC Educational Resources Information Center

    Knight, Allan; Almeroth, Kevin; Bimber, Bruce

    2008-01-01

    Increased access to the Internet has dramatically increased the sources from which students can deliberately or accidentally copy information. This article discusses our motivation to design, implement, and deploy an Internet based plagiarism detection system, called PAIRwise, to address this growing problem. We give details as to how we detect…

  14. CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips

    PubMed Central

    Tan, Mui Fern; Jakubovics, Nick S.; Wee, Wei Yee; Mutha, Naresh V. R.; Wong, Guat Jah; Ang, Mia Yang; Yazdi, Amir Hessam; Choo, Siew Woh

    2014-01-01

    Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/. PMID:24466021

  15. Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus.

    PubMed

    Gadd, Tuija; Viljamaa-Dirks, Satu; Holopainen, Riikka; Koski, Perttu; Jakava-Viljanen, Miia

    2013-10-11

    Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thymallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Virological investigation detected an infection with an unknown rhabdovirus. Based on the entire glycoprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike. The genetic analysis of entire G gene and partial L gene sequences showed that the Finnish brown trout isolate ka907_87 shared only approximately 67 and 78% identity, respectively, with our grayling isolates. The grayling isolates were also analysed by an immunofluorescence antibody test. This is the first report of a PRV causing disease in grayling in Finland.

  16. Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam.

    PubMed

    Nguyen, Thanh Giang Thi; Van De, Nguyen; Vercruysse, Jozef; Dorny, Pierre; Le, Thanh Hoa

    2009-12-01

    Ribosomal RNA sequences (361 or 362bp) of the second internal transcribed spacer 2 (ITS-2) and a portion of mitochondrial cox1 (423bp) for Fasciola spp. obtained from specimens collected in indigenous and hybrid goats and sheep in Vietnam were characterized for genotypic status and hybridization/introgression. Alignment of 48 ITS-2 sequences (also those from goats and sheep in this study) indicates that F. gigantica and F. hepatica differ typically from each other at seven sites whereas one of these is a distinguishing deletion (T) at the 327th position in F. gigantica relative to F. hepatica. The isolates from the mountainous goats in the North of Vietnam (Yen Bai province) showed the ITS-2 composition relatively identical to that of F. hepatica. The ITS-2 sequences from populations of Fasciola isolates in goats had probably experienced introgression/hybridization as reported previously in other ruminants and humans. All Vietnamese goat-of-origin specimens had high pairwise percentage of mitochondrial cox1 sequences to F. gigantica (97-100%), and very low identity to F. hepatica (91-93%), suggesting their maternal linkage to be traced to F. gigantica. The presence of hybrid and/or introgressed populations of liver flukes bearing genetic material from both F. hepatica and F. gigantica in the goats/sheep in Vietnam, regardless of indigenous or imported hosts, appears to be the first demonstration from a tropical country.

  17. Genome-wide gene–gene interaction analysis for next-generation sequencing

    PubMed Central

    Zhao, Jinying; Zhu, Yun; Xiong, Momiao

    2016-01-01

    The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI's Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study. PMID:26173972

  18. Raineya orbicola gen. nov., sp. nov. a slightly thermophilic bacterium of the phylum Bacteroidetes and the description of Raineyaceae fam. nov.

    PubMed

    Albuquerque, Luciana; Polónia, Ana Rita M; Barroso, Cristina; Froufe, Hugo J C; Lage, Olga; Lobo-da-Cunha, Alexandre; Egas, Conceição; da Costa, Milton S

    2018-04-01

    An isolate, designated SPSPC-11 T , with an optimum growth temperature of about 50 °C and an optimum pH for growth between 7.5 and 8.0, was recovered from a hot spring in central Portugal. Based on phylogenetic analysis of its 16S rRNA sequence, the new organism is most closely related to the species of the genus Thermonema but with a pairwise sequence similarity of <85 %. The isolate was orange-pigmented, formed non-motile long filaments and rod-shaped cells that stain Gram-negative. The organism was strictly aerobic, oxidase-positive and catalase-positive. The major fatty acids were iso-C15:0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The major polar lipids were one aminophospholipid, two aminolipids and three unidentified lipids. Menaquinone 7 was the major respiratory quinone. The DNA G+C content of strain SPSPC-11 T was 37.6 mol% (draft genome sequence). The high quality draft genome sequence corroborated many of the phenotypic characteristics of strain SPSPC-11 T . Based on genotypic, phylogenetic, physiological and biochemical characterization we describe a new species of a novel genus represented by strain SPSPC-11 T (=CECT 9012 T =LMG 29233 T ) for which we propose the name Raineya orbicola gen. nov., sp. nov. We also describe the family Raineyaceae to accommodate this new genus and species.

  19. High-throughput determination of RNA structure by proximity ligation.

    PubMed

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  20. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  1. Genetic differentiation in blue shark, Prionace glauca, from the central Pacific Ocean, as inferred by mitochondrial cytochrome b region.

    PubMed

    Li, Weiwen; Dai, Xiaojie; Zhu, Jiangfeng; Tian, Siquan; He, Shan; Wu, Feng

    2017-07-01

    Six hundred and ninety-seven base pairs of cytochrome b gene of mtDNA was sequenced and analyzed for 78 blue shark Prionace glauca individuals from three sampled locations in the central Pacific Ocean (CPO). In total, three polymorphic sites were detected which defined four haplotypes. The haplotype diversity (h) ranged from 0.517 to 0.768, and nucleotide diversity (π) was between 0.0007 and 0.0011. Analysis of molecular variance indicated a non-significant differentiation among subpopulations. Furthermore, pairwise F ST score analysis revealed a non-significant differentiation among three sampled regions. Generally, low genetic differences were found between different geographic locations in the CPO. This study suggests a single panmictic population of P. glauca in the CPO.

  2. Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius).

    PubMed

    Yang, Huaan; Jian, Jianbo; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark W; Tan, Cong; Li, Chengdao

    2015-09-02

    Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding. Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding. We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

  3. Generation of Synthetic Spike Trains with Defined Pairwise Correlations

    PubMed Central

    Niebur, Ernst

    2008-01-01

    Recent technological advances as well as progress in theoretical understanding of neural systems have created a need for synthetic spike trains with controlled mean rate and pairwise cross-correlation. This report introduces and analyzes a novel algorithm for the generation of discretized spike trains with arbitrary mean rates and controlled cross correlation. Pairs of spike trains with any pairwise correlation can be generated, and higher-order correlations are compatible with common synaptic input. Relations between allowable mean rates and correlations within a population are discussed. The algorithm is highly efficient, its complexity increasing linearly with the number of spike trains generated and therefore inversely with the number of cross-correlated pairs. PMID:17521277

  4. Prospects for inferring pairwise relationships with single nucleotide polymorphisms

    Treesearch

    Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody

    2003-01-01

    An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...

  5. Hierarchical semi-numeric method for pairwise fuzzy group decision making.

    PubMed

    Marimin, M; Umano, M; Hatono, I; Tamura, H

    2002-01-01

    Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.

  6. A new method of content based medical image retrieval and its applications to CT imaging sign retrieval.

    PubMed

    Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu

    2017-02-01

    This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Frequency-Dependent Selection: The High Potential for Permanent Genetic Variation in the Diallelic, Pairwise Interaction Model

    PubMed Central

    Asmussen, M. A.; Basnayake, E.

    1990-01-01

    A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria. PMID:2341034

  8. Consistency-based rectification of nonrigid registrations

    PubMed Central

    Gass, Tobias; Székely, Gábor; Goksel, Orcun

    2015-01-01

    Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083

  9. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.

    PubMed

    Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan

    2017-10-25

    Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.

  10. A universal genomic coordinate translator for comparative genomics

    PubMed Central

    2014-01-01

    Background Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Results Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Conclusions Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken. PMID:24976580

  11. A universal genomic coordinate translator for comparative genomics.

    PubMed

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken.

  12. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    Background Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Methods Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Results Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Conclusions Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology. PMID:25034633

  13. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology.

  14. Linkage of Viral Sequences among HIV-Infected Village Residents in Botswana: Estimation of Linkage Rates in the Presence of Missing Data

    PubMed Central

    Carnegie, Nicole Bohme; Wang, Rui; Novitsky, Vladimir; De Gruttola, Victor

    2014-01-01

    Linkage analysis is useful in investigating disease transmission dynamics and the effect of interventions on them, but estimates of probabilities of linkage between infected people from observed data can be biased downward when missingness is informative. We investigate variation in the rates at which subjects' viral genotypes link across groups defined by viral load (low/high) and antiretroviral treatment (ART) status using blood samples from household surveys in the Northeast sector of Mochudi, Botswana. The probability of obtaining a sequence from a sample varies with viral load; samples with low viral load are harder to amplify. Pairwise genetic distances were estimated from aligned nucleotide sequences of HIV-1C env gp120. It is first shown that the probability that randomly selected sequences are linked can be estimated consistently from observed data. This is then used to develop estimates of the probability that a sequence from one group links to at least one sequence from another group under the assumption of independence across pairs. Furthermore, a resampling approach is developed that accounts for the presence of correlation across pairs, with diagnostics for assessing the reliability of the method. Sequences were obtained for 65% of subjects with high viral load (HVL, n = 117), 54% of subjects with low viral load but not on ART (LVL, n = 180), and 45% of subjects on ART (ART, n = 126). The probability of linkage between two individuals is highest if both have HVL, and lowest if one has LVL and the other has LVL or is on ART. Linkage across groups is high for HVL and lower for LVL and ART. Adjustment for missing data increases the group-wise linkage rates by 40–100%, and changes the relative rates between groups. Bias in inferences regarding HIV viral linkage that arise from differential ability to genotype samples can be reduced by appropriate methods for accommodating missing data. PMID:24415932

  15. Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data.

