Efficiency analysis of diffusion on T-fractals in the sense of random walks.
Peng, Junhao; Xu, Guoai
2014-04-07
Efficiently controlling the diffusion process is crucial in the study of diffusion problem in complex systems. In the sense of random walks with a single trap, mean trapping time (MTT) and mean diffusing time (MDT) are good measures of trapping efficiency and diffusion efficiency, respectively. They both vary with the location of the node. In this paper, we analyze the effects of node's location on trapping efficiency and diffusion efficiency of T-fractals measured by MTT and MDT. First, we provide methods to calculate the MTT for any target node and the MDT for any source node of T-fractals. The methods can also be used to calculate the mean first-passage time between any pair of nodes. Then, using the MTT and the MDT as the measure of trapping efficiency and diffusion efficiency, respectively, we compare the trapping efficiency and diffusion efficiency among all nodes of T-fractal and find the best (or worst) trapping sites and the best (or worst) diffusing sites. Our results show that the hub node of T-fractal is the best trapping site, but it is also the worst diffusing site; and that the three boundary nodes are the worst trapping sites, but they are also the best diffusing sites. Comparing the maximum of MTT and MDT with their minimums, we find that the maximum of MTT is almost 6 times of the minimum of MTT and the maximum of MDT is almost equal to the minimum for MDT. Thus, the location of target node has large effect on the trapping efficiency, but the location of source node almost has no effect on diffusion efficiency. We also simulate random walks on T-fractals, whose results are consistent with the derived results.
Bjornerud, Atle; Sorensen, A Gregory; Mouridsen, Kim; Emblem, Kyrre E
2011-01-01
We present a novel contrast agent (CA) extravasation-correction method based on analysis of the tissue residue function for assessment of multiple hemodynamic parameters. The method enables semiquantitative determination of the transfer constant and can be used to distinguish between T1- and T2*-dominant extravasation effects, while being insensitive to variations in tissue mean transit time (MTT). Results in 101 patients with confirmed glioma suggest that leakage-corrected absolute cerebral blood volume (CBV) values obtained with the proposed method provide improved overall survival prediction compared with normalized CBV values combined with an established leakage-correction method. Using a standard gradient-echo echo-planar imaging sequence, ∼60% and 10% of tumors with detectable CA extravasation mainly exhibited T1- and T2*-dominant leakage effects, respectively. The remaining 30% of leaky tumors had mixed T1- and T2*-dominant effects. Using an MTT-sensitive correction method, our results show that CBV is underestimated when tumor MTT is significantly longer than MTT in the reference tissue. Furthermore, results from our simulations suggest that the relative contribution of T1- versus T2*-dominant extravasation effects is strongly dependent on the effective transverse relaxivity in the extravascular space and may thus be a potential marker for cellular integrity and tissue structure. PMID:21505483
Fluorescein Diacetate Microplate Assay in Cell Viability Detection.
Chen, Xi; Yang, Xiu-Ying; Fang, Lian-Hua; DU, Guan-Hua
2016-12-20
Objective To investigate the application of the fluorescein diacetate (FDA) microplate assay in cell viability detection. Methods Cells were seeded in a 96-well culture plate until detection. After incubated with FDA,the plate was detected by fluorescence microplate analyzer. The effects of FDA incubation duration,concentration,and other factors on the assay's accuracy and stability were assessed. We also compared the results of FDA with methyl thiazolyl(MTT) in terms of cell numbers and H 2 O 2 injury. Results Within 0-30 minutes,the fluorescence-cell number coefficient of FDA assay increased with duration and reached 0.99 in 27-30 minutes. The optimum concentration of final FDA in this study was 10-30 μg/ml. On cell viability detection,the result of FDA method was equivalent to MTT method. As to H 2 O 2 injury assay,the sensitivity of FDA method was superior to MTT on the higher concentration H 2 O 2 treatment due to a relative shorter duration for detection. Conclusion As a stable and reliable method,FDA is feasible for cell variability detection under varied conditions.
Onul, Abdullah; Colvard, Michael D; Paradise, William A; Elseth, Kim M; Vesper, Benjamin J; Gouvas, Eftychia; Deliu, Zane; Garcia, Kelly D; Pestle, William J; Radosevich, James A
2012-09-01
Electrocautery and directed energy devices (DEDs) such as lasers, which are used in surgery, result in tissue damage that cannot be readily detected by traditional histological methods, such as hematoxylin and eosin staining. Alternative staining methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to stain live tissue, have been reported. Despite providing superior detection of damaged tissue relative to the hematoxylin and eosin (H&E) method, the MTT method possesses a number of drawbacks, most notably that it must be carried out on live tissue samples. Herein, we report the development of a novel staining method, "antigen destruction immunohistochemistry" (ADI), which can be carried out on paraffin-embedded tissue. The ADI method takes advantage of epitope loss to define the area of tissue damage and provides many of the benefits of live tissue MTT staining without the drawbacks inherent to that method. In addition, the authors provide data to support the use of antibodies directed at a number of gene products for use in animal tissue for which there are no species-specific antibodies commercially available, as well as an example of a species-specific direct antibody. Data are provided that support the use of this method in many tissue models, as well as evidence that ADI is comparable to the live tissue MTT method.
Onul, Abdullah; Colvard, Michael D.; Paradise, William A.; Elseth, Kim M.; Vesper, Benjamin J.; Gouvas, Eftychia; Deliu, Zane; Garcia, Kelly D.; Pestle, William J.
2012-01-01
Electrocautery and directed energy devices (DEDs) such as lasers, which are used in surgery, result in tissue damage that cannot be readily detected by traditional histological methods, such as hematoxylin and eosin staining. Alternative staining methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to stain live tissue, have been reported. Despite providing superior detection of damaged tissue relative to the hematoxylin and eosin (H&E) method, the MTT method possesses a number of drawbacks, most notably that it must be carried out on live tissue samples. Herein, we report the development of a novel staining method, “antigen destruction immunohistochemistry” (ADI), which can be carried out on paraffin-embedded tissue. The ADI method takes advantage of epitope loss to define the area of tissue damage and provides many of the benefits of live tissue MTT staining without the drawbacks inherent to that method. In addition, the authors provide data to support the use of antibodies directed at a number of gene products for use in animal tissue for which there are no species-specific antibodies commercially available, as well as an example of a species-specific direct antibody. Data are provided that support the use of this method in many tissue models, as well as evidence that ADI is comparable to the live tissue MTT method. PMID:22723525
Zorn-Kruppa, Michaela; Houdek, Pia; Wladykowski, Ewa; Engelke, Maria; Bartok, Melinda; Mewes, Karsten R.; Moll, Ingrid; Brandner, Johanna M.
2014-01-01
The depth of injury (DOI) is a mechanistic correlate to the ocular irritation response. Attempts to quantitatively determine the DOI in alternative tests have been limited to ex vivo animal eyes by fluorescent staining for biomarkers of cell death and viability in histological cross sections. It was the purpose of this study to assess whether DOI could also be measured by means of cell viability detected by the MTT assay using 3-dimensional (3D) reconstructed models of cornea and conjunctiva. The formazan-free area of metabolically inactive cells in the tissue after topical substance application is used as the visible correlate of the DOI. Areas of metabolically active or inactive cells are quantitatively analyzed on cryosection images with ImageJ software analysis tools. By incorporating the total tissue thickness, the relative MTT-DOI (rMTT-DOI) was calculated. Using the rMTT-DOI and human reconstructed cornea equivalents, we developed a prediction model based on suitable viability cut-off values. We tested 25 chemicals that cover the whole range of eye irritation potential based on the globally harmonized system of classification and labelling of chemicals (GHS). Principally, the MTT-DOI test method allows distinguishing between the cytotoxic effects of the different chemicals in accordance with all 3 GHS categories for eye irritation. Although the prediction model is slightly over-predictive with respect to non-irritants, it promises to be highly valuable to discriminate between severe irritants (Cat. 1), and mild to moderate irritants (Cat. 2). We also tested 3D conjunctiva models with the aim to specifically address conjunctiva-damaging substances. Using the MTT-DOI method in this model delivers comparable results as the cornea model, but does not add additional information. However, the MTT-DOI method using reconstructed cornea models already provided good predictability that was superior to the already existing established in vitro/ex vivo methods. PMID:25494045
Feng, Li; Zhang, Shengtao; Qiang, Yujie; Xu, Yue; Guo, Lei; Madkour, Loutfy H; Chen, Shijin
2018-06-19
The anticorrosion effect of thiazolyl blue (MTT) for copper in 3% NaCl at 298 K was researched by electrochemical methods, scanning electron-microscopy (SEM), and atomic force microscopy (AFM). The results reveal that MTT can protect copper efficiently, with a maximum efficiency of 95.7%. The corrosion inhibition mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectral (FT-IR), and theoretical calculation. The results suggest that the MTT molecules are adsorbed on metal surface forming a hydrophobic protective film to prevent copper corrosion. It also indicates that the MTT and copper form covalent bonds. The molecular dynamic simulation further gives the evidence for adsorption. The adsorption isotherm studies demonstrate that a spontaneous, mixed physical and chemical adsorption occurs, which obeys Langmuir adsorption isotherm. The present research can help us better understand the corrosion inhibition process and improve it.
Tracking Multiple Topics for Finding Interesting Articles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Cardenas, A F; Buttler, D J
We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. iScore is able to achieve higher quality results than traditional methods such as themore » Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 25% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.« less
Tracking Multiple Topics for Finding Interesting Articles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Cardenas, A F; Buttler, D J
We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. Also by relating a topic's interestingness to an article's interestingness, iScore is able tomore » achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 9% to 14% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.« less
Yang, Yang; Lu, Yun; Wu, Qian-Yuan; Hu, Hong-Ying; Chen, Ying-Hua; Liu, Wan-Li
2015-12-01
Biological tests are effective and comprehensive methods to assess toxicity of environmental pollutants to ensure the safety of reclaimed water. In this study, the canonical MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the cytotoxicity of dissolved organic matters (DOMs) of secondary effluents from wastewater treatment plants (WWTPs). It was surprising that most concentrated DOMs treated HepG2 cells yielded much higher signal compared with vehicle control regardless of difference of treatment technologies and seasons. However, there was actually no obvious enhancement of the cell proliferation by microscopy. In order to find out potential reason for the discrepancy, another three assays were performed. The results of ATP assay and flow cytometry showed expected toxicity, which was consistent with microscopy and previous studies, while DNA assay did not exhibit apparent change in treated cells. The possible mechanisms of abnormal MTT signal could be that some materials in secondary effluents isolated by solid extraction with HLB resin directly reacted with MTT and/or enhanced the activity of mitochondrial dehydrogenase. Therefore, the MTT assay is not suitable to assess cytotoxicity of complex mixtures such as secondary effluents, while ATP assay is an optional sensitive method. This study also suggests the importance of choosing both suitable extraction methods and detection assays for toxicity evaluation of component-unknown environmental samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Townson, Simon; Tagboto, Senyo; McGarry, Helen F; Egerton, Gillian L; Taylor, Mark J
2006-01-01
Background The filarial parasites of major importance in humans contain the symbiotic bacterium Wolbachia and recent studies have shown that targeting of these bacteria with antibiotics results in a reduction in worm viability, development, embryogenesis, and survival. Doxycycline has been effective in human trials, but there is a need to develop drugs that can be given for shorter periods and to pregnant women and children. The World Health Organisation-approved assay to screen for anti-filarial activity in vitro uses male Onchocerca gutturosa, with effects being determined by worm motility and viability as measured by reduction of MTT to MTT formazan. Here we have used this system to screen antibiotics for anti-filarial activity. In addition we have determined the contribution of Wolbachia depletion to the MTT reduction assay. Methods Adult male O. gutturosa were cultured on a monkey kidney cell (LLCMK 2) feeder layer in 24-well plates with antibiotics and antibiotic combinations (6 to 10 worms per group). The macrofilaricide CGP 6140 (Amocarzine) was used as a positive control. Worm viability was assessed by two methods, (i) motility levels and (ii) MTT/formazan colorimetry. Worm motility was scored on a scale of 0 (immotile) to 10 (maximum) every 5 days up to 40 days. On day 40 worm viability was evaluated by MTT/formazan colorimetry, and results were expressed as a mean percentage reduction compared with untreated control values at day 40. To determine the contribution of Wolbachia to the MTT assay, the MTT formazan formation of an insect cell-line (C6/36) with or without insect Wolbachia infection and treated or untreated with tetracycline was compared. Results Antibiotics with known anti-Wolbachia activity were efficacious in this system. Rifampicin (5 × 10-5M) was the most effective anti-mycobacterial agent; clofazimine (1.25 × 10-5M and 3.13 × 10-6M) produced a gradual reduction in motility and by 40 days had reduced worm viability. The other anti-mycobacterial drugs tested had limited or no activity. Doxycycline (5 × 10-5M) was filaricidal, but minocycline was more effective and at a lower concentration (5 × 10-5M and 1.25 × 10-5M). Inactive compounds included erythromycin, oxytetracycline, trimethoprim and sulphamethoxazole. The MTT assay on the insect cell-line showed that Wolbachia made a significant contribution to the metabolic activity within the cells, which could be reduced when they were exposed to tetracycline. Conclusion The O. gutturosa adult male screen for anti-filarial drug activity is also valid for the screening of antibiotics for anti-Wolbachia activity. In agreement with previous findings, rifampicin and doxycycline were effective; however, the most active antibiotic was minocycline. Wolbachia contributed to the formation of MTT formazan in the MTT assay of viability and is therefore not exclusively a measure of worm viability and indicates that Wolbachia contributes directly to the metabolic activity of the nematode. PMID:16563157
Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.
2017-01-01
Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000
Tsimberidou, Apostolia-Maria; Hong, David S.; Ye, Yang; Cartwright, Carrie; Wheler, Jennifer J.; Falchook, Gerald S.; Naing, Aung; Fu, Siqing; Piha-Paul, Sarina; Janku, Filip; Meric-Bernstam, Funda; Hwu, Patrick; Kee, Bryan; Kies, Merrill S.; Broaddus, Russell; Mendelsohn, John; Hess, Kenneth R.; Kurzrock, Razelle
2017-01-01
Purpose Genomic profiling is increasingly used in the management of cancer. We have previously reported preliminary results of our precision medicine program. Here, we present response and survival outcomes for 637 additional patients who were referred for phase I trials and were treated with matched targeted therapy (MTT) when available. Patients and Methods Patients with advanced cancer who underwent tumor genomic analyses were treated with MTT when available. Results Overall, 1,179 (82.1%) of 1,436 patients had one or more alterations (median age, 59.7 years; men, 41.2%); 637 had one or more actionable aberrations and were treated with MTT (n = 390) or non-MTT (n = 247). Patients who were treated with MTT had higher rates of complete and partial response (11% v 5%; P = .0099), longer failure-free survival (FFS; 3.4 v 2.9 months; P = .0015), and longer overall survival (OS; 8.4 v 7.3 months; P = .041) than did unmatched patients. Two-month landmark analyses showed that, for MTT patients, FFS for responders versus nonresponders was 7.6 versus 4.3 months (P < .001) and OS was 23.4 versus 8.5 months (P < .001), whereas for non-MTT patients (responders v nonresponders), FFS was 6.6 versus 4.1 months (P = .001) and OS was 15.2 versus 7.5 months (P = .43). Patients with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase pathway alterations matched to PI3K/Akt/mammalian target of rapamycin axis inhibitors alone demonstrated outcomes comparable to unmatched patients. Conclusion Our results support the use of genomic matching. Subset analyses indicate that matching patients who harbor a PI3K and mitogen-activated protein kinase pathway alteration to only a PI3K pathway inhibitor does not improve outcome. We have initiated IMPACT2, a randomized trial to compare treatment with and without genomic selection. PMID:29082359
Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun
2015-02-01
In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vitro Cell Viability by CellProfiler® Software as Equivalent to MTT Assay.
Gasparini, Luciana S; Macedo, Nayana D; Pimentel, Elisângela F; Fronza, Marcio; Junior, Valdemar L; Borges, Warley S; Cole, Eduardo R; Andrade, Tadeu U; Endringer, Denise C; Lenz, Dominik
2017-07-01
This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler ® software. Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora , Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler ® . No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R 2 . CellProfiler ® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. In vitro cell viability assessment with MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay may be replaced by image analysis by CellProfiler ® . The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The correlation between the two methods was demonstrated by the linear regression plotted as R2. Abbreviations: HPLC: High pressure liquid chromatography MTT: (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide).
Leng, San-Hua; Lu, Fu-Er
2005-01-01
AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601
Mohammadi-Bardbori, Afshin; Ghazi-Khansari, Mahmoud
2007-01-01
ABSTRACT Cyanide (KCN) and paraquat (PQ) are very toxic to mitochondria. In this study the toxicity of KCN and PQ in the isolated rat liver mitochondria was determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and JG-B (Janus green B) assay by multiwell scanning spectrophotometry. JG-B was used not only for the vital staining of mitochondria, but also for the mitochondrial viability assay and was compared to the MTT assay. The rat liver mitochondria were first isolated by centrifuge in a mixture of 0.25 M saccharose solution and 0.05 M Tris buffer. Various concentrations of paraquat (0.001 to 100 mM) and KCN (0.0001 to 100 M) on the mitochondria isolated from the liver were investigated. The 50% lethal concentration of toxins were found for PQ (4.45 +/- 0.02, 4.96 +/- 0.01) and KCN (0.22 +/- 0.02, 0.49 +/- 0.02), as determined by these assays ( JG-B and MTT, respectively ). Significant correlations were also observed among the two methods with a 95% coefficient interval (r(2) = 0.84, p < 0.001; r(2) = 0.91, p < 0.001; PQ and KCN, respectively). These results suggest that both methods are reliable and are comparable for determining the mitochondrial assay. It is concluded that the JG-B assay may be preferable to the MTT assay because of its simplicity, low cost, sensitivity, and objectivity; in addition, this method is not time dependent.
In situ electrochemical assessment of cytotoxicity of chlorophenols in MCF-7 and HeLa cells.
Qin, Hongwei; Liu, Jiguang; Zhang, Zeshi; Li, Jinlian; Gao, Guanggang; Yang, Yuxin; Yuan, Xing; Wu, Dongmei
2014-10-01
An in situ electrochemical method was used to assess the cytotoxicity of chlorophenols using human breast cancer (MCF-7) and cervical carcinoma (HeLa) cells as models. On treatment with different chlorophenols, the electrochemical responses of the selected cells, resulting from the oxidation of guanine and xanthine in the cytoplasm, indicated the cell viability. In addition, the in situ in vitro electrochemical method was further compared with the traditional MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Although similar cytotoxicity data were obtained from both methods, the effective concentrations of chlorophenols that inhibited 50% cell growth (EC50 values) from the electrochemical method were only slightly lower than those from the MTT assay. These results indicate that the in situ in vitro electrochemical method paves a simple, rapid, strongly responsive, and label-free way to the cytotoxicity assessment of different chlorophenol pollutants. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke
Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D
2012-01-01
Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533
Espart, Anna; Marín, Maribel; Gil-Moreno, Selene; Palacios, Òscar; Amaro, Francisco; Martín-González, Ana; Gutiérrez, Juan C.; Capdevila, Mercè; Atrian, Sílvia
2015-01-01
The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination). PMID:25798065
NASA Astrophysics Data System (ADS)
Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.
2016-11-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
Hsu, Hsiu-Yun; Kuo, Yao-Lung; Jou, I-Ming; Su, Fong-Chin; Chiu, Haw-Yen; Kuo, Li-Chieh
2014-04-01
To investigate how the severity levels revealed in a nerve conduction study (NCS) affect the results of the Manual Tactile Test (MTT) for patients with carpal tunnel syndrome (CTS), and to examine the relationships between the results of the MTT and precision pinch performance. Case-control studies. Hospital and local community. Patients with CTS (N=70) with 119 affected hands were studied. A control group matched by age, sex, and hand dominance was also recruited. Not applicable. CTS severity was determined based on NCS findings. The MTT, traditional sensory tests, and precision pinch performance were used to examine the functional sensory status of the hand from different perspectives. The patients with CTS exhibited deterioration in all of the sensibility tests (P<.001). The results showed that the MTT could classify subgroups of severity in CTS (P<.001). A moderate correlation was found between the results of the MTT and precision pinch performance (r=.526-.585, P<.001). Multiple linear regression analysis showed that the MTT results were useful indicators for predicting precision pinch performance and differentiating severity in subjects with CTS (r(2)=.376 and .323, respectively). The findings indicate that the MTT could be a valid and useful assessment for hand sensibility and prehensile pinch performance in patients with CTS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Analysis method to determine and characterize the mask mean-to-target and uniformity specification
NASA Astrophysics Data System (ADS)
Lee, Sung-Woo; Leunissen, Leonardus H. A.; Van de Kerkhove, Jeroen; Philipsen, Vicky; Jonckheere, Rik; Lee, Suk-Joo; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae
2006-06-01
The specification of the mask mean-to-target (MTT) and uniformity is related to functions as: mask error enhancement factor, dose sensitivity and critical dimension (CD) tolerances. The mask MTT shows a trade-off relationship with the uniformity. Simulations for the mask MTT and uniformity (M-U) are performed for LOGIC devices of 45 and 37 nm nodes according to mask type, illumination condition and illuminator polarization state. CD tolerances and after develop inspection (ADI) target CD's in the simulation are taken from the 2004 ITRS roadmap. The simulation results allow for much smaller tolerances in the uniformity and larger offsets in the MTT than the values as given in the ITRS table. Using the parameters in the ITRS table, the mask uniformity contributes to nearly 95% of total CDU budget for the 45 nm node, and is even larger than the CDU specification of the ITRS for the 37 nm node. We also compared the simulation requirements with the current mask making capabilities. The current mask manufacturing status of the mask uniformity is barely acceptable for the 45 nm node, but requires process improvements towards future nodes. In particular, for the 37 nm node, polarized illumination is necessary to meet the ITRS requirements. The current mask linearity deviates for pitches smaller than 300 nm, which is not acceptable even for the 45 nm node. More efforts on the proximity correction method are required to improve the linearity behavior.
Lassau, N.; Coiffier, B.; Kind, M.; Vilgrain, V.; Lacroix, J.; Cuinet, M.; Taieb, S.; Aziza, R.; Sarran, A.; Labbe-Devilliers, C.; Gallix, B.; Lucidarme, O.; Ptak, Y.; Rocher, L.; Caquot, L. M.; Chagnon, S.; Marion, D.; Luciani, A.; Feutray, S.; Uzan-Augui, J.; Benatsou, B.; Bonastre, J.; Koscielny, S.
2016-01-01
Background Dynamic contrast-enhanced ultrasonography (DCE-US) has been used for evaluation of tumor response to antiangiogenic treatments. The objective of this study was to assess the link between DCE-US data obtained during the first week of treatment and subsequent tumor progression. Patients and methods Patients treated with antiangiogenic therapies were included in a multicentric prospective study from 2007 to 2010. DCE-US examinations were available at baseline and at day 7. For each examination, a 3 min perfusion curve was recorded just after injection of a contrast agent. Each perfusion curve was modeled with seven parameters. We analyzed the correlation between criteria measured up to day 7 on freedom from progression (FFP). The impact was assessed globally, according to tumor localization and to type of treatment. Results The median follow-up was 20 months. The mean transit time (MTT) evaluated at day 7 was the only criterion significantly associated with FFP (P = 0.002). The cut-off point maximizing the difference between FFP curves was 12 s. Patients with at least a 12 s MTT had a better FFP. The results according to tumor type were significantly heterogeneous: the impact of MTT on FFP was more marked for breast cancer (P = 0.004) and for colon cancer (P = 0.025) than for other tumor types. Similarly, the differences in FFP according to MTT at day 7 were marked (P = 0.004) in patients receiving bevacizumab. Conclusion The MTT evaluated with DCE-US at day 7 is significantly correlated to FFP of patients treated with bevacizumab. This criterion might be linked to vascular normalization. AFSSAPS No 2007-A00399-44. PMID:27502701
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Shieh, Shyh-Jou
Case-controlled cohort study. Sensory function is difficult to observe during nerve regeneration processes. Traditional sensory tests are limited to identifying the level of functioning hand sensation for sensory stimulus is given passively to the cutaneous surface of the hand. To examine the outcome changes in the manual tactile test (MTT), Semmes-Weinstein monofilament (SWM) and 2-point discrimination (2PD) tests for patients with nerve repair and to investigate the concurrent validity of MTT by comparing it with the results of traditional tests. Fifteen patients with nerve injury of the upper limbs were recruited, along with 15 matched healthy controls. The MTT, SWM, and 2PD tests were used to examine the sensory status of the subjects. Three subtests (barognosis, roughness differentiation, and stereognosis) in MTT showed that the patients improved with time. A moderate and mild correlation was found between the MTT and 2PD results and between the barognosis and SWM results. The MTT provides practical and functional perspectives on detecting nerve progression during the courses of degeneration and regeneration. IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Divarova, V. V.; Stojnova, K. T.; Racheva, P. V.; Lekova, V. D.
2017-05-01
The complex formation and extraction of anionic chelates of Co(II)-4-(2-thiazolylazo)resorcinol (TAR) with cations of monotetrazolium salts (TS) — (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 3-(2-naphthyl)-2,5-diphenyl-2H-tetrazolium chloride (TV) — in the liquid-liquid extraction system Co(II)-TAR-TS-H2O-CHCl3 were studied by spectrophotometric methods. The optimum conditions for the extraction of Co(II) were found. The molar ratio of the components and the form of the anionic chelates of Co(II) in the extracted compounds were determined by independent methods. The association process in the aqueous phase and the extraction process were investigated and quantitatively characterized. The following key constants were calculated: association constant, distribution constant, extraction constant, and recovery factor. The validity of the Beer's law was checked, and some analytical characteristics were calculated. Based on the obtained results and the lower price of the monotetrazolium salt MTT compared with that of TV, the ion-associated complex of Co(II)-TAR-MTT can be implemented for determination of cobalt(II) traces in alloys and biological, medical, and pharmaceutical samples.
Rudin, M; Beckmann, N; Sauter, A
1997-01-01
Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized gamma-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the gamma-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.
Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T
2010-05-01
We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P
2016-06-01
Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment of the hepatic microvascular changes in liver cirrhosis by perfusion computed tomography
Chen, Mai-Lin; Zeng, Qing-Yu; Huo, Jian-Wei; Yin, Xiao-Ming; Li, Bao-Ping; Liu, Jian-Xin
2009-01-01
AIM: To assess the hepatic microvascular parameters in patients with liver cirrhosis by perfusion computed tomography (CT). METHODS: Perfusion CT was performed in 29 patients without liver disease (control subjects) and 39 patients with liver cirrhosis, including 22 patients with compensated cirrhosis and 17 patients with decompensated cirrhosis, proved by clinical and laboratory parameters. CT cine-scans were obtained over 50 s beginning with the injection of 50 mL of contrast agent. Hepatic microvascular parameters, mean transit time (MTT) and permeability surface area product (PS) were obtained with the Perfusion 3 software (General Electric, ADW 4.2). RESULTS: The overall differences of MTT and PS between control subjects, patients with compensated cirrhosis and those with decompensated cirrhosis were statistically significant (P = 0.010 and P = 0.002, respectively). MTT values were 15.613 ± 4.1746 s, 12.592 ± 4.7518 s, and 11.721 ± 4.5681 s for the three groups, respectively, while PS were 18.945 ± 7.2347 mL/min per 100 mL, 22.767 ± 8.3936 mL/min per 100 mL, and 28.735 ± 13.0654 mL/min per 100 mL. MTT in decompensated cirrhotic patients were significantly decreased compared to controls (P = 0.017), whereas PS values were remarkably increased (P = 0.001). CONCLUSION: The hepatic microvascular changes in patients with liver cirrhosis can be quantitatively assessed by perfusion CT. Hepatic microvascular parameters (MTT and PS), as measured by perfusion CT, were significantly altered in decompensated cirrhosis. PMID:19630110
A high-throughput seed germination assay for root parasitic plants
2013-01-01
Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination. PMID:23915294
Murayama, Kazuhiro; Katada, Kazuhiro; Hayakawa, Motoharu; Toyama, Hiroshi
We aimed to clarify the cause of shortened mean transit time (MTT) in acute ischemic cerebrovascular disease and examined its relationship with reperfusion. Twenty-three patients with acute ischemic cerebrovascular disease underwent whole-brain computed tomography perfusion (CTP). The maximum MTT (MTTmax), minimum MTT (MTTmin), ratio of maximum and minimum MTT (MTTmin/max), and minimum cerebral blood volume (CBV) (CBVmin) were measured by automatic region of interest analysis. Diffusion weighted image was performed to calculate infarction volume. We compared these CTP parameters between reperfusion and nonreperfusion groups and calculated correlation coefficients between the infarction core volume and CTP parameters. Significant differences were observed between reperfusion and nonreperfusion groups (MTTmin/max: P = 0.014; CBVmin ratio: P = 0.038). Regression analysis of CTP and high-intensity volume on diffusion weighted image showed negative correlation (CBVmin ratio: r = -0.41; MTTmin/max: r = -0.30; MTTmin ratio: r = -0.27). A region of shortened MTT indicated obstructed blood flow, which was attributed to the singular value decomposition method error.
Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P
2015-06-01
A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Casterton, P L; Potts, L F; Klein, B D
1994-08-01
11 surfactant raw materials with potential applications in light-duty liquid cleaning products were evaluated in vitro using a human skin analogue (ATS SKIN(2) Model ZK1100) for predicting cytotoxicity (MTT reduction) and inflammation [prostaglandin E(2) (PGE(2)) release]. Two of the 11 raw materials, both in the same compound family, were selected to be individually combined with each of the other nine in a 90:10 (raw:selected raw) mixture. Selection criteria were based on desired performance characteristics and low irritation potential as suggested from the individual surfactant assay data. To determine whether irritation potential was mitigated, MTT and PGE(2) scores were again determined for each of the 18 combinations with the resulting data being compared with the untreated raw material data. A plot of the data indicated that one of two selected materials may have an 'anti-irritant' effect. For raw materials with intrinsic MTT scores of less than 50 mug/ml and with the original data corrected for possible dilution effects, a statistical comparison between individual raw materials and the two sets of combinations was done using a one-sample analysis. Both cytotoxicity (MTT) and inflammation (PGE(2)) were significantly decreased by the milder of the two selected raw materials. By factoring the data into future new product decisions, this methodology has become a useful and practical tool for Amway product development.