    PubMed

    Carnegie, Nicole Bohme; Wang, Rui; Novitsky, Vladimir; De Gruttola, Victor

    2014-01-01

    Linkage analysis is useful in investigating disease transmission dynamics and the effect of interventions on them, but estimates of probabilities of linkage between infected people from observed data can be biased downward when missingness is informative. We investigate variation in the rates at which subjects' viral genotypes link across groups defined by viral load (low/high) and antiretroviral treatment (ART) status using blood samples from household surveys in the Northeast sector of Mochudi, Botswana. The probability of obtaining a sequence from a sample varies with viral load; samples with low viral load are harder to amplify. Pairwise genetic distances were estimated from aligned nucleotide sequences of HIV-1C env gp120. It is first shown that the probability that randomly selected sequences are linked can be estimated consistently from observed data. This is then used to develop estimates of the probability that a sequence from one group links to at least one sequence from another group under the assumption of independence across pairs. Furthermore, a resampling approach is developed that accounts for the presence of correlation across pairs, with diagnostics for assessing the reliability of the method. Sequences were obtained for 65% of subjects with high viral load (HVL, n = 117), 54% of subjects with low viral load but not on ART (LVL, n = 180), and 45% of subjects on ART (ART, n = 126). The probability of linkage between two individuals is highest if both have HVL, and lowest if one has LVL and the other has LVL or is on ART. Linkage across groups is high for HVL and lower for LVL and ART. Adjustment for missing data increases the group-wise linkage rates by 40-100%, and changes the relative rates between groups. Bias in inferences regarding HIV viral linkage that arise from differential ability to genotype samples can be reduced by appropriate methods for accommodating missing data.

  16. Recombination in feline immunodeficiency virus from feral and companion domestic cats.

    PubMed

    Hayward, Jessica J; Rodrigo, Allen G

    2008-06-17

    Recombination is a relatively common phenomenon in retroviruses. We investigated recombination in Feline Immunodeficiency Virus from naturally-infected New Zealand domestic cats (Felis catus) by sequencing regions of the gag, pol and env genes. The occurrence of intragenic recombination was highest in env, with evidence of recombination in 6.4% (n = 156) of all cats. A further recombinant was identified in each of the gag (n = 48) and pol (n = 91) genes. Comparisons of phylogenetic trees across genes identified cases of incongruence, indicating intergenic recombination. Three (7.7%, n = 39) of these incongruencies were found to be significantly different using the Shimodaira-Hasegawa test.Surprisingly, our phylogenies from the gag and pol genes showed that no New Zealand sequences group with reference subtype C sequences within intrasubtype pairwise distances. Indeed, we find one and two distinct unknown subtype groups in gag and pol, respectively. These observations cause us to speculate that these New Zealand FIV strains have undergone several recombination events between subtype A parent strains and undefined unknown subtype strains, similar to the evolutionary history hypothesised for HIV-1 "subtype E".Endpoint dilution sequencing was used to confirm the consensus sequences of the putative recombinants and unknown subtype groups, providing evidence for the authenticity of these sequences. Endpoint dilution sequencing also resulted in the identification of a dual infection event in the env gene. In addition, an intrahost recombination event between variants of the same subtype in the pol gene was established. This is the first known example of naturally-occurring recombination in a cat with infection of the parent strains. Evidence of intragenic recombination in the gag, pol and env regions, and complex intergenic recombination, of FIV from naturally-infected domestic cats in New Zealand was found. Strains of unknown subtype were identified in all three gene regions. These results have implications for the use of the current FIV vaccine in New Zealand.

  17. G-Anchor: a novel approach for whole-genome comparative mapping utilizing evolutionary conserved DNA sequences.

    PubMed

    Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M

    2018-05-01

    Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.

  18. Document Level Assessment of Document Retrieval Systems in a Pairwise System Evaluation

    ERIC Educational Resources Information Center

    Rajagopal, Prabha; Ravana, Sri Devi

    2017-01-01

    Introduction: The use of averaged topic-level scores can result in the loss of valuable data and can cause misinterpretation of the effectiveness of system performance. This study aims to use the scores of each document to evaluate document retrieval systems in a pairwise system evaluation. Method: The chosen evaluation metrics are document-level…

  19. Pairwise Multiple Comparisons in Single Group Repeated Measures Analysis.

    ERIC Educational Resources Information Center

    Barcikowski, Robert S.; Elliott, Ronald S.

    Research was conducted to provide educational researchers with a choice of pairwise multiple comparison procedures (P-MCPs) to use with single group repeated measures designs. The following were studied through two Monte Carlo (MC) simulations: (1) The T procedure of J. W. Tukey (1953); (2) a modification of Tukey's T (G. Keppel, 1973); (3) the…

  20. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  1. Pairwise-additive hydrophobic effect for alkanes in water

    PubMed Central

    Wu, Jianzhong; Prausnitz, John M.

    2008-01-01

    Pairwise additivity of the hydrophobic effect is indicated by reliable experimental Henry's constants for a large number of linear and branched low-molecular-weight alkanes in water. Pairwise additivity suggests that the hydrophobic effect is primarily a local phenomenon and that the hydrophobic interaction may be represented by a semiempirical force field. By representing the hydrophobic potential between two methane molecules as a linear function of the overlap volume of the hydration layers, we find that the contact value of the hydrophobic potential (−0.72 kcal/mol) is smaller than that from quantum mechanics simulations (−2.8 kcal/mol) but is close to that from classical molecular dynamics (−0.5∼−0.9 kcal/mol). PMID:18599448

  2. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.

  3. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  4. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

    PubMed

    Thakur, Shalabh; Guttman, David S

    2016-06-30

    Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .

  5. Protein structure recognition: From eigenvector analysis to structural threading method

    NASA Astrophysics Data System (ADS)

    Cao, Haibo

    In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle. In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  6. Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model

    PubMed Central

    van Tonder, Andries J.; Mistry, Shilan; Bray, James E.; Hill, Dorothea M. C.; Cody, Alison J.; Farmer, Chris L.; Klugman, Keith P.; von Gottberg, Anne; Bentley, Stephen D.; Parkhill, Julian; Jolley, Keith A.; Maiden, Martin C. J.; Brueggemann, Angela B.

    2014-01-01

    The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance. PMID:25144616

  7. Control of artefactual variation in reported inter-sample relatedness during clinical use of a Mycobacterium tuberculosis sequencing pipeline.

    PubMed

    Wyllie, David H; Sanderson, Nicholas; Myers, Richard; Peto, Tim; Robinson, Esther; Crook, Derrick W; Smith, E Grace; Walker, A Sarah

    2018-06-06

    Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artefactual variation between M. tuberculosis isolates during routine next generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads mapped, and consensus sequences determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high variation regions strongly influenced by the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multi-step laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics. Copyright © 2018 Wyllie et al.

  8. Domain similarity based orthology detection.

    PubMed

    Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich

    2015-05-13

    Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .

  9. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  10. GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.

    PubMed

    Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de

    2006-03-31

    Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.

  11. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia

    PubMed Central

    Wagner, Isaac D.; Varghese, Litty B.; Hemme, Christopher L.; Wiegel, Juergen

    2013-01-01

    Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise FST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an “epidemic” population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances. PMID:23801987

  12. Rapid Identification of Cell-Specific, Internalizing RNA Aptamers with Bioinformatics Analyses of a Cell-Based Aptamer Selection

    PubMed Central

    Thiel, William H.; Bair, Thomas; Peek, Andrew S.; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R.; Behlke, Mark A.; Miller, Francis J.; Giangrande, Paloma H.

    2012-01-01

    Background The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. Methodology/Principal Findings We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. Conclusions and Significance We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies. PMID:22962591

  13. 'Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique.

    PubMed

    Harrison, Nigel A; Davis, Robert E; Oropeza, Carlos; Helmick, Ericka E; Narváez, María; Eden-Green, Simon; Dollet, Michel; Dickinson, Matthew

    2014-06-01

    In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100% identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0-99.6% identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d'Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5% sequence identity with all previously described members of 'Candidatus Phytoplasma'. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of 'Candidatus Phytoplasma', justifying its recognition as the reference strain of a novel taxon, 'Candidatus Phytoplasma palmicola'. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d'Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.

  14. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World.

    PubMed

    Chingandu, Nomatter; Zia-Ur-Rehman, Muhammad; Sreenivasan, Thyail N; Surujdeo-Maharaj, Surendra; Umaharan, Pathmanathan; Gutierrez, Osman A; Brown, Judith K

    2017-05-01

    Suspected virus-like symptoms were observed in cacao plants in Trinidad during 1943, and the viruses associated with these symptoms were designated as strains A and B of cacao Trinidad virus (CTV). However, viral etiology has not been demonstrated for either phenotype. Total DNA was isolated from symptomatic cacao leaves exhibiting the CTV A and B phenotypes and subjected to Illumina HiSeq and Sanger DNA sequencing. Based on de novo assembly, two apparently full-length badnavirus genomes of 7,533 and 7,454 nucleotides (nt) were associated with CTV strain A and B, respectively. The Trinidad badnaviral genomes contained four open reading frames, three of which are characteristic of other known badnaviruses, and a fourth that is present in only some badnaviruses. Both badnaviral genomes harbored hallmark caulimovirus-like features, including a tRNA Met priming site, a TATA box, and a polyadenylation-like signal. Pairwise comparisons of the RT-RNase H region indicated that the Trinidad isolates share 57-71% nt sequence identity with other known badnaviruses. Based on the system for badnavirus species demarcation in which viruses with less than 80% nt sequence identity in the RT-RNase gene are considered members of separate species, these isolates represent two previously unidentified badnaviruses, herein named cacao mild mosaic virus and cacao yellow vein banding virus, making them the first cacao-infecting badnaviruses identified thus far in the Western Hemisphere.

  15. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Response of the hepatic transcriptome to aflatoxin B1 in domestic turkey (Meleagris gallopavo).

    PubMed

    Monson, Melissa S; Settlage, Robert E; McMahon, Kevin W; Mendoza, Kristelle M; Rawal, Sumit; El-Nezami, Hani S; Coulombe, Roger A; Reed, Kent M

    2014-01-01

    Dietary exposure to aflatoxin B1 (AFB1) is detrimental to avian health and leads to major economic losses for the poultry industry. AFB1 is especially hepatotoxic in domestic turkeys (Meleagris gallopavo), since these birds are unable to detoxify AFB1 by glutathione-conjugation. The impacts of AFB1 on the turkey hepatic transcriptome and the potential protection from pretreatment with a Lactobacillus-based probiotic mixture were investigated through RNA-sequencing. Animals were divided into four treatment groups and RNA was subsequently recovered from liver samples. Four pooled RNA-seq libraries were sequenced to produce over 322 M reads totaling 13.8 Gb of sequence. Approximately 170,000 predicted transcripts were de novo assembled, of which 803 had significant differential expression in at least one pair-wise comparison between treatment groups. Functional analysis linked many of the transcripts significantly affected by AFB1 exposure to cancer, apoptosis, the cell cycle or lipid regulation. Most notable were transcripts from the genes encoding E3 ubiquitin-protein ligase Mdm2, osteopontin, S-adenosylmethionine synthase isoform type-2, and lipoprotein lipase. Expression was modulated by the probiotics, but treatment did not completely mitigate the effects of AFB1. Genes identified through transcriptome analysis provide candidates for further study of AFB1 toxicity and targets for efforts to improve the health of domestic turkeys exposed to AFB1.

  17. Arabidopsis ASYMMETRIC LEAVES2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence.

    PubMed

    Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori

    2012-09-01

    Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.

  18. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America

    USGS Publications Warehouse

    Lee, Justin S.; Bevins, Sarah N.; Serieys, Laurel E.K.; Vickers, Winston; Logan, Ken A.; Aldredge, Mat; Boydston, Erin E.; Lyren, Lisa M.; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L.; Riley, Seth P.; Boyce, Walter M.; Crooks, Kevin R.; VandeWoude, Sue

    2014-01-01

    Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories.

  19. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  20. Genetic variation in scaly hair-fin anchovy Setipinna tenuifilis (Engraulididae) based on the mitochondrial DNA control region.

    PubMed

    Xu, Shengyong; Song, Na; Lu, Zhichuang; Wang, Jun; Cai, Shanshan; Gao, Tianxiang

    2014-06-01

    Scaly hair-fin anchovy (Setipinna tenuifilis) is a small, pelagic and economical species and widely distributed in Chinese coastal water. However, resources of S. tenuifilis have been reduced due to overfishing. For better fishery management, it is necessary to understand the pattern of S. tenuifilis's biogeography. Genetic analyses were taken place to detect their population genetic variation. A total of 153 individuals from 7 locations (Dongying, Yantai, Qingdao, Nantong, Wenzhou, Xiamen and Beibu Bay) were sequenced at the 5' end of mtDNA control region. A 39-bp tandem repeated sequence was found at the 5' end of the segment and a polymorphism of tandem repeated sequence was detected among 7 populations. Both mismatch distribution analysis and neutrality tests showed S. tenuifilis had experienced a recent population expansion. The topology of neighbor-joining tree and Bayesian evolutionary tree showed no significant genealogical branches or clusters of samples corresponding to sampling locality. Hierarchical analysis of molecular variance and conventional pairwise population Fst value at group hierarchical level implied that there might have genetic divergence between southern group (population WZ, XM and BB) and northern group (population DY, YT, QD and NT). We concluded that there might have three different fishery management groups of S. tenuifilis and the late Pleistocene glacial event might have a crucial effect on present-day demography of S. tenuifilis in this region.

  1. Feature co-localization landscape of the human genome

    PubMed Central

    Ng, Siu-Kin; Hu, Taobo; Long, Xi; Chan, Cheuk-Hin; Tsang, Shui-Ying; Xue, Hong

    2016-01-01

    Although feature co-localizations could serve as useful guide-posts to genome architecture, a comprehensive and quantitative feature co-localization map of the human genome has been lacking. Herein we show that, in contrast to the conventional bipartite division of genomic sequences into genic and inter-genic regions, pairwise co-localizations of forty-two genomic features in the twenty-two autosomes based on 50-kb to 2,000-kb sequence windows indicate a tripartite zonal architecture comprising Genic zones enriched with gene-related features and Alu-elements; Proximal zones enriched with MIR- and L2-elements, transcription-factor-binding-sites (TFBSs), and conserved-indels (CIDs); and Distal zones enriched with L1-elements. Co-localizations between single-nucleotide-polymorphisms (SNPs) and copy-number-variations (CNVs) reveal a fraction of sequence windows displaying steeply enhanced levels of SNPs, CNVs and recombination rates that point to active adaptive evolution in such pathways as immune response, sensory perceptions, and cognition. The strongest positive co-localization observed between TFBSs and CIDs suggests a regulatory role of CIDs in cooperation with TFBSs. The positive co-localizations of cancer somatic CNVs (CNVT) with all Proximal zone and most Genic zone features, in contrast to the distinctly more restricted co-localizations exhibited by germline CNVs (CNVG), reveal disparate distributions of CNVTs and CNVGs indicative of dissimilarity in their underlying mechanisms. PMID:26854351

  2. Connecting Palau's marine protected areas: a population genetic approach to conservation

    NASA Astrophysics Data System (ADS)

    Cros, Annick; Toonen, Robert J.; Donahue, Megan J.; Karl, Stephen A.

    2017-09-01

    Bleaching events are becoming more frequent and are projected to become annual in Micronesia by 2040. To prepare for this threat, the Government of Palau is reviewing its marine protected area network to increase the resilience of the reefs by integrating connectivity into the network design. To support their effort, we used high-throughput sequencing of microsatellites to create genotypes of colonies of the coral Acropora hyacinthus to characterize population genetic structure and dispersal patterns that led to the recovery of Palau's reefs from a 1998 bleaching event. We found no evidence of a founder effect or refugium where colonies may have survived to recolonize the reef. Instead, we found significant pairwise F' st values, indicating population structure and low connectivity among most of the 25 sites around Palau. We used kinship to measure genetic differences at the individual level among sites and found that differences were best explained by the degree of exposure to the ocean [ F 1,20 = 3.015, Pr(> F) = 0.01], but with little of the total variation explained. A permutation test of the pairwise kinship coefficients revealed that there was self-seeding within sites. Overall, the data point to the population of A. hyacinthus in Palau recovering from a handful of surviving colonies with population growth primarily from self-seeding and little exchange among sites. This finding has significant implications for the management strategies for the reefs of Palau, and we recommend increasing the number and distribution of management areas around Palau to capture the genetic architecture and increase the chances of protecting potential refuges in the future.

  3. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  4. Historical demography of common carp estimated from individuals collected from various parts of the world using the pairwise sequentially markovian coalescent approach.

    PubMed

    Yuan, Zihao; Huang, Wei; Liu, Shikai; Xu, Peng; Dunham, Rex; Liu, Zhanjiang

    2018-04-01

    The inference of historical demography of a species is helpful for understanding species' differentiation and its population dynamics. However, such inference has been previously difficult due to the lack of proper analytical methods and availability of genetic data. A recently developed method called Pairwise Sequentially Markovian Coalescent (PSMC) offers the capability for estimation of the trajectories of historical populations over considerable time periods using genomic sequences. In this study, we applied this approach to infer the historical demography of the common carp using samples collected from Europe, Asia and the Americas. Comparison between Asian and European common carp populations showed that the last glacial period starting 100 ka BP likely caused a significant decline in population size of the wild common carp in Europe, while it did not have much of an impact on its counterparts in Asia. This was probably caused by differences in glacial activities in East Asia and Europe, and suggesting a separation of the European and Asian clades before the last glacial maximum. The North American clade which is an invasive population shared a similar demographic history as those from Europe, consistent with the idea that the North American common carp probably had European ancestral origins. Our analysis represents the first reconstruction of the historical population demography of the common carp, which is important to elucidate the separation of European and Asian common carp clades during the Quaternary glaciation, as well as the dispersal of common carp across the world.

  5. Simulations of the pairwise kinematic Sunyaev-Zel'dovich signal

    DOE PAGES

    Flender, Samuel; Bleem, Lindsey; Finkel, Hal; ...