Altuntaş, Emine Elif; Sümer, Zeynep
2013-01-01
The purposes of this study were to investigate the biocompatibility of two different paper patches (carbon and cigarette papers) and compare the adhesion and proliferation features of L929 fibroblast cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT Test) test and scanning electron microscopy (SEM). In this study, time-dependent cytotoxic effects of cigarette and carbon papers used in repairing small traumatic TM perforations were investigated in vitro by using MTT test. And also adhesion and spreading of cells over disk surface were observed by SEM. Cytotoxicity test carried out by MTT analysis on leakage products collected from two types of paper patches at the end of 24 and 48 h revealed no cytotoxicity (P > 0.05). In SEM studies, it was observed that cells started to proliferate over disk surface as a result of 48-h incubation, and SEM revealed that the cell proliferation over cigarette paper was more compared to the one over carbon paper. We believe that this is the first study where biocompatibility and adhesion features of carbon and cigarette paper have been studied by using L929 fibroblast cell culture. As a result, biocompatibility of cigarette paper and also whether cigarette paper was superior to carbon paper in cell attachment and biocompatibility were studied. It was found, by MTT test and SEM test, that cigarette paper had a higher biocompatibility and cell attachment, and thus cigarette paper should be the patch to be preferred in cases where TM perforations are repaired by paper-patch method.
Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors
Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug
2010-01-01
Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288
Prodinger, Birgit; Fellinghauer, Carolina Saskia; Tennant, Alan
2018-01-01
Objective To examine the use of the term ‘metric’ in health and social sciences’ literature, focusing on the interval scale implication of the term in Modern Test Theory (MTT). Materials and methods A systematic search and review on MTT studies including ‘metric’ or ‘interval scale’ was performed in the health and social sciences literature. The search was restricted to 2001–2005 and 2011–2015. A Text Mining algorithm was employed to operationalize the eligibility criteria and to explore the uses of ‘metric’. The paradigm of each included article (Rasch Measurement Theory (RMT), Item Response Theory (IRT) or both), as well as its type (Theoretical, Methodological, Teaching, Application, Miscellaneous) were determined. An inductive thematic analysis on the first three types was performed. Results 70.6% of the 1337 included articles were allocated to RMT, and 68.4% were application papers. Among the number of uses of ‘metric’, it was predominantly a synonym of ‘scale’; as adjective, it referred to measurement or quantification. Three incompatible themes ‘only RMT/all MTT/no MTT models can provide interval measures’ were identified, but ‘interval scale’ was considerably more mentioned in RMT than in IRT. Conclusion ‘Metric’ is used in many different ways, and there is no consensus on which MTT metric has interval scale properties. Nevertheless, when using the term ‘metric’, the authors should specify the level of the metric being used (ordinal, ordered, interval, ratio), and justify why according to them the metric is at that level. PMID:29509813
Liu, Ben; Zhong, Mintao; Lun, Yongzhi; Wang, Xiaoli; Sun, Wenchang; Li, Xingyun; Ning, Anhong; Cao, Jing; Zhang, Wei; Liu, Lei; Huang, Min
2012-01-01
An apoptosis correlated molecule-protein Latcripin-1 of Lentinula edodes C(91-3)-was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C(91-3). According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE) and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins.
Liu, Ben; Zhong, Mintao; Lun, Yongzhi; Wang, Xiaoli; Sun, Wenchang; Li, Xingyun; Ning, Anhong; Cao, Jing; Zhang, Wei; Liu, Lei; Huang, Min
2012-01-01
An apoptosis correlated molecule—protein Latcripin-1 of Lentinula edodes C91–3—was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C91–3. According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3′-Full Rapid Amplification of cDNA Ends (RACE) and 5′-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins. PMID:22754362
Prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage.
Hu, Xibin; Bai, Xueqin; Zai, Ning; Sun, Xinhai; Zhu, Laimin; Li, Xian
2016-07-01
This study intends to investigate the prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage. Demographic, clinical and biochemical data between acute intracerebral hemorrhage (AICH) and healthy volunteer groups were assessed in this study, such as rCBV and MTT values. The optimal cutoff values of rCBV and MTT for diagnosing AICH were determined by the ROC curves. Apart from that, we also investigated the association between rCBV/MTT values and cerebral hematoma volumes of AICH patients. The unconditional logistic regression was conducted to determine significant risk factors for AICH. AICH patients have significantly lower rCBV and higher MTT compared to the control group (all P < 0.05). As suggested by the relatively high sensitivity and specificity, both rCBV and MTT values could be utilized for AICH diagnosis. Moreover, rCBV and MTT were significantly associated with the cerebral hematoma volumes of AICH patients (all P < 0.05). Results from unconditional logistic regression analysis revealed that MTT was a significant risk factor for AICH (P < 0.05 and OR > 1), while rCBV is considered as a protective factor (P < 0.05 and OR < 1). Perfusion-weighted magnetic resonance imaging produces a high prognostic value for diagnosing AICH.
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Accuracy and Reliability Assessment of CT and MR Perfusion Analysis Software Using a Digital Phantom
Christensen, Soren; Sasaki, Makoto; Østergaard, Leif; Shirato, Hiroki; Ogasawara, Kuniaki; Wintermark, Max; Warach, Steven
2013-01-01
Purpose: To design a digital phantom data set for computed tomography (CT) perfusion and perfusion-weighted imaging on the basis of the widely accepted tracer kinetic theory in which the true values of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer arrival delay are known and to evaluate the accuracy and reliability of postprocessing programs using this digital phantom. Materials and Methods: A phantom data set was created by generating concentration-time curves reflecting true values for CBF (2.5–87.5 mL/100 g per minute), CBV (1.0–5.0 mL/100 g), MTT (3.4–24 seconds), and tracer delays (0–3.0 seconds). These curves were embedded in human brain images. The data were analyzed by using 13 algorithms each for CT and magnetic resonance (MR), including five commercial vendors and five academic programs. Accuracy was assessed by using the Pearson correlation coefficient (r) for true values. Delay-, MTT-, or CBV-dependent errors and correlations between time to maximum of residue function (Tmax) were also evaluated. Results: In CT, CBV was generally well reproduced (r > 0.9 in 12 algorithms), but not CBF and MTT (r > 0.9 in seven and four algorithms, respectively). In MR, good correlation (r > 0.9) was observed in one-half of commercial programs, while all academic algorithms showed good correlations for all parameters. Most algorithms had delay-dependent errors, especially for commercial software, as well as CBV dependency for CBF or MTT calculation and MTT dependency for CBV calculation. Correlation was good in Tmax except for one algorithm. Conclusion: The digital phantom readily evaluated the accuracy and characteristics of the CT and MR perfusion analysis software. All commercial programs had delay-induced errors and/or insufficient correlations with true values, while academic programs for MR showed good correlations with true values. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112618/-/DC1 PMID:23220899
Hsu, Hsiu-Yun; Shieh, Shyh-Jou; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Kuo, Li-Chieh
2016-06-01
To comprehend the merits of a Manual Tactile Test (MTT) in assessing hand sensorimotor functions by exploring the relations among 3 subtests along with the precision pinch performances for patients with peripheral nerve injuries (PNIs); and to understand the accuracy of the MTT by constructing the sensitivity and specificity of the test for patients with PNI. Case-control study. Hospital and local community. Patients with PNI (n=28) were recruited along with age-, sex-, and handedness-matched healthy controls (n=28) (N=56). Not applicable. The Semmes-Weinstein monofilament, moving and static 2-point discrimination, roughness differentiation, stereognosis and barognosis subtests of the MTT, and precision pinch performance were used to examine the sensory and sensorimotor status of the hand. The worst results in all sensibility tests were found for the patients with PNI (P<.001) in comparison with the controls. Multiple linear regression analysis showed the MTT was a better indicator for predicting the sensorimotor capacity of hands in the patients with PNI (r(2)=.189, P=.003) than the traditional test (r(2)=.088, P=.051). The results of the receiver operating characteristic curve estimation show that the area under the curve was .968 and .959 for the roughness differentiation and stereognosis subtests, respectively, and .853 for the barognosis subtest, therefore revealing the accuracy of the MTT in assessing sensorimotor status for patients with PNI. This study indicates that the MTT is highly accurate and a significant predictor of sensorimotor performance in hands of patients with PNI. The MTT could therefore help clinicians obtain a better understanding of the sensorimotor and functional status of the hand with nerve injuries. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess
2017-01-01
Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC50= 111.2μg/ml) in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1μg/ml) in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Aspergillus niger and Candida albicans. Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines. PMID:29322058
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-04-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.
Effects of carbon turnover time on terrestrial ecosystem carbon storage
NASA Astrophysics Data System (ADS)
Yan, Yaner; Zhou, Xuhui; Jiang, Lifeng; Luo, Yiqi
2017-12-01
Carbon (C) turnover time is a key factor in determining C storage capacity in various plant and soil pools as well as terrestrial C sink in a changing climate. However, the effects of C turnover time on ecosystem C storage have not been well explored. In this study, we compared mean C turnover times (MTTs) of ecosystem and soil, examined their variability to climate, and then quantified the spatial variation in ecosystem C storage over time from changes in C turnover time and/or net primary production (NPP). Our results showed that mean ecosystem MTT based on gross primary production (GPP; MTTEC_GPP = Cpool/GPP, 25.0 ± 2.7 years) was shorter than soil MTT (MTTsoil = Csoil/NPP, 35.5 ± 1.2 years) and NPP-based ecosystem MTT (MTTEC_NPP = Cpool/NPP, 50.8 ± 3 years; Cpool and Csoil referred to ecosystem or soil C storage, respectively). On the biome scale, temperature is the best predictor for MTTEC (R2 = 0.77, p < 0.001) and MTTsoil (R2 = 0.68, p < 0.001), while the inclusion of precipitation in the model did not improve the performance of MTTEC (R2 = 0.76, p < 0.001). Ecosystem MTT decreased by approximately 4 years from 1901 to 2011 when only temperature was considered, resulting in a large C release from terrestrial ecosystems. The resultant terrestrial C release caused by the decrease in MTT only accounted for about 13.5 % of that due to the change in NPP uptake (159.3 ± 1.45 vs. 1215.4 ± 11.0 Pg C). However, the larger uncertainties in the spatial variation of MTT than temporal changes could lead to a greater impact on ecosystem C storage, which deserves further study in the future.
Hsu, Hsiu-Yun; Su, Fong-Chin; Kuo, Yao-Lung; Jou, I-Ming; Chiu, Haw-Yen; Kuo, Li-Chieh
2015-01-01
To investigate whether sensorimotor control of the hand could be an outcome indicator after carpal tunnel release (CTR), this work examined changes in the results of patients’ manual tactile test (MTT), pinch-holding-up activity (PHUA), two-point discrimination (2PD) and Semmes-Weinstein monofilament (SWM) tests. Participants included 30 predominantly sensory neuropathy CTS patients, as confirmed by a nerve conduction study. The MTT, precision pinch performance in PHUA and traditional sensibility (2PD and SWM) tests were used to examine different aspects of sensory status at the time-points of two weeks before operation and one month post-operation, with a single-blind design. The results showed significant improvements in the sensory function as detected by the 2PD and SWM tests (p<0.001) and sensorimotor function as detected by the MTT (p<0.001) and PHUA test (p<0.05) for patients receiving CTR. The responsiveness of the SWM, MTT and PHUA tests (effect size>0.5, p<0.01) are better than that of two-point discrimination test (effect size<0.5, p<0.001). However, pinch strength saw a decline compared to baseline with a moderate effect sizes (effect size = 0.7, p<0.001). This cohort study found that the MTT and PHUA test can both meet all the statistical criteria with regard to assessing treatment outcomes for patients with CTS. In addition, the results of this work provide clinicians with the information that the sensorimotor functions of the hands, as assessed by MTT and PHUA, are responsive to clinical changes due to CTR. PMID:26053242
Hsu, Hsiu-Yun; Su, Fong-Chin; Kuo, Yao-Lung; Jou, I-Ming; Chiu, Haw-Yen; Kuo, Li-Chieh
2015-01-01
To investigate whether sensorimotor control of the hand could be an outcome indicator after carpal tunnel release (CTR), this work examined changes in the results of patients' manual tactile test (MTT), pinch-holding-up activity (PHUA), two-point discrimination (2PD) and Semmes-Weinstein monofilament (SWM) tests. Participants included 30 predominantly sensory neuropathy CTS patients, as confirmed by a nerve conduction study. The MTT, precision pinch performance in PHUA and traditional sensibility (2PD and SWM) tests were used to examine different aspects of sensory status at the time-points of two weeks before operation and one month post-operation, with a single-blind design. The results showed significant improvements in the sensory function as detected by the 2PD and SWM tests (p<0.001) and sensorimotor function as detected by the MTT (p<0.001) and PHUA test (p<0.05) for patients receiving CTR. The responsiveness of the SWM, MTT and PHUA tests (effect size>0.5, p<0.01) are better than that of two-point discrimination test (effect size<0.5, p<0.001). However, pinch strength saw a decline compared to baseline with a moderate effect sizes (effect size = 0.7, p<0.001). This cohort study found that the MTT and PHUA test can both meet all the statistical criteria with regard to assessing treatment outcomes for patients with CTS. In addition, the results of this work provide clinicians with the information that the sensorimotor functions of the hands, as assessed by MTT and PHUA, are responsive to clinical changes due to CTR.
Berthiaume, Nathalie; Zinker, Bradley A
2002-05-01
The purpose of this investigation was to compare the benefits of a meal tolerance test (MTT) against those of an oral glucose tolerance test (OGTT) in one of the most commonly used models of insulin resistance, the Zucker fatty rat. Comparison of these two oral challenges will facilitate determination of the most effective means of inducing both glucose and insulin responses in this particular model and allow for possible therapeutic benefits to be examined more effectively. Eight-week-old Zucker fatty rats (n = 7 or 8) were used to perform either an OGTT or a MTT following an overnight fast. The OGTT contained a final amount of carbohydrate (CHO) of 1.2 g/kg body weight (BW). The MTT (commercially available liquid meal), in addition to having fat and protein, included a final amount of available CHO and volume to match the OGTT. A saline-treated group served as control. A greater glucose excursion was observed following the OGTT compared to the MTT. The maximal change in glucose from baseline was 140 +/- 10 mg/dL (a 2.1-fold rise) for the OGTT compared to 86.3 +/- 6.1 mg/dL (a 1.7-fold rise) for the MTT (P <.05). The MTT induced a greater change from baseline in insulin response compared to the OGTT (7.5 +/- 1.1 v 3.9 +/- 0.5 ng/mL, MTT v OGTT, respectively; P <.05). The saline challenge induced only minimal glucose and insulin responses in comparison to the other treatments. These results suggest that, in a model of insulin resistance, the MTT is a more potent insulin stimulator than glucose alone. A mixed meal, such as a MTT, provides a complete nutrient challenge (CHO, fat, and protein) that will induce both glucose and insulin responses, enabling a better capacity to detect differences in one of the most often used models of insulin resistance, the Zucker fatty rat. Copyright 2002, Elsevier Science (USA). All rights reserved.
NASA Astrophysics Data System (ADS)
Parlar, Ugur
Mental time travel (MTT) has always been a crucial component of human cognition, but has not always been identified or supported in schooling. Recent advances in psychological science consider MTT to be responsible for future-oriented thought and action, particularly, the formation of foresight. Therefore, an innovative research trajectory for education is to enabling students to harness their MTT abilities and support the development of what could be called foresightful/prudential intellect. By enhancing the flexibility and the reach of MTT ability, education can enable students to develop foresightful/prudential reasoning skills in science, technology, engineering, and mathematics (STEM) domains, including the ability to carry out collaborative MTT. Some of these skills are ecological problem identification and solution, environmental decision-making, root-cause analysis, spatial reasoning, and evolutionary thinking. This thesis first examines the evolution and development of MTT by combining studies in cognitive-developmental science, biological anthropology, and evolutionary neuroscience. A secondary examination reveals that although foresightful/prudential intellect is more closely associated with cognitive self-governance, clear benchmarks for assessing and supporting this intellect via MTT tasks need to be identified. A developmental study that used a dynamic system problem illustrates the ways foresightful/prudential reasoning manifests itself. Quantitative and qualitative differences are found in school-aged children's and undergraduate students' episodic memory syntheses when they were asked how to prevent the problem from reoccurring. The results of this study suggest that foresightful/prudential reasoning skills in environmental topics could be extrapolated to entire classrooms by designing MTT-based learning tools or tasks. Two prominent techniques are identified to show what these tools, tasks, or techniques could involve and how they could be designed. Finally, a teacher education agenda is discussed in alignment with the goals of MTT-based learning and fostering the development of foresightful/prudential intellect. This agenda needs to be approached in stages and with a sense of urgency given the current pace of anthropogenic environmental change.
Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H
2012-07-11
The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.
Jahn, B; Stüben, A; Bhakdi, S
1996-01-01
Two colorimetric methods that use Alamar Blue or 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) for assaying the in vitro activities of antifungal agents have been described. We report that both tests performed similarly when the antifungal activity of amphotericin B against Candida albicans was determined. However, only the MTT test generated interpretable data when Aspergillus fumigatus was used. PMID:8818910
NASA Astrophysics Data System (ADS)
Hale, V. Cody; McDonnell, Jeffrey J.
2016-02-01
The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-01-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004
NASA Astrophysics Data System (ADS)
Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.
2015-03-01
CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
The Biological Effect of the NanoTiO
Xiao-Feng, Pang; Lewei, Liu; Zhi Hong, Liu; Qiang, Zhao
2005-01-01
The proliferation behavior of the person's liver cell under actions of the nanoTiO
Assessment of pyrrolizidine alkaloid-induced toxicity in an in vitro screening model.
Li, Yan Hong; Kan, Winnie Lai Ting; Li, Na; Lin, Ge
2013-11-25
Pyrrolizidine alkaloids (PAs) are a group of heterocyclic phytotoxins present in a wide range of plants. The consumption of PA-containing medicinal herbs or PA-contaminated foodstuffs has long been reported to cause human hepatotoxicity. However, the degrees of hepatotoxicity of different PAs are unknown, which makes it difficult to determine a universal threshold of toxic dose of individual PAs for safe regulation of PA-containing natural products. The aim of the present study is to develop a simple and convenient in vitro model to assess the hepatotoxicity of different PAs. Six common cytotoxicity assays were used to evaluate the hepatotoxicity of different PAs in human hepatocellular carcinoma HepG2 cells. The combination of MTT and bromodeoxyuridine incorporation (BrdU) assays demonstrated to be a suitable method to evaluate the toxic potencies of various PAs in HepG2 cells, and the results indicated that otonecine-type PA (clivorine: IC₂₀=0.013 ± 0.004 mM (MTT), 0.066 ± 0.031 mM (BrdU)) exhibited significantly higher cytotoxic and anti-proliferative effects than retronecine-type PA (retrorsine: IC₂₀=0.27 ± 0.07 mM (MTT), 0.19 ± 0.03 mM (BrdU)). While as expected, the known less toxic platyphylline-type PA (platyphylline: IC₂₀=0.85 ± 0.11 mM (MTT), 1.01 ± 0.40 mM (BrdU)) exhibited significantly less toxicity. The different cytotoxic and anti-proliferative potencies of various PAs in the same retronecine-type could also be discriminated by using the combined MTT and BrdU assays. In addition, the developed assays were further utilized to test alkaloid extract of Gynura segetum, a senecionine and seneciphylline-containing herb, the overall cytotoxicity of two PAs in the extract was comparable to that of these two PAs tested individually. Using the developed in vitro model, the cytotoxicity of different PAs and the extract of a PA-containing herb were investigated in parallel in one system, and their different hepatotoxic potencies were determined and directly compared for the first time. The results suggested that the developed model has a great potential to be applied for the quick screening of the toxicity of PAs and PA-containing natural products. © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo
2013-05-01
This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.
NASA Astrophysics Data System (ADS)
Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent
2016-07-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.
Breeden, Prescott; Dere, Dorothea; Zlomuzica, Armin; Dere, Ekrem
2016-06-01
Mental time travel (MTT) is the ability to remember past events and to anticipate or imagine events in the future. MTT globally serves to optimize decision-making processes, improve problem-solving capabilities and prepare for future needs. MTT is also essential in providing our concept of self, which includes knowledge of our personality, our strengths and weaknesses, as well as our preferences and aversions. We will give an overview in which ways the capacity of animals to perform MTT is different from humans. Based on the existing literature, we conclude that MTT might represent a quantitative rather than qualitative entity with a continuum of MTT capacities in both humans and nonhuman animals. Given its high complexity, MTT requires a large processing capacity in order to integrate multimodal stimuli during the reconstruction of past and/or future events. We suggest that these operations depend on a highly specialized working memory subsystem, 'the MTT platform', which might represent a necessary additional component in the multi-component working memory model by Alan Baddeley.
Renal effects of metallothionein induction by zinc in vitro and in vivo.
Schanz, Moritz; Schaaf, Lea; Dippon, Juergen; Biegger, Dagmar; Fritz, Peter; Alscher, Mark Dominik; Kimmel, Martin
2017-03-16
Metallothionein (MTT) is an endogenous antioxidant that can be induced by both zinc (Zn) and ischemia. In kidneys, increased MTT expression exerts a putative protective role in diabetes and hypoxia. Our goal was to further investigate the behavior of MTT under the influence of Zn and hypoxia in vitro and in vivo. MTT expression was measured in vitro in cell cultures of proximal tubular cells (LCC-PK1) by immune-histochemistry and real-time PCR after incubation with increasing concentrations of Zn under hypoxic and non-hypoxic conditions. In addition, in vivo studies were carried out in 54 patients to study MTT induction through Zn. This is a sub-study of a prospective, randomized, double-blind trial on prevention of contrast-media-induced nephropathy using Placebo, Zn and N-Acetylcysteine. Blood samples were obtained before and after 2 days p.o. treatment with or without Zn (60 mg). ELISA-based MTT level measurements were done to evaluate the effects of Zn administration. For in vivo analysis, we considered the ratio of MTT to baseline MTT (MTT 1 /MTT 0 ) and the ratio of eGFR (eGFR 1 /eGFR 0 ), correspondingly. In vitro quantitative immuno-histochemical analysis (IHC) and real-time PCR showed that at increasing levels of Zn (5, 10, and 15 μg/ml) led to a progressive increase of MTTs: Median (IQR) expression of IHC also increased progressively from 0.10 (0.09-0.12), 0.15 (0.12-0.18), 0.25 (0.25-0.27), 0.59 (0.48-0.70) (p < 0.0001). Median (IQR) expression of PCR: 0.59 (0.51-1.72), 1.62 (1.38-4.70), 3.58 (3.06-10.42) and 10.81 (9.24-31.47) (p < 0.0001). In contrast, hypoxia did not change MTT-levels in vitro (p > 0.05). In vivo no significant differences (p = 0.96) occurred in MTT-levels after 2 days of Zn administration compared with no Zn intake. Nevertheless, there was a significant correlation between MTT (MTT 1 /MTT 0 ) and eGFR (eGFR 1 /eGFR 0 ) in case of Zn administration (rho = -0.49; 95%-CI: -0.78 to -0.03; p = 0.04). We found that Zn did induce MTTs in vitro, whereas hypoxia had no significant impact. In contrast, no significant increase of MTTs was detected after in vivo administration of Zn. However, there was a significant negative correlation between MTT and eGFR in vivo in case of Zn administration, this could indicate a protective role of MTTs in a setting of reduced kidney function, which is possibly influenced by Zn. ClinicalTrials.gov Identifier: NCT00399256 . Retrospectively registered 11/13/2006.
Stájer, Anette; Ungvári, Krisztina; Pelsoczi, István K; Polyánka, Hilda; Oszkó, Albert; Mihalik, Erzsébet; Rakonczay, Zoltán; Radnai, Márta; Kemény, Lajos; Fazekas, András; Turzó, Kinga
2008-11-01
High fluoride (F(-)) concentrations and acidic pH impair the corrosion resistance of titanium (Ti). Effects of F(-)-containing caries-preventive prophylactic rinses, and gels on Ti were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Human epithelial cell attachment and proliferation were investigated by dimethylthiazol-diphenyl tetrazolium bromide (MTT) and protein content assays. Aqueous 1% NaF solution (3800 ppm F(-), pH 4.5) or high (12,500 ppm) F(-) content gel (pH 4.8) strongly corroded the surface and modified its composition. XPS revealed formation of a strongly bound F(-)-containing complex (Na(2)TiF(6)). AFM indicated an increase in roughness (R(a)) of the surfaces: 10-fold for the NaF solution and smaller for the gel or a mouthwash (250 ppm F(-), pH 4.4). MTT revealed that cell attachment was significantly increased by the gel, but was not disturbed by either the mouthwash or the NaF. Cell proliferation determined by MTT decreased significantly only for the NaF-treated samples; protein content assay experiments showed no such effect. This study indicates that epithelial cell culturing results can depend on the method used, and the adverse effects of a high F(-) concentration and low pH should be considered when prophylactic gels are applied by patients with Ti implants or other dental devices.
Garg, Munish; Lata, Kusum; Satija, Saurabh
2016-01-01
Objective: To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Materials and Methods: Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Results: Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Conclusion: Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids. PMID:26997725
Perfusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping
2003-05-01
To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.
Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods
Lee, Myung-Jin; Kim, Mi-Joo; Kwon, Jae-Sung; Lee, Sang-Bae; Kim, Kwang-Mahn
2017-01-01
Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05). In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05). Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility. PMID:28772647
Reproducibility of CT Perfusion Parameters in Liver Tumors and Normal Liver
Ng, Chaan S.; Chandler, Adam G.; Wei, Wei; Herron, Delise H.; Anderson, Ella F.; Kurzrock, Razelle; Charnsangavej, Chusilp
2011-01-01
Purpose: To assess the reproducibility of computed tomographic (CT) perfusion measurements in liver tumors and normal liver and effects of motion and data acquisition time on parameters. Materials and Methods: Institutional review board approval and written informed consent were obtained for this prospective study. The study complied with HIPAA regulations. Two CT perfusion scans were obtained 2–7 days apart in seven patients with liver tumors with two scanning phases (phase 1: 30-second breath-hold cine; phase 2: six intermittent free-breathing cines) spanning 135 seconds. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability–surface area product (PS) for tumors and normal liver were calculated from phase 1 with and without rigid registration and, for combined phases 1 and 2, with manually and rigid-registered phase 2 images, by using deconvolution modeling. Variability was assessed with within-patient coefficients of variation (CVs) and Bland-Altman analyses. Results: For tumors, BF, BV, MTT, and PS values and reproducibility varied by analytical method, the former by up to 11%, 23%, 21%, and 138%, respectively. Median PS values doubled with the addition of phase 2 data to phase 1 data. The best overall reproducibility was obtained with rigidly registered phase 1 and phase 2 images, with within-patient CVs for BF, BV, MTT, and PS of 11.2%, 14.4%, 5.5% and 12.1%, respectively. Normal liver evaluations were similar, except with marginally lower variability. Conclusion: Absolute values and reproducibility of CT perfusion parameters were markedly influenced by motion and data acquisition time. PS, in particular, probably requires data acquisition beyond a single breath hold, for which motion-correction techniques are likely necessary. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110331/-/DC1 PMID:21788525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, W.H.
The minimum cardiac transit times (MTT's) at rest and following sub- maximum stresses were measured in 97 individual examinations of untrained persons and high performance athletes. It turned out that there is a strong dependence on cardiac frequency of the MTT's. This relation can be described quite satisfactorily by a hyperbolic function and in this way allows a frequency correction to be made of the MTT's. The MTT's standardized in this way (MTT.f values) represent the quotient of the end diastolic segment volume/beat volume. In the whole lesser circulatory system almost identical MTT.f values were found for the two groupsmore » under comparison at rest and following stress. In the ventricles, however, and especially so in the left ventricle, the MTT.f values were clearly higher with athletes than with untrained persons, but they strongly decreased after stresses, while the respective values remained almost constant in ordinary persons. (orig./RF)« less
Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.
Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah
2016-01-01
Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.
Sjögren, G; Sletten, G; Dahl, J E
2000-08-01
Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P <.05. Specimens manufactured from materials intended for dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.
2012-01-01
Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548
Biocompatibility of crystalline opal nanoparticles
2012-01-01
Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559
Wang, Jia; Zhong, Mintao; Liu, Ben; Sha, Li; Lun, Yongzhi; Zhang, Wei; Li, Xingyun; Wang, Xiaoli; Cao, Jing; Ning, Anhong; Huang, Min
2015-01-25
The shiitake mushroom Lentinula edodes has health benefits and is used to treat various diseases due to its immunomodulatory and antineoplastic properties. In the present study, the Latcripin-13 domain, isolated from L. edodes, was expressed in Escherichia coli Rosetta-gami(DE3) in the form of inclusion bodies. The Latcripin-13 domain was purified by Ni-His affinity chromatography with high purity and refolded by urea gradient dialysis. The product showed biological activity in A549 cells, a human lung cancer cell line, by flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The MTT assay and the flow cytometry results revealed that there was a great difference between the Latcripin-13 domain-treated group and the control group (p<0.05). Similarly, cell apoptosis observed by transmission electron microscopy (TEM) supported the flow cytometry results. This work demonstrated that the Latcripin-13 domain can induce apoptosis of A549 cells, which will bring new insights into the development of new antitumor drugs in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein
2016-12-01
Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn
In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less
Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M
2011-01-01
Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300
An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein.
Furukawa, Takayuki; Hinou, Hiroshi; Takeda, Seiji; Chiba, Hitoshi; Nishimura, Shin-Ichiro; Hui, Shu-Ping
2017-10-05
Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro. PMID:21888644
Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B
2017-12-01
To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.
Razavi, Shahnaz; Jahromi, Maliheh; Amirpour, Nushin; Khosravizadeh, Zahra
2014-01-01
Background: Antidepressant drugs are commonly employed for anxiety and mood disorders. Sertraline is extensively used as antidepressant in clinic. In addition, adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human adipose-derived stem cells (hADSCs) may be useful for autologous transplantation. Materials and Methods: In the present study, we assessed the effect of antidepressant drug Sertraline on the proliferation and neurogenic differentiation of hADSCs using MTT assay and immunofluorescence technique respectively. Results: MTT assay analysis showed that 0.5 μM Sertraline significantly increased the proliferation rate of hADSCs induced cells (P < 0.05), while immunofluorescent staining indicated that Sertraline treatment during neurogenic differentiation could be decreased the percentage of glial fibrillary acidic protein and Nestin-positive cells, but did not significantly effect on the percentage of MAP2 positive cells. Conclusion: Overall, our data show that Sertraline can be promoting proliferation rate during neurogenic differentiation of hADSCs after 6 days post-induction, while Sertraline inhibits gliogenesis of induced hADSCs. PMID:24800186
Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24.