    2016-05-26

    The pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal from galaxy clusters is a probe of their line of sight momenta, and thus a potentially valuable source of cosmological information. In addition to the momenta, the amplitude of the measured signal depends on the properties of the intracluster gas and observational limitations such as errors in determining cluster centers and redshifts. In this work, we simulate the pairwise kSZ signal of clusters atmore » $$z\\lt 1$$, using the output from a cosmological N-body simulation and including the properties of the intracluster gas via a model that can be varied in post-processing. We find that modifications to the gas profile due to star formation and feedback reduce the pairwise kSZ amplitude of clusters by $$\\sim 50\\%$$, relative to the naive "gas traces mass" assumption. We demonstrate that miscentering can reduce the overall amplitude of the pairwise kSZ signal by up to 10%, while redshift errors can lead to an almost complete suppression of the signal at small separations. We confirm that a high-significance detection is expected from the combination of data from current generation, high-resolution cosmic microwave background experiments, such as the South Pole Telescope, and cluster samples from optical photometric surveys, such as the Dark Energy Survey. As a result, we forecast that future experiments such as Advanced ACTPol in conjunction with data from the Dark Energy Spectroscopic Instrument will yield detection significances of at least $$20\\sigma $$, and up to $$57\\sigma $$ in an optimistic scenario.« less

  6. Classification of forest-based ecotourism areas in Pocahontas County of West Virginia using GIS and pairwise comparison method

    Treesearch

    Ishwar Dhami; Jinyang. Deng

    2012-01-01

    Many previous studies have examined ecotourism primarily from the perspective of tourists while largely ignoring ecotourism destinations. This study used geographical information system (GIS) and pairwise comparison to identify forest-based ecotourism areas in Pocahontas County, West Virginia. The study adopted the criteria and scores developed by Boyd and Butler (1994...

  7. Learning Factors Transfer Analysis: Using Learning Curve Analysis to Automatically Generate Domain Models

    ERIC Educational Resources Information Center

    Pavlik, Philip I. Jr.; Cen, Hao; Koedinger, Kenneth R.

    2009-01-01

    This paper describes a novel method to create a quantitative model of an educational content domain of related practice item-types using learning curves. By using a pairwise test to search for the relationships between learning curves for these item-types, we show how the test results in a set of pairwise transfer relationships that can be…

  8. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia

    NASA Astrophysics Data System (ADS)

    Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun

    2017-05-01

    To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.

  9. From pairwise to group interactions in games of cyclic dominance.

    PubMed

    Szolnoki, Attila; Vukov, Jeromos; Perc, Matjaž

    2014-06-01

    We study the rock-paper-scissors game in structured populations, where the invasion rates determine individual payoffs that govern the process of strategy change. The traditional version of the game is recovered if the payoffs for each potential invasion stem from a single pairwise interaction. However, the transformation of invasion rates to payoffs also allows the usage of larger interaction ranges. In addition to the traditional pairwise interaction, we therefore consider simultaneous interactions with all nearest neighbors, as well as with all nearest and next-nearest neighbors, thus effectively going from single pair to group interactions in games of cyclic dominance. We show that differences in the interaction range affect not only the stationary fractions of strategies but also their relations of dominance. The transition from pairwise to group interactions can thus decelerate and even revert the direction of the invasion between the competing strategies. Like in evolutionary social dilemmas, in games of cyclic dominance, too, the indirect multipoint interactions that are due to group interactions hence play a pivotal role. Our results indicate that, in addition to the invasion rates, the interaction range is at least as important for the maintenance of biodiversity among cyclically competing strategies.

  10. Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soergel, B.; Flender, S.; Story, K. T.

    Here, we detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance ofmore » $$4.2 \\sigma$$ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey (DES) with CMB temperature maps from the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template we measure the average central optical depth of the cluster sample, $$\\bar{\\tau}_e = (3.75 \\pm 0.89)\\cdot 10^{-3}$$. We compare the extracted signal to realistic simulations and find good agreement with respect to the signal-to-noise, the constraint on $$\\bar{\\tau}_e$$, and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales $$ \\gtrsim 100$$ Mpc.« less

  11. Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT

    DOE PAGES

    Soergel, B.; Flender, S.; Story, K. T.; ...

    2016-06-17

    Here, we detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance ofmore » $$4.2 \\sigma$$ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey (DES) with CMB temperature maps from the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template we measure the average central optical depth of the cluster sample, $$\\bar{\\tau}_e = (3.75 \\pm 0.89)\\cdot 10^{-3}$$. We compare the extracted signal to realistic simulations and find good agreement with respect to the signal-to-noise, the constraint on $$\\bar{\\tau}_e$$, and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales $$ \\gtrsim 100$$ Mpc.« less

  12. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  13. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  15. Environmental Sequencing of Biotic Components of Dust in the Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Gill, T. E.; Rivas, J. A., Jr.; Leung, M. Y.; Mohl, J.

    2015-12-01

    A growing number of studies mark the role of wind in dispersing biota. Most of these approaches have used traditional methods to assess taxonomic diversity. Here we used next generation sequencing to characterize microbiota in dust collected from the Chihuahuan Desert. Atmospheric dust was collected during events during 2011-2014 using dry deposition collectors placed at two sites in El Paso Co., TX. In parallel experiments, we rehydrated subsamples of dust and conducted PCR amplifications using conserved primers for 16S and 18S ribosomal genes. Sequenced reads were de-multiplexed, quality filtered, and processed using QIIME. Taxonomy was assigned based on pairwise identity using BLAST for microbial eukaryotes. All samples were rarefied to a set number of sequences per sample prior to downstream analyses. Bioinformatic analysis of four of the dust samples yielded a diversity of biota, including zooplankton, bacteria, fungi, algae, and protists, but fungi predominate (>90% of both 10K and 3K reads). In our rehydrations of dust samples from the U.S. southwest nematodes, gastrotrichs, tardigrades, monogonont and bdelloid rotifers, branchiopods and numerous ciliates have been recovered. Variability in genetic diversity among samples is based, in part, on the source and extent of the particular dust event. We anticipate the same patterns will be seen in the complete data set. These preliminary results indicate that wind is a major transporter of not only fungi, bacteria and other unicellular organisms but may also be important in shaping the distribution patterns of multi-cellular organisms such as those that inhabit aquatic environments in the arid southwestern US.

  16. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces.

    PubMed

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan; Zhang, Shuyi; Jin, Qi

    2012-10-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.

  17. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  18. Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group.

    PubMed

    Chaves, Bárbara R N; Chaves, Anderson V; Nascimento, Augusto C A; Chevitarese, Juliana; Vasconcelos, Marcelo F; Santos, Fabrício R

    2015-07-01

    In this study, we verified the power of DNA barcodes to discriminate Neotropical birds using Bayesian tree reconstructions of a total of 7404 COI sequences from 1521 species, including 55 Brazilian species with no previous barcode data. We found that 10.4% of species were nonmonophyletic, most likely due to inaccurate taxonomy, incomplete lineage sorting or hybridization. At least 0.5% of the sequences (2.5% of the sampled species) retrieved from GenBank were associated with database errors (poor-quality sequences, NuMTs, misidentification or unnoticed hybridization). Paraphyletic species (5.8% of the total) can be related to rapid speciation events leading to nonreciprocal monophyly between recently diverged sister species, or to absence of synapomorphies in the small COI region analysed. We also performed two series of genetic distance calculations under the K2P model for intraspecific and interspecific comparisons: the first included all COI sequences, and the second included only monophyletic taxa observed in the Bayesian trees. As expected, the mean and median pairwise distances were smaller for intraspecific than for interspecific comparisons. However, there was no precise 'barcode gap', which was shown to be larger in the monophyletic taxon data set than for the data from all species, as expected. Our results indicated that although database errors may explain some of the difficulties in the species discrimination of Neotropical birds, distance-based barcode assignment may also be compromised because of the high diversity of bird species and more complex speciation events in the Neotropics. © 2014 John Wiley & Sons Ltd.

  19. Estimating time of HIV-1 infection from next-generation sequence diversity

    PubMed Central

    2017-01-01

    Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but important to understand the epidemiology of the infection. Here we explore the utility of virus diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected patients with known dates of infection. The results were validated on a second dataset from 31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions, with little inter-patient variation. The precision of the TI estimate improved with increasing sequencing depth, showing that diversity in NGS data yields superior estimates to the number of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers. The full advantage of deep NGS was utilized with continuous diversity measures such as average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The precision depended on the genomic region and codon position and was highest when 3rd codon positions in the entire pol gene were used. For these data, TI estimates had a mean absolute error of around 1 year. The error increased only slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity determined by NGS can be used to estimate time since HIV-1 infection many years after the infection, in contrast to most alternative biomarkers. We provide the regression coefficients as well as web tool for TI estimation. PMID:28968389

  20. Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces

    PubMed Central

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan

    2012-01-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China. PMID:22855479

  1. Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae).

    PubMed

    Ashfaq, Muhammad; Asif, Muhammad; Anjum, Zahid Iqbal; Zafar, Yusuf

    2013-07-01

    Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A-G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus-wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on 'best match' analysis, the combination of matK+ITS2 was best, while based on 'all species barcodes' analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (P < 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult. © 2013 John Wiley & Sons Ltd.

  2. Retrieval and registration of long-range overlapping frames for scalable mosaicking of in vivo fetoscopy.

    PubMed

    Peter, Loïc; Tella-Amo, Marcel; Shakir, Dzhoshkun Ismail; Attilakos, George; Wimalasundera, Ruwan; Deprest, Jan; Ourselin, Sébastien; Vercauteren, Tom

    2018-05-01

    The standard clinical treatment of Twin-to-Twin transfusion syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (1) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (2) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison with two standard baselines. This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.

  3. Periodic three-body orbits with vanishing angular momentum in the Jacobi-Poincaré ‘strong’ potential

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Petrović, Luka V.; Šuvakov, Milovan

    2017-10-01

    Moore (1993 Phys. Rev. Lett. 70 3675) and Montgomery (2005 Ergod. Theor. Dynam. Syst. 25 921-947) have argued that planar periodic orbits of three bodies moving in the Jacobi-Poincaré, or the ‘strong’ pairwise potential \\sumi>j\\frac{-1}{rij^2} , can have all possible topologies. Here we search systematically for such orbits with vanishing angular momentum and find 24 topologically distinct orbits, 22 of which are new, in a small section of the allowed phase space, with a tendency to overcrowd, due to overlapping initial conditions. The topologies of these 24 orbits belong to three algebraic sequences defined as functions of integer n=0, 1, 2, \\ldots . Each sequence extends to n \\to ∞ , but the separation of initial conditions for orbits with n ≥slant 10 becomes practically impossible with a numerical precision of 16 decimal places. Nevertheless, even with a precision of 16 decimals, it is clear that in each sequence both the orbit’s initial angle φn and its period T n approach finite values in the asymptotic limit (n \\to ∞ ). Two of three sequences are overlapping in the sense that their initial angles ϕ occupy the same segment on the circle and their asymptotic values φ∞ are (very) close to each other. The actions of these orbits rise linearly with the index n that describes the orbit’s topology, which is in agreement with the Newtonian case. We show that this behaviour is consistent with the assumption of analyticity of the action as a function of period.

  4. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru.

    PubMed

    Evangelista, Julio; Cruz, Cristhopher; Guevara, Carolina; Astete, Helvio; Carey, Cristiam; Kochel, Tadeusz J; Morrison, Amy C; Williams, Maya; Halsey, Eric S; Forshey, Brett M

    2013-06-01

    We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.

  5. Improved localisation for 2-hydroxyglutarate detection at 3T using long-TE semi-LASER

    PubMed Central

    Berrington, Adam; Voets, Natalie L.; Plaha, Puneet; Larkin, Sarah J.; Mccullagh, James; Stacey, Richard; Yildirim, Muhammed; Schofield, Christopher J.; Jezzard, Peter; Cadoux-Hudson, Tom; Ansorge, Olaf; Emir, Uzay E.

    2016-01-01

    2-hydroxyglutarate (2-HG) has emerged as a biomarker of tumour cell IDH mutations that may enable the differential diagnosis of glioma patients. At 3 Tesla, detection of 2-HG with magnetic resonance spectroscopy is challenging because of metabolite signal overlap and a spectral pattern modulated by slice selection and chemical shift displacement. Using density matrix simulations and phantom experiments, an optimised semi-LASER scheme (TE = 110 ms) improves localisation of the 2-HG spin system considerably compared to an existing PRESS sequence. This results in a visible 2-HG peak in the in vivo spectra at 1.9 ppm in the majority of IDH mutated tumours. Detected concentrations of 2-HG were similar using both sequences, although the use of semi-LASER generated narrower confidence intervals. Signal overlap with glutamate and glutamine, as measured by pairwise fitting correlation was reduced. Lactate was readily detectable across glioma patients using the method presented here (mean CLRB: (10±2)%). Together with more robust 2-HG detection, long TE semi-LASER offers the potential to investigate tumour metabolism and stratify patients in vivo at 3T. PMID:27547821

  6. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia.

    PubMed

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W; Zimmermann, Bettina; Rockenbauer, Eszter; Hansen, Anders J; Parson, Walther; Morling, Niels

    2012-07-01

    The African mitochondrial (mt) phylogeny is coarsely resolved but the majority of population data generated so far is limited to the analysis of the first hypervariable segment (HVS-1) of the control region (CR). Therefore, this study aimed on the investigation of the entire CR of 190 unrelated Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi-dimensional scaling plot. Genetic proximity evidenced by clustering roughly reflected the relative geographic location of the populations. The sequences will be included in the EMPOP database ( www.empop.org ) under accession number EMP00397 upon publication (Parson and Dür Forensic Sci Int Genet 1:88-92, 2007).

  8. Structure of the N-terminal domain of human thioredoxin-interacting protein.

    PubMed

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Beckham, Simone; Wilce, Matthew; Waltham, Mark

    2013-03-01

    Thioredoxin-interacting protein (TXNIP) is one of the six known α-arrestins and has recently received considerable attention owing to its involvement in redox signalling and metabolism. Various stress stimuli such as high glucose, heat shock, UV, H2O2 and mechanical stress among others robustly induce the expression of TXNIP, resulting in the sequestration and inactivation of thioredoxin, which in turn leads to cellular oxidative stress. While TXNIP is the only α-arrestin known to bind thioredoxin, TXNIP and two other α-arrestins, Arrdc4 and Arrdc3, have been implicated in metabolism. Furthermore, owing to its roles in the pathologies of diabetes and cardiovascular disease, TXNIP is considered to be a promising drug target. Based on their amino-acid sequences, TXNIP and the other α-arrestins are remotely related to β-arrestins. Here, the crystal structure of the N-terminal domain of TXNIP is reported. It provides the first structural information on any of the α-arrestins and reveals that although TXNIP adopts a β-arrestin fold as predicted, it is structurally more similar to Vps26 proteins than to β-arrestins, while sharing below 15% pairwise sequence identity with either.

  9. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism.

    PubMed Central

    Depaulis, F; Brazier, L; Veuille, M

    1999-01-01

    The hitchhiking model of population genetics predicts that an allele favored by Darwinian selection can replace haplotypes from the same locus previously established at a neutral mutation-drift equilibrium. This process, known as "selective sweep," was studied by comparing molecular variation between the polymorphic In(2L)t inversion and the standard chromosome. Sequence variation was recorded at the Suppressor of Hairless (Su[H]) gene in an African population of Drosophila melanogaster. We found 47 nucleotide polymorphisms among 20 sequences of 1.2 kb. Neutrality tests were nonsignificant at the nucleotide level. However, these sites were strongly associated, because 290 out of 741 observed pairwise combinations between them were in significant linkage disequilibrium. We found only seven haplotypes, two occurring in the 9 In(2L)t chromosomes, and five in the 11 standard chromosomes, with no shared haplotype. Two haplotypes, one in each chromosome arrangement, made up two-thirds of the sample. This low haplotype diversity departed from neutrality in a haplotype test. This pattern supports a selective sweep hypothesis for the Su(H) chromosome region. PMID:10388820

  10. Template-Based Modeling of Protein-RNA Interactions.

    PubMed

    Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong

    2016-09-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.

  11. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints

    PubMed Central

    Glusman, Gustavo; Mauldin, Denise E.; Hood, Leroy E.; Robinson, Max

    2017-01-01

    We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into “genome fingerprints” via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics. PMID:29018478

  12. Molecular characterization of novel mucosotropic papillomaviruses from a Florida manatee (Trichechus manatus latirostris).

    PubMed

    2015-12-01

    We isolated two new manatee papillomavirus (PV) types, TmPV3 and TmPV4, from a Florida manatee (Trichechus manatus latirostris). Two PV types were previously isolated from this species. TmPV1 is widely dispersed amongst manatees and a close-to-root PV; not much is known about TmPV2. The genomes of TmPV3 and TmPV4 were 7622 and 7771 bp in size, respectively. Both PVs had a genomic organization characteristic of all PVs, with one non-coding region and seven ORFs, including the E7 ORF that is absent in other cetacean PVs. Although these PVs were isolated from separate genital lesions of the same manatee, an enlarged E2/E4 ORF was found only in the TmPV4 genome. The full genome and L1 sequence similarities between TmPV3 and TmPV4 were 63.2 and 70.3 %, respectively. These genomes shared only 49.1 and 50.2 % similarity with TmPV1. The pairwise alignment of L1 nucleotide sequences indicated that the two new PVs nested in a monophyletic group of the genus Rhopapillomavirus, together with the cutaneotropic TmPV1 and TmPV2.

  13. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  14. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-07-01

    Two strains of Gram-negative, methylotrophic bacteria, isolated because of their abilities to promote plant growth, were subjected to a polyphasic taxonomic study. The isolates were strictly aerobic, motile, pink-pigmented, facultatively methylotrophic, non-spore-forming rods. The chemotaxonomic characteristics of the isolates included the presence of C18 : 1ω7c as the major cellular fatty acid. The DNA G+C contents of strains BL36(T) and BL47(T) were 69.4 and 69.8 mol%, respectively. 16S rRNA gene sequence analysis of strains BL36(T) and BL47(T) placed them under the genus Methylobacterium, with the pairwise sequence similarity between them and the type strains of closely related species ranging from 97.2 to 99.0%. On the basis of their phenotypic and phylogenetic distinctiveness and the results of DNA-DNA hybridization analysis, the isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium pseudosasicola sp. nov. (type strain BL36(T) = NBRC 105203(T) = ICMP 17621(T)) and Methylobacterium phyllostachyos sp. nov. (type strain BL47(T) = NBRC 105206(T) = ICMP 17619(T)) are proposed. © 2014 IUMS.

  15. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study.