Kojima, Hajime; Ando, Yoko; Idehara, Kenji; Katoh, Masakazu; Kosaka, Tadashi; Miyaoka, Etsuyoshi; Shinoda, Shinsuke; Suzuki, Tamie; Yamaguchi, Yoshihiro; Yoshimura, Isao; Yuasa, Atsuko; Watanabe, Yukihiko; Omori, Takashi
2012-03-01
A validation study on an in vitro skin irritation assay was performed with the reconstructed human epidermis (RhE) LabCyte EPI-MODEL24, developed by Japan Tissue Engineering Co. Ltd (Gamagori, Japan). The protocol that was followed in the current study was an optimised version of the EpiSkin protocol (LabCyte assay). According to the United Nations Globally Harmonised System (UN GHS) of classification for assessing the skin irritation potential of a chemical, 12 irritants and 13 non-irritants were validated by a minimum of six laboratories from the Japanese Society for Alternatives to Animal Experiments (JSAAE) skin irritation assay validation study management team (VMT). The 25 chemicals were listed in the European Centre for the Validation of Alternative Methods (ECVAM) performance standards. The reconstructed tissues were exposed to the chemicals for 15 minutes and incubated for 42 hours in fresh culture medium. Subsequently, the level of interleukin-1 alpha (IL-1 α) present in the conditioned medium was measured, and tissue viability was assessed by using the MTT assay. The results of the MTT assay obtained with the LabCyte EPI-MODEL24 (LabCyte MTT assay) demonstrated high within-laboratory and between-laboratory reproducibility, as well as high accuracy for use as a stand-alone assay to distinguish skin irritants from non-irritants. In addition, the IL-1α release measurements in the LabCyte assay were clearly unnecessary for the success of this model in the classification of chemicals for skin irritation potential. 2012 FRAME.
Liu, Yunbao; Nair, Muraleedharan G
2010-07-23
Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.
Metabolic responses with endothelin antagonism in a model of insulin resistance.
Berthiaume, Nathalie; Wessale, Jerry L; Opgenorth, Terry J; Zinker, Bradley A
2005-06-01
Atrasentan, an endothelin antagonist, would have beneficial effects on metabolic responses in a model of insulin resistance. Zucker lean or fatty rats were maintained either on regular (lean and fatty control, n = 12) or atrasentan-treated water (5 mg/kg/d, fatty atrasentan, n = 13) for 6 weeks. There was no significant difference in water intake and body weight with the atrasentan-treated group compared with fatty controls. Although atrasentan had no effect on 3-hour fasting glucose levels, it reduced fasting insulin levels between weeks 2 and 4 of treatment by 53% (fatty control vs fatty atrasentan, P < .01). Atrasentan decreased the incremental area under the plasma glucose response curve ( Delta AUC) after a nutritionally complete meal tolerance test (MTT), by 28% in the atrasentan-treated group compared with fatty controls ( P < .05), and decreased the MTT-induced insulin Delta AUC by 63% in treated animals compared with the fatty control group ( P < .01). In addition, atrasentan significantly decreased the MTT-induced glucose-insulin index Delta AUC by 58% in treated rats compared with fatty controls ( P < .01). In summary, in the Zucker fatty rat, atrasentan significantly reduces (1) 3-hour fasting insulin levels at 4 weeks, (2) glucose and insulin MTT-induced Delta AUCs, and (3) the MTT-induced glucose-insulin index Delta AUC. These results demonstrate an improvement in hyperinsulinemia as well as in glucose tolerance and insulin sensitivity with chronic endothelin antagonism in a model of insulin resistance and suggest that chronic endothelin antagonism may have benefits in the treatment of insulin resistance and/or diabetes.
Ruan, Yuhui; Lin, Hong; Yao, Jinrong; Chen, Zhengrong; Shao, Zhengzhong
2011-03-10
In this work, we developed a simple and flexible method to manufacture a 3D porous scaffold based on the blend of regenerated silk fibroin (RSF) and chitosan (CS). No crosslinker or other toxic reagents were used in this method. The pores of resulted 3D scaffolds were connected with each other, and their sizes could be easily controlled by the concentration of the mixed solution. Compared with pure RSF scaffolds, the water absorptivities of these RSF/CS blend scaffolds with significantly enhanced mechanical properties were greatly increased. The results of MTT and RT-PCR tests indicated that the chondrocytes grew very well in these blend RSF/CS porous scaffolds. This suggested that the RSF/CS blend scaffold prepared by this new method could be a promising candidate for applications in tissue engineering. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chi, Seong Geun; Kim, Jun Young; Lee, Weon Ju; Lee, Seok-Jong; Kim, Do Won; Sohn, Mi Yeung; Kim, Gun Wook; Kim, Moon Bum; Kim, Byung Soo
2011-02-01
Although many methods have been developed to treat ear keloids, new therapeutic options are still needed. To determine the effects of topical mitomycin C (MC) on shave-removed wounds and fibroblasts of ear keloids. Fourteen ear keloids in 12 patients were shaved, and MC (1 mg/mL) was applied to the resected bed for 5 minutes. The application was repeated 3 weeks later. All patients were assessed 2, 4, and 6 months after the procedure to evaluate the cosmetic results, recurrence, and postsurgical complications. An in vitro study to determine the effects of MC on fibroblasts of the excised keloids was conducted using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the measurement of total cell counts, and immunoassay of DNA synthesis. Only one recurrence occurred (on the ear helix), and the patients were satisfied with the cosmetic outcomes. The results of the MTT assay, total cell counts, and DNA synthesis immunoassay confirmed the suppressive effects of MC on the keloid fibroblasts. The application of topical MC to the resected bed of shave-removed ear keloids was successful in preventing recurrences and providing an acceptable cosmetic outcome. © 2011 by the American Society for Dermatologic Surgery, Inc.
Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.
Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong
2016-02-06
A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.
Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess
2017-09-01
We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.
The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity
Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je
2011-01-01
Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashayekh, Shahriar; Rajaee, Hajar; Hassan, Zuhir M.
2015-09-15
A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry weremore » used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF{sub 2} crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.« less
[Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids].
Du, Guo-Hua; Wang, Hong-Xu; Yan, Zheng; Liu, Li-Ying; Chen, Ruo-Yun
2017-02-01
It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC₅₀ of 22.4 μmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC₅₀ of 43.1 μmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied. Copyright© by the Chinese Pharmaceutical Association.
Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d’Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico
2016-01-01
Introduction The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. Methods 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Results Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Conclusions Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size. PMID:26824672
Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering.
Karapanagiotidis, Theodoros; Bernhardt, Boris C; Jefferies, Elizabeth; Smallwood, Jonathan
2017-02-15
The capacity to imagine situations that have already happened or fictitious events that may take place in the future is known as mental time travel (MTT). Studies have shown that MTT is an important aspect of spontaneous thought, yet we lack a clear understanding of how the neurocognitive architecture of the brain constrains this element of human cognition. Previous functional magnetic resonance imaging (MRI) studies have shown that MTT involves the coordination between multiple regions that include mesiotemporal structures such as the hippocampus, as well as prefrontal and parietal regions commonly associated with the default mode network (DMN). The current study used a multimodal neuroimaging approach to identify the structural and functional brain organisation that underlies individual differences in the capacity to spontaneously engage in MTT. Using regionally unconstrained diffusion tractography analysis, we found increased diffusion anisotropy in right lateralised temporo-limbic, corticospinal, inferior fronto-occipital tracts in participants who reported greater MTT. Probabilistic connectivity mapping revealed a significantly higher connection probability of the right hippocampus with these tracts. Resting-state functional MRI connectivity analysis using the right hippocampus as a seed region revealed greater functional coupling to the anterior regions of the DMN with increasing levels of MTT. These findings demonstrate that the interactions between the hippocampus and regions of the cortex underlie the capacity to engage in MTT, and support contemporary theoretical accounts that suggest that the integration of the hippocampus with the DMN provides the neurocognitive landscape that allows us to imagine distant times and places. Copyright © 2016 Elsevier Inc. All rights reserved.
Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A
2018-02-08
Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
Background: The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Materials and Methods: In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. Results: The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. Conclusions: It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface. PMID:27761431
Galavi, Hamid Reza; Saravani, Ramin; Shahraki, Ali; Ashtiani, Mojtaba
2016-11-01
Achillea wilhelmsii C. Koch contains a variety of components such as flavonoid. The previous studies showed that flavonoid has anti-cancer properties. The aim of the present study was to determine the anti-proliferative and apoptosis-inducing potential of hydroalcoholic Achillea wilhelmsii C. Koch extract (HAWE) on MCF-7 and MDA-Mb-468 human breast carcinoma cell lines. The anti-proliferative activity of HAWE was evaluated using MTT, flowcytometry by annexin V/PI double staining, and caspase-3 activity. The results of MTT showed that the ED50 of MCF-7 and MDA-Mb-468 was 25μg/ml of HAWE, 48h after treatment. Flowcytometry by annexin V/PI showed that HAWE induced late apoptosis in MCF-7 and early apoptosis in MDA-Mb-468. In addition, the caspase-3 colorimetric method showed that caspase-3 increased in the MDA-Mb-468 after treatment with HAWE. This study found that the hydroalcoholic extract of Achillea wilhelmsii C. Koch induced apoptosis in both the MCF-7 and MDA-Mb-468 human breast carcinoma cell lines.
A rare case of malignant triton tumor in the cerebellopontine angle.
Gong, Li; Liu, Xiao-Yan; Zhang, Wen-Dong; Han, Xiu-Juan; Yao, Li; Zhu, Shao-Jun; Lan, Miao; Li, Yan-Hong; Zhang, Wei
2012-04-19
Malignant triton tumor (MTT) is defined as malignant peripheral nerve sheath tumor with rhabdomyoblastic differentiation. Intracranial MTT is extremely rare, and only four cases have been reported in the literature. Here, we report a case of MTT occurring in the cerebellopontine angle, and describe its histopathological characteristics, immunohistochemical features, and prognosis. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1336227313684480.
Secondary metabolites from the mangrove endophytic fungus Penicillium sp. (SBE-8).
Guo, Zhiyong; Cheng, Fan; Zou, Kun; Wang, Junzhi; She, Zhigang; Lin, Yongcheng
2009-11-01
A new metabolite, 7-hydroxyjanthinone (1), was isolated from the mangrove endophytic fungus Penicillium sp. (SBE-8), together with two known compounds, janthinone (2) and citrinin (3). The structures of these compounds were identified by spectroscopic methods. Compounds 1 and 2 showed no cytotoxicity against KB and KBv cell lines when tested by the MTT method, but compound 3 was weakly active.
Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling
2014-02-01
Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421
Neutral Red versus MTT assay of cell viability in the presence of copper compounds.
Gomez Perez, Mariela; Fourcade, Lyvia; Mateescu, Mircea Alexandru; Paquin, Joanne
2017-10-15
Copper is essential for numerous physiological functions, and copper compounds may display therapeutic as well as cytotoxic effects. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay is a standard test largely used in cytotoxicity studies. This report shows that low micromolar levels of copper compounds such as Cu(II)Urea 2 , Cu(II)Ser 2 and CuCl 2 can interfere with the MTT assay making improper the detection of formazan product of MTT reduction. Comparatively, the Neutral Red assay appears to be sensitive and showing no interference with these compounds. The lactate dehydrogenase alternative assay cannot be used because of inhibitory effect of these copper compounds on the enzyme activity. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-09-01
AWARD NUMBER: W81XWH-16-1-0492 TITLE: Treating Gastrointestinal and Autism Symptoms in Adults with Autism Using Microbiota Transfer Therapy (MTT...DATES COVERED (From - To) Sept 1 2016 to Aug 31, 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Treating Gastrointestinal and Autism Symptoms in...Adults with Autism Using Microbiota Transfer Therapy (MTT) 5b. GRANT NUMBER W81XWH-16-1-0492 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
Roointan, A; Sharifi-Rad, M; Badrzadeh, F; Sharifi-Rad, J
2016-08-29
Lung cancer is the most common cancer among men. Since the main reason of cancer cells immortality is telomerase activity, targeting of such enzyme can be a promising approach in cancer therapy. Curcumin is a safe and efficient anticancer agent in this context, but its applications in cancer therapy are limited because of its hydrophobic structure and low solubility in water. Today, using nanocarriers for delivery of such anticancer agents is a well performed method. Here, we developed and compared the efficiency of two nanocarriers (PLGA-PEG and NIPAAm-MAA) in delivery of curcumin and also in levels of hTERT silencing in lung cancer cell line (calu-6). Scanning electron microscopy, MTT assays and real-time PCR were used for imaging, cytotoxicity testing and measuring the expression levels of hTERT after treatment of cells with different concentrations of free curcumin and curcumin loaded nanocarriers. The MTT results demonstrated that the IC50 values of curcumin loaded nanocarriers were in lower concentrations than free curcumin. The hTERT expression levels were decreased by curcumin loaded PLGA-PEG more than curcumin loaded NIPAAm-MAA and free curcumin. Our results showed that the curcumin loaded PLGA-PEG can be a useful nano based carrier for delivery of anti-cancer agents such as curcumin to fight lung cancer.
Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.
Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona
2017-08-01
Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (p<0.05). Also, essential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.
Ghasaban, S; Atai, M; Imani, M; Zandi, M; Shokrgozar, M-A
2011-11-01
The study investigates the photo-polymerization shrinkage behavior, dynamic mechanical properties, and biocompatibility of cyanoacrylate bioadhesives containing POSS nanostructures and TMPTMA as crosslinking agents. Adhesives containing 2-octyl cyanoacrylate (2-OCA) and different percentages of POSS nanostructures and TMPTMA as crosslinking agents were prepared. The 1-phenyl-1, 2-propanedione (PPD) was incorporated as photo-initiator into the adhesive in 1.5, 3, and 4 wt %. The shrinkage strain of the specimens was measured using bonded-disk technique. Shrinkage strain, shrinkage strain rate, maximum and time at maximum shrinkage strain rate were measured and compared. Mechanical properties of the adhesives were also studied using dynamic mechanical thermal analysis (DMTA). Biocompatibility of the adhesives was examined by MTT method. The results showed that shrinkage strain increased with increasing the initiator concentration up to 3 wt % in POSS-containing and 1.5 wt % in TMPTMA-containing specimens and plateaued out at higher concentrations. By increasing the crosslinking agent, shrinkage strain, and shrinkage strain rate increased and the time at maximum shrinkage strain rate decreased. The study indicates that the incorporation of crosslinking agents into the cyanoacrylate adhesives resulted in improved mechanical properties. Preliminary MTT studies also revealed better biocompatibility profile for the adhesives containing crosslinking agents comparing to the neat specimens. Copyright © 2011 Wiley Periodicals, Inc.
Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis.
Hatamie, Shadie; Ahadian, Mohammad Mahdi; Ghiass, Mohammad Adel; Iraji Zad, Azam; Saber, Reza; Parseh, Benyamin; Oghabian, Mohammad Ali; Shanehsazzadeh, Saeed
2016-10-01
Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and ultraviolet visible spectroscopy. Using ion-coupled plasma optical emission spectroscopy, cobalt concentration in the nanocomposites was found to be 80%. In addition, cytotoxicity of graphene/cobalt nanocomposites were evaluated using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide or MTT assay. MTT viability assay exhibited biocompatibility to L929 mouse fibroblasts cells, under a high dose of 100μg/mL over 24h. Hyperthermia results showed the superior conversion of electromagnetic energy into heat at 350kHz frequency for 0.01 and 0.005g/L of the nanocomposites solution. The measured heat generation and energy transfer results were anticipated by the finite element analysis, conducted for the 3D structure. Magnetic resonance imaging characteristics also showed that negatively charge graphene/cobalt nanocomposites are suitable for T1-weighted imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira
2013-01-01
Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851
Effects of Four Formulations of Prostaglandin Analogs on Eye Surface Cells. A Comparative Study
Pérez-Roca, Fernando; Rodrigo-Morales, Esther; Garzón, Ingrid; Oliveira, Ana-Celeste; Martín-Piedra, Miguel-Ángel; Carriel, Víctor; Ortiz-Pérez, Ana-Isabel; Sánchez-Montesinos, Indalecio; Campos, Antonio; Alaminos, Miguel
2015-01-01
We evaluated the cytotoxic effects of four prostaglandin analogs (PGAs) used to treat glaucoma. First we established primary cultures of conjunctival stromal cells from healthy donors. Then cell cultures were incubated with different concentrations (0, 0.1, 1, 5, 25, 50 and 100%) of commercial formulations of bimatoprost, tafluprost, travoprost and latanoprost for increasing periods (5 and 30 min, 1 h, 6 h and 24 h) and cell survival was assessed with three different methods: WST-1, MTT and calcein/AM-ethidium homodimer-1 assays. Our results showed that all PGAs were associated with a certain level of cell damage, which correlated significantly with the concentration of PGA used, and to a lesser extent with culture time. Tafluprost tended to be less toxic than bimatoprost, travoprost and latanoprost after all culture periods. The results for WST-1, MTT and calcein/AM-ethidium homodimer-1 correlated closely. When the average lethal dose 50 was calculated, we found that the most cytotoxic drug was latanoprost, whereas tafluprost was the most sparing of the ocular surface in vitro. These results indicate the need to design novel PGAs with high effectiveness but free from the cytotoxic effects that we found, or at least to obtain drugs that are functional at low dosages. The fact that the commercial formulation of tafluprost used in this work was preservative-free may support the current tendency to eliminate preservatives from eye drops for clinical use. PMID:26067827
Cytotoxicity investigation of a new hydroxyapatite scaffold with improved structural design.
Sjerobabin, Nikola; Čolović, Božana; Petrović, Milan; Marković, Dejan; Živković, Slavoljub; Jokanović, Vukoman
2016-01-01
Biodegradable porous scaffolds are found to be very promising bone substitutes, acting as a temporary physical support to guide new tissue regeneration, until the entire scaffold is totally degraded and replaced by the new tissue. The aim of this study was to investigate cytotoxicity of a synthesized calcium hydroxyapatitebased scaffold, named ALBO-OS, with high porosity and optimal topology. The ALBO-OS scaffold was synthesized by the method of polymer foam template. The analysis of pore geometry and scaffold walls’ topography was made by scanning electron microscope (SEM). The biological investigations assumed the examinations of ALBO-OS cytotoxicity to mouse L929 fibroblasts, using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) and lactate dehydrogenase (LDH) tests and inverse phase microscopy. The SEM analysis showed high porosity with fair pore distribution and interesting morphology from the biological standpoint. The biological investigations showed that the material is not cytotoxic to L929 cells. Comparison of ALBO-OS with Bio-Oss, as the global gold standard as a bone substitute, showed similar results in MTT test, while LDH test showed significantly higher rate of cell multiplication with ALBO-OS. The scaffold design from the aspect of pore size, distribution, and topology seems to be very convenient for cell adhesion and occupation, which makes it a promising material as a bone substitute. The results of biological assays proved that ALBO-OS is not cytotoxic for L929 fibroblasts. In comparison with Bio-Oss, similar or even better results were obtained.
41 CFR 300-80.8 - What reports are required for a test program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management (Attention MTT), Washington, DC 20405. The Administrator or designee may terminate the test... Governmentwide Policy, Office of Travel, Transportation and Asset Management (Attention MTT), Washington, DC...
Torii, Masae; Fukui, Toshifumi; Inoue, Masashi; Umetani, Keiji; Shirai, Mikiyasu; Inagaki, Tadakatsu; Tsuchimochi, Hirotsugu; Toi, Masakazu
2017-01-01
Tumor vasculature is characterized by morphological and functional abnormalities. However, analysis of the dynamics in blood flow is still challenging because of limited spatial and temporal resolution. Synchrotron radiation (SR) microangiography above the K-edge of the iodine contrast agent can provide high-contrast imaging of microvessels in time orders of milliseconds. In this study, mice bearing the human breast cancer cell lines MDAMB231 and NOTCH4 overexpression in MDAMB231 (MDAMB231NOTCH4+) and normal mice were assessed using SR microangiography. NOTCH is transmembrane protein that has crucial roles for vasculogenesis, angiogenesis and tumorigenesis, and NOTCH4 is considered to be a cause of high-flow arteriovenous shunting. A subgroup of mice received intravenous eribulin treatment, which is known to improve intratumor core circulation (MDAMB231_eribulin). Microvessel branches from approximately 200 µm to less than 20 µm in diameter were observed within the same visual field. The mean transition time (MTT) was measured as a dynamic parameter and quantitative analysis was performed. MTT in MDAMB231 was longer than that in normal tissue, and MDAMB231NOTCH4+ showed shorter MTT [5.0 ± 1.4 s, 3.6 ± 1.0 s and 3.6 ± 1.1 s (mean ± standard deviation), respectively]. After treatment, average MTT was correlated to tumor volume (r = 0.999) in MDAMB231_eribulin, while in contrast there was no correlation in MDAMB231 (r = −0.026). These changes in MTT profile are considered to be driven by the modulation of intratumoral circulation dynamics. These results demonstrate that a SR microangiography approach enables quantitative analysis of morphological and dynamic characteristics of tumor vasculature in vivo. Further studies will reveal new findings concerning vessel function in tumors. PMID:28862627
Lassau, N; Coiffier, B; Kind, M; Vilgrain, V; Lacroix, J; Cuinet, M; Taieb, S; Aziza, R; Sarran, A; Labbe-Devilliers, C; Gallix, B; Lucidarme, O; Ptak, Y; Rocher, L; Caquot, L M; Chagnon, S; Marion, D; Luciani, A; Feutray, S; Uzan-Augui, J; Benatsou, B; Bonastre, J; Koscielny, S
2016-10-01
Dynamic contrast-enhanced ultrasonography (DCE-US) has been used for evaluation of tumor response to antiangiogenic treatments. The objective of this study was to assess the link between DCE-US data obtained during the first week of treatment and subsequent tumor progression. Patients treated with antiangiogenic therapies were included in a multicentric prospective study from 2007 to 2010. DCE-US examinations were available at baseline and at day 7. For each examination, a 3 min perfusion curve was recorded just after injection of a contrast agent. Each perfusion curve was modeled with seven parameters. We analyzed the correlation between criteria measured up to day 7 on freedom from progression (FFP). The impact was assessed globally, according to tumor localization and to type of treatment. The median follow-up was 20 months. The mean transit time (MTT) evaluated at day 7 was the only criterion significantly associated with FFP (P = 0.002). The cut-off point maximizing the difference between FFP curves was 12 s. Patients with at least a 12 s MTT had a better FFP. The results according to tumor type were significantly heterogeneous: the impact of MTT on FFP was more marked for breast cancer (P = 0.004) and for colon cancer (P = 0.025) than for other tumor types. Similarly, the differences in FFP according to MTT at day 7 were marked (P = 0.004) in patients receiving bevacizumab. The MTT evaluated with DCE-US at day 7 is significantly correlated to FFP of patients treated with bevacizumab. This criterion might be linked to vascular normalization. 2007-A00399-44. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Abel, Sean D A; Baird, Sarah K
2018-02-15
Honey is a complex biological substance, consisting mainly of sugars, phenolic compounds and enzymes. Using five quick and accessible assays for measuring honey's cytotoxicity in vitro, we found honey is cytotoxic towards prostate cancer cells PC3 and DU145. However, the level of cell death varied with assay. The MTT assay was confounded by the reduction of the MTT reagent by honey's reducing sugars and phenolic compounds, and the lactate dehydrogenase assay was invalidated by honey oxidising the enzyme cofactor NADH. The sulforhodamine B assay gave valid results, but measures only protein content, providing no information about cell death in the remaining cells. The trypan blue assay and a microscope-based propidium iodide/Hoechst staining assay assess only late stage membrane permeability. However, the propidium iodide/Hoechst assay gives morphological information about cell death mechanism. A combination of the sulforhodamine B and propidium iodide/Hoechst assays would provide the most accurate quantification of honey cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.
2017-02-01
We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.
Xiaona, Zhao; Jianzhu, Liu
2014-03-15
To select the antiviral active site of Scutellaria polysaccharide (SPS), safe concentrations of crude total Scutellaria polysaccharide (SPS(t)) and fractional polysaccharide SPS₅₀, SPS₆₀, SPS₇₀ and SPS₈₀ on chicken embryo fibroblast (CEF) were first compared using the MTT method. Then, SPS(t), SPS₅₀, SPS₆₀, SPS₇₀, and SPS₈₀ at five concentrations within the safe concentration, together with Newcastle disease virus (NDV), were added to the cultivating system of CEF in three models: pre-addition of polysaccharide, post-addition of polysaccharide, and simultaneous addition of polysaccharides and NDV after mixing. The effects of SPS on the cellular infectivity of NDV (A₅₇₀ value and the highest viral inhibitory rate) were compared using the MTT method. At appropriate concentrations, the five polysaccharides could significantly inhibit the infectivity of NDV on CEF. Among the five polysaccharide groups, the SPS₈₀ group exhibited the highest viral inhibitory rate in the three sample-addition modes. This finding indicates that SPS₈₀ possesses the best efficacy as a component of antiviral polysaccharide drug. © 2013 Society of Chemical Industry.
Kainz, B; Gülich, M; Engel, E-M; Jäckel, W H
2006-04-01
The AOK Baden-Württemberg health insurance fund initiated a study on the outpatient rehabilitation of patients with chronic low back pain, aimed at improving the treatment concept for its insurees with chronic low back pain (START). This model project was scientifically guided by the Hochrhein-Institute in Bad Säckingen. The paper compares the effectiveness of Enhanced Outpatient Physiotherapy (Erweiterte Ambulante Physiotherapie, EAP), Outpatient Rehabilitation (Ambulante Rehabilitation, AR) and Medical Training Therapy (Medizinische Trainingstherapie, MTT) in patients with low back pain. In seven regions in Baden-Württemberg, one of these three intervention forms was provided to the patients. A total of 1,274 patients were included in the study. The AOK Baden-Württemberg patients receiving treatment in one of the three intervention forms were seriously restricted in both the physical dimension of their health status and in their physical mobility in everyday life and at the workplace. Besides, they frequently reported considerable psychosocial strain. The three interventions led to significant and relevant decreases in pain intensity and to an improved health-related quality of life. There were no significant differences between the various treatments in terms of effectiveness. The patients shared an equally high satisfaction with the treatment received. In MTT, the total therapy length of 15 weeks was by far longer than in AR and EAP (about 5 and 8 weeks). Unlike AR and, in parts, EAP, patients may continue to work while participating in MTT. Therefore an immediate therapy start within a week was more likely possible in MTT (59 %) than in AR (10 %) or EAP (23 %). In evaluating the results a number of restrictions have to be considered. Nevertheless, based on our research findings, the following can be concluded: MTT is a suitable therapy concept in patients with low back pain characterized by a rapid start and-- compared to the other two concepts-- by lower therapy costs. MTT might represent a meaningful therapy element also in new forms of provision such as integrated services. Patients showing severe psychosocial strain should be assigned to an interdisciplinary therapy as it is provided by inpatient and outpatient rehabilitation facilities. For effective differential assignment to the various programmes, realization of a standardized rehab assessment is an important precondition.
Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices
NASA Astrophysics Data System (ADS)
Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min
2017-04-01
Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.
How young water fractions can delineate travel time distributions in contrasting catchments
NASA Astrophysics Data System (ADS)
Lutz, Stefanie; Zink, Matthias; Merz, Ralf
2017-04-01
Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.
Yousofi, Alireza; Daneshmandi, Saeed; Soleimani, Neda; Bagheri, Kambiz; Karimi, Mohammad Hossein
2012-04-01
Parsley (Petroselinum crispum) has been traditionally used for the treatment of allergy, autoimmune and chronic inflammatory disorders. The present study aims to investigate the suppressive effects of parsley essential oil on mouse splenocytes and macrophages cells. Parsley essential oil was harvested. It was treated on splenocytes and phytohemagglutinin (PHA) (5 μg/mL) and lipopolysaccharide (LPS) (10 μg/mL) activated splenocytes in different concentrations (0.01-100 μg/mL); then, proliferation was assayed by methyl tetrazolium (MTT) method. Treatment was also performed on the macrophages and LPS-stimulated macrophages (10 μg/ml) and the nitrite levels were measured using the diazotization method based on the Griess reaction and MTT assay for evaluation of the viability of the macrophages. Proliferation of splenocytes in all the treated groups was suppressed. In PHA-stimulated splenocytes, the suppression was seen in all the examined concentrations (0.01-100 μg/mL), while in the unstimulated and LPS-stimulated groups suppression was relatively dose dependent and in high concentration (10 and100 μg/mL).The viability of the macrophages in all groups was the same and in the unstimulated groups; NO suppression was significant in all the concentrations but in LPS-stimulated groups, it was significant in the three higher concentrations (1, 10, and100 μg/mL). The results of this study indicate that parsley essential oil may be able to suppress the cellular and humoral immune response. It can also suppress both NO production and the functions of macrophages as the main innate immune cells. These results may suggest that parsley essential oil is a proper suppressant for different applications.
Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua
2017-01-01
Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073
Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J
2017-09-26
We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 -5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C 10 E 4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.
Development of a high-throughput colorimetric Zika virus infection assay.
Müller, Janis A; Harms, Mirja; Schubert, Axel; Mayer, Benjamin; Jansen, Stephanie; Herbeuval, Jean-Philippe; Michel, Detlef; Mertens, Thomas; Vapalahti, Olli; Schmidt-Chanasit, Jonas; Münch, Jan
2017-04-01
Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.
Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast
NASA Astrophysics Data System (ADS)
Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman
2018-06-01
In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.
Yang, Delin; Huo, Qian; Luan, Ting; Wang, Jiansong; Tang, Zhaoran; Wang, Haifeng
2016-08-01
In order to investigate how valsartan-the angiotensin II 1 receptor (AT1R) antagonist-affects the expressions of AT1R antigen, matrix metalloproteinases (MMPs) -2 and -9 in carcinoma of urinary bladder (CUB) cell lines with different invasive abilities. Three cell lines, EJ-M3, EJ, and BIU-87, with different invasive abilities were cultured and treated with valsartan. Cell proliferation states were determined by the methyl thiazolyl tetrazolium (MTT) method. The expressions at protein level and gene level were determined by Western blot and real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR), respectively. The invasive abilities and migratory abilities of the three cell lines were determined by Transwell in vitro cell invasion assay and wound healing assay, respectively. MTT results show that valsartan can inhibit the proliferation of CUB cells, and the inhibition effect is enhanced with the increase of concentration. AngII promotes the MMP2 and MMP9 expressions (both protein and gene levels) in CUB cells through AT1R, but their expressions can be effectively inhibited by valsartan, the AngII inhibitor. AngII inhibitor may become a novel drug that can inhibit CUB metastasis and prolong the survival of CUB patients.