    PubMed

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias; Salanti, Georgia

    2018-02-28

    To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) ("living" network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study

    PubMed Central

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias

    2018-01-01

    Abstract Objective To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) (“living” network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Design Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Data sources Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Eligibility criteria for study selection Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Outcomes and analysis Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. Results 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. Conclusions In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. PMID:29490922

  17. Integrative taxonomy of Metrichia Ross (Trichoptera: Hydroptilidae: Ochrotrichiinae) microcaddisflies from Brazil: descriptions of twenty new species

    PubMed Central

    Takiya, Daniela M.; Nessimian, Jorge L.

    2016-01-01

    Metrichia is assigned to the Ochrotrichiinae, a group of almost exclusively Neotropical microcaddisflies. Metrichia comprises over 100 described species and, despite its diversity, only one species has been described from Brazil so far. In this paper, we provide descriptions for 20 new species from 8 Brazilian states: M. acuminata sp. nov., M. azul sp. nov., M. bonita sp. nov., M. bracui sp. nov., M. caraca sp. nov., M. circuliforme sp. nov., M. curta sp. nov., M. farofa sp. nov., M. forceps sp. nov., M. formosinha sp. nov., M. goiana sp. nov., M. itabaiana sp. nov., M. longissima sp. nov., M. peluda sp. nov., M. rafaeli sp. nov., M. simples sp. nov., M. talhada sp. nov., M. tere sp. nov., M. ubajara sp. nov., and M. vulgaris sp. nov. DNA barcode sequences (577 bp of the mitochondrial gene COI) were generated for 13 of the new species and two previously known species of Metrichia resulting in 64 sequences. In addition, COI sequences were obtained for other genera of Ochrotrichiinae (Angrisanoia, Nothotrichia, Ochrotrichia, Ragatrichia, and Rhyacopsyche). DNA sequences and morphological data were integrated to evaluate species delimitations. K2P pairwise distances were calculated to generate a neighbor-joining tree. COI sequences also were submitted to ABGD and GMYC methods to assess ‘potential species’ delimitation. Analyses showed a conspicuous barcoding gap among Metrichia sequences (highest intraspecific divergence: 4.8%; lowest interspecific divergence: 12.6%). Molecular analyses also allowed the association of larvae and adults of Metrichia bonita sp. nov. from Mato Grosso do Sul, representing the first record of microcaddisfly larvae occurring in calcareous tufa (or travertine). ABGD results agreed with the morphological delimitation of Metrichia species, while GMYC estimated a slightly higher number of species, suggesting the division of two morphological species, each one into two potential species. Because this could be due to unbalanced sampling and the lack of morphological diagnostic characters, we have maintained these two species as undivided. PMID:27169001

  18. TCW: Transcriptome Computational Workbench

    PubMed Central

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R.

    2013-01-01

    Background The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. Methodology The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. Conclusion It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw. PMID:23874959

  19. TCW: transcriptome computational workbench.

    PubMed

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  20. Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

    PubMed Central

    Nie, Yuanyang; Zhou, Zhiwei; Guan, Jiuqiang; Xia, Baixue; Luo, Xiaolin; Yang, Yang; Fu, Yu; Sun, Qun

    2017-01-01

    Objective To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion Yaks’ age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks’ growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks. PMID:28183172

  1. Comparative Analysis of Genome Sequences Covering the Seven Cronobacter Species

    PubMed Central

    Cummings, Craig A.; Shih, Rita; Degoricija, Lovorka; Rico, Alain; Brzoska, Pius; Hamby, Stephen E.; Masood, Naqash; Hariri, Sumyya; Sonbol, Hana; Chuzhanova, Nadia; McClelland, Michael; Furtado, Manohar R.; Forsythe, Stephen J.

    2012-01-01

    Background Species of Cronobacter are widespread in the environment and are occasional food-borne pathogens associated with serious neonatal diseases, including bacteraemia, meningitis, and necrotising enterocolitis. The genus is composed of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. dublinensis, C. muytjensii, C. universalis, and C. condimenti. Clinical cases are associated with three species, C. malonaticus, C. turicensis and, in particular, with C. sakazakii multilocus sequence type 4. Thus, it is plausible that virulence determinants have evolved in certain lineages. Methodology/Principal Findings We generated high quality sequence drafts for eleven Cronobacter genomes representing the seven Cronobacter species, including an ST4 strain of C. sakazakii. Comparative analysis of these genomes together with the two publicly available genomes revealed Cronobacter has over 6,000 genes in one or more strains and over 2,000 genes shared by all Cronobacter. Considerable variation in the presence of traits such as type six secretion systems, metal resistance (tellurite, copper and silver), and adhesins were found. C. sakazakii is unique in the Cronobacter genus in encoding genes enabling the utilization of exogenous sialic acid which may have clinical significance. The C. sakazakii ST4 strain 701 contained additional genes as compared to other C. sakazakii but none of them were known specific virulence-related genes. Conclusions/Significance Genome comparison revealed that pair-wise DNA sequence identity varies between 89 and 97% in the seven Cronobacter species, and also suggested various degrees of divergence. Sets of universal core genes and accessory genes unique to each strain were identified. These gene sequences can be used for designing genus/species specific detection assays. Genes encoding adhesins, T6SS, and metal resistance genes as well as prophages are found in only subsets of genomes and have contributed considerably to the variation of genomic content. Differences in gene content likely contribute to differences in the clinical and environmental distribution of species and sequence types. PMID:23166675

  2. Partial sequencing analysis of the NS5B region confirmed the predominance of hepatitis C virus genotype 1 infection in Jeddah, Saudi Arabia.

    PubMed

    El Hadad, Sahar; Al-Hamdan, Hesa; Linjawi, Sabah

    2017-01-01

    Chronic hepatitis C virus (HCV) infection and its progression are major health problems that many countries including Saudi Arabia are facing. Determination of HCV genotypes and subgenotypes is critical for epidemiological and clinical analysis and aids in the determination of the ideal treatment strategy that needs to be followed and the expected therapy response. Although HCV infection has been identified as the second most predominant type of hepatitis in Saudi Arabia, little is known about the molecular epidemiology and genetic variability of HCV circulating in the Jeddah province of Saudi Arabia. The aim of this study was to determine the dominance of various HCV genotypes and subgenotypes circulating in Jeddah using partial sequencing of the NS5B region. To the best of our knowledge, this is the first study of its kind in Saudi Arabia. To characterize HCV genotypes and subgenotypes, serum samples from 56 patients with chronic HCV infection were collected and subjected to partial NS5B gene amplification and sequence analysis. Phylogenetic analysis of the NS5B partial sequences revealed that HCV/1 was the predominant genotype (73%), followed by HCV/4 (24.49%) and HCV/3 (2.04%). Moreover, pairwise analysis also confirmed these results based on the average specific nucleotide distance identity: ±0.112, ±0.112, and ±0.179 for HCV/1, HCV/4, and HCV/3, respectively, without any interference between genotypes. Notably, the phylogenetic tree of the HCV/1 subgenotypes revealed that all the isolates (100%) from the present study belonged to the HCV/1a subgenotype. Our findings also revealed similarities in the nucleotide sequences between HCV circulating in Saudi Arabia and those circulating in countries such as Morocco, Egypt, Canada, India, Pakistan, and France. These results indicated that determination of HCV genotypes and subgenotypes based on partial sequence analysis of the NS5B region is accurate and reliable for HCV subtype determination.

  3. Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska

    USGS Publications Warehouse

    Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.

    2000-01-01

    Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This information could be used to determine the source of an IHN outbreak and to facilitate decisions in fisheries management of Alaskan salmonid stocks.

  4. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    PubMed

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  5. APOLLO: a quality assessment service for single and multiple protein models.

    PubMed

    Wang, Zheng; Eickholt, Jesse; Cheng, Jianlin

    2011-06-15

    We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 Å with the actual distances to native structure. http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.

  6. Estimating Seven Coefficients of Pairwise Relatedness Using Population-Genomic Data

    PubMed Central

    Ackerman, Matthew S.; Johri, Parul; Spitze, Ken; Xu, Sen; Doak, Thomas G.; Young, Kimberly; Lynch, Michael

    2017-01-01

    Population structure can be described by genotypic-correlation coefficients between groups of individuals, the most basic of which are the pairwise relatedness coefficients between any two individuals. There are nine pairwise relatedness coefficients in the most general model, and we show that these can be reduced to seven coefficients for biallelic loci. Although all nine coefficients can be estimated from pedigrees, six coefficients have been beyond empirical reach. We provide a numerical optimization procedure that estimates all seven reduced coefficients from population-genomic data. Simulations show that the procedure is nearly unbiased, even at 3× coverage, and errors in five of the seven coefficients are statistically uncorrelated. The remaining two coefficients have a negative correlation of errors, but their sum provides an unbiased assessment of the overall correlation of heterozygosity between two individuals. Application of these new methods to four populations of the freshwater crustacean Daphnia pulex reveal the occurrence of half siblings in our samples, as well as a number of identical individuals that are likely obligately asexual clone mates. Statistically significant negative estimates of these pairwise relatedness coefficients, including inbreeding coefficients that were typically negative, underscore the difficulties that arise when interpreting genotypic correlations as estimations of the probability that alleles are identical by descent. PMID:28341647

  7. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting

    PubMed Central

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-01-01

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes. PMID:29453930

  8. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardis, F. De; Aiola, S.; Vavagiakis, E. M.

    Here, we present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariancemore » matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  9. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardis, F. De; Vavagiakis, E.M.; Niemack, M.D.

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrixmore » of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  10. Detection of the Pairwise Kinematic Sunyaev-Zel'dovich Effect with BOSS DR11 and the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; hide

    2017-01-01

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.