Babaee, Fatemeh; Safaeian, Leila; Zolfaghari, Behzad; Haghjoo Javanmard, Shaghayegh
2016-01-01
Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of P. eldarica extract was determined using Folin-Ciocalteu method. The cytotoxicity of P. eldarica extract (25-1000 µg/ml) on HUVECs was assessed using 3-(4,5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method. Cytoprotective effect of P. eldarica extract (25-500 µg/ml) on H2O2-induced oxidative stress was also evaluated by MTT assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were measured in pretreated cells. Results: The total phenolic content of P. eldarica extract was estimated as 37.04±1.8% gallic acid equivalent. P. eldarica extract (25-1000 µg/ml) had no cytotoxic effect on HUVECs viability. The pretreatment of HUVECs with P. eldarica extract at the concentrations of 50-500 µg/ml significantly reduced the cytotoxicity of H2O2. P. eldarica extract decreased hydroperoxides concentration and increased FRAP value in intra-cellular fluid at the concentration range of 100-500 µg/ml and in extra-cellular fluid at the concentration range of 25-500 µg/ml. Conclusions: This study revealed the antioxidant and cytoprotective effects of P. eldarica extract against H2O2-induced oxidative stress in HUVECs. Concerning the high content of phenolic compounds in P. eldarica, more research is needed to evaluate its clinical value in endothelial dysfunction and in other oxidative conditions. PMID:26931383
Ford, C H; Richardson, V J; Tsaltas, G
1989-01-01
We have routinely used a [3H]-uridine microplate assay for assessing chemosensitivity. A colorimetric assay with the advantages of safety, cost and simplicity has previously been described and relies on the ability of living cells to reduce a soluble tetrazolium salt, 3-4,5-dimethylthiazol-2,5-diphenyl-tetrazolium bromide (MMT), into an insoluble formazan precipitate. We compared the chemosensitivity of 14 human tumour cell lines of colonic, lung and cervical carcinoma origin to doxorubicin, vindesine or vindesine immunoconjugates in both the [3H]-uridine assay and a modified MTT assay to evaluate whether we could change to the non-radiolabelled method. Correlation between the concentration of drug causing 50% inhibition of cell growth (IC50) for these agents between the two assays was very poor. However, taking account of recent reports in the literature, we modified the MTT assay by removing serum-containing medium and using dimethyl sulphoxide to solubilise the formazan precipitate. This considerably improved the correlation between the assays for doxorubicin (r = 0.871; P = 0.001) and vindesine (r = 0.981; P less than 0.001). Our data indicates that the MTT assay can be used to replace the [3H]-uridine assay for chemosensitivity screening, but further modifications are necessary to improve the sensitivity and decrease the problem of cell loss after washing, which was noted with some adherent cell lines.
Oufir, L E; Barry, J L; Flourié, B; Cherbut, C; Cloarec, D; Bornet, F; Galmiche, J P
2000-08-01
To assess the effects of drug-induced changes in mean transit time (MTT) on the activity of human fecal flora in vitro. The activity of fecal flora was estimated by the ability of a fecal inoculum to ferment a substrate (beet fiber) in vitro in a batch system for 24 h. The inoculum was collected from 8 healthy volunteers studied during three 3-week randomized periods, who received a controlled diet alone (control period) or the same diet with either cisapride or loperamide. Cisapride and loperamide were adjusted in order to halve and double MTT measured during the control period. At the end of each period, the percentage disappearance of the initial added substrate and the concentration and the profile of short-chain fatty acids (SCFAs), were determined. In the control period, the pH of the inoculum and SCFA concentration were inversely related to MTT (P=0.0001). Individual SCFA production was also significantly related to MTT (P<0.01). Cisapride-reduced transit time was associated with a significant rise in the concentrations of total SCFAs (P<0.05), propionic and butyric acids (P<0.05) and the percentage substrate disappearance (P<0.05). Inverse relations were observed during the loperamide period. Moreover, MTT was inversely related to the percentage substrate disappearance (P<0.001), SCFA production (P<0.001) and butyrate production (P<0.0005). Changes in MTT alter bacterial activity and modify the bacterial pathways affecting the proportion of individual SCFAs. European Journal of Clinical Nutrition (2000) 54, 603-609
NASA Astrophysics Data System (ADS)
He, Kui; Ma, Ying; Yang, Bin; Liang, Caishuang; Chen, Xiaoming; Cai, Changqun
2017-02-01
A new method to evaluate the anticancer activity at the molecular level has been developed. In our assay, the interaction between alkylating anticancer drugs-Fe3O4/CA with DNA has been investigated for the Resonance Light Scattering (RLS) signal enhancement. Water-based nano-Fe3O4, as a probe, has the ability of good solubility, biodegradability and low bulk resistivity etc. The experimental results show that, the activity order of three kinds of drugs is Nimustine (ACNU) > Semustine (Me-CCNU) > Chlormethine (HN2), which is satisfied with the results of the cell apoptosis experiment and the IC50 by MTT method. This assay is simple, sensitive and high efficient. And the theoretical basics for the development of new anticancer drugs as well as the assessments of their efficacy to cure breast and hepatic cancer have been provided.
Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.
2016-01-01
Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.
Kling, Beata; Bücherl, Daniel; Palatzky, Peter; Matysik, Frank-Michael; Decker, Michael; Wegener, Joachim; Heilmann, Jörg
2014-03-28
A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput.
The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production
Aramwit, Pornanong; Kanokpanont, Sorada; Nakpheng, Titpawan; Srichana, Teerapol
2010-01-01
Silk sericin (SS) can accelerate cell proliferation and attachment; however, SS can be extracted by various methods, which result in SS exhibiting different physical and biological properties. We found that SS produced from various extraction methods has different molecular weights, zeta potential, particle size and amino acid content. The MTT assay indicated that SS from all extraction methods had no toxicity to mouse fibroblast cells at concentrations up to 40 μg/mL after 24 h incubation, but SS obtained from some extraction methods can be toxic at higher concentrations. Heat-degraded SS was the least toxic to cells and activated the highest collagen production, while urea-extracted SS showed the lowest cell viability and collagen production. SS from urea extraction was severely harmful to cells at concentrations higher than 100 μg/mL. SS from all extraction methods could still promote collagen production in a concentration-dependent manner, even at high concentrations that are toxic to cells. PMID:20559510
Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors.
Dutta Gupta, Sayan; Snigdha, D; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M
2014-04-01
Heat shock protein 90 (Hsp90) is an emerging attractive target for the discovery of novel cancer therapeutic agents. Docking methods are powerful in silico tools for lead generation and optimization. In our mission to rationally develop novel effective small molecules against Hsp90, we predicted the potency of our designed compounds by Sybyl surflex Geom X docking method. The results of the above studies revealed that Schiff bases derived from 2,4-dihydroxy benzaldehyde/5-chloro-2,4-dihydroxy benzaldehyde demonstrated effective binding with the protein. Subsequently, a few of them were synthesized (1-10) and characterized by IR, (1)HNMR and mass spectral analysis. The synthesized molecules were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The anticancer studies were performed by 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The software generated results was in satisfactory agreement with the evaluated biological activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Jahromi, Maliheh; Razavi, Shahnaz; Amirpour, Nushin; Khosravizadeh, Zahra
2016-01-01
Background: Some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. Furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human Adipose-Derived Stem Cells (hAD-SCs) may be a suitable source for regenerative medical applications. Since there is no evidence for the effect of Paroxetine as the most commonly prescribed antidepressant drug for neurogenic potential of hADSCs, an attempt was made to determine the effect of Paroxetine on proliferation and neural differentiation of hADSCs. Methods: ADSCs were isolated from human abdominal fat. These cells differentiated to neuron-like cells and were treated with Paroxetine. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and immunofluorescence technique were used for assessment of cell proliferation and neurogenic differentiation potential of induced cells, respectively. Results: MTT assay analysis showed that Paroxetine significantly increased the proliferation rate of induced hADSCs (p<0.05), while immunofluorescent staining indicated that Paroxetine treatment during neurogenic differentiation could enhance the mean percentage of Nestin and MAP2 (Microtubule-associated protein-2) positive cells but the mean percentage of GFAP (Glial acidic fibrillary protein) positive cells significantly decreased relative to control group (p<0.05). Conclusion: Our results provide evidence that Paroxetine can promote proliferation and differentiation rate during neurogenic differentiation of hADSCs. Moreover, Paroxetine can reduce gliogenesis of induced hADSCs during neurogenic differentiation. PMID:27920882
Shariati, Molood; Hajigholami, Samira; Malekshahi, Ziba Veisi; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid
2018-01-01
Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). Methods: MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. Results: MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. Conclusion: The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.
Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3
Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saeideh
2011-01-01
INTRODUCTION: Honey is a common household product with many medicinal uses described in traditional medicine. Only recently has its antioxidant properties and preventive effects against disease been highlighted. Chrysin is a natural flavone commonly found in honey that has been shown to be an antioxidant agent. In this study, we investigated the antiproliferative and apoptotic effects of honey and chrysin on cultured human prostate cancer cells. METHODS: Cells were cultured in RPMI medium and treated with different concentrations of honey and chrysin for three consecutive days. Cell viability was quantitated by the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. RESULTS: The MTT assay revealed that both compounds had an antiproliferative effect on PC-3 cells in a dose- and time-dependent manner. The IC50 values for honey and chrysin against PC-3 cells were 2.5% and 24.5% after 48 h and 1.8% and 8.5% after 72 h, respectively. Chrysin induced apoptosis in PC-3 cells, as determined by flow cytometry. CONCLUSION: Our results suggest that honey has anti-proliferative effects on prostate cancer cells and the effects are mainly due to chrysin. Therefore, chrysin may be a potential compound for both cancer prevention and treatment. Further in vivo investigation is needed to support the use of chrysin in cancer therapy. PMID:21808878
Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong
2014-03-01
To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p < 0.05). All of the tested denture adhesives showed mild to moderate cytotoxicity to primary HOKs (p < 0.001), whereas none of three was toxic to L929 cells (p > 0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p < 0.01). Denture adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M
2014-12-01
Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg(-1)·day(-1)) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (-1.41 ± 1.11 (-1.98, -0.84) g·kg(-1)·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.
Baker, Stuart G
2018-02-01
When using risk prediction models, an important consideration is weighing performance against the cost (monetary and harms) of ascertaining predictors. The minimum test tradeoff (MTT) for ruling out a model is the minimum number of all-predictor ascertainments per correct prediction to yield a positive overall expected utility. The MTT for ruling out an added predictor is the minimum number of added-predictor ascertainments per correct prediction to yield a positive overall expected utility. An approximation to the MTT for ruling out a model is 1/[P (H(AUC model )], where H(AUC) = AUC - {½ (1-AUC)} ½ , AUC is the area under the receiver operating characteristic (ROC) curve, and P is the probability of the predicted event in the target population. An approximation to the MTT for ruling out an added predictor is 1 /[P {(H(AUC Model:2 ) - H(AUC Model:1 )], where Model 2 includes an added predictor relative to Model 1. The latter approximation requires the Tangent Condition that the true positive rate at the point on the ROC curve with a slope of 1 is larger for Model 2 than Model 1. These approximations are suitable for back-of-the-envelope calculations. For example, in a study predicting the risk of invasive breast cancer, Model 2 adds to the predictors in Model 1 a set of 7 single nucleotide polymorphisms (SNPs). Based on the AUCs and the Tangent Condition, an MTT of 7200 was computed, which indicates that 7200 sets of SNPs are needed for every correct prediction of breast cancer to yield a positive overall expected utility. If ascertaining the SNPs costs $500, this MTT suggests that SNP ascertainment is not likely worthwhile for this risk prediction.
NASA Astrophysics Data System (ADS)
Peralta-Tapia, A.; Soulsby, C.; Tetzlaff, D.; Sponseller, R.; Bishop, K.; Laudon, H.
2016-12-01
Understanding how water moves through catchments - from the time it enters as precipitation to when it exits via streamflow - is of fundamental importance to understanding hydrological and biogeochemical processes. A basic descriptor of this routing is the Transit Time Distribution (TTD) which is derived from the input-output behavior of conservative tracers, the mean of which represents the average time elapsed between water molecules entering and exiting a flow system. In recent decades, many transit time studies have been conducted, but few of these have focused on snow-dominated catchments. We assembled a 10-year time series of isotopic data (δ18O and δ2H) for precipitation and stream water to estimate the characteristics of the transit time distribution in a boreal catchment in northern Sweden. We applied lumped parameter models using a gamma distribution to calculate the Mean Transit Time (MTT) of water over the entire period of record and to evaluate how inter-annual differences in transit times relate to hydroclimatic variability. The best fit MTT for the complete 10-year period was 650 days (Nash-Sutcliff Efficiency = 0.65), while the best fit inter-annual MTT ranged from 300 days up to 1200 days. Whilst there was a weak negative correlation between mean annual total precipitation and the annual MTT, this relationship was stronger (r2 = 0.53, p = 0.02) for the annual rain water input. This strong connection between the MTT and annual rainfall, rather than snowmelt, has strong implications for understanding future hydrological and biogeochemical processes in boreal regions, given that predicted warmer winters would translate into a greater proportion of precipitation falling as rain and thus shorter MTT in catchments. Such a change could have direct implications for the export of solutes and pollutants.
Study of interaction of GNR with glioblastoma cells
NASA Astrophysics Data System (ADS)
Hole, Arti; Cardoso-Avila, P. E.; Sridharan, Sangita; Sahu, Aditi; Nair, Jyothi; Dongre, Harsh; Goda, Jayant S.; Sawant, Sharada; Dutt, Shilpee; Pichardo-Molina, J. L.; Murali Krishna, C.
2018-01-01
Radiation resistance is one of the major causes of recurrence and failure of radiotherapy. Different methods have been used to increase the efficacy of radiation therapy and at the same time restrict the radiation resistivity. From last few years nanoparticles have played a key role in the enhancement of radiosensitization. The densely packed nanoparticles can selectively scatter or absorb the high radiations, which allow better targeting of cellular components within the tumor hence resulting in increased radiation damage to the cancer cells. Glioblastoma multiforme (GBM) is one of the highly radioresistant brain cancer. Current treatment methods are surgical resection followed by concurrent chemo and radiation therapy. In this study we have used in-house engineered gold nano rodes (GNR) and analyzed their effect on U-87MG cell lines. MTT assay was employed to determine the cytotoxic concentration of the nanoparticles. Raman spectroscopy was used to analyze the effect of gold nanoparticles on glioma cells, which was followed by transmission electron microscopic examinations to visualize their cellular penetration. Our data shows that GNR were able to penetrate the cells and induce cytotoxicity at the concentration of 198 μM as determined by MTT assay at 24 post GNP treatment. Additionally, we show that Raman spectroscopy, could classify spectra between untreated and cells treated with nanoparticles. Taken together, this study shows GNR penetration and cytotoxicity in glioma cells thereby providing a rationale to use them in cancer therapeutics. Future studies will be carried out to study the biological activity of the formulation as a radiosensitizer in GBM.
Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben
2017-08-22
A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.
Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.
2014-01-01
Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.
Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.
Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J
2016-07-28
The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD strain IA production resulted in overexpression of a putative cytosolic citrate synthase citB. Upon overexpression of citB we have achieved titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h in controlled batch cultivations. By overexpressing citB we have also diminished side product formation and optimized the production pathway towards IA.
NASA Astrophysics Data System (ADS)
Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark
2010-05-01
Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations and ignition probability grids (1000 x 1000 m) built from historical fire data (1995-2007). The simulation outputs were then examined to understand relationships between burn probability and specific vegetation types and ignition sources. Wildfire threats to specific values of human interest were quantified to map landscape patterns of wildfire risk. The simulation outputs also allowed us to differentiate between areas of the landscape that were progenitors of fires versus "victims" of large fires. The results provided spatially explicit data on wildfire likelihood and intensity that can be used in a variety of strategic and tactical planning forums to mitigate wildfire threats to human and other values in the Mediterranean Basin.
Sulfated modification and anti-tumor activity of laminarin.
Ji, Chen-Feng; Ji, Yu-Bin; Meng, DE-You
2013-11-01
The aim of this study was to investigate the sulfated modification of laminarin and the changes in structure and antitumor activity. The chlorosulfonic acid-pyridine method was applied for sulfated modification. The molecular weights of laminarin and laminarin sulfate (LAMS) were measured by high-performance liquid chromatography (HPLC), and IR and NMR spectra were also recorded. The surface conformations of laminarin and LAMS were observed with a scanning electron microscope. The antitumor activities of the two polysaccharides were also evaluated using an MTT assay. LAMS with a sulfate content of 45.92% and a molecular weight of 16,000 was synthesized. The IR spectra of laminarin and LAMS showed the characteristic absorption peaks of a polysaccharide, and LAMS also had the characteristic absorption peaks of sulfate moieties. The NMR spectra showed that laminarin and LAMS had β-(1→3) glycosidic bonds forming the main chain, and sulfate substitution was at the hydroxyl groups of C 2 and C 6 . Under the scanning electron microscope, there were clear differences in surface conformation between laminarin and LAMS; laminarin was cloud-like and spongy, while LAMS was block-like and flaky. The MTT results showed that laminarin and LAMS had inhibitory effects on LoVo cell growth, and the antitumor activity of LAMS was higher than that of laminarin at the same concentration. This suggests that sulfated modification was able to change the laminarin structure and markedly enhance the antitumor activity.
Chen, Pei-Ru; Chen, Ming-Hong; Sun, Jui-Sheng; Chen, Mei-Hsiu; Tsai, Chien-Chen; Lin, Feng-Huei
2004-11-01
We previously developed a biodegradable composite with potentially good biocompatibility composed by tricalcium phosphate and gluataraldehyde cross-linking gelatin (GTG) with good mechanical property feasible for surgical manipulation. The purpose of this study was to evaluate the feasibility of immobilizing nerve growth factor (NGF) onto the composite (GTG) with carbodiimide (GEN composite). Cultured Schwann cells were seeded onto the GTG and GEN composites. For comparison, GTG membrane soaked in NGF solution without carbodiimide (GN composite) as cross-linking agent was also used to culture Schwann cells. Cell morphology was observed by a scanning electron microscope. Cell survival, cytotoxicity and cellular metabolism on the NGF-grafted GTG membrane were assessed quantitatively in terms of cell protein content, leakage of cytosolic lactate dehydrogenase (LDH) activity and by the well-established MTT assay, respectively. The result of LDH study did not show significant difference among GTG, NGF-modified GTG and control group. This indicated that GTG composite, whether cross-linking with NGF or not, has little cytotoxic effect. Comparing the protein content and MTT assay among GEN, GN composite and control group, the data confirmed more attachment of Schwann cells on GEN composite. Although GTG cross-linking with NGF did not promote Schwann cell proliferation, the techniques we used in this study provided a method to fabricate a novel biomaterial incorporation of Schwann cells and covalently immobilized NGF.
Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity
Xu, Dan Dan; Hoeven, Robin; Rong, Rong; Cho, William Chi-Shing
2012-01-01
Rhynchophylline (Rhy) is an active component isolated from species of the genus Uncaria which has been used for the treatment of ailments to the central nervous system in traditional Chinese medicine. Besides acting as a calcium channel blocker, Rhy was also reported to be able to protect against glutamate-induced neuronal death. We thus hypothesize that Rhy may have neuroprotective activity against methamphetamine (MA). The primary neurons were cultured directly from the cerebral cortex of neonatal rats, acting as in vitro model in the present study. The neurotoxicity of MA and the protective effect of Rhy were evaluated by MTT assay. The effects of MA, Rhy or their combination on intracellular free calcium concentration ([Ca2+]i) were determined in individual neocortical neurons by the Fluo-3/AM tracing method. The MTT assay demonstrated that MA has a dose-dependent neurotoxicity in neuronal cultures. The addition of Rhy prior to the exposure to MA prevented neuronal death. Time course studies with the Fluo-3/AM probe showed that Rhy significantly decreased neuronal [Ca2+]i which was elevated by the exposure to MA. Our results suggested that Rhy can protect the neuronal cultures against MA exposure and promptly attenuate intracellular calcium overload triggered by MA challenge. This is the first report demonstrating an inhibitory effect of Rhy against MA impairment in cultured neurons in vitro. PMID:22619690
Lucidumol D, a new lanostane-type triterpene from fruiting bodies of Reishi (Ganoderma lingzhi).
Satria, Dedi; Amen, Yhiya; Niwa, Yasuharu; Ashour, Ahmed; Allam, Ahmed E; Shimizu, Kuniyoshi
2018-02-19
A new lanostane-type triterpenoid, lucidumol D (1) was isolated from the fruiting bodies of Ganoderma lingzhi. Its structure was elucidated on the basis of extensive 1D- and 2D-NMR studies as well as mass spectrometry. The cytotoxicity of lucidumol D against proliferation of several cancer cells were assayed by using MTT method and the obtained result suggested selective anti-proliferative and cytotoxic effects against MCF-7, HepG2, HeLa, Caco-2, and HCT-116. In comparison to lucidumol C (2) isolated previously by our group, the structure-activity relationship indicated that carbonyl function at C-11 is necessary to enhance the cytotoxicity.
Niu, Lidan; Zhou, Yingfeng; Sun, Bing; Hu, Junling; Kong, Lingyu; Duan, Sufang
2013-01-01
The effects of different Radix ranunculi ternati extracts on human gastric cancer BGC823 cells were investigated, different methods were used to extract the saponins and polysaccharides from Radix ranunculi ternati, and MTT assay and colony formation assay were used to observe the effects of saponins and polysaccharides from Radix ranunculi ternati on in-vitro cultured human gastric cancer BGC823 cells. The results found that the saponins and polysaccharides from Radix Ranunculi Ternati had certain effects on both the growth and colony formation of human gastric cancer BGC823 cells, while improving the immune function of normal mice, of which saponins had more significant effects than polysaccharides.
Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell
NASA Astrophysics Data System (ADS)
Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri
2018-04-01
Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.
Li, Jinlian; Lin, Runxian; Wang, Qian; Gao, Guanggang; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei
2014-07-01
Two electrochemical signals ascribed to xanthine/guanine and hypanthine/adenine in MCF-7 cells were detected at 0.726 and 1.053 V, respectively. Based on the intensity of signals, the genistein-induced proliferation and suppression of MCF-7 cells could be evaluated. The results showed that with the increase of genistein dose at the range of 10(-9) to 10(-6)M, the two electrochemical signals of MCF-7 cell suspension increased due to the proliferation, whereas the tendency at the high dosage range of more than 10(-5)M was decreased. The proliferation and cytotoxicity obtained by the electrochemical method were in agreement with those obtained by cell counting and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] method. Thus, the two-signal electrochemical method is an effective way to evaluate the effect of drugs on cell activity based on purine metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
The Development of a Myoelectric Training Tool for Above-Elbow Amputees
Dawson, Michael R; Fahimi, Farbod; Carey, Jason P
2012-01-01
The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control. PMID:22383905
The development of a myoelectric training tool for above-elbow amputees.
Dawson, Michael R; Fahimi, Farbod; Carey, Jason P
2012-01-01
The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.
Evaluation of the Mobile Training Team Projects (1996-2003): Final Report
ERIC Educational Resources Information Center
Online Submission, 2005
2005-01-01
Background: For more than 30 years since 1972, the Government of Japan has contributed funds to UNESCO for implementation of the Mobile Training Team (MTT) projects. The MTT assists Member States enhance their capacity in development oriented educational innovation through intra-country study visits, training courses, workshops and technical…
Stockert, Juan C; Horobin, Richard W; Colombo, Lucas L; Blázquez-Castro, Alfonso
2018-04-01
For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described. Copyright © 2018 Elsevier GmbH. All rights reserved.
Rich, Megan C; Keene, Chesleigh N; Neher, Miriam D; Johnson, Krista; Yu, Zhao-Xue; Ganivet, Antoine; Holers, V Michael; Stahel, Philip F
2016-03-23
Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI. Copyright © 2016. Published by Elsevier Ireland Ltd.
Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy
2016-04-15
Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.
Jorge, Janaina Habib; Giampaolo, Eunice Teresinha; Vergani, Carlos Eduardo; Machado, Ana Lúcia; Pavarina, Ana Cláudia; Carlos, Iracilda Zeppone
2004-01-01
This study compared the effect of two postpolymerization heat treatments on the cytotoxicity of three denture base resins on L929 cells using 3H-thymidine incorporation and MTT assays. Sample disks of Lucitone 550, QC 20, and Acron MC resins were fabricated under aseptic conditions and stored in distilled water at 37 degrees C for 48 hours. Specimens were then divided into three groups: (1) heat treated in microwave oven for 3 minutes at 500 W; (2) heat treated in water bath at 55 degrees C for 60 minutes; and (3) no heat treatment. Eluates were prepared by placing three disks into a sterile glass vial with 9 mL of Eagle's medium and incubating at 37 degrees C for 24 hours. The cytotoxic effect from the eluates was evaluated using the 3H-thymidine incorporation and MTT assays, which reflect DNA synthesis levels and cell metabolism, respectively. The components leached from the resins were cytotoxic to L929 cells when 3H-thymidine incorporation assay was employed. In contrast, eluates from all resins revealed noncytotoxic effects as measured by MTT assay. For both MTT assay and 3H-thymidine incorporation, the heat treatments did not decrease the cytotoxicity of the materials tested. Resins were graded by 3H-thymidine incorporation assay as slightly cytotoxic and by MTT assay as noncytotoxic. Cytotoxicity of the denture base materials was not influenced by microwave or water bath heat treatment.
Tunnel based spin injection devices for semiconductor spintronics
NASA Astrophysics Data System (ADS)
Jiang, Xin
This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides insight into spin relaxation mechanisms within the semiconductor heterostructure.
Luqman, Ahmad; Blair, Victoria L; Brammananth, Rajini; Crellin, Paul K; Coppel, Ross L; Andrews, Philip C
2014-10-27
Homo- and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole-, imidazole-, thiadiazole- and thiazole-based heterocyclic thiones (thiols): 1-methyl-1H-tetrazole-5-thiol (1-MMTZ(H)); 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTT(H)); 1-methyl-1H-imidazole-2-thiol (2-MMI(H)); 5-methyl-1,3,4-thiadiazole-2-thiol (5-MMTD(H)); 1,3,4-thiadiazole-2-dithiol (2,5-DMTD(H)2 ); and 4-(4-bromophenyl)thiazole-2-thiol (4-BrMTD(H)). Reaction of BiPh3 with 1-MMTZ(H) produced the rare Bi(V) thiolato complex [BiPh(1-MMTZ)4 ], which undergoes reduction in DMSO to give [BiPh(1-MMTZ)2 {(1-MMTZ(H)}2 ]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2 ]. The crystal structures of [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ], [BiPh(5-MMTD)2 ], [BiPh{2,5-DMTD(H)}2 (Me2 CO)] and [Bi(4-BrMTD)3 ] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1- MMTZ, 4-MTT and 4-BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4-MTT)2 {4-MTT(H)}2 ] and [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4-MTT)2 {4-MTT(H)}2 ] against VRE, and 1.33 μM for [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] against M. smegmatis and S. aureus. Tris-thiolato Bi(III) complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS-7 cells at 20 μg mL(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay
NASA Astrophysics Data System (ADS)
Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong
2005-12-01
In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.
Apinhasmit, Wandee; Limsombutanon, Somchai; Swasdison, Somporn; Suppipat, Nophadol
2003-10-01
Dental rubber dams (RDs) were used as barrier membranes in guided tissue regeneration for the treatment of periodontal intraosseous defects with acceptable clinical results. The aim of the present study was to investigate the effects of autoclave sterilization on properties of RD as related to its use as a barrier membrane in guided tissue regeneration. RDs were sterilized by either an autoclave, gamma irradiation, or chemical agents and then co-cultured with human gingival fibroblasts. The cell responses to sterilized RDs were investigated by inverted phase contrast microscopy, scanning electron microscopy (SEM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) technique. The surface alterations of the autoclaved RDs were observed under SEM. The tensile strength, tear strength and elongation at break of the autoclaved RDs were tested by a universal testing machine. The results from cell culture, microscopic and MTT studies showed that RDs sterilized by autoclave and gamma irradiation did not deteriorate gingival fibroblasts and provided surfaces suitable for cell attachment, whereas chemical-sterilized RDs were toxic to these cells. Ultrastructurally, surface changes from the non-autoclaved RDs, including some melted areas, small pores and folds were observed on the autoclaved RD surface. The tensile strength and tear strength of the autoclaved RDs were significantly lower than those of the non-autoclaved RDs (p = 0.042, p < 0.001, respectively). In contrast, the elongation at break of the autoclaved RDs was higher than that of the non-autoclaved RDs (p < 0.001). These results suggest that the autoclave sterilization deteriorated the physical properties of RDs even though they seemed to be compatible to the cultured human cells. Therefore, the sterilization method should be taken into consideration when RDs are utilized as barrier membranes.
Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation
Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo
2014-01-01
Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666
Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin.
Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Osmak, Maja; Garaj-Vrhovac, Vera
2016-08-01
Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment.
NASA Astrophysics Data System (ADS)
Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying
2014-03-01
Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.
Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements
Shin, Hyeongsoon; Ko, Hyunjung
2016-01-01
Objectives Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement. PMID:27508157
Chaperone-Assisted Soluble Expression of a Humanized Anti-EGFR ScFv Antibody in E. Coli
Veisi, Kamal; Farajnia, Safar; Zarghami, Nosratollah; Khoram Khorshid, Hamid Reza; Samadi, Nasser; Ahdi Khosroshahi, Shiva; Zarei Jaliani, Hossein
2015-01-01
Purpose: Formation of inclusion bodies is a considerable obstacle threatening the advantages of E. coli expression system to serve as the most common and easiest system in recombinant protein production. To solve this problem, several strategies have been proposed among which application of molecular chaperones is of remarkable consideration. The aim of this study was to evaluate the effects of molecular chaperones on soluble expression of aggregation-prone humanized single chain antibody. Methods: To increase the solubility of a humanized single chain antibody (hscFv), different chaperone plasmids including PG-tf2 (GroES- GroEL- tig), ptf16 (tig) and pGro7 (GroES- GroEL) were co-expressed in BL21 cells containing pET-22b- hscFv construct. The solubility of recombinant hscFv was analyzed by SDS-PAGE. After purification of soluble hscFv by Ni-NTA column, the biological activity and cytotoxicity of the recombinant protein were tested by ELISA and MTT assay, respectively. Results: SDS-PAGE analysis of the hscFv revealed that chaperone utility remarkably increased (up to 50%) the solubility of the protein. ELISA test and MTT assay analyses also confirmed the biological activity of the gained hscFv in reaction with A431 cells (OD value: 2.6) and inhibition of their proliferation, respectively. Conclusion: The results of this study revealed that co-expression of chaperones with hscFv leads to remarkable increase in the solubility of the recombinant hscFv, which could be of great consideration for large scale production of recombinant single chain antibodies. PMID:26793607
da Silva, Joyce Kelly R; Andrade, Eloisa Helena A; Barreto, Leilane H; da Silva, Nádia Carolina F; Ribeiro, Alcy F; Montenegro, Raquel C; Maia, José Guilherme S
2017-07-08
Background: Eugenia species are appreciated for their edible fruits and are known as having anticonvulsant, antimicrobial and insecticidal actions. Methods: The plant material was collected in the southeastern Pará state of Brazil and submitted to hydrodistillation. GC-MS analyzed the oils, and their antioxidant and cytotoxic activities were evaluated by the DPPH and MTT assays. Results: The main components identified in the Eugenia oils were 5-hydroxy- cis -calemene, (2 E ,6 E )-farnesol, (2 E ,6 Z )-farnesol, caryophylla-4(12),8(13)-dien-5α-ol-5β-ol, E -γ-bisabolene, β-bisabolene, germacrene D, and ishwarane. The oil of E. egensis showed the most significant antioxidant activity (216.5 ± 11.6 mg TE/mL), followed by the oils of E. flavescens (122.6 ± 6.8 mg TE/mL) and E. patrisii (111.2 ± 12.4 mg TE/mL). Eugenia oils were cytotoxic to HCT-116 (colon cancer) cells by the MTT assay, where the most active was the oil of E. polystachya (10.3 µg/mL), followed by the oils of E. flavescens (13.9 µg/mL) and E. patrisii (16.4 µg/mL). The oils of E. flavescens and E. patrisii showed the highest toxicity for MRC5 (human fibroblast) cells, with values of 14.0 µg/mL and 18.1 µg/mL, respectively. Conclusions: These results suggest that Eugenia oils could be tested in future studies for the treatment of colon cancer and oxidative stress management.
da Silva, Joyce Kelly R.; Andrade, Eloisa Helena A.; Barreto, Leilane H.; da Silva, Nádia Carolina F.; Ribeiro, Alcy F.; Montenegro, Raquel C.; Maia, José Guilherme S.
2017-01-01
Background: Eugenia species are appreciated for their edible fruits and are known as having anticonvulsant, antimicrobial and insecticidal actions. Methods: The plant material was collected in the southeastern Pará state of Brazil and submitted to hydrodistillation. GC-MS analyzed the oils, and their antioxidant and cytotoxic activities were evaluated by the DPPH and MTT assays. Results: The main components identified in the Eugenia oils were 5-hydroxy-cis-calemene, (2E,6E)-farnesol, (2E,6Z)-farnesol, caryophylla-4(12),8(13)-dien-5α-ol-5β-ol, E-γ-bisabolene, β-bisabolene, germacrene D, and ishwarane. The oil of E. egensis showed the most significant antioxidant activity (216.5 ± 11.6 mg TE/mL), followed by the oils of E. flavescens (122.6 ± 6.8 mg TE/mL) and E. patrisii (111.2 ± 12.4 mg TE/mL). Eugenia oils were cytotoxic to HCT-116 (colon cancer) cells by the MTT assay, where the most active was the oil of E. polystachya (10.3 µg/mL), followed by the oils of E. flavescens (13.9 µg/mL) and E. patrisii (16.4 µg/mL). The oils of E. flavescens and E. patrisii showed the highest toxicity for MRC5 (human fibroblast) cells, with values of 14.0 µg/mL and 18.1 µg/mL, respectively. Conclusions: These results suggest that Eugenia oils could be tested in future studies for the treatment of colon cancer and oxidative stress management. PMID:28930266
Xu, Yubin; Guo, Song; Chen, Guirong; Zhang, Mingbo; Zhang, Xu; Dou, Deqiang
2017-12-01
HuanglianJiedu decoction (HJD) is a classic prescription for heat-clearing away and detoxifying, which is used for the clinical treatment of sepsis, due to sepsis refers to the systemic inflammatory response induced by infection in western medicine, and infection belongs to the category of poison-heat syndrome in traditional Chinese medicine. Previous study had elucidated the effective components from HJD with high affinity to lipid A, which can generate the release of pro-inflammatory-cytokines, resulting in sepsis. Now the anti-sepsis activities of these compounds were evaluated. Immunofluorescence, immunohistochemical staining, ELISA and MTT methods were used to evaluated these compounds. Immunofluorescence analysis evaluated the effects of compounds on the binding of FITC-LPS to RAW264.7 cells, and showed the fluorescence intensity was significant attenuated in geniposides, palmatine, baicalin and berberine groups (64 and 128 μg/mL) compared with model group (p < 0.05), which showed these compounds inhibit the combination of LPS with receptor of cells; immunohistochemical staining and ELISA method showed the TLR4 receptor expression, IL-6 and TNF-α levels were significant decreased in the groups treated with compounds, indicating that geniposides, baicalin, palmatine and berberine can play the role of anti-sepsis by inhibiting the expression of TLR4, the releasing of IL-6 and TNF-α; MTT assay showed that palmatine and berberine had a weak effect on cell viability, while others not, indicating that the compounds have protective activity. It could be concluded the high affinity binding between these compounds and lipid A may be an important basis for its anti-LPS activity in vitro.
Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser.
Beketova, Anastasia; Poulakis, Nikolaos; Bakopoulou, Athina; Zorba, Triantafillia; Papadopoulou, Lambrini; Christofilos, Dimitrios; Kantiranis, Nikolaos; Zachariadis, George A; Kontonasaki, Eleana; Kourouklis, Gerasimos A; Paraskevopoulos, Konstantinos M; Koidis, Petros
2016-11-01
Aims of this study were to investigate the optimal conditions of laser irradiation of a novel Bioactive Glass/Dental Ceramic-BP67 composite for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. BP67 (Bioactive Glass: 33.3%, Dental Ceramic: 66.7%) was fabricated by the sol-gel method. A laser assisted biomimetic-LAB process was applied to BP67 sintered specimens immersed in 1.5-times concentrated simulated body fluid-1.5×-SBF. The effect of various energy densities of pulsed nanosecond Nd-YAG (1064nm) laser and irradiation exposure times (30min, 1 and 3h) were evaluated for HA precipitation. The HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the 1.5×-SBF during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. At optimal energy fluence of 1.52J/cm 2 and irradiation time for 3h followed by immersion in 1.5×-SBF at 60°C, a dense HA layer was formed on laser-irradiated BP67 within 7 days. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. These findings suggest LAB is an effective method for acceleration of HA formation on materials with low bioactivity, while cellular responses need further investigation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero
2012-01-01
Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930
2013-01-01
Background Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird’s Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA. Methods A single batch of EBN extract was prepared with hot-water extraction and coded as HMG. HACs were isolated from the knee joint cartilage removed during surgery. The optimum concentration of HMG for HAC cultures was determined using MTT assay. The effect of HMG on the catabolic and anabolic genes’ expression in HACs was measured by real-time PCR. The total amount of prostaglandin E2 (PGE2) production was determined by ELISA method, and the total sulphated glycosaminoglycan (GAGs) production was quantified by 1,9-dimethylmethylene blue (DMMB) assay. Results MTT assay showed 0.50% - 1.00% HMG supplementation promoted HACs proliferation. HMG supplementation was able to reduce the catabolic genes’ expression in cultured HACs such as matrix metalloproteinases (MMP1 & MMP3), Interleukin 1, 6 and 8 (IL-1, IL-6 & IL-8), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Prostaglandin E2 (PGE2) production was significantly reduced in HAC cultures supplemented with HMG. With regard to anabolic activity assessment, type II collagen, Aggrecan and SOX-9 gene expression as well as sGAG production was increased in the HMG supplemented groups. Conclusion Edible Bird’s Nest extract coded as HMG demonstrated chondro-protection ability on human articular chondrocytes in vitro. It reduced catabolic activities and increased cartilage extracellular matrix synthesis. It is concluded that HMG is a potential agent in the treatment of osteoarthritis. PMID:23339380
Cao, Yan-Gang; Zheng, Xiao-Ke; Yang, Fang-Fang; Li, Fang; Qi, Man; Zhang, Yan-Li; Zhao, Xuan; Kuang, Hai-Xue; Feng, Wei-Sheng
2018-02-01
A new biphenyl-furocoumarin, named morescoumarin A (1), and a new prenylated flavanone, named morflavanone A (2) were isolated from the root bark of Morus alba L., together with four known compounds (3-6). Their structures were determined by extensive spectroscopic analyses and comparison with literature data. The cardioprotective effects of these compounds against doxorubicin-induced cell death were evaluated by MTT method.
Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study)
Aghazadeh, Marzieh; Zahedi Bialvaei, Abed; Aghazadeh, Mohammad; Kabiri, Fahimeh; Saliani, Negar; Yousefi, Mehdi; Eslami, Hosein; Samadi Kafil, Hossein
2016-01-01
Background: Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections. Objectives: The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract’s effects on biofilm formation. Materials and Methods: Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract. Results: The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000). Conclusions: The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after developing antibiotic resistance in microbes. PMID:27127591
El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P
1996-01-01
BACKGROUND/AIMS: To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. METHODS: Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. RESULTS: In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. CONCLUSIONS: Transit time differences between healthy volunteers are associated with differences in H2 consuming flora and certain indices of colonic fermentation. Considering the effects of some fermentation products on intestinal morphology and function, these variations may be relevant to the pathogenesis of colorectal diseases. PMID:8984026
Li, Jiashen; Chen, Yun; Mak, Arthur F.T.; Tuan, Rocky S.; Li, Lin; Li, Yi
2010-01-01
Porous poly(L-lactic acid) (PLLA) scaffolds with bioactive coatings were prepared by a novel one-step method. In this process, ice-based microporogens containing bioactive molecules, such as hydroxyapatite (HA) and collagen, served as both porogens to form the porous structure and vehicles to transfer the bioactive molecules to the inside of PLLA scaffolds in a single step. Based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, the bioactive components were found to be transferred successfully from the porogens to PLLA scaffolds evenly. Osteoblast cells were used to evaluate the cellular behaviors of the composite scaffolds. After 8 days culturing, MTT assay and alkaline phosphatase (ALP) activity results suggested that HA/collagen could improve the interactions between osteoblast cells and the polymeric scaffold. PMID:20004261
The establishment of insulin resistance model in FL83B and L6 cell
NASA Astrophysics Data System (ADS)
Liu, Lanlan; Han, Jizhong; Li, Haoran; Liu, Mengmeng; Zeng, Bin
2017-10-01
The insulin resistance models of mouse liver epithelial and rat myoblasts cells were induced by three kinds of inducers: dexamethasone, high insulin and high glucose. The purpose is to select the optimal insulin resistance model, to provide a simple and reliable TR cell model for the study of the pathogenesis of TR and the improvement of TR drugs and functional foods. The MTT method is used for toxicity screening of three compounds, selecting security and suitable concentration. We performed a Glucose oxidase peroxidase (GOD-POD) method involving FL83B and L6 cell with dexamethasone, high insulin and high glucose-induced insulin resistance. Results suggested that FL83B cells with dexamethasone-induced (0.25uM) were established insulin resistance and L6 cells with high-glucose (30mM) and dexamethasone-induced (0.25uM) were established insulin resistance.
Dhayalan, Manikandan; Denison, Michael Immanuel Jesse; L, Anitha Jegadeeshwari; Krishnan, Kathiravan; N, Nagendra Gandhi
2017-02-01
In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.
Mother Tongue Tuition in Sweden--Curriculum Analysis and Classroom Experience
ERIC Educational Resources Information Center
Reath Warren, Anne
2013-01-01
The model of Mother Tongue Tuition (MTT) which has developed in Sweden since the 1970's offers speakers of languages other than Swedish the opportunity to request tuition in their mother tongue, from kindergarten through to year 12. It is unique among the major immigrant-receiving countries of the world yet little is known about MTT and its…
Bhat, Abdul R; Tazeem; Azam, Amir; Choi, Inho; Athar, Fareeda
2011-07-01
A new series of thiadiazoles and intermediate thiosemicarbazones were synthesized from the chloroquinone molecule, with an aim to explore their effect on in vitro growth of microorganisms causing microbial infection. The chemical structures of the compound were elucidated by elemental analysis, FTIR, 1H and 13C NMR and ESI-MS spectral data. In vitro anti-microbial activity was performed against Staphylococcusaureus, Streptococcuspyogenes, Salmonellatyphimurium, and Escherichiacoli. The MIC was detected using the double dilution method. The results were compared by calculating percent inhibit area/μg of the compounds and the standard "amoxicillin". The selected compounds were tested for cytotoxic results using MTT assay H9c2 cardiac myoblasts cell line and the results showed that all the compounds offered remarkable >80% viability to a concentration of 200 μg/mL. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI
NASA Astrophysics Data System (ADS)
Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping
2003-05-01
In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.
Poormontaseri, Maryam; Hosseinzadeh, Saeid; Shekarforoush, Seyed Shahram; Kalantari, Tahereh
2017-07-04
Some Bacillus strains have recently been identified for potential use as probiotics and food additives. The present study evaluated the antimicrobial effects of Bacillus subtilis ATCC 6633 and its metabolite on the enterotoxin and vegetative cells, spore and germinated spore of Clostridium perfringens type A in Caco-2 cells. We used flow cytometry and MTT assays to evaluate the cytotoxicity effect of treatments. According to the results, the most cell survival was found in the 4% crude antimicrobial substance (CAS) with the vegetative form of C. perfringens among co-cultured groups. Furthermore, the apoptosis and necrosis in co-cultured groups were significantly decreased (P < 0.05). The present results suggested the crucial role of the current probiotic in the control of various forms of C. perfringens type A which was investigated for the first time. Also, the majority of treatments showed higher cell viability in flow cytometry compared to the MTT assay.
Cell death induced by hydroxyapatite on L929 fibroblast cells.
Inayat-Hussain, S H; Rajab, N F; Roslie, H; Hussin, A A; Ali, A M; Annuar, B O
2004-05-01
Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
Synthesis of silver nanoparticle and its application.
Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G
2015-11-01
In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Thomas, Shindu C; Sharma, Harshita; Rawat, Purnima; Verma, Anita K; Leekha, Ankita; Kumar, Vijay; Tyagi, Aakriti; Gurjar, Bahadur S; Iqbal, Zeenat; Talegaonkar, Sushama
2016-10-01
The present work evaluates the synergistic anticancer efficacy of bioactive Hydroxyapatite (HA) nanoparticles (HA NPs) loaded with Bendamustine HCl. Hydroxyapatite is a material with an excellent biological compatibility, a well-known fact which was also supported by the results of the Hemolytic studies and a high IC50 value observed in the MTT assay. HA NPs were prepared by the chemical precipitation method and loaded with the drug via physical adsorption. In-vitro release study was performed, which confirmed the sustained release of the drug from the drug loaded HA NPs. MTT assay, Cell Uptake and FACS studies on JURKAT E6.1 cell line and in-vivo pharmacokinetic studies in Wistar rats revealed that the drug loaded HA NPs could be easily internalized by the cells and release drug in a sustained manner. The drug loaded HA NPs showed cytotoxicity similar to the drug solution at 1/10th of the drug content, which indicates a possible synergism between the activity of the anticancer drug and calcium ions derived from the carrier. An increase in intracellular Ca(2+) ions is reported to induce apoptosis in cells. Tumor regression study in Balb/c mice Ehrlich's ascites model presented a similar synergistic efficacy. The drug solution was able to decrease the tumor volume by half, while the drug loaded HA NPs reduced the tumor size by 6 times. Copyright © 2016 Elsevier B.V. All rights reserved.
Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong
2008-10-01
To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.
Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.
Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H
2011-11-01
Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.
Balakrishna, Acharya; Kumar, M Hemanth
2015-01-01
Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.
New Schemes for Predictive Congestion Control
1993-04-01
1 and that node j is the downstream neighbor of node i. With these changes, (3.1) becomes 2Ä,-,ou«(*) = 2Ri,^t(t - 1) - abias ;, (3.2) where biasi...estimate the value of Rjt<mt(t + 1): 2Rjtout(t + 1) = 2Rjt<mt(t) - abia ^-, (3.3) 18 where bias,- = (2RjtOUi(t)) lf2 — Bj(t). Again, the" notation
Brain perfusion alterations in tick-borne encephalitis-preliminary report.
Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir
2018-03-01
Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lu, Shan-Shan; Ge, Song; Su, Chun-Qiu; Xie, Jun; Mao, Jian; Shi, Hai-Bin; Hong, Xun-Ning
2017-10-30
Intracranial plaque characteristics are associated with stroke events. Differences in plaque features may explain the disconnect between stenosis severity and the presence of ischemic stroke. To investigate the relationship between plaque characteristics and downstream perfusion changes, and their contribution to the occurrence of cerebral infarction beyond luminal stenosis. Case control. Forty-six patients with symptomatic middle cerebral artery (MCA) stenosis (with acute cerebral infarction, n = 30; without acute cerebral infarction, n = 16). 3.0T with 3D turbo spin echo sequence (3D-SPACE). Luminal stenosis grade, plaque features including lesion T 2 and T 1 hyperintense components, plaque enhancement grade, and plaque distribution were assessed. Brain perfusion was evaluated on mean transient time maps based on the Alberta Stroke Program Early CT score (MTT-ASPECTS). Plaque features, grade of luminal stenosis, and MTT-ASPECTS were compared between two groups. The association between plaque features and MTT-ASPECTS were assessed using Spearman's correlation analysis. Multivariate logistic regression and receiver operating characteristic (ROC) curves were constructed to assess the effect of significant variables alone and their combination in determining the occurrence of cerebral infarction. Stronger enhanced plaques were associated with downstream lower MTT-ASPECTS (P = 0.010). Plaque enhancement grade (P = 0.039, odds ratio [OR] 5.9, 95% confidence interval [CI] 1.1-32) and MTT-ASPECTS (P = 0.003, OR 2.6, 95% CI 1.4-4.7) were associated with a recent cerebral infarction, whereas luminal stenosis grade was not (P = 0.128). The combination of MTT-ASPECTS and plaque enhancement grade provided incremental information beyond luminal stenosis grade alone. The area under the receiver operating characteristic curve (AUC) improved from 0.535 to 0.921 (P < 0.05). Strongly enhanced plaques are associated with a higher likelihood of downstream perfusion impairment. Plaque enhancement and perfusion evaluation may play a complementary role to luminal stenosis in determining the occurrence of acute cerebral infarction. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita
2016-03-01
The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.
Szarmach, Arkadiusz; Halena, Grzegorz; Kaszubowski, Mariusz; Piskunowicz, Maciej; Studniarek, Michal; Lass, Piotr; Szurowska, Edyta; Winklewski, Pawel J
2017-05-08
Failure of the blood-brain barrier (BBB) is a critical event in the development and progression of diseases such as acute ischemic stroke, chronic ischemia or small vessels disease that affect the central nervous system. It is not known whether BBB breakdown in subjects with chronic carotid artery stenosis can be restrained with postoperative recovery of cerebral perfusion. The aim of the study was to assess the short-term effect of internal carotid artery stenting on basic perfusion parameters and permeability surface area-product (PS) in such a population. Forty subjects (23 males) with stenosis of >70% within a single internal carotid artery and neurological symptoms who underwent a carotid artery stenting procedure were investigated. Differences in the following computed tomography perfusion (CTP) parameters were compared before and after surgery: global cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP) and PS. PS acquired by CTP is used to measure the permeability of the BBB to contrast material. In all baseline cases, the CBF and CBV values were low, while MTT and TTP were high on both the ipsi- and contralateral sides compared to reference values. PS was approximately twice the normal value. CBF was higher (+6.14%), while MTT was lower (-9.34%) on the contralateral than on the ipsilateral side. All perfusion parameters improved after stenting on both the ipsilateral (CBF +22.66%; CBV +18.98%; MTT -16.09%, TTP -7.62%) and contralateral (CBF +22.27%, CBV +19.72%, MTT -14.65%, TTP -7.46%) sides. PS decreased by almost half: ipsilateral -48.11%, contralateral -45.19%. The decline in BBB permeability was symmetrical on the ipsi- and contralateral sides to the stenosis. Augmented BBB permeability can be controlled by surgical intervention in humans.
Ticak, Tomislav; Kountz, D. J.; Girosky, K. E.; ...
2014-10-13
COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptorsmore » such as nitrate or fumarate, producing dimethylglycine and CO 2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. Additionally, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. Lastly, they are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.« less
A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI
NASA Astrophysics Data System (ADS)
Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan
2013-10-01
This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.
Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi
2017-12-01
Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P < 0.05). The amelioration of cerebral hemodynamics by indirect bypass surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.
2018-03-01
Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.
Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI
NASA Astrophysics Data System (ADS)
Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh
2013-04-01
Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.
Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim
2015-01-01
Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933
Li, Dayu; Liu, Yun; Yu, Chunbo; Liu, Xiping; Fan, Fang
2017-12-01
Objective To study the effect of the knock-down of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on the cell cycle of the multidrug-resistant (MDR) Bel7402/5-Fu hepatocellular carcinoma cells and its MDR mechanism. Methods After cationic liposome-mediated siDNA-PKcs oligonucleotide transfection, the drug sensitivity of Bel7402/5-Fu cells to 5-fluorouracil (5-Fu) and adriamycin (ADM) was determined by MTT assay; the cell cycle were detected by flow cytometry; meanwhile, the protein expressions of cell cycle-related proteins P21, cell cycle protein B1 (cyclin B1), cell cycle division protein 2 (CDC2) were tested by Western blotting; the expressions of ataxia telangiectasia mutated (ATM) and p53 at both mRNA and protein levels were detected by real-time PCR and Western blot analysis. Results The MTT results showed siDNA-PKcs increased the chemotherapeutic sensitivity of Bel7402/5-Fu cells to 5-Fu and ADM. The flow cytometric analysis showed siDNA-PKcs decreased the percentage of S-phase cells but increased the percentage of G2/M phase cells. Western blotting showed siDNA-PKcs increased the protein expression of P21 but decreased cyclinB1 and CDC2 proteins. In addition, siDNA-PKcs also increased the expressions of ATM and p53. Conclusion DNA-PKcs silencing increases P21 while decreases cyclin B1 and CDC2 expressions, and finally induces G2/M phase arrest in Bel7402/5-Fu cells, which may be related to ATM-p53 signaling pathway.
Immunostimulant activity of noni (Morinda citrifolia) on T and B lymphocytes.
Nayak, Smita; Mengi, Sushma
2010-07-01
Morinda citrifolia Linn (Rubiaceae) is a traditional medicinal herb that has been purported to be beneficial in the treatment of infections due to its immune enhancing properties. However, detailed studies highlighting the effect of different compounds isolated from the plant on the immune system are lacking. In this study, the stimulatory effects of the extracts and fractions of M. citrifolia fruits on important components of the adaptive immune system such as T lymphocytes and B lymphocytes were studied. The effects of the plant extracts on lymphocytes were assessed by in vitro (MTT assay) and in vivo (cell mediated immune response) techniques. Results of the MTT study indicated that the hydroalcoholic (0.5 and 1.0 mg/mL) and aqueous extracts (0.5 and 1.0 mg/mL) significantly (p < 0.05) increased in vitro splenocyte proliferation to the extent of 43.6, 54.5, 32.7, and 36.4%, respectively. Moreover, the hydroalcoholic (200 mg/kg) and the aqueous (200 mg/kg) extracts significantly (p < 0.05) increased the cell-mediated immune response to the extent of 33.52 and 18.56%, respectively. The fractions F I, F II, and F III failed to elicit a significant stimulatory effect on lymphocytes in the in vitro and in vivo studies. The effect of the extractives of M. citrifolia fruits on B-cells was measured by the delayed type hypersensitivity method. The study revealed that the hydroalcoholic extract (200 mg/kg) and fraction F I (40 mg/kg) significantly increased the humoral response to the extent of 33.33 and 35.12%, respectively. The results of this study confirm the cellular and humoral immunostimulant properties of M. citrifolia fruits and justify its usage in traditional medicine.
Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro
2015-01-01
Introduction Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. Materials and Methods An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Results Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. Conclusion These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease. PMID:25850029
Sobhani, Hamideh; Tarighi, Parastoo; Ostad, Seyed Nasser; Shafaati, Alireza; Nafissi-Varcheh, Nastaran; Aboofazeli, Reza
2015-01-01
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments. PMID:26185501
Sobhani, Hamideh; Tarighi, Parastoo; Ostad, Seyed Nasser; Shafaati, Alireza; Nafissi-Varcheh, Nastaran; Aboofazeli, Reza
2015-01-01
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments.
Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts
Luís, Ângelo; Breitenfeld, Luiza; Ferreira, Susana; Duarte, Ana Paula; Domingues, Fernanda
2014-01-01
Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion assay and Minimum Inhibitory Concentration (MIC) value determination. The antibiofilm activity was determined by quantification of total biofilm biomass with crystal violet. Cytotoxicity was evaluated by hemolysis assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: For Gram-positive bacteria, MIC values of H. sericea methanolic extracts ranged between 0.040 and 0.625 mg/mL, whereas the fruits extract yielded the lowest MIC for several strains of microorganisms, namely, S. aureus, B. cereus, L. monocytogenes and clinical methicillin-resistant S. aureus (MRSA). Stems and fruits extract at 2.5 mg/mL effectively eradicated the biofilm of S. aureus ATCC 25923, SA 01/10 and MRSA 12/10. Regarding leaves extract, hemolysis was not observed, and in the case of stems and fruits, hemolysis was verified only for higher concentrations, suggesting its low toxicity. Fruits extract presented no toxic effect to normal human dermal fibroblasts (NHDF) cells however for concentrations of 0.017 and 0.008 mg/mL this extract was able to decrease human breast adenocarcinoma cells (MCF-7) viability in about 60%, as MTT test results had confirmed. This is a clearly demonstrator of the cytotoxicity of this extract against MCF-7 cells. PMID:24914310
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio 2 ) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO 2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO 2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.
Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells
2010-01-01
Background The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. Methods The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Results Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. Conclusions These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas. PMID:20587068
Zhang, Jia; Zhang, Dongsheng
2009-01-01
Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles in vitro was tested by the MTT assay. A nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex was made by an impregnation process. The complex's shape, component, envelop rate and release rate of As(2)O(3) were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn(0.5)Zn(0.5)Fe(2)O(4) and nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex were both prepared successfully. The Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn(0.5)Zn(0.5)Fe(2)O(4) didn't show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex can significantly inhibit the growth of hepatoma carcinoma cells.
Tabatabaei, Fahimeh Sadat
2016-01-01
ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698
Jin, Zheyan; Hu, Hui
2009-05-01
We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.
Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer
NASA Astrophysics Data System (ADS)
Wang, Qi; Qin, Liubin; Sun, Ying; Shen, Ming; Duan, Yourong
2014-05-01
An ultrasound-adsorption method was used to prepare Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres. The size and zeta potential were 18.41 ± 4.31 nm ( n = 5) and -23.5 ± 0.6 mV, respectively. The entrapment efficiency of SiRNA was 92.86 %. MTT assay results confirmed that the blank nanospheres demonstrated a negligible cytotoxicity response in H1299 cells. Flow cytometer analysis results demonstrated that PS-mPEG/CaP NSs could carry SiRNA into the cells effectively. RT-PCR experiments and apoptosis assay results approved that, compared with free SiRNA, SiRNA-loaded PS-mPEG/CaP NSs could silence Bcl-2 gene and induce cell apoptosis effectively. In vivo distribution results confirmed PS-mPEG/CaP NSs could carry SiRNA enter the tumor tissue effectively. Taken together, these results suggest that the Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres have great potential to be used to cure lung cancer.
Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.
Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei
2016-08-05
It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.
Measuring the Interestingness of Articles in a Limited User Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, Raymond K.
Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which varies from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment, there are not enough users that would make collaborative filtering effective. A general framework,more » called iScore, is presented for defining and measuring the 'interestingness' of articles, incorporating user-feedback. iScore addresses various aspects of what makes an article interesting, such as topic relevancy, uniqueness, freshness, source reputation, and writing style. It employs various methods to measure these features and uses a classifier operating on these features to recommend articles. The basic iScore configuration is shown to improve recommendation results by as much as 20%. In addition to the basic iScore features, additional features are presented to address the deficiencies of existing feature extractors, such as one that tracks multiple topics, called MTT, and a version of the Rocchio algorithm that learns its parameters online as it processes documents, called eRocchio. The inclusion of both MTT and eRocchio into iScore is shown to improve iScore recommendation results by as much as 3.1% and 5.6%, respectively. Additionally, in TREC11 Adaptive Filter Task, eRocchio is shown to be 10% better than the best filter in the last run of the task. In addition to these two major topic relevancy measures, other features are also introduced that employ language models, phrases, clustering, and changes in topics to improve recommendation results. These additional features are shown to improve recommendation results by iScore by up to 14%. Due to varying reasons that users hold regarding why an article is interesting, an online feature selection method in naive Bayes is also introduced. Online feature selection can improve recommendation results in iScore by up to 18.9%. In summary, iScore in its best configuration can outperform traditional IR techniques by as much as 50.7%. iScore and its components are evaluated in the news recommendation task using three datasets from Yahoo! News, actual users, and Digg. iScore and its components are also evaluated in the TREC Adaptive Filter task using the Reuters RCV1 corpus.« less
Xing, Yifei; Xiao, Yajun; Lu, Gongcheng; Zeng, Fuqing; Zhao, Jun; Xiong, Ping; Feng, Wei
2006-01-01
The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38% and 35.51%, and the proportion of necrosis being 33.05% and 28.87%, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment. Our results highlight the potential for such new combination therapies for future treatments of HRPC.
Aghajanzadeh, Mozhgan; Zamani, Mostafa; Rashidzadeh, Hamid; Rostamizadeh, Kobra; Sharafi, Ali; Danafar, Hossein
2018-06-16
In this project, a core-shell Polymersome based on miktoarm star-copolymer: methoxy Poly Ethylene Glycol-Lysine-(Poly Caprolactone) 2 (PEG-Lys-PCL 2 ) was synthesized by a new method as controlled targeted drug delivery systems for co-delivery of the chemotherapeutic methotrexate (MTX) and curcumin (CUR). Some properties of these nano carriers (NCs) such as surface morphology, structure, surface charge, stability and biocompatibility were evaluated by Proton nuclear magnetic resonance ( 1 HNMR), dynamic scanning colorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), atomic force microscopy (AFM), Critical aggregation concentration (CAC), hemolysis test, MTT assay and lethal dose 50 (LD50). The AFM results showed the uniform spherical morphology of NCs have with average size about ∼60 nm. The drug loading of NCs was about 14.13% and 10.93% for CUR and MTX, respectively. The NCs revealed pH-sensitivity in drug release. Release of drugs from miktoarm-based NCs in neutral pH were lower than in acidic medium, because of faster degradation of Polymersome in acidic environment. MTT assay results showed that the drug-loaded NCs didn't show significant toxicity due to which cell viability maintain over 82% at 300 μg/mL concentration. Also, synthesized miktoarm showed hemolysis lower than 3%. This result was repeat in LD50 and all mice which treat with 5000mg/Kg were still alive after 24 hours. These result confirmed safety of miktoarm star copolymer. Eventually, goal of this study is the application of water-soluble star copolymers miktoarm with pH dependent release properties for design a new drug delivery carrier and using CUR for enhancing anti-cancer properties of MTX. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Jingchao; Liao, Juan; Mo, Anchun; Li, Yubao; Li, Jidong; Wang, Xuejiang
2008-11-01
The aim of this study was to determine nHA/PMMA composites (H/P) in an optimal ratio with improved cytocompatibility as well as valid physical properties for provisional dental implant restoration. 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.% H/P were developed and characterized using XPS, bending strength test and SEM. Human gingival fibroblasts cultured in extracts or directly on sample discs were investigated by fluorescent staining and MTT assay. Chemical integration in nHA/PMMA interface was indicated by XPS. Typical fusiform cells with adhesion spots were detected on H/P discs. MTT results also indicated higher cell viability in 30 wt.% and 40 wt.% H/P discs ( P < 0.05). We conclude that nHA addition to PMMA enhances cytocompatibility and the optimal nHA/PMMA ratio for provisional fixed crowns (PFC) is 0.4:1.
Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-07-01
Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity.
Koschek, P R; Alviano, D S; Alviano, C S; Gattass, C R
2007-10-01
In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 10(4)/well) were incubated with 0, 5, 50 or 500 microg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 +/- 8.5 and 47.5 +/- 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 microg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 +/- 3.2 and 56.3 +/- 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.
Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei
2010-10-01
Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inhibitory Activity of Eleven Artemisia Species from Iran against Leishmania Major Parasites
Emami, Seyed Ahmad; Zamanai Taghizadeh Rabe, Shahrzad; Ahi, Ali; Mahmoudi, Mahmoud
2012-01-01
Objective(s) Annual incidence of cutaneous leishmaniasis is increasingly growing and development of the alternative drugs against it is a major concern. Artemisia genus is a traditional medicinal plant in Iran. The aim of this study was to examine the leishmanicidal activity of various Iranian Artemisia species extracts. Materials and Methods Different extracts were gathered from eleven Iranian Artemisia species. Their leishmanicidal activities against the growth of Leishmania major (L. major) promastigotes were examined as the half maximal inhibitory concentration (IC50) using MTT assay. Results Obtained results showed that ethanol extracts especially those taken from A. ciniformis, A. santolina and A. kulbadica have the strongest effects. Conclusion Looking for the effective leishmanicidal agents from natural resources in Iran, we found that the ethanol extract of collected Artemisia species had significant effect on in vitro leishmanicidal activity and may be suitable candidates in the treatment of leishmaniasis. PMID:23493354
INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO
Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling
2017-01-01
Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug. PMID:28638890
Shahrousvand, Ehsan; Shahrousvand, Mohsen; Ghollasi, Marzieh; Seyedjafari, Ehsan; Jouibari, Iman Sahebi; Babaei, Amir; Salimi, Ali
2017-09-01
Biocompatible and biodegradable polyurethanes (PUs) based on polycaprolactone diol (PCL) were prepared and filled with cellulose nanowhiskers (CNWs) obtained from wastepaper. The incorporated polyurethane nanocomposites were used to prepare foamed scaffolds with bimodal cell sizes through solvent casting/particulate leaching method. Sodium chloride and sugar porogens were also prepared to fabricate the scaffolds. The mechanical and thermal properties of PU/CNW nanocomposites were investigated. Incorporation of different CNWs resulted in various structures with tunable mechanical properties and biodegradability. All bimodal foam nanocomposites were biodegradable and also non-cytotoxic as revealed by MTT assay using SNL fibroblast cell line. PU/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, such PU/CNW nanocomposites could support proliferation and osteogenic differentiation of hMSCs in three-dimensional synthetic extracellular matrix (ECM). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba
2018-03-01
This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.
Investigation of bioactive CaO-P2O5-MgO-SiO2 ceramic composition for orthopedic applications
NASA Astrophysics Data System (ADS)
Kaur, Pardeep; Singh, K. J.; Sood, Henna; Arora, Daljit Singh
2017-05-01
Bioactive sample of the composition 41CaO-8P2O5-17MgO-34SiO2 has been prepared in the laboratory by quick alkali mediated sol-gel method. 1M ammonia solution has been used to form the gel. Bioactivity of the sample has been analyzed by soaking the samples in simulated body fluid. Degradation study has also undertaken to check the degradation behavior of the sample. MTT cytotoxic test has also been done to know the toxicity of the sample and results show that samples has good percentage of cell viability in the cell culture media. Formation of the hydroxyapatite has been confirmed by the XRD, Raman spectroscopy and FESEM-EDX study.
NASA Astrophysics Data System (ADS)
Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong
2014-12-01
To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.
Influence of TiN coating on the biocompatibility of medical NiTi alloy.
Jin, Shi; Zhang, Yang; Wang, Qiang; Zhang, Dan; Zhang, Song
2013-01-01
The biocompatibility of TiN coated nickel-titanium shape memory alloy (NiTi-SMA) was evaluated to compare with that of the uncoated NiTi-SMA. Based on the orthodontic clinical application, the surface properties and biocompatibility were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), wettability test, mechanical test and in vitro tests including MTT, cell apoptosis and cell adhesion tests. It was observed that the bonding between the substrate and TiN coating is excellent. The roughness and wettability increased as for the TiN coating compared with the uncoated NiTi-SMA. MTT test showed no significant difference between the coated and uncoated NiTi-SMA, however the percentage of early cell apoptosis was significantly higher as for the uncoated NiTi alloy. SEM results showed that TiN coating could enhance the cell attachment, spreading and proliferation on NiTi-SMA. The results indicated that TiN coating bonded with the substrate well and could lead to a better biocompatibility. Copyright © 2012 Elsevier B.V. All rights reserved.
Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro.
Modglin, Vernon C; Brown, Roger F; Jung, Steven B; Day, Delbert E
2013-05-01
The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications.
Cellular response of chondrocytes to magnesium alloys for orthopedic applications
LIAO, YI; XU, QINGLI; ZHANG, JIAN; NIU, JIALING; YUAN, GUANGYIN; JIANG, YAO; HE, YAOHUA; WANG, XINLING
2015-01-01
In the present study, the effects of Mg-Nd-Zn-Zr (JDBM), brushite (CaHPO4·2H2O)-coated JDBM (C-JDBM), AZ31, WE43, pure magnesium (Mg) and Ti alloy (TC4) on rabbit chondrocytes were investigated in vitro. Adhesion experiments revealed the satisfactory morphology of chondrocytes on the surface of all samples. An indirect cytotoxicity test using MTT assay revealed that C-JDBM and TC4 exhibited results similar to those of the negative control, better than those obtained with JDBM, AZ31, WE43 and pure Mg (p<0.05). There were no statistically significant differences observed between the JDBM, AZ31, WE43 and pure Mg group (p>0.05). The results of indirect cell cytotoxicity and proliferation assays, as well as those of apoptosis assay, glycosaminoglycan (GAG) quantification, assessment of collagen II (Col II) levels and RT-qPCR revealed a similar a trend as was observed with MTT assay. These findings suggested that the JDBM alloy was highly biocompatible with chondrocytes in vitro, yielding results similar to those of AZ31, WE43 and pure Mg. Furthermore, CaHPO4·2H2O coating significantly improved the biocompatibility of this alloy. PMID:25975216
Morales, Mariana; Pérez, David; Correa, Luis; Restrepo, Luz
2016-10-01
Reconstructed human epidermis (RhE) models have been used for in vitro testing of the potential harmful effects of exposure to chemical compounds on health. In the past, skin irritation and corrosion were evaluated in animal models; however, in recent years, due to the bioethics implications of the method and, to minimize the use of experimental animals, alternative procedures have been proposed. The Organisation for Economic Co-operation and Development (OECD) in its test guidelines (TG) 431 and 439 indicates the requirements for validating new methods for the evaluation of skin corrosion and irritation, respectively. Here, we present an in-house human dermal-epidermal model, useful for the performance of these tests. Using the methods described in this work, it was possible to obtain human fibrin-based dermal-epidermal organotypic skin cultures (ORGs) displaying similar histological characteristics to native skin and expressing specific differentiation epithelial proteins. The end points to classify a substance as irritant or corrosive were cell viability evaluated by MTT assay, and cytokine release measured by BD CBA for human inflammatory cytokines. According to the MTT test, the ORGs correctly classified irritating and corrosive substances. Moreover, the cytokine release assay was difficult to interpret in the context of testing chemical hazard classification. Further experiments are needed to validate this new model for the evaluation of surfactants because the fibrin matrix was affected in the presence of these substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing Brigade Combat Team Adaptability
2010-06-11
S3 DUTIES AND RESPONSIBILITIES S3 SGM S3 Operations Fires and EffectsS3 Training S3 Plans CYCLIC TNG GUIDANCE UNIT ASSESSMENT APPROVE DTU TOC/TAC SET...UP TEAM LEADER COURSE BOC MTT Requests/Tracking MTT OVERSIGHT TMPs RECLAMAS LOE OVERSIGHT MONITOR DIV O&I DTU /Task Management TOP 5 CALENDAR...referenced in Chapter 5 to this thesis. SLIDE: 1FOR OFFICIAL USE ONLY OPERATIONAL TASKS/SYSTEMS BOC Shift Change MONITOR DIV O&I DTU SDO BRIEFING
Amran, Norliyana; Rani, Anis Najwa Abdul; Mahmud, Roziahanim; Yin, Khoo Boon
2016-01-01
Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin–Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Results: B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC50] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. Conclusion: The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use. SUMMARY The phenolic and flavonoid compounds were present in B. racemosa and H. sabdariffa methanol extractsB. racemosa methanol extract was found to be potent antioxidant activityB. racemosa methanol extract have shown potent cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) toward MCF-7The phenolic and flavonoid compounds may contribute to the antioxidant and cytotoxic activity of B. racemosa. Abbreviations Used: MCF-7: Human breast cancer cell lines, DMEM: Modified eagle medium, DPPH: 2,2’-diphenyl-1-picrylhydrazyl radical, TPC: Total phenolic content, Na2CO3: Sodium carbonate, GAE: Gallic acid equivalents, TFC: Total flavonoid content, NaNO2: Sodium nitrite, AlCl3: Aluminum chloride, NaOH: Sodium hydroxide, QE: Quercetin equivalents, MTT: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, IC50: Inhibitory concentration, ANOVA: Analysis of variance, DLA: Dalton's lymphoma ascitic. PMID:26941539
Zeng, Yun; Liu, Gang; Zhou, Li-Ming
2009-01-01
AIM: To investigate the inhibitory effect of acetylshikonin on human gastric carcinoma cell line SGC-7901 and its mechanism. METHODS: MTT assay was used to assess the inhibitory effect of acetylshikonin on proliferation of SGC-7901 cells. Apoptosis-inducing effect was determined by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling with Hoechst staining. Expression of mRNA and protein in Bcl-2 and Bax was analyzed by reverse transcription-polymerase chain reaction and Western blot. Antitumor effect of acetylshikonin on a mouse SGC-7901 model was also determined. RESULTS: Forty-eight hours after treatment with acetylshikonin, MTT assay showed that acetylshikonin inhibited the proliferation of SGC-7901 cells in a dose-dependent manner. The half maximal inhibitory concentration of acetylshikonin to SGC-7901 cells was 0.428 ± 0.07 mg/L. Cell shrinkage, nuclear pyknosis and chromatin condensation, which are the characteristics of cell apoptosis, were observed in treated SGC-7901 cells and the percentage of apoptosis increased in a dose-dependent manner. Acetylshikonin down-regulated the expression of Bcl-2 and up-regulated the expression of Bax in the treated SGC-7901 cells compared with the controls. The experiment in vivo showed that 0.5, 1, and 2 mg/kg of acetylshikonin significantly inhibited the growth of tumor in the mouse SGC-7901 model, with an inhibitory rate of 25.00%-55.76%. CONCLUSION: Acetylshikonin inhibits the growth of SGC-7901 cells in vitro and in vivo by inducing cell apoptosis. PMID:19370777
Ultrasound-assisted fabrication of a biocompatible magnetic hydroxyapatite.
Zhou, Gang; Song, Wei; Hou, Yongzhao; Li, Qing; Deng, Xuliang; Fan, Yubo
2014-10-01
This work describes the fabrication and characterization of a biocompatible magnetic hydroxyapatite (HA) using an ultrasound-assisted co-precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structure and chemical composition of the produced samples. The M-H loops of synthesized materials were traced using a vibrating sample magnetometer (VSM) and the biocompatibility was evaluated by cell culture and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Furthermore, in vivo histopathological examinations were used to evaluate the potential toxicological effects of Fe₃O₄-HA composites on kidney of SD rats injected intraperitoneally with Fe₃O₄-HA particles. The results showed that magnetic iron oxide particles first replace OH ions of HA, which are parallel to the c axis, and then enter the HA crystal lattice which produces changes in the crystal surface of HA. Chemical bond interaction was observed between PO₄³⁻ groups of HA and iron ions of Fe₃O₄. The saturation magnetization (MS ) of Fe₃O₄-HA composites was 46.36 emu/g obtained from VSM data. Cell culture and MTT assays indicated that HA could affect the growth and proliferation of HEK-293 cells. This Fe₃O₄-HA composite produced no negative effects on cell morphology, viability, and proliferation and exhibited remarkable biocompatibility. Moreover, no inflammatory cell infiltration was observed in kidney histopathology slices. Therefore, this study succeeds to develop a Fe₃O₄-HA composite as a prospective biomagnetic material for future applications. © 2013 Wiley Periodicals, Inc.
Mobasseri, Rezvan; Karimi, Mahdi; Tian, Lingling; Naderi-Manesh, Hossein; Ramakrishna, Seeram
2017-05-01
Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca 2+ , Zn 2+ or Mg 2+ ). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl 2 ) facilitated the formation of bare (100.3±0.80nm) and drug-loaded nanoparticles (134.3±1.3nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was -16.8±0.47mV and its entrapment and loading efficiency were 76.74±1.73% and 47.36±1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
In vitro element release and biological aspects of base–metal alloys for metal-ceramic applications
Holm, Charlotta; Morisbak, Else; Kalfoss, Torill; Dahl, Jon E.
2015-01-01
Abstract Objective: The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt–chromium alloys and other base–metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt–chromium alloys, three nickel–chromium alloys, two cobalt–chromium–iron alloys, one palladium–silver alloy, one high-noble gold alloy, titanium grade II and one type III copper–aluminium alloy. Pure copper served as positive control. The specimens were prepared according to the ISO standards for biological and corrosion testing. Passive leaching of elements was measured by using Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) after incubation in cell culture media, MEM, for 3 days. Corrosion testing was carried out in 0.9% sodium chloride (NaCl) and 1% lactic acid for 7 days, and the element release was measured by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The biological response from the extract solutions was measured though MTT cytotoxicity testing and the Hen's egg test-chorio-allantoic membrane (HET-CAM) technique for irritationt. Results: The corrosion test showed similar element release from base-metal alloys compared to noble alloys such as gold. Apart from the high-copper alloy, all alloys expressed low element release in the immersion test, no cytotoxic effect in the MTT test, and were rated non-irritant in the HET-CAM test. Conclusions: Minimal biological response was observed for all the alloys tested, with the exception of the high-copper alloy. PMID:28642904
SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R; Iacobucci, G; Khobragade, P
2014-06-15
Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with conemore » beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying
2015-01-01
AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718
[Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].
Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao
2013-12-01
To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.
Vieira, Nashira Campos; Espíndola, Laila Salmen; Santana, Jaime Martins; Veras, Maria Leopoldina; Pessoa, Otília Deusdênia Loiola; Pinheiro, Sávio Moita; de Araújo, Renata Mendonça; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha
2008-02-15
Two hundred fifteen compounds isolated from plants of Northeastern Brazil flora have been assayed against epimastigote forms of Trypanosoma cruzi, using the tetrazolium salt MTT as an alternative method. Eight compounds belonging to four different species: Harpalyce brasiliana (Fabaceae), Acnistus arborescens and Physalis angulata (Solanaceae), and Cordia globosa (Boraginaceae) showed significant activity. Among them, a novel and a known pterocarpan, a chalcone, four withasteroids, and a meroterpene benzoquinone were the represented chemical classes.
Modification of Electron Cyclotron Maser Operation by Application of an External Signal.
1987-03-31
start-up phase jitter in the presence of this external priming signal can be estimated by using the method of David [30]. A lumped circuit representation...27. K.E. Kreischer, R.J. Temkin, H.R. Fetterman , and W.I. Mulligan, IEEE Trans. Microwave Theory Tech. MTT-32, 481 (1984). 28. I.G. Zarnitsyna and G.S...Nusinovich, Radiophys. Quant. Electron. 17, 1418 (1974). 29. G.S. Nusinovich, Radiophys. Quant. Electron. 19, 1301 (1976). 30. E.E. David Jr., Proc
Li, Wenlei; Jia, Guotao; Qu, Yanwen; Du, Qian; Liu, Baoguo; Liu, Bin
2017-01-01
Background To detect the expression of lncRNA HOXA11-AS and its biological effect in breast cancer. Material/Methods In this study, fluorescent quantitative real-time PCR (qRT-PCR), MTT assay and clone formation assay, flow cytometry, Transwell assay and wound healing assay, immunofluorescence, and Western blot analysis were conducted to detect the expression of lncRNA HOXA11-AS, cell proliferation activity, cell apoptosis rate and cell cycle distribution, the changes of cell invasion and metastasis capacity, and the expressions of molecular markers of epithelial-mesenchymal transition (EMT), respectively. Additionally, a nude mouse metastatic tumor model was established to study the influence of lncRNA HOXA11-AS on invasion and metastasis capacity of breast cancer cells. Results The qRT-PCR experiment results showed that HOXA11-AS expression in breast cancer tissue of 50 patients was relatively higher than that in tissue adjacent to cancer. MTT assay suggested that tumor cell proliferation capacity was suppressed followed by the knockdown of lncRNA HOXA11-AS expression in MDA-MB-231 and MCF-7 cells; flow cytometry results demonstrated that interfering in lncRNA HOXA11-AS could induce tumor cell apoptosis and promote cell cycle progression to be arrested in G1/G0 stage; experiments in vivo/vitro manifested that interfering in lncRNA HOXA11-AS could inhibit tumor cell invasion and migration capacity by affecting the expressions of EMT-related molecular markers (E-cadherin, N-cadherin, Vimentin). Conclusions High expression of lncRNA HOXA11-AS promotes breast cancer invasion and metastasis by affecting EMT, and interfering in lncRAN HOXA11-AS expression provides a theoretical basis and important molecular target for inhibiting the distant metastasis of breast cancer in clinical practice. PMID:28701685
Gallic acid induced apoptotic events in HCT-15 colon cancer cells
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-01-01
AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438
Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder
2014-01-01
Background Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Methods Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Results Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5–9.5, while optimum temperature for lectin activity was 20–30°C. Lectin was stable within a pH range of 7.0–10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. Conclusion This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin. PMID:25286160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salabei, Joshua K.; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202; Balakumaran, Arun
Calcium channel blockers (CCBs) are important in the management of hypertension and limit restenosis. Although CCB efficacy could derive from decreased blood pressure, other mechanisms independent of CCB activity also can contribute to antiproliferative action. To understand mechanisms of CCB-mediated antiproliferation, we studied two structurally dissimilar CCBs, diltiazem and verapamil, in cultured rat vascular smooth muscle cells (VSMC). To elucidate CCB-independent effects, pure stereoisomers of verapamil (R-verapamil, inactive VR; S-verapamil, active, VS) were used. The effects of CCB exposure on cell viability (MTT reduction), cell proliferation ({sup 3}H-thymidine incorporation), VSMC morphology by light and transmission electron microscopy (TEM) and autophagymore » (LC3I/II, ATG5) were measured. In general, verapamil, VR or VS treatment alone (80 μM) appreciably enhanced MTT absorbance although higher concentrations (VR or VS) slightly decreased MTT absorbance. Diltiazem (140 μM) markedly decreased MTT absorbance (40%) at 120 h. VR or VS treatment inhibited {sup 3}H-thymidine incorporation (24 h) and induced cytological alterations (i.e., karyokinesis, enhanced perinuclear MTT deposition, accumulated perinuclear “vacuoles”). TEM revealed perinuclear “vacuoles” to be aggregates of highly laminated and electron-dense vesicles resembling autophagosomes and lysosomes, respectively. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation by Western blotting and by increased perinuclear LC3-GFP{sup +} puncta in verapamil-treated VSMC. Verapamil stereoisomers appeared to decrease perinuclear mitochondrial density. These observations indicate that antiproliferative effects of verapamil stereoisomers are produced by enhanced mitochondrial damage and upregulated autophagy in VSMC. These effects are independent of CCB activity indicating a distinct mechanism of action that could be targeted for more efficacious anti-atherosclerotic and anti-restenosis therapy. Highlights: ► Calcium channel blockers (CCB) are antiproliferative in vascular smooth muscle cells. ► Verapamil stereoisomers are antiproliferative in VSMC independent of CCB activity. ► Verapamil stereoisomers alter mitochondrial appearance and frequency in VSMC. ► Verapamil stimulates autophagy in cultured VSMC.« less
2017-01-01
Toxicity issues and biocompatibility concerns with traditional classical chemical cross-linking processes prevent them from being universal approaches for hydrogel fabrication for tissue engineering. Physical cross-linking methods are non-toxic and widely used to obtain cross-linked polymers in a tunable manner. Therefore, in the current study, argon micro-plasma was introduced as a neutral energy source for cross-linking in fabrication of the desired gelatin-graphene oxide (gel-GO) nanocomposite hydrogel scaffolds. Argon microplasma was used to treat purified gelatin (8% w/v) containing 0.1∼1 wt% of high-functionality nano-graphene oxide (GO). Optimized plasma conditions (2,500 V and 8.7 mA) for 15 min with a gas flow rate of 100 standard cm3/min was found to be most suitable for producing the gel-GO nanocomposite hydrogels. The developed hydrogel was characterized by the degree of cross-linking, FTIR spectroscopy, SEM, confocal microscopy, swelling behavior, contact angle measurement, and rheology. The cell viability was examined by an MTT assay and a live/dead assay. The pore size of the hydrogel was found to be 287 ± 27 µm with a contact angle of 78° ± 3.7°. Rheological data revealed improved storage as well as a loss modulus of up to 50% with tunable viscoelasticity, gel strength, and mechanical properties at 37 °C temperature in the microplasma-treated groups. The swelling behavior demonstrated a better water-holding capacity of the gel-GO hydrogels for cell growth and proliferation. Results of the MTT assay, microscopy, and live/dead assay exhibited better cell viability at 1% (w/w) of high-functionality GO in gelatin. The highlight of the present study is the first successful attempt of microplasma-assisted gelatin-GO nano composite hydrogel fabrication that offers great promise and optimism for further biomedical tissue engineering applications. PMID:28663938
Bioactivity of Malva Sylvestris L., a Medicinal Plant from Iran
Razavi, Seyed Mehdi; Zarrini, Gholamreza; Molavi, Ghader; Ghasemi, Ghader
2011-01-01
Objective(s) Malva sylvestris L. (Malvaceae), an annual plant, has been already commonly used as a medicinal plant in Iran. In the present work, we evaluate some bioactivities of the plant extracts. Materials and Methods The aired-dried plant flowers and leaves were extracted by soxhlet apparatus with n-hexane, dichloromethane and methanol. The antimicrobial, cytotoxic, and phytotoxic of the plant extracts were evaluated using disk diffusion method, MTT, and Lettuce assays, respectively. Results Both flowers and leaves of M. sylvestris methanol extracts exhibited strong antibacterial effects against Erwinia carotovora, a plant pathogen, with MIC value of 128 and 256 µg/ml, respectively. The flowers extract also showed high antibacterial effects against some human pathogen bacteria strains such as Staphylococcus aureus, Streptococcus agalactiae, Entrococcus faecalis, with MIC value of 192, 200 and 256 µg/ml, respectively. The plant methanol extracts had relatively high cytotoxic activity against MacCoy cell line. Conclusion We concluded that Malva sylvestris can be candidated as an antiseptic, a chemopreventive or a chemotherapeutic agent. PMID:23493458
Synthesis, screening, and nanocrystals preparation of rhein amide derivatives.
Chen, Lijiang; Zhang, Jinfeng; Rong, Jinghong; Liu, Yu; Zhao, Jinhua; Cui, Qingguo; Wang, Xin; Liang, Xiao; Pan, Hao; Liu, Hongsheng
2018-04-23
Rhein (RH) have many bioactivities, but the application was limited of its poor solubility. The present study aimed to establish an efficient method for the synthesis of rhein amide derivatives (RAD) to increase the solubility and anti-tumor activity. RAD exhibited stronger anti-tumor activity than RH in MTT assay. The solubility and oil/water partition coefficient results indicated that rhein-phenylalanine and rhein-isoleucine have better absorption effect, which was consolidated in pharmacokinetic study. Then, rhein-phenylalanine and rhein-isoleucine were prepared into nanocrystals via the precipitation-high pressure homogenization method. Additionally, the nanocrystals both displayed much higher dissolution profiles than the bulk drugs. Pharmacokinetics study indicated that the AUC 0-∞ and C max of nanocrystals increased markedly (p < 0.01). However, the concentration of RH-Phe-NC was far less than RH-Ile-NC in plasma. Consequently, RH-Ile-NC was validated to be an applicable way to improve the bioavailability of RH, which owns a promising future in clinical application.
Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila
2017-11-02
Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.
Ghani, Ailani Ab; Nayan, Saiful Azli Mat; Kandasamy, Regunath; Ghani, Abdul Rahman Izani; Rosman, Azmin Kass
2017-02-01
Intracranial aneurysms may rupture and are typically associated with high morbidity and mortality, commonly due to vasospasm after rupture. Once the aneurysm ruptures, the patient's cerebral blood flow may be disturbed during the acute phase, affecting cerebral circulation and thus cerebral perfusion prior to the onset of vasospasm. Fisher and Navarro scores are used to predict vasospasm, while World Federation of Neurosurgical Societies (WFNS) scores are used to predict patient outcomes. Several score modifications are available to obtain higher sensitivity and specificity for the prediction of vasospasm development, but these scores are still unsuccessful. Alternatively, cerebral CT perfusion scan (CTP) is a non-invasive method for measuring cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in regions of interests (ROI) to obtain the cerebral perfusion status as well as detecting vasospasm. A total of 30 patients' data with clipped anterior circulation intracranial aneurysms admitted to the hospital between 1 January 2013 and 30 June 2014, were collected from the hospital's electronic database. The data collected included patients' admissions demographic profiles, Fisher, Navarro and WFNS scores; and their immediate pre- and post-operative CTP parameters. This study found a significant increase in post-operative MTT (pre- and post-operative MTT) were 9.75 (SD = 1.31) and 10.44 (SD = 1.56) respectively, ( P < 0.001)) as well as a significant reduction in post-operative CBF (pre- and post-operative mean CBF were 195.29 (SD = 24.92) and 179.49 (SD = 31.17) respectively ( P < 0.001)). There were no significant differences in CBV. There were no significant correlations between the pre- and post-operative CTP parameters and Fisher, Navarro or WFNS scores. Despite the interest in using Fisher, Navarro and WFNS scores to predict vasospasm and patient outcomes for ruptured intracranial aneurysms, this study found no significant correlations between these scores in either pre- or post-operative CTP parameters. These results explain the disagreement in the field regarding the multiple proposed grading systems for vasospasm prediction. CTP measures more than just anatomical structures; therefore, it is more sensitive towards minor changes in cerebral perfusion that would not be detected by WFNS, Fisher or Navarro scores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, K; Yue, N; Jabbour, S
Purpose: To prospectively evaluate the tumor vascularity assessed by perfusion CT for prediction of chemo-radiation treatment (CRT) response in locally advanced rectal cancer (LARC). Methods: Eighteen consecutive patients (61.9±8.8 years, from March–June 2015) diagnosed with LARC who underwent 6–8 weeks CRT followed by surgery were included. The pre-treatment perfusion CT was acquired after a 5s delay of contrast agent injection for 45s with 1s interval. A total of 7-cm craniocaudal range covered the tumor region with 3-mm slice thickness. The effective radiation dose is around 15mSv, which is about 1.5 the conventional abdomen/pelvis CT dose. The parametric map of bloodmore » flow (BF), blood volume (BV), mean transit time (MTT), permeability (PMB), and maximum intensity map (MIP) were obtained from commercial software (Syngo-CT 2011A, Siemens). An experienced radiation oncologist outlined the tumor based on the pre-operative MR and pathologic residual region, but was blinded with regards to pathological tumor stage. The perfusion parameters were compared to histopathological response quantified by tumor regression grade as good-responder (GR, TRG 0-1) vs. non-good responder (non-GR). Furthermore, the predictive value for pathological complete response (pCR) was also investigated. Results: Both BV (p=0.02) and MTT (P=0.02) was significantly higher and permeambility was lower (p=0.004) in the good responders. The BF was higher in GR group but not statistically significant. Regarding the discrimination of pCR vs non-pCR, the BF was higher in the pCR group (p=0.08) but none of those parameters showed statistically significant differences. Conclusion: BV and MTT can discriminate patients with a favorable response from those that fail to respond well, potentially selecting high-risk patients with resistant tumors that may benefit from an aggressive preoperative treatment approach. However, future studies with more patient data are needed to verify the prognostic value of perfusion CT especially for pCR prediction. This work is supported by the National High-tech R&D program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917), Natural Science Foundation of China (NSFC Grant No. 81201091).« less
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z.