  11. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; Coughlin, K.; Datta, R.; Devlin, M.; Dunkley, J.; Dunner, R.; Ferraro, S.; Fox, A.; Gallardo, P. A.; Halpern, M.; Hand, N.; Hasselfield, M.; Henderson, S. W.; Hill, J. C.; Hilton, G. C.; Hilton, M.; Hincks, A. D.; Hlozek, R.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A.; Li, D.; Louis, T.; Lungu, M.; Madhavacheril, M. S.; Maurin, L.; McMahon, J.; Moodley, K.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J. P.; Page, L. A.; Partridge, B.; Schaan, E.; Schmitt, B. L.; Sehgal, N.; Sievers, J.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R. J.; van Engelen, A.; Van Lanen, J.; Wollack, E. J.

    2017-03-01

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.

  12. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting.

    PubMed

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-02-17

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes.

  13. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE PAGES

    Bernardis, F. De; Aiola, S.; Vavagiakis, E. M.; ...

    2017-03-07

    Here, we present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariancemore » matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  14. Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits.

    PubMed

    Dessimoz, Christophe; Boeckmann, Brigitte; Roth, Alexander C J; Gonnet, Gaston H

    2006-01-01

    Correct orthology assignment is a critical prerequisite of numerous comparative genomics procedures, such as function prediction, construction of phylogenetic species trees and genome rearrangement analysis. We present an algorithm for the detection of non-orthologs that arise by mistake in current orthology classification methods based on genome-specific best hits, such as the COGs database. The algorithm works with pairwise distance estimates, rather than computationally expensive and error-prone tree-building methods. The accuracy of the algorithm is evaluated through verification of the distribution of predicted cases, case-by-case phylogenetic analysis and comparisons with predictions from other projects using independent methods. Our results show that a very significant fraction of the COG groups include non-orthologs: using conservative parameters, the algorithm detects non-orthology in a third of all COG groups. Consequently, sequence analysis sensitive to correct orthology assignments will greatly benefit from these findings.

  15. Genome-wide assessment of differential translations with ribosome profiling data.

    PubMed

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-04-04

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations.

  16. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines

    NASA Astrophysics Data System (ADS)

    Sakaue, T.; Kapral, R.; Mikhailov, A. S.

    2010-06-01

    Molecular machines execute nearly regular cyclic conformational changes as a result of ligand binding and product release. This cyclic conformational dynamics is generally non-reciprocal so that under time reversal a different sequence of machine conformations is visited. Since such changes occur in a solvent, coupling to solvent hydrodynamic modes will generally result in self-propulsion of the molecular machine. These effects are investigated for a class of coarse grained models of protein machines consisting of a set of beads interacting through pair-wise additive potentials. Hydrodynamic effects are incorporated through a configuration-dependent mobility tensor, and expressions for the propulsion linear and angular velocities, as well as the stall force, are obtained. In the limit where conformational changes are small so that linear response theory is applicable, it is shown that propulsion is exponentially small; thus, propulsion is nonlinear phenomenon. The results are illustrated by computations on a simple model molecular machine.

  17. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.

    PubMed

    Darré, Leonardo; Machado, Matías Rodrigo; Brandner, Astrid Febe; González, Humberto Carlos; Ferreira, Sebastián; Pantano, Sergio

    2015-02-10

    Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.

  18. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    PubMed

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  19. Buried chloride stereochemistry in the Protein Data Bank

    PubMed Central

    2014-01-01

    Background Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. Results The analysis of a non-redundant set (pairwise sequence identity?

  20. Buried chloride stereochemistry in the Protein Data Bank.

    PubMed

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity < 30%) of 1739 high resolution (<2 Å) crystal structures that contain at least one chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  1. Iterative non-sequential protein structural alignment.

    PubMed

    Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher

    2009-06-01

    Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.

  2. Pairwise amino acid secondary structural propensities

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  3. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  4. Darwin v. 2.0: an interpreted computer language for the biosciences.

    PubMed

    Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L

    2000-02-01

    We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch

  5. Mitochondrial diversity and phylogeography of Acrossocheilus paradoxus (Teleostei: Cyprinidae).

    PubMed

    Ju, Yu-Min; Hsu, Kui-Ching; Yang, Jin-Quan; Wu, Jui-Hsien; Li, Shan; Wang, Wei-Kuang; Ding, Fang; Li, Jun; Lin, Hung-Du

    2018-01-31

    Mitochondrial DNA cytochrome b sequences (1141 bp) in 229 specimens of Acrossocheilus paradoxus from 26 populations were identified as four lineages. The pairwise genetic distances among these four lineages ranged from 1.57 to 2.37% (mean= 2.00%). Statistical dispersal-vicariance analysis suggests that the ancestral populations were distributed over mainland China and Northern and Western Taiwan. Approximate Bayesian computation approaches show that the three lineages in Taiwan originated from the lineage in mainland China through three colonization routes during two glaciations. The results indicated that during the glaciation and inter-glacial periods, the Taiwan Strait was exposed and sank, which contributed to the dispersion and differentiation of populations. Furthermore, the populations of A. paradoxus colonized Taiwan through a land bridge to the north of the Formosa Bank, and the Miaoli Plateau in Taiwan was an important barrier that limited gene exchange between populations on both the sides.

  6. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.

    PubMed

    Yang, Chung-Han; Shih, Cheng-Ting; Chen, Kun-Tze; Lee, Po-Han; Tsai, Ping-Han; Lin, Jian-Cheng; Yen, Ching-Yu; Lin, Tiao-Yin; Lu, Chin Lung

    2016-07-08

    Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Candida phyllophila sp. nov. and Candida vitiphila sp. nov., two novel yeast species from grape phylloplane in Thailand.

    PubMed

    Limtong, Savitree; Kaewwichian, Rungluk

    2013-01-01

    Three strains (K59(T), K60 and K70 (T)) representing two novel yeast species were isolated from the external surface of leaves of different wine grape (Vitis vinifera) plants, which were collected from the Kanchanaburi Research Station (N14°07'15.1″ E099°19'05.6″), Wang Dong Sub-district, Mueang District, Kanchanaburi Province, Thailand, by an enrichment technique. The sequences of the D1/D2 domain of the large subunit (LSU) rRNA gene of two strains (K59(T) and K60) were identical and differed from that of strain K70(T). In terms of pairwise sequence similarity of the D1/D2 domain, the closest species to the three strains was Candida asparagi but with 2.3% nucleotide substitutions for strains K59(T) and K60, and 2.1% nucleotide substitutions for strain K70(T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene, the three strains were assigned to be two novel Candida species. Two strains (K59(T) and K60) were assigned as Candida phyllophila sp. nov. (type strain K59(T)=BCC 42662(T)=NBRC 107776(T)=CBS 12671(T)). Candida vitiphila sp. nov. is proposed for strain K70(T) (=BCC 42663(T)=NBRC 107777(T)=CBS 12672(T)).

  8. Genetic diversity of Pinus nigra Arn. populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles.

    PubMed

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  9. Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles †

    PubMed Central

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E.; Tiscar, Pedro A.; Viñegla, Benjamin; Linares, Juan C.; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra. PMID:22754321

  10. Mariniradius saccharolyticus gen. nov., sp. nov., a member of the family Cyclobacteriaceae isolated from marine aquaculture pond water, and emended descriptions of the genus Aquiflexum and Aquiflexum balticum.

    PubMed

    Bhumika, V; Srinivas, T N R; Ravinder, K; Kumar, P Anil

    2013-06-01

    A novel marine, Gram-stain-negative, oxidase- and catalase- positive, rod-shaped bacterium, designated strain AK6(T), was isolated from marine aquaculture pond water collected in Andhra Pradesh, India. The fatty acids were dominated by iso-C15:0, iso-C17:1ω9c, iso-C15:1 G, iso-C17:0 3-OH and anteiso-C15:0. Strain AK6(T) contained MK-7 as the sole respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and seven unidentified lipids as polar lipids. The DNA G+C content of strain AK6(T) was 45.6 mol%. Phylogenetic analysis showed that strain AK6(T) formed a distinct branch within the family Cyclobacteriaceae and clustered with Aquiflexum balticum DSM 16537(T) and other members of the family Cyclobacteriaceae. 16S rRNA gene sequence analysis confirmed that Aquiflexum balticum DSM 16537(T) was the nearest neighbour, with pairwise sequence similarity of 90.1%, while sequence similarity with the other members of the family was <88.5%. Based on differentiating phenotypic characteristics and phylogenetic inference, strain AK6(T) is proposed as a representative of a new genus and species of the family Cyclobacteriaceae, as Mariniradius saccharolyticus gen. nov., sp. nov. The type strain of Mariniradius saccharolyticus is AK6(T) (=MTCC 11279(T)=JCM 17389(T)). Emended descriptions of the genus Aquiflexum and Aquiflexum balticum are also proposed.