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (ECmin) of Mg2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the ECmin obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing. PMID:27110081
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial.
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg 2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg 2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (EC min ) of Mg 2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the EC min obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing.
Lipotoxicity in HepG2 cells triggered by free fatty acids
Yao, Hong-Rui; Liu, Jun; Plumeri, Daniel; Cao, Yong-Bing; He, Ting; Lin, Ling; Li, Yu; Jiang, Yuan-Ying; Li, Ji; Shang, Jing
2011-01-01
The goal of this study was to investigate the lipid accumulation and lipotoxicity of free fatty acids (FFAs) induced in HepG2 cells. HepG2 cells were co-incubated with various concentrations of FFAs for 24h and the intracellular lipid contents were observed by Oil Red O and Nile Red staining methods. The lipotoxicity of HepG2 cells were then detected by Hoechest 33342/PI, Annexin V-FITC/PI double-staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) experiment tests. The experiments showed a lipid accumulation and lipotoxicity by increasing FFA concentration gradients. Through cell morphological observation and quantitative analysis, FFAs have shown to increase in a dose-dependent manner compared with the control group. The data collected from hoechst 33342/PI, annexin V-FITC/PI double staining and also MTT experiments showed that cell apoptosis and necrosis significantly increased with increasing FFA concentrations. Apoptosis was not obvious in the 1 mM FFAs-treated group compared to the other two groups. In a certain concentration range, FFAs induced intracellular lipid accumulation and lipotoxicity of HepG2 cells in a dose-dependent manner. PMID:21654881
Development of insulin resistance and endothelin-1 levels in the Zucker fatty rat.
Berthiaume, Nathalie; Mika, Amanda K; Zinker, Bradley A
2003-07-01
In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.
1981-09-21
acknowledge and thank A. R. Hislop and D. L. Saul, Code 9262, for their work on tbh mixer design and D. L. Chappelle and K. S. Maynard, Code 8124, for...MTT-28, p 555-563, June 1980 . 33 (a) Mixer matrix, 7 boards, 6-5 mixers, 1-7 mixers. (b) LO power split to boards, 7-way. rN’ o, Ro (c) N-way power...1966. 9. Saleh, A.A.M., Planar Electrically Symmetric N-Way Hybrid Power Dividers/ Combiners, IEEE T-MTT-28, p 555-563, June 1980 . 55
Application of wildfire simulation models for risk analysis
Alan A. Ager; Mark A. Finney
2009-01-01
Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramoniam, A; Bednarek, D; Rudin, S
Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Li, Chang-Wei; Han, Bing; Cai, Bing; Cui, Cheng-Bin
2017-03-27
Bioactivity-directed fractionation of antitumor compounds from the stem barks of Choerospondias axillaries (Roxb.) Burtt et Hill (Anacardiaceae) afforded two new cytotoxic bridged-ring ketones, choerosponins A ( 1 ) and B ( 2 ), and their structures were elucidated by spectroscopic methods; their stereochemistry was determined by NOE difference experiments, CD spectra and the modified Mosher's method. Compound 1 has a rare dioxatricyclo skeleton. Flow cytometry and SRB methods were employed to evaluate the antitumor activity of the two compounds against tsFT210, HCT-15, HeLa, A2780 and MCF-7 cell lines, and both of them showed strong cytotoxicity. MTT and paper disc methods were also used to evaluate their anti-hypoxia and antibacterial activities, and both of them showed no apparent activities.
Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry
2011-06-15
Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zhang, Jing-chao; Mo, An-chun; Li, Ji-dong; Wang, Xue-jiang; Li, Yu-bao
2014-05-01
To formulate hydroxyapatite (HA)/polymethyl methacrylate (PMMA) composites with improved cytocompatibility for provisional restoration. Nanocomposites with 20 wt%, 30 wt%, 40 wt%, and 50 wt% HA/PMMA (H/P) were developed and examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). Human gingival fibroblasts were cultured on those HA/PMMA discs and investigated by fluorescent staining on 24 h and MTT assay at 1 d, 3 d, 5 d and 7 d. Chemical integration of HA/PMMA interface was confirmed by XPS. Typical fusiform cells with adhesion spots were detected on 40 wt% and 50 wt% H/P discs. MTT results showed insignificant differences in cell growth between 40 wt% H/P and pure titanium (Ti, P > 0.05), while the other H/P discs showed significantly lower cell growth than pure Ti (P < 0.05). 40 wt% H/P might be a promising candidate for provisional dental implant restoration and for esthetic gingival contour.
DE Colli, Marianna; Radunovic, Milena; Zizzari, Vincenzo L; DI Giacomo, Viviana; DI Nisio, Chiara; Piattelli, Adriano; Calvo Guirado, José L; Zavan, Barbara; Cataldi, Amelia; Zara, Susi
2018-03-30
Titanium surface modification is critical for dental implant success. Our aim was to determine surfaces influence on dental pulp stem cells (DPSCs) viability and differentiation. Implants were divided into sandblasted/acid-etched (control) and sandblasted/acid-etched coated with calcium and magnesium ions (CaMg), supplied as composite (test). Proliferation was evaluated by MTT, differentiation checking osteoblastic gene expression, PGE2 secretion and matrix formation, inflammation by Interleukin 6 (IL-6) detection. MTT and IL-6 do not modify on test. A PGE2 increase on test is recorded. BMP2 is higher on test at early experimental points, Osterix and RUNX2 augment later. Alizarin-red S reveals higher matrix production on test. These results suggest that test surface is more osteoinductive, representing a start point for in vivo studies aiming at the construction of more biocompatible dental implants, whose integration and clinical performance are improved and some undesired effects, such as implant stability loss and further surgical procedures, are reduced.
Anticancer and anti-inflammatory activities of some dietary cucurbits.
Sharma, Dhara; Rawat, Indu; Goel, H C
2015-04-01
In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu Ling; Pei, Ying Hua
2013-01-01
Airway granulation tissue and scar formation pose a challenge because of the high incidence of recurrence after treatment. As an emerging treatment modality, topical application of mitomycin C has potential value in delaying the recurrence of airway obstruction. Several animal and clinical studies have already proven its feasibility and efficacy. However, the ideal dosage has still not been determined. To establish a novel method for culturing primary fibroblasts isolated from human airway granulation tissue, and to investigate the dose-effect of mitomycin C on the fibroblast proliferation in vitro, so as to provide an experimental reference for clinical practitioners. Granulation tissues were collected during the routine bronchoscopy at our department. The primary fibroblasts were obtained by culturing the explanted tissues. The cells were treated with different concentrations of mitomycin C (0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml) for 5 min followed by additional 48-hour culture before an MTT assay was performed to measure cell viability. MTT assay showed that mitomycin C reduced cell viability at all tested concentrations. The inhibitory ratios were 10.26, 26.77, 32.88, 64.91 and 80.45% for cells treated with mitomycin C at 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml, respectively. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissue, and mitomycin C can inhibit proliferation of the fibroblasts in vitro. Copyright © 2013 S. Karger AG, Basel.
Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum
Chen, Yun; Li, Qian; Wu, Qingsheng
2014-01-01
cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. PMID:25061294
NASA Astrophysics Data System (ADS)
Leite, Ilaiáli S.; Geralde, Mariana C.; Salina, Ana C.; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.
2014-03-01
Lower respiratory infections are among the leading causes of death worldwide. In this study, it was evaluated the interaction of indocyanine green, a photosensitizer activated by infrared light, with alveolar macrophages and the effectiveness of the photodynamic therapy using this compound against Streptococcus pneumoniae . Initial experiments analyzed indocyanine green toxicity to alveolar macrophages in the dark with different drug concentrations and incubation times, and macrophage viability was obtained with the MTT method. The average of the results showed viability values below 90% for the two highest concentrations. Experiments with Streptococcus pneumoniae showed photodynamic inactivation with 10 μM indocyanine green solution. Further experiments with the bacteria in co-culture with AM will be conducted verifying the photodynamic inactivation effectiveness of the tested drug concentrations and incubation periods using infrared light.
NASA Astrophysics Data System (ADS)
Dai, Yanfeng; Xu, Min; Wei, Junchao; Zhang, Haobin; Chen, Yiwang
2012-01-01
The surface of hydroxyapatite nanoparticles was modified by poly(L-phenylalanine) via the ring opening polymerization (ROP) of L-phenylalanine N-carboxyanhydride. The preparation procedure was monitored by Fourier transform infrared spectroscopy (FTIR), and the modified hydroxyapatite was characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that the surface grafting amounts of poly(L-phenylalanine) on HA ranging from 20.26% to 38.92% can be achieved by tuning the reaction condition. The XRD patterns demonstrated that the crystalline structure of the modified hydroxyapatite was nearly the same with that of HA, implying that the ROP was an efficient surface modification method. The MTT assay proved that the biocompatibility of modified HA was very good, which showed the potential application of modified HA in bone tissue engineering.
Gómez-Arroyo, Sandra; Barba-García, Arisbel; Arenas-Huertero, Francisco; Cortés-Eslava, Josefina; de la Mora, Michel Grutter; García-Martínez, Rocío
2018-02-01
The present study was designed to detect the effect of heavy metals in two zones of the Metropolitan Area of Mexico City (MAMC), the Centro de Ciencias de la Atmósfera (CCA), and the Altzomoni station in the Iztaccíhuatl-Popocatépetl National Park. Taraxacum officinale was selected as the indicator organism of responses to atmospheric contamination by heavy metals. Determinations of heavy metals were performed, and total mRNA was extracted to quantify the expression of microRNA398 (miR398), superoxide dismutase 2 (CSD2), and the amounts of free radicals using the bromide of 3-(4,5-dimethylthiazole-2-ilo)-2,5-diphenyltetrazole (MTT) salts reduction assay. Results from the Altzomoni station showed high concentrations of five heavy metals, especially Aluminum, while three heavy metals were identified in the CCA-UNAM zone, most importantly, Vanadium, both in the dry season; miR398 expression presented subtle changes but was greater in the leaves from the stations with higher concentrations of heavy metals. Observations included a significant expression of CSD2, mainly in the dry season in both study zones, where levels were significant with respect to controls (p < 0.05). Reduced MTT was also higher in the dry season than in the rainy season (p < 0.05). In conclusion, the increase in heavy metals on the leaves of Taraxacum officinale induces increased expression of the CSD2 gene and reduced MTT; thus, they can be used as indicators for biomonitoring heavy metal concentrations.
Molecular tagging techniques and their applications to the study of complex thermal flow phenomena
NASA Astrophysics Data System (ADS)
Chen, Fang; Li, Haixing; Hu, Hui
2015-08-01
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.
Kane, I; Hand, P J; Rivers, C; Armitage, P; Bastin, M E; Lindley, R; Dennis, M; Wardlaw, J M
2009-11-01
MR diffusion/perfusion mismatch may help identify patients for acute stroke treatment, but mixed results from clinical trials suggest that further evaluation of the mismatch concept is required. To work effectively, mismatch should predict prognosis on arrival at hospital. We assessed mismatch duration and associations with functional outcome in acute stroke. We recruited consecutive patients with acute stroke, recorded baseline clinical variables, performed MR diffusion and perfusion imaging and assessed 3-month functional outcome. We assessed practicalities, agreement between mismatch on mean transit time (MTT) or cerebral blood flow (CBF) maps, visually and with lesion volume, and the relationship of each to functional outcome. Of 82 patients starting imaging, 14 (17%) failed perfusion imaging. Overall, 42% had mismatch (56% at <6 h; 41% at 12-24 h; 23% at 24-48 h). Agreement for mismatch by visual versus volume assessment was fair using MTT (kappa 0.59, 95% CI 0.34-0.84) but poor using CBF (kappa 0.24, 95% CI 0.01-0.48). Mismatch by either definition was not associated with functional outcome, even when the analysis was restricted to just those with mismatch. Visual estimation is a reasonable proxy for mismatch volume on MTT but not CBF. Perfusion is more difficult for acute stroke patients than diffusion imaging. Mismatch is present in many patients beyond 12 h after stroke. Mismatch alone does not distinguish patients with good and poor prognosis; both can do well or poorly. Other factors, e.g. reperfusion, may influence outcome more strongly, even in patients without mismatch.
Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin.
Meng, Qiong; Yau, Lee-Fong; Lu, Jing-Guang; Wu, Zhen-Zhen; Zhang, Bao-Xian; Wang, Jing-Rong; Jiang, Zhi-Hong
2016-07-01
Toad venom and toad skin have been widely used for treating various cancers in China. Bufadienolides are regarded as the main anticancer components of toad venom, but the difference on composition and anticancer activities of bufadienolides between toad venom and toad skin remains unclear. Fractions enriched with free and conjugated bufadienolides were prepared from toad venom and toad skin. Bufadienolides in each fraction were comprehensively profiled by using a versatile UHPLC-TOF-MS method. Relative contents of major bufadienolides were determined by using three bufogenins and one bufotoxin as marker compounds with validated UHPLC-TOF-MS method. Furthermore, cytotoxicity of the fractions was examined by MTT assay. Two fractions, i.e., bufogenin and bufotoxin fractions (TV-F and TV-C) were isolated from toad venom, and one bufotoxin fraction (TS-C) was isolated from toad skin. Totally 56 bufadienolides in these three fractions were identified, and 29 were quantified or semi-quantified. Bufotoxins were identified in both toad venom and toad skin, whereas bufogenins exist only in toad venom. Bufalin-3-conjugated bufotoxins are major components in toad venom, whereas cinobufotalin and cinobufagin-3-conjugated bufotoxins are main bufotoxins in toad skin. MTT assay revealed potent cytotoxicity of all the fractions in an order of TV-F>TV-C>TS-C. Our study represents the most comprehensive investigation on the chemical profiles of toad venom and toad skin from both qualitative and quantitative aspects. Eight bufotoxins were identified in toad skin responsible for the cytotoxicity for the first time. Our research provides valuable chemical evidence for the appropriate processing method, quality control and rational exploration of toad skin and toad venom for the development of anticancer medicines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
He, Y F; Liu, F Y; Zhang, W X
2015-10-29
The treatment of obese patients is a topic investigated by an increasing number of researchers. This study aimed to elucidate the possible inhibitory effect of tangeritin on the development and function of fat cells. 3T3-L1 fat cells were grown to confluence and subjected to different concentrations of tangeritin. The most effective tangeritin inhibition concentration was determined by the MTT assay. The treated cells were subjected to real-time reverse transcriptase PCR and western blot analysis, to detect changes in the CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, and peroxisome proliferator activated receptor (PPAR)γ expression levels. The MTT assay revealed that the fat cell growth was inhibited at a 20 ng/mL concentration of tangeritin. The results of real-time PCR revealed a significant decrease in the expression of C/EBPα, C/EBPβ, and PPARγ mRNA, following the treatment with tangeritin. Western blot analysis also presented similar results at a protein level. Therefore, we concluded that tangeritin inhibits adipogenesis via the down-regulation of C/EBPα, C/EBPβ, and PPARγ mRNA and protein expression in 3T3-L1 cells.
Assem, Mostafa; Kamal, Samia; Sabry, Dina; Soliman, Nadia; Aly, Riham M
2018-02-15
Stem cells have recently received great interest as potential therapeutics alternative for a variety of diseases. The oral and maxillofacial region, in particular, encompasses a variety of distinctive mesenchymal (MSC) populations and is characterized by a potent multilineage differentiation capacity. In this report, we aimed to investigate the effect of diabetes on the proliferation potential of stem cells isolated from controlled diabetic patients (type 2) and healthy individuals. The proliferation rate of gingival and periodontal derived stem cells isolated from diabetic & healthy individuals were compared using MTT Assay. Expression levels of Survivin in isolated stem cells from all groups were measured by qRt - PCR. There was a significantly positive correlation between proliferation rate and expression of Survivin in all groups which sheds light on the importance of Survivin as a reliable indicator of proliferation. The expression of Survivin further confirmed the proliferation results from MTT Assay where the expression of stem cells from non - diabetic individuals was higher than diabetic patients. Taking together all the results, it could be concluded that PDLSC and GSC are promising candidates for autologous regenerative therapy due to their ease of accessibility in addition to their high proliferative rates.
Ferrokinetics in Patients on CAPD: Influence of CAPD on the Anemia of Uremia*
Lee, Hi Bahl; Koh, Seong Won; Park, Hee Sook
1986-01-01
Ferrokinetic studies were performed with 59Fe-citrate to evaluate erythropoietic activity in CAPD patients and to investigate the mechanism(s) by which the hematocrit increases in CAPD patients. Plasma iron disappearance rate (PID), plasma iron turnover rate (PIT), red cell iron utilization (RCIU), red cell iron turnover rate (RCIT) and marrow transit time (MTT) were all “normal” in uremic patients not yet on dialysis (Hct 23.8±3.4%), CAPD patients with persistently low hematocrit (Hct 24.9±1.8%) and CAPD patients with improved hematocrit (Hct 32.4±3.1%). Compared to these uremic patients, patients with iron deficiency anemia and normal renal function (Hct 28.0±5.1 %) had significantly faster PID and MTT and significantly higher RCIU and RCIT. Plasma volume was significantly reduced (to normal level) in CAPD patients with improved hematocrits. The results of this study suggest that erythropoietic activity is inadequate for the degree of anemia in CAPD patients as well as uremic patients not on dialysis and further suggest that the hematocrit increases in CAPD as a result of decreased plasma volume. PMID:15759377
Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R
2013-09-01
Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.
New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.
Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi
2012-03-01
Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method. Copyright © 2012 Elsevier Ltd. All rights reserved.
Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan
2013-01-01
Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036
Abdel-Hafez, Salma M; Hathout, Rania M; Sammour, Omaima A
2018-07-01
In the current study, the transdermal route has been investigated to deliver the poorly bioavailable drug; curcumin into the systemic circulation, aiming to target both superficial and subcutaneous tumors such as the breast tumors. Accordingly, different colloidal carriers viz. ultradeformable nanovesicles comprising various penetration enhancers were exploited. Curcumin-loaded deformable vesicles were prepared by the thin film hydration method followed by extrusion. Sodium cholate and Tween 80 were set as standard edge activators and Labrasol, Transcutol, limonene and oleic acid were the penetration enhancers that were evaluated for their efficacy in skin permeation. The particle size and zeta potential of the prepared vesicles were significantly affected by the type of surfactant/penetration enhancer. The polydispersity measurements showed uniform particle size distribution indicating the sufficiency of the extrusion cycles performed. Curcumin, as a hydrophobic molecule, was well accommodated within the lipid bilayers of the prepared vesicles with entrapment efficiency (EE%) percentages and drug loading percentages (DL%) as high as 93.91% and 7.04%, respectively. The ex-vivo permeation studies were performed on male albino mice skin mounted on Franz diffusion cells. Oleic acid and Transcutol exhibited comparable fluxes to sodium cholate and Tween 80 (∼16 μg cm -2 h -1 ), whereas the fluxes of Labrasol and limonene were significantly lower. Cytotoxicity studies were performed using MTT assay on human breast cancer cell lines (MCF-7 cells). The results of the MTT assay demonstrated that oleic acid ultradeformable nanovesicles scored an IC 50 of 20 μg/ml which introduce these new curcumin-loaded nanovesicles as a successful delivery system for breast cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity
Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A
2016-01-01
Purpose This article investigated the influence of novel rifampicin nanosuspension (RIF NS) for enhancing drug delivery properties. Methods RIF NS was fabricated using the antisolvent precipitation technique. The impact of solvent type and flow rate, stabilizer type and concentration, and stirring time and apparatus together with the solvent–antisolvent volume ratio on its controlled nanocrystallization has been evaluated. NSs were characterized by transmission electron microscopy, particle size and zeta potential analysis, solubility, and dissolution profiles. The compatibility between RIF and the stabilizer was investigated via Fourier transform infrared spectroscopy and the differential scanning calorimetry techniques. The shelf-life stability of the RIF NS was assessed within a period of 3 months at different storage temperatures. Cell cytotoxicity was evaluated using 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on lung epithelial cells. Results Polyvinyl alcohol at 0.4% w/v, 1:15 methanol to deionized water volume ratio and 30-minutes sonication were the optimal parameters for RIF NS preparation. Nanocrystals were obtained with a nanometeric particle size (101 nm) and a negative zeta potential (−26 mV). NS exhibited a 50-fold enhancement in RIF solubility and 97% of RIF was dissolved after 10 minutes. The RIF NS was stable at 4±0.5°C with no significant change in particle size or zeta potential. The MTT cytotoxicity assay of RIF NS demonstrated a good safety profile and reduction in cell cytotoxicity with half maximal inhibitory concentration values of 0.5 and 0.8 mg/mL for free RIF and RIF NS, respectively. Conclusion A novel RIF NS could be followed as an approach for enhancing RIF physicochemical characteristics with a prominence of a safer and better drug delivery. PMID:27274244
Li, Yao; Yan, Ming; Wang, Zilu; Zheng, Yangyu; Li, Junjun; Ma, Shu; Liu, Genxia; Yu, Jinhua
2014-11-17
Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. SCAP was isolated and treated with 10⁻⁷ M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. The ondonto/osteogenic differentiation of SCAP is enhanced by 10⁻⁷ M 17beta-estradiol via the activation of MAPK signaling pathway.
The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells
2009-01-01
Background Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. Methods The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Conclusion Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells. PMID:19566920
Guo, Yan; Sun, Juan; Ye, Juan; Ma, Wenyu; Yan, Hualing; Wang, Gang
2016-01-01
Objective To investigate whether Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones exert apoptosis-inhibiting effects in ultraviolet B (UVB)-irradiated HaCaT cells. Methods We divided HaCaT cells into low radiation UVB and high radiation UVB groups. Low radiation UVB and high radiation UVB groups were further divided into a control group, UVB radiation group (UVB group), S. tridactyla Sch. Bip.-derived polysaccharides and flavones low-dose group, and S. tridactyla Sch. Bip.-derived polysaccharides and flavones high-dose group. Cell viability and morphology were assayed by MTT and trypan blue staining. Superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity test kits were used to detect superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity, respectively. Cell apoptosis, intracellular Ca2+ levels, and mitochondrial membrane potential (Δψ) were detected by flow cytometry. Protein levels were analyzed by Western blotting and immunofluorescence. Results S. tridactyla Sch. Bip.-derived polysaccharides and flavones were found to increase the absorbance of MTT, decrease cell death, alleviate the degree of cell edema, restore the cell morphology, reduce cell death fragments and chip phenomenon, increase superoxide dismutase activity, glutathione content, and catalase activity while decreasing the content of malondialdehyde, lowering the population of apoptotic cells, reducing the intracellular Ca2+ fluorescence, increasing the mitochondrial membrane potential (Δψ), increasing the expressions of p-38, p-53, Bcl-2, and decreasing the expressions of Bax and active-caspase-3. Conclusion S. tridactyla Sch. Bip.-derived polysaccharides and flavones can reduce cell apoptosis to protect HaCaT cells from oxidative damage after UVB irradiation; however, this effect does not occur via the p38MAPK pathway. PMID:26855564
Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin
2017-02-01
In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Cong; Chen, Xiaohui; Du, Ning; Geng, Shuo; Hu, Yingying; Liu, Xin; Wu, Xianxian; Lin, Yuan; Bai, Xue; Yin, Wenzhe; Cheng, Shi; Yang, Lei; Zhang, Yong
2018-01-01
Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.
Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Salles, Loise Pedrosa; Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário
2015-10-01
Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.
Kwon, Yong-Dae; Choi, Hyun-jung; Lee, Heesu; Lee, Jung-Woo; Weber, Hans-Peter
2014-01-01
PURPOSE The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD 25 µg/mL, and (3) with EMD 100 µg/mL on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-β1 was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS From MTT assay, HGF showed more proliferation in EMD 25 µg/mL group than control and EMD 100 µg/mL group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD 25 µg/mL group and EMD 100 µg/mL group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-β1 was increased at EMD 100 µg/mL. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD 25 µg/mL. CONCLUSION Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-β1 in high concentration levels. CLINICAL RELEVANCE With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants. PMID:25352963
Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure
Kim, Hyun Mi; Kim, Suk Hee
2018-01-01
BACKGROUND/OBJECTIVES Exposure of the normal lung tissue around the cancerous tumor during radiotherapy causes serious side effects such as pneumonitis and pulmonary fibrosis. Radioprotectors used during cancer radiotherapy could protect the patient from side effects induced by radiation injury of the normal tissue. Delphinidin has strong antioxidant properties, and it works as the driving force of a radioprotective effect by scavenging radiation-induced reactive oxygen species (ROS). However, no studies have been conducted on the radioprotective effect of delphinidin against high linear energy transfer radiation. Therefore, this study was undertaken to evaluate the radioprotective effects of delphinidin on human lung cells against a proton beam. MATERIALS/METHODS Normal human lung cells (HEL 299 cells) were used for in vitro experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay assessed the cytotoxicity of delphinidin and cell viability. The expression of radiation induced cellular ROS was measured by the 2′-7′-dicholordihydrofluorescein diacetate assay. Superoxide dismutase activity assay and catalase activity assay were used for evaluating the activity of corresponding enzymes. In addition, radioprotective effects on DNA damage-induced cellular apoptosis were evaluated by Western blot assay. RESULTS Experimental analysis, including cell survival assay, MTT assay, and Western blot assay, revealed the radioprotective effects of delphinidin. These include restoring the activities of antioxidant enzymes of damaged cells, increase in the levels of pro-survival protein, and decrease of pro-apoptosis proteins. The results from different experiments were compatible with each to provide a substantial conclusion. CONCLUSION Low concentration (2.5 µM/mL) of delphinidin administration prior to radiation exposure was radioprotective against a low dose of proton beam exposure. Hence, delphinidin is a promising shielding agent against radiation, protecting the normal tissues around a cancerous tumor, which are unintentionally exposed to low doses of radiation during proton therapy. PMID:29399295
Yedjou, Clement G.; Tchounwou, Paul B.
2012-01-01
Introduction Garlic supplementation in diet has been shown to be beneficial to cancer patients. Recently, its pharmacological role in the prevention and treatment of cancer has received increasing attention. However, the mechanisms by which garlic extract (GE) induces cytotoxicity, oxidative stress, and apoptosis in cancer cells remain largely unknown. Objective The present study was designed to use HL-60 cells as a test model to evaluate whether or not GE-induced cytotoxicty and apoptosis in human leukemia (HL-60) cells is mediated through oxidative stress. Methods Human leukemia (HL-60) cells were treated with different concentrations of GE for 12 hr. Cell survival was determined by MTT assay. The extent of oxidative cell/tissue damage was determined by measuring malondialdehyde (lipid peroxidation biomarker) concentrations by spectrophotometry. Cell apoptosis was measured by flow cytometry assessment (Annexin-V and caspase-3 assays) and agarose gel electrophoresis (DNA laddering assay). Results Data obtained from the MTT assay indicated that GE significantly (p < 0.05) reduced the viability of HL-60 cells in a concentration-dependent manner. We detected a significant (p < 0.05) increase in malondialdehyde (MDA) concentrations in GE-treated HL-60 cells compared to the control. Flow cytometry data showed a strong concentration-response relationship between GE exposure and Annexin-V positive HL-60 cells. Similarly, a statistically significant and concentration-dependent increase (p <0.05) were recorded with regard to caspase-3 activity in HL-60 cells undergoing late apoptosis. These results were confirmed by data of DNA laddering assay showing a clear evidence of nucleosomal DNA fragmentation in GE-treated cells. Conclusion Our finding indicates that GE-induced cytotoxicity and apoptosis in HL-60 cells involve phosphatidylserine externalization, caspase-3 activation, and nucleosomal DNA fragmentation associated with the formation of MDA, a by-product of lipid peroxidation and biomarker of oxidative stress. At therapeutic concentrations, GE-induced cytotoxic and apoptotic effects in HL-60 cells is mediated by oxidative stress. PMID:23847719
Sabziparvar, Negin; Saeedi, Yosra; Nouri, Mina; Najafi Bozorgi, Atefeh Sadat; Alizadeh, Elahe; Attar, Farnoosh; Akhtari, Keivan; Mousavi, Seyyedeh Elaheh; Falahati, Mojtaba
2018-04-19
Nanoparticles (NPs) have received great attention in biological and medical applications because of their unique features. However, their induced adverse effects on the biological system are not well-explored. Herein, the interaction of silicon dioxide nanoparticles (SiO 2 NPs) with human hemoglobin (Hb) and lymphocyte cell line was evaluated under physiological conditions by multispectroscopic [intrinsic and synchronous fluorescence spectroscopy and circular dichrosim (CD)], molecular docking, and cellular [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and acridine orange/ethidium bromide (AO/EB) staining] methods. Transmission electron microscopy and dynamic light scattering revealed the nanosized and spherical shaped SiO 2 particle. The fluorescence and lifetime decay results indicated that SiO 2 NPs quenched the intrinsic intensity of Hb through a static quenching mechanism. The binding affinity of SiO 2 NPs toward Hb was directly correlated with temperature. The sign of thermodynamic parameters demonstrated that hydrophobic forces played a pivotal role in the interaction of SiO 2 NPs with Hb. The results of synchronous fluorescence experiments displayed that Tyr residues are moved to a more hydrophilic microenvironment. Molecular docking studies exhibited that SiO 2 and Si NPs were bound to Hb primarily by hydrophobic residues. The findings from CD data verified no alteration in the secondary structure of Hb upon binding to SiO 2 NPs. The human lymphocyte cell line was treated with SiO 2 NPs at varying concentrations and time intervals and the cytotoxicity assays by MTT and AO/EB staining showed that cell viability was reduced by the SiO 2 NP-induced apoptosis mechanism in a dose and time-dependent manner. Therefore, it may be suggested that comprehensive details regarding the interaction of NPs and biological systems such as cells and proteins can provide useful information in the development of NP-based systems.