  11. Genomic analysis of the Chinese genotype 1F rubella virus that disappeared after 2002 in China.

    PubMed

    Zhu, Zhen; Chen, Min-Hsin; Abernathy, Emily; Zhou, Shujie; Wang, Changyin; Icenogle, Joseph; Xu, Wenbo

    2014-12-01

    Genotype 1F was likely localized geographically to China as it has not been reported elsewhere. In this study, whole genome sequences of two rubella 1F virus isolates were completed. Both viruses contained 9,761 nt with a single nucleotide deletion in the intergenic region, compared to the NCBI rubella reference sequence (NC 001545). No evidence of recombination was found between 1F and other rubella viruses. The genetic distance between 1F viruses and 10 other rubella virus genotypes (1a, 1B, 1C, 1D, 1E, 1G, 1J 2A, 2B, and 2C) ranged from 3.9% to 8.6% by pairwise comparison. A region known to be hypervariable in other rubella genotypes was also the most variable region in the 1F genomes. Comparisons to all available rubella virus sequences from GenBank identified 22 nucleotide variations exclusively in 1F viruses. Among these unique variations, C9306U is located within the recommended molecular window for rubella virus genotyping assignment, could be useful to confirm 1F viruses. Using the Bayesian Markov Chain Monte Carlo (MCMC) method, the time of the most recent common ancestor for the genotype 1F was estimated between 1976 and 1995. Recent rubella molecular surveillance suggests that this indigenous strain may have circulated for less than three decades, as it has not been detected since 2002. © 2014 Wiley Periodicals, Inc.

  12. Molecular and morphological characterization of the tapeworm Taenia hydatigena (Pallas, 1766) in sheep from Iran.

    PubMed

    Rostami, S; Salavati, R; Beech, R N; Babaei, Z; Sharbatkhori, M; Baneshi, M R; Hajialilo, E; Shad, H; Harandi, M F

    2015-03-01

    Although Taenia hydatigena is one of the most prevalent taeniid species of livestock, very little molecular genetic information exists for this parasite. Up to 100 sheep isolates of T. hydatigena were collected from 19 abattoirs located in the provinces of Tehran, Alborz and Kerman. A calibrated microscope was used to measure the larval rostellar hook lengths. Following DNA extraction, fragments of cytochrome c oxidase 1 (CO1) and 12S rRNA genes were amplified by the polymerase chain reaction method and the amplicons were subjected to sequencing. The mean total length of large and small hooks was 203.4 μm and 135.9 μm, respectively. Forty CO1 and 39 12S rRNA sequence haplotypes were obtained in the study. The levels of pairwise nucleotide variation between individual haplotypes of CO1 and 12S rRNA genes were determined to be between 0.3-3.4% and 0.2-2.1%, respectively. The overall nucleotide variation among all the CO1 haplotypes was 9.7%, and for all the 12S rRNA haplotypes it was 10.1%. A significant difference was observed between rostellar hook morphometry and both CO1 and 12S rRNA sequence variability. A significantly high level of genetic variation was observed in the present study. The results showed that the 12S rRNA gene is more variable than CO1.

  13. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  14. The complete genome of klassevirus – a novel picornavirus in pediatric stool

    PubMed Central

    Greninger, Alexander L; Runckel, Charles; Chiu, Charles Y; Haggerty, Thomas; Parsonnet, Julie; Ganem, Donald; DeRisi, Joseph L

    2009-01-01

    Background Diarrhea kills 2 million children worldwide each year, yet an etiological agent is not found in approximately 30–50% of cases. Picornaviral genera such as enterovirus, kobuvirus, cosavirus, parechovirus, hepatovirus, teschovirus, and cardiovirus have all been found in human and animal diarrhea. Modern technologies, especially deep sequencing, allow rapid, high-throughput screening of clinical samples such as stool for new infectious agents associated with human disease. Results A pool of 141 pediatric gastroenteritis samples that were previously found to be negative for known diarrheal viruses was subjected to pyrosequencing. From a total of 937,935 sequence reads, a collection of 849 reads distantly related to Aichi virus were assembled and found to comprise 75% of a novel picornavirus genome. The complete genome was subsequently cloned and found to share 52.3% nucleotide pairwise identity and 38.9% amino acid identity to Aichi virus. The low level of sequence identity suggests a novel picornavirus genus which we have designated klassevirus. Blinded screening of 751 stool specimens from both symptomatic and asymptomatic individuals revealed a second positive case of klassevirus infection, which was subsequently found to be from the index case's 11-month old twin. Conclusion We report the discovery of human klassevirus 1, a member of a novel picornavirus genus, in stool from two infants from Northern California. Further characterization and epidemiological studies will be required to establish whether klasseviruses are significant causes of human infection. PMID:19538752

  15. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments

    PubMed Central

    Miller, Rachel A.; Beno, Sarah M.; Kent, David J.; Carroll, Laura M.; Martin, Nicole H.; Boor, Kathryn J.

    2016-01-01

    A facultatively anaerobic, spore-forming Bacillus strain, FSL W8-0169T, collected from raw milk stored in a silo at a dairy powder processing plant in the north-eastern USA was initially identified as a Bacillus cereus group species based on a partial sequence of the rpoB gene and 16S rRNA gene sequence. Analysis of core genome single nucleotide polymorphisms clustered this strain separately from known B. cereus group species. Pairwise average nucleotide identity blast values obtained for FSL W8-0169T compared to the type strains of existing B. cereus group species were <95 % and predicted DNA–DNA hybridization values were <70 %, suggesting that this strain represents a novel B. cereus group species. We characterized 10 additional strains with the same or closely related rpoB allelic type, by whole genome sequencing and phenotypic analyses. Phenotypic characterization identified a higher content of iso-C16 : 0 fatty acid and the combined inability to ferment sucrose or to hydrolyse arginine as the key characteristics differentiating FSL W8-0169T from other B. cereus group species. FSL W8-0169T is psychrotolerant, produces haemolysin BL and non-haemolytic enterotoxin, and is cytotoxic in a HeLa cell model. The name Bacillus wiedmannii sp. nov. is proposed for the novel species represented by the type strain FSL W8-0169T (=DSM 102050T=LMG 29269T). PMID:27520992

  16. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    PubMed

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  17. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.

    PubMed

    Nwani, Christopher D; Becker, Sven; Braid, Heather E; Ude, Emmanuel F; Okogwu, Okechukwu I; Hanner, Robert

    2011-10-01

    Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI) as a target gene, is an efficient method for standardized species-level identification for biodiversity assessment and conservation, pending the establishment of reference sequence libraries. In this study, fishes were collected from three rivers in southeastern Nigeria, identified morphologically, and imaged digitally. DNA was extracted, PCR-amplified, and the standard barcode region was bidirectionally sequenced for 363 individuals belonging to 70 species in 38 genera. All specimen provenance data and associated sequence information were recorded in the barcode of life data systems (BOLD; www.barcodinglife.org ). Analytical tools on BOLD were used to assess the performance of barcoding to identify species. Using neighbor-joining distance comparison, the average genetic distance was 60-fold higher between species than within species, as pairwise genetic distance estimates averaged 10.29% among congeners and only 0.17% among conspecifics. Despite low levels of divergence within species, we observed river system-specific haplotype partitioning within eight species (11.4% of all species). Our preliminary results suggest that DNA barcoding is very effective for species identification of Nigerian freshwater fishes.

  18. Genetic variability and haplotypes of Echinococcus isolates from Tunisia.

    PubMed

    Boufana, Belgees; Lahmar, Samia; Rebaï, Waël; Ben Safta, Zoubeir; Jebabli, Leïla; Ammar, Adel; Kachti, Mahmoud; Aouadi, Soufia; Craig, Philip S

    2014-11-01

    The species/genotypes of Echinococcus infecting a range of intermediate, canid and human hosts were examined as well as the intraspecific variation and population structure of Echinococcus granulosus sensu lato (s.l.) within these hosts. A total of 174 Echinococcus isolates from humans and ungulate intermediate hosts and adult tapeworms from dogs and jackals were used. Genomic DNA was used to amplify a fragment within a mitochondrial gene and a nuclear gene, coding for cytochrome c oxidase subunit 1 (cox1; 828 bp) and elongation factor 1-alpha (ef1a; 656 bp), respectively. E. granulosus sensu stricto was identified from all host species examined, E. canadensis (G6) in a camel and, for the first time, fertile cysts of E. granulosus (s.s.) and E. equinus in equids (donkeys) and E. granulosus (s.s.) from wild boars and goats. Considerable genetic variation was seen only for the cox1 sequences of E. granulosus (s.s.). The pairwise fixation index (Fst) for cox1 E. granulosus (s.s.) sequences from donkeys was high and was statistically significant compared with that of E. granulosus populations from other intermediate hosts. A single haplotype (EqTu01) was identified for the cox1 nucleotide sequences of E. equinus. The role of donkeys in the epidemiology of echinococcosis in Tunisia requires further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Population genetic analysis of Enterocytozoon bieneusi in humans.

    PubMed

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  20. Functional connectivity analysis in resting state fMRI with echo-state networks and non-metric clustering for network structure recovery

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; DSouza, Adora M.; Abidin, Anas Z.; Wang, Xixi; Hobbs, Susan K.; Nagarajan, Mahesh B.

    2015-03-01

    Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between different pixel time series within the brain to characterize network activity and (2) recovering network components from the affinity matrix with non-metric clustering. Here, ESNs are used to evaluate pair-wise cross-estimation performance between pixel time series to create the affinity matrix, which is subsequently subject to non-metric clustering with the Louvain method. For comparison, the ground truth of the motor cortex network structure is established with a task-based fMRI sequence. Overlap between the primary motor cortex network recovered with our model free MCA approach and the ground truth was measured with the Dice coefficient. Our results show that network recovery with our proposed MCA approach is in close agreement with the ground truth. Such network recovery is achieved without requiring low-pass filtering of the time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the underlying functionally connected networks in the brain on resting state fMRI.

Top