NASA Astrophysics Data System (ADS)
Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam
2015-04-01
In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372
MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria
2014-01-01
Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023
Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells
Tsai, Cheng-Chia; Chuang, Tang-Wei; Chen, Li-Jen; Niu, Ho-Shan; Chung, Kun-Ming; Cheng, Juei-Tang; Lin, Kao-Chang
2015-01-01
AIM: To investigate the effect of metformin on silibinin-induced apoptosis in human colorectal cancer (COLO 205) cells. METHODS: MTT assays were performed to quantify cell viability. Western blot assays were applied to identify the expression of signaling proteins. RESULTS: The combined treatment of COLO 205 cells with metformin and silibinin decreased cell survival at a dose insufficient to influence the non-malignant cells [Human colonic epithelial cells (HCoEpiC)]. Silibinin and metformin increased phosphatase and tensin homolog and 5’-adenosine monophosphate-activated protein kinase expression in COLO 205 cells and inhibited the phosphorylation of mammol/Lalian target of rapamycin. This combined treatment resulted in an increase in the expression of activated caspase 3 and apoptosis inducing factor, indicating apoptosis. CONCLUSION: The combined treatment of human colorectal cancer cells with silibinin and metformin may induce apoptosis at a dose that does not affect HCoEpiC. This finding reveals a potential therapeutic strategy for the treatment of colorectal cancer. PMID:25892866
2014-01-01
Background Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Methods Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. Results 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10–100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Conclusions Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri. PMID:24512530
Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer.
Prajakta, Dandekar; Ratnesh, Jain; Chandan, Kumar; Suresh, Subramanian; Grace, Samuel; Meera, Venkatesh; Vandana, Patravale
2009-10-01
The investigation was aimed at designing pH-sensitive, polymeric nanoparticles of curcumin, a natural anti-cancer agent, for the treatment of colon cancer. The objective was to enhance the bioavailability of curcumin, simultaneously reducing the required dose through selective targeting to colon. Eudragit S100 was chosen to aid targeting since the polymer dissolves at colonic pH to result in selective colonic release of the entrapped drug. Solvent emulsion-evaporation technique was employed to formulate the nanoparticles. Various process parameters were optimized and the optimized formulation was evaluated for particle size distribution and encapsulation efficiency before subjecting to freeze-drying. The freeze dried product was characterized for particle size, drug content, DSC studies, particle morphology. Anti-cancer potential of the formulation was demonstrated by MTT assay in HT-29 cell line. Nanometric, homogeneous, spherical particles were obtained with encapsulation efficiency of 72%. Freeze-dried nanoparticles exhibited a negative surface charge, drug content of > 99% and presence of drug in amorphous form which may result in possible enhanced absorption. MTT assay demonstrated almost double inhibition of the cancerous cells by nanoparticles, as compared to curcumin alone, at the concentrations tested. Enhanced action may be attributed to size influenced improved cellular uptake, and may result in reduction of overall dose requirement. Results indicate the potential for in vivo studies to establish the clinical application of the formulation.
Nawaz, Haq; Bonnier, Franck; Knief, Peter; Howe, Orla; Lyng, Fiona M; Meade, Aidan D; Byrne, Hugh J
2010-12-01
The study of the interaction of anticancer drugs with mammalian cells in vitro is important to elucidate the mechanisms of action of the drug on its biological targets. In this context, Raman spectroscopy is a potential candidate for high throughput, non-invasive analysis. To explore this potential, the interaction of cis-diamminedichloroplatinum(II) (cisplatin) with a human lung adenocarcinoma cell line (A549) was investigated using Raman microspectroscopy. The results were correlated with parallel measurements from the MTT cytotoxicity assay, which yielded an IC(50) value of 1.2 ± 0.2 µM. To further confirm the spectral results, Raman spectra were also acquired from DNA extracted from A549 cells exposed to cisplatin and from unexposed controls. Partial least squares (PLS) multivariate regression and PLS Jackknifing were employed to highlight spectral regions which varied in a statistically significant manner with exposure to cisplatin and with the resultant changes in cellular physiology measured by the MTT assay. The results demonstrate the potential of the cellular Raman spectrum to non-invasively elucidate spectral changes that have their origin either in the biochemical interaction of external agents with the cell or its physiological response, allowing the prediction of the cellular response and the identification of the origin of the chemotherapeutic response at a molecular level in the cell.
Effects of cefonicid and other cephalosporin antibiotics on male sexual development in rats.
Manson, J M; Zolna, L E; Kang, Y J; Johnson, C M
1987-01-01
The purpose of this study was to determine whether cefonicid, a cephalosporin antibiotic with a modified N-methylthiotetrazole (MTT) side chain, caused testicular toxicity when subcutaneously administered to Sprague-Dawley male rats from days 6 to 36 postpartum at doses of 50 to 1,000 mg/kg per day. Moxalactam (a cephamycin antibiotic which will be referred to as a cephalosporin for convenience throughout), which contains the MTT side chain, was used as a positive control and was administered at 100 to 1,000 mg/kg per day, and cephalothin, which lacks an MTT side chain, was used as the negative control at 1,000 mg/kg per day. Moxalactam caused a significant reduction in testicular and seminal vesicle weights in 37-day-old animals, and histological examination revealed bilateral multifocal atrophy of the seminiferous tubules at all dose levels. Animals reared to reproductive maturity had significant deficits in fertility, and histological examination revealed multifocal or diffuse atrophy of the seminiferous tubules at all doses with a severity greater than that observed in the 37-day-old animals. The histological findings were confirmed by marked reductions in testicular sperm production rates and cauda epididymal sperm numbers. Cephalothin and cefonicid had no treatment-related adverse effects on the sexual maturation of prepubertal, juvenile, or adult males. The absence (in cephalothin) or modification (in cefonicid) of the MTT side chain was not associated with adverse reproductive effects. The relevance of these findings to humans in prenatal and prepubertal stages of life cannot be determined at this time. Images PMID:3662478
Hellmich, Mark R.; Cestone, Christina M.; Wooten, Kevin C.; Ottenbacher, Kenneth J.; Chonmaitree, Tasnee; Anderson, Karl E.; Brasier, Allan R.
2015-01-01
ABSTRACT Multiinstitutional research collaborations now form the most rapid and productive project execution structures in the health sciences. Effective adoption of a multidisciplinary team research approach is widely accepted as one mechanism enabling rapid translation of new discoveries into interventions in human health. Although the impact of successful team‐based approaches facilitating innovation has been well‐documented, its utility for training a new generation of scientists has not been thoroughly investigated. We describe the characteristics of how multidisciplinary translational teams (MTTs) promote career development of translational research scholars through competency building, interprofessional integration, and team‐based mentoring approaches. Exploratory longitudinal and outcome assessments from our experience show that MTT membership had a positive effect on the development of translational research competencies, as determined by a self‐report survey of 32 scholars. We also observed that all trainees produced a large number of collaborative publications that appeared to be associated with their CTSA association and participation with MTTs. We conclude that the MTT model provides a unique training environment for translational and team‐based learning activities, for investigators at early stages of career development. PMID:26010046
Schurr, Roey; Nitzan, Mor; Eliahou, Ruth; Spinelli, Laurent; Seeck, Margitta; Blanke, Olaf; Arzy, Shahar
2018-01-01
In mental time travel (MTT) one is "traveling" back-and-forth in time, remembering, and imagining events. Despite intensive research regarding memory processes in the hippocampus, it was only recently shown that the hippocampus plays an essential role in encoding the temporal order of events remembered, and therefore plays an important role in MTT. Does it also encode the temporal relations of these events to the remembering self? We asked patients undergoing pre-surgical evaluation with depth electrodes penetrating the temporal lobes bilaterally toward the hippocampus to project themselves in time to a past, future, or present time-point, and then make judgments regarding various events. Classification analysis of intracranial evoked potentials revealed clear temporal dissociation in the left hemisphere between lateral-temporal electrodes, activated at ~100-300 ms, and hippocampal electrodes, activated at ~400-600 ms. This dissociation may suggest a division of labor in the temporal lobe during self-projection in time, hinting toward the different roles of the lateral-temporal cortex and the hippocampus in MTT and the temporal organization of the related events with respect to the experiencing self.
Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.
2013-01-01
Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619
Aletras, A; Barlos, K; Gatos, D; Koutsogianni, S; Mamos, P
1995-05-01
N alpha-9-Fluorenylmethoxycarbonyl-N epsilon-4=methyltrityl-lysine, [Fmoc-Lys(Mtt)-OH], was prepared in two steps from lysine, in 42% overall yield. The N epsilon-Mtt function can be quantitatively removed upon treatment with 1% TFA in dichloromethane or with a 1:2:7 mixture of acetic acid/trifluoroethanol/dichloromethane for 30 min and 1 h at room temperature, respectively. Under these conditions, groups of the tert-butyl type and peptide ester bonds to TFA-labile resins, such as the 2-chlorodiphenylmethyl- and the Wang-resin, remained intact. The utility of the new derivative in peptide synthesis has been exemplified with the synthesis of a cyclic cholecystokinin analog. As an example of further application, five types of lysine cores suitable for the solid-phase synthesis of one, two or three epitopes containing antigenic peptides or template-assembled synthetic proteins have been synthesized on Merrifield, Wang and 2-chlorodiphenylmethyl resin.
Wu, Fayin; Zhou, Hefeng; Fan, Zhiying; Zhu, Yawen; Li, Yongye; Yao, Yukun; Ran, Dan
2014-02-01
To observe the effect of garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M. Human salivary in adenoid cystic carcinoma cell line AC-M was cultured, divided into the experimental group (5-FU group, garlic oil group, garlic oil + 5-FU group) and the control group, to observe the growth activity of tumor cells by MTT methods; to analyse the changes of cell cycle and apoptosis rate by flow cytometry. MTT experiments showed that 5-FU, garlic oil, garlic oil and 5-FU on ACC-M cells have inhibition in different concentration, with the increase of concentration and action time of the rise; Cell cycle analysis showed significant changes in flow cytometry. With the increase of concentration and the acting time, the G0/G1, phase of the cell ratio increased, S had no significant change, but G2/M phase cells decreased. Apoptosis rate display showed garlic oil combined with 5-FU induced apoptosis of ACC-M cells was significantly stronger than single group. Garlic oil can effectively induce the apoptosis of adenoid cystic carcinoma cell line ACC-M. The effect of garlic oil combined with 5-FU on ACC-M cells was stronger than the garlic oil, 5-FU used alone.
Rapid screening of potential autophagic inductor agents using mammalian cell lines.
Martins, Waleska K; Severino, Divinomar; Souza, Cleidiane; Stolf, Beatriz S; Baptista, Maurício S
2013-06-01
Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye-staining of autophagic vesicles, and LC3-II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability - Crystal Violet staining (CVS), 3-[4, 5-dimethylthiaolyl]-2, 5-diphenyl-tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) - to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16-F10, HaCaT, HeLa, MES-SA, and MES-SA/Dx5 in a unique single microplate. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ambi, Ashwin; Bryan, Julia; Borbon, Katherine; Centeno, Daniel; Liu, Tianchi; Chen, Tung Po; Cattabiani, Thomas; Traba, Christian
2017-07-01
Most studies reveal that the mechanism of action of propolis against bacteria is functional rather than structural and is attributed to a synergism between the compounds in the extracts. Propolis is said to inhibit bacterial adherence, division, inhibition of water-insoluble glucan formation, and protein synthesis. However, it has been shown that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional and may be attributed to the metals found in propolis. If the metals found in propolis are removed, cell lysis still occurs and these modified extracts may be used in the prevention of medical and biomedical implant contaminations. The antibacterial activity of metal-free Russian propolis ethanol extracts (MFRPEE) on two biofilm forming bacteria: penicillin-resistant Staphylococcus aureus and Escherichia coli was evaluated using MTT and a Live/Dead staining technique. Toxicity studies were conducted on mouse osteoblast (MC-3T3) cells using the same viability assays. In the MTT assay, biofilms were incubated with MTT at 37°C for 30min. After washing, the purple formazan formed inside the bacterial cells was dissolved by SDS and then measured using a microplate reader by setting the detecting and reference wavelengths at 570nm and 630nm, respectively. Live and dead distributions of cells were studied by confocal laser scanning microscopy. Complete biofilm inactivation was observed when biofilms were treated for 40h with 2µg/ml of MFRPEE. Results indicate that the metals present in propolis possess antibacterial activity, but do not have an essential role in the antibacterial mechanism of action. Additionally, the same concentration of metals found in propolis samples, were toxic to tissue cells. Comparable to samples with metals, metal free samples caused damage to the cell membrane structures of both bacterial species, resulting in cell lysis. Results suggest that the structural mechanism of action of Russian propolis ethanol extracts stem predominate from the organic compounds. Further studies revealed drastically reduced toxicity to mammalian cells when metals were removed from Russian propolis ethanol extracts, suggesting a potential for medical and biomedical applications. Published by Elsevier GmbH.
Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed
2014-01-01
The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.
Radiation sensitivity of Merkel cell carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.
1995-07-30
Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less
Jiang, Yayun; Wang, Ting; Wang, Jinshu; Xia, Jing; Gou, Liyao; Liu, Mengyao; Zhang, Yan
2016-11-01
Objective To investigate the effect of overexpressed inhibitor of β-catenin and T cell factor (ICAT) on the proliferation and migration of human cervical cancer Caski cells. Methods Caski cells were transfected with ICAT recombinant adenovirus (AdICAT). The levels of ICAT mRNA and protein were detected by quantitative real-time PCR (qRT-PCR) and Western blotting, respectively. Effect of ICAT overexpression on proliferation, cell cycle and migration in Caski cells was respectively evaluated by MTT assay, flow cytometry and Transwell TM migration assays. Results The expression of ICAT remarkably increased in Caski cells after AdICAT infection. Overexpression of ICAT promoted Caski cells' proliferation, arrested the cell cycle in the S phase and enhanced cell migration. Conclusion Overexpression of ICAT can promote the proliferation and migration of Caski cervical cancer cells.
[Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].
Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong
2014-07-01
Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.
NASA Astrophysics Data System (ADS)
Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan
2018-03-01
Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.
Hsiao, Chien-Mei; Wu, Yu-Sheng; Nan, Fan-Hua; Huang, Shih-Ling; Chen, Lynette; Chen, Shiu-Nan
2016-12-01
The present study aims to investigate the effects of mushroom beta glucan (MBG) on wound recovery in partial hepatectomy (PH) in Nile tilapia (Oreochromis niloticus) and in rat skin wound healing examination. Following PH, we focussed on the effects on liver repair ability using in vitro and in vivo tests. In vitro, we examined whether the MBG has an impact on liver cell proliferation, mainly through 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assays and bromodeoxyuridine (BrdU) cell proliferation assay detection method. Results showed that MBG treatment was remarkable in enhancing cell proliferation of hepatocytes and in maintaining the cellular viability. Immunohistochemical staining to analyse Wnt/β-catenin signalling also showed that MBG has the effect of promoting cell proliferation of liver tissues after PH surgery. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Structural and cytotoxic studies of cationic thiosemicarbazones
NASA Astrophysics Data System (ADS)
Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai
2017-06-01
Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
Runoff Generation Mechanisms and Mean Transit Time in a High-Elevation Tropical Ecosystem
NASA Astrophysics Data System (ADS)
Mosquera, G.
2015-12-01
Understanding runoff generation processes in tropical mountainous regions remains poorly understood, particularly in ecosystems above the tree line. Here, we provide insights on the process dominating the ecohydrology of the tropical alpine biome (i.e., páramo) of the Zhurucay River Ecohydrological Observatory. The study site is located in south Ecuador between 3400-3900 m in elevation. We used a nested monitoring system with eight catchments (20-753 ha) to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water at low tension were collected for three years (May 2011-May2014) and analyzed for water stable isotopes. We conducted an isotopic characterization of rainfall, streamflow, and soil waters to investigate runoff generation. These data were also integrated into a lumped model to estimate the mean transit time (MTT) and to investigate landscape features that control its variability. The isotopic characterization evidenced that the water stored in the shallow organic horizon of the Histosol soils (Andean wetlands) located near the streams is the major contributor of water to the streams year-round, whereas the water draining through the hillslope soils, the Andosols, regulates discharge by recharging the wetlands at the valley bottoms. The MTT evaluation indicated relatively short MTTs (0.15-0.73 yr) linked to short subsurface flow paths of water. We also found evidence for topographic controls on the MTT variability. These results reveal that: 1) the ecohydrology of this ecosystem is dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Andean wetlands and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.
Factors influencing stream baseflow transit times in tropical montane watersheds
NASA Astrophysics Data System (ADS)
Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.
2016-04-01
Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.
Anninou, Nikolia; Chatzaki, Ekaterini; Papachristou, Fotini; Pitiakoudis, Muichail; Simopoulos, Constantinos
2014-02-07
Food safety organizations indicate the likelihood of constant human and animal exposure to mycotoxin mixtures as a possible negative public health impact. Risk assessment demonstrates that certain mycotoxins of Aspergillus and Penicillium spp. are toxic and hold a significant genotoxic efficacy at nanomolar concentrations. The aim of the current study was to investigate the potential cytogenetic effects of sterigmatocystin (STER), ochratoxin A (OTA) and citrinin (CTN) alone or in combination, at pM to μΜ concentrations, on the human hepatocellular cancer cell line Hep3B. MTT reduction, mitotic divisions, cell cycle delays and sister chromatid exchange rates (SCE) were determined as endpoints of metabolic activity, cytotoxicity, cytostaticity, and genotoxicity, respectively. All mycotoxin treatments induce SCE rates from 10-12 M, while their cytotoxic and cytostatic potential varies. In PRI and MI assays, but not at MTT, STER alone or in combination with OTA + CTN appeared cytostatic and cytotoxic, even at 10-12 M, while CTN alone and all other combinations displayed substantial cellular survival inhibition in doses ≥ 10-8 M. Co-administration of STER + OTA or STER + CTN in concentrations ≤ 10-1 M, increased the MI and MTT activity, while it did not affect the PRI. Mycotoxin co-treatments revealed in general similar-to-additive or antagonistic genotoxic and cytotoxic effects. Our results for the first time describe that STER alone or in combination with OTA and/or CTN share a cytotoxic and cytogenetic potential even at picoMolar concentrations on human hepatoma cells in vitro.
Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying
2015-04-01
Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neurodegeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8 ± 3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6 ± 2.9 %. MTT reduction rate was reduced to 75.9 ± 2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6 ± 4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9 ± 4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6 ± 13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics.
Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J.; Tedford, Clark E.; Lo, Eng H.; Wang, Xiaoying
2014-01-01
Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neuro-degeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8±3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6±2.9 %. MTT reduction rate was reduced to 75.9±2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6±4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9±4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6±13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics. PMID:24599760
Ranjbar, Reza; Arjomandzadegan, Mohammad; Hosseiny, Hossein
2017-07-31
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis ( A. littoralis ) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella , 17 isolates-including resistant isolates of S.E.1103 and S.E.49-had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC 50 was 0.25 mg/mL and MBC 50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine.
Ezzati Nazhad Dolatabadi, Jafar; Hamishehkar, Hamed; Eskandani, Morteza; Valizadeh, Hadi
2014-05-01
Solid lipid nanoparticles (SLNs) are novel drug delivery system for drug targeting in various routs of administration such as parenteral, oral, ophthalmic and topical. These carriers have some advantages such as high drug payload, increased drug stability, the possibility of incorporation of lipophilic and hydrophilic drugs, and low biotoxicity. In this study, alendronate sodium was used as a hydrophilic model drug and was incorporated into SLNs. Hot homogenization method was used for preparation of alendronate sodium-loaded SLN formulations and the encapsulation efficiency of drug in SLNs was determined by ultrafiltration method using centrifugal devices. Scanning electron microscopy (SEM) was carried out to study the morphological behaviors of prepared SLNs like sphericity. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays were used for biocompatibility assays. High drug encapsulation efficiency (70-85%) was achieved by drug determination through derivatization with o-phthalaldehyde. The physical stability of drug-loaded SLNs in aqueous dispersions was assessed in terms of size and drug leakage during two weeks. Scanning electron microscopy images showed spherical particles in the nanometer range confirming the obtained data from size analyzer. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays as well as flow cytometry analysis confirmed the low toxicity of alendronate-loaded SLNs. The cost-efficient procedure, the avoidance of organic solvents application, acceptable reproducibility, ease of manufacturing under mild preparation conditions, high level of drug encapsulation, desirable physical stability and biocompatibility are the advantages of the proposed SLN formulations. Copyright © 2014 Elsevier B.V. All rights reserved.
Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference
Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun
2012-01-01
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709
Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Gao, Zhenzhen; Chen, Jin; Lu, Yu; Wang, Deyun; Liu, Cui; Hu, Yuanliang
2016-05-01
Epimedium polysaccharide (EPS) and isatis root polysaccharide (IRPS) were extracted, purified, and selenizingly modified by nitric acid-sodium selenite method to obtain nine selenizing EPSs (sEPSs), sEPS1-sEPS9 and nine selenizing IRPSs (sIRPSs), sIRPS1-sIRPS9, respectively. Their effects on chicken peripheral lymphocyte proliferation in vitro were compared by MTT assay. The results showed that selenium polysaccharides at appropriate concentration could promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 and sIRPS5 with stronger actions were picked out and injected into the chickens vaccinated with Newcastle disease vaccine in vivo tests. The peripheral lymphocyte proliferation and serum antibody titer were determined. The results showed that sEPS5 and sIRPS5 could elevate serum antibody titer and promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 possessed the strongest efficacy. These results indicate that selenylation modification can significantly enhance the immune-enhancing activity of EPS and IRPS, and sEPS5 can be as a new-type immunopotentiator of chickens.
Effects of Selenylation Modification on Immune-Enhancing Activity of Garlic Polysaccharide
Qin, Tao; Hu, Yuanliang; Wang, Deyun; Fan, Qiang; Zhang, Cunshuai; Chen, Xingying; Chen, Xiaolan; Liu, Cui; Gao, Zhenzhen; Li, Xiuping
2014-01-01
The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(34) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h. PMID:24497946
Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide.
Qiu, Shulei; Chen, Jin; Qin, Tao; Hu, Yuanliang; Wang, Deyun; Fan, Qiang; Zhang, Cunshuai; Chen, Xingying; Chen, Xiaolan; Liu, Cui; Gao, Zhenzhen; Li, Xiuping
2014-01-01
The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(3(4)) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h.
Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study
NASA Astrophysics Data System (ADS)
Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.
2017-03-01
The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.
Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application
2013-01-01
Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738
Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery
NASA Astrophysics Data System (ADS)
Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy
2015-04-01
A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.
Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549
NASA Astrophysics Data System (ADS)
Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.
2016-01-01
The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.
Biocompatibility of crystalline opal nanoparticles.
Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M
2012-10-22
Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.
Wójcik, R; Małaczewska, J; Siwicki, A K; Miciński, J; Zwierzchowski, G
2013-01-01
The objective of this study was to evaluate the effect of HMB on selected indicators of immunity in calves. The experiment was performed on 14 calves aged 30 +/- 2 days, divided into two equal groups of control (group I) and experimental (group II) animals. The feed administered to experimental group calves was supplemented with HMB at 40 mg/kg BW, whereas control calves were administered standard farm-made feed without supplementation. Blood was sampled from the jugular vein immediately before the experiment (day 0) and on experimental days 15, 30 and 60 to determine the following parameters of immunity: proliferative response of LPS- and ConA-stimulated lymphocytes (MTT), respiratory burst activity (RBA) and potential killing activity (PKA) of phagocytes. The results revealed a significant increase in RBA and MTT values in calves administered HMB in comparison with the control group throughout the experiment. In the group of animals receiving HMB, an increase in PKA values was noted only on day 30.
Alabi, Okunola A; Bakare, Adekunle A; Filippin-Monteiro, Fabíola B; Sierra, Jelver A; Creczynski-Pasa, Tânia B
2013-08-01
This study investigated the apoptotic effect of electronic waste on fibroblast cell line. Cells were treated with different concentrations of the leachate for 24h. Cell viability was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, nuclear morphology of cells was explored by acridine orange (AO)/ethidium bromide (EB) double staining, mitochondrial membrane potential was evaluated using JC-1 probe while cell cycle analysis was conducted using flow cytometry. The oxidative status was detected using DCFH-DA (dichlorofluorescin diacetate) probe and the relationship between cell death and ROS (reactive oxygen species) was investigated using N-acetylcysteine. Results showed an increased cell death as detected by MTT assay and AO/EB staining. Cell cycle analysis indicated an induction of sub/G1 events while JC-1 probe showed significant disruption of mitochondrial membrane potential. There was significant induction of ROS, while N-acetylcysteine protected the cells from DNA damage. These suggest apoptotic pathway as a possible mechanism of e-waste induced cyto-genotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.
Assessment of the genetic risks of a metallic alloy used in medical implants.
Gomes, Cristiano C; Moreira, Leonardo M; Santos, Vanessa J S V; Ramos, Alfeu S; Lyon, Juliana P; Soares, Cristina P; Santos, Fabio V
2011-01-01
The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.
Assessment of the genetic risks of a metallic alloy used in medical implants
Gomes, Cristiano C.; Moreira, Leonardo M.; Santos, Vanessa J.S.V.; Ramos, Alfeu S.; Lyon, Juliana P.; Soares, Cristina P.; Santos, Fabio V.
2011-01-01
The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials. PMID:21637553
Antioxidant axis Nrf2-keap1-ARE in inhibition of alcoholic liver fibrosis by IL-22
Ni, Ya-Hui; Huo, Li-Juan; Li, Ting-Ting
2017-01-01
AIM To explore the effect of interleukin (IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells (HSCs), and whether this is related to regulation of Nrf2-keap1-ARE. METHODS HSC-T6 cells were incubated with 25, 50, 100, 200 and 400 μmol/L acetaldehyde. After 24 and 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect proliferation of HSCs to choose the best concentration and action time. We used the optimal concentration of acetaldehyde (200 μmol/L) to stimulate HSCs for 24 h, and treated the cells with a final concentration of 10, 20 or 50 ng/mL IL-22. The cell proliferation rate was detected by MTT assay. The cell cycle was analyzed by flow cytometry. The expression of nuclear factor-related factor (Nrf)2 and α-smooth muscle antigen was detected by western blotting and immunocytochemistry. The levels of malondialdehyde (MDA) and glutathione (GSH) were measured by spectrophotometry. RESULTS In the MTT assay, when HSCs were incubated with acetaldehyde, activity and proliferation were higher than in the control group, and were most obvious after 48 h treatment with 200 μmol/L acetaldehyde. The number of cells in G0/G1 phases was decreased and the number in S phase was increased in comparison with the control group. When treated with different concentrations of IL-22, HSC-T6 cell activity and proliferation rate were markedly decreased in a dose-dependent manner, and cell cycle progression was arrested from G1 to S phase. Western blotting and immunocytochemistry demonstrated that expression of Nrf2 total protein was not significantly affected. Expression of Nrf2 nuclear protein was low in the control group, increased slightly in the model group (or acetaldehyde-stimulated group), and increased more obviously in the IL-22 intervention groups. The levels of MDA and GSH in the model group were significantly enhanced in comparison with those in the control group. In cells treated with IL-22, the MDA level was attenuated but the GSH level was further increased. These changes were dose-dependent. CONCLUSION IL-22 inhibits acetaldehyde-induced HSC activation and proliferation, which may be related to nuclear translocation of Nrf2 and increased activity of the antioxidant axis Nrf2-keap1-ARE. PMID:28373766
Alves Monteath, Silvana Amadeu Ferreira; Maciel, Maria Aparecida M.; Vega, Raquel Garcia; de Mello, Heloisa; de Araújo Martins, Carollina; Esteves-Souza, Andressa; Gattass, Cerli Rocha; Echevarria, Aurea
2017-01-01
Background: Ixora coccinea Linn (Rubiaceae) is an evergreen shrub with bright scarlet colored flowers found in several tropical and subtropical countries. It is used as an ornamental and medicinal plant. Phytochemical studies revealed that its major special metabolites are triterpene acids, such as ursolic and oleanolic acid. Objective: To evaluate the isolation of ursolic acid (UA) (1) from methanol extracts of I. coccinea flowers through two methodologies, to prepare four derivatives, and to evaluate the cytotoxic effect against six cancer cell lines. Materials and Methods: The UA was isolated from vegetal material by percolation at room temperature and by ultrasound-assisted extraction. The preparation of derivatives was performed according to literature methods, and the cytotoxic effects were evaluated using the MTT (3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay. Results: The most efficient extraction was achieved through ultrasound irradiation with a yield of 35% after KOH-impregnated silica in chromatography column. Furthermore, four derivatives (3, 5, 6, 7) of UA were prepared and evaluated, including 1, against two lung cancer (A549 and H460) and four leukemia (K562, Lucena, HL60, and Jurkat) cell lines. Generally, results showed that 1 and 7 were the most active compounds against the assayed cell lines. Also, the cytotoxic effects observed on terpenes 1 and 7 were higher when compared with cisplatin, used as positive control, with the exception of Jurkat cell line. Conclusion: The efficiency of such an alternative extraction method led to the principal and abundant active component, 1, of I. coccinea, thus representing a considerable contribution for promising triterpenoid in cancer chemotherapy. SUMMARY The ultrasound-assisted extraction of Ixora coccinea flowers improved of the ursolic acid isolationMethanolic extract from flowers of I. coccinea provided, by ultrasound irradiation, after KOH-impregnated silica in chromatography column, the ursolic acid in 35% yieldThe ursolic acid and four derivatives were prepared and assayed against two lung cancer and four leukaemia cell linesThe ursolic acid and their 3-oxo-derivative, in general, were more cytotoxic when compared to cisplatin, used as positive control Abbreviations used: MTT: 3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, RP: reverse phase, TLC: thin layer chromatography, KOH: potassium hydroxide, IR: infrared, DMF: dimethylformamide, DMSO: dimethyl sulfoxide, TEA: triethylamine, RT: room temperature, EtOAc: ethyl acetate, MeOH: methanol, i-PrOH: iso-propanol, NMR: nuclear magnetic resonance, MDR: multiple drug resistance, RPMI: Roswell Park Memorial Institute PMID:28539719
Huang, Shuran; Gao, Lingyun; Chen, Yueqin; Guo, Xiang; Liu, Deguo; Wang, Jiehuan; Shi, Zhitao; Sun, Zhanguo; Jin, Feng; Chen, Weijian; Yang, Yunjun
2018-01-27
Vascular and hemodynamic changes were not consistent in symptomatic and non-symptomatic cerebral hemisphere in patients with symptomatic moyamoya syndrome (MMS). Thus, the purpose of this study is to evaluate the hemodynamic difference between symptomatic and non-symptomatic cerebral hemisphere in patients with symptomatic MMS. Patients who were diagnosed with symptomatic MMS were retrospectively collected. All cases underwent CTP examination. Regions of interest (ROIs) were chosen in the mirroring bilateral frontal lobes, temporal lobes, the basal ganglia, and the brainstem as control region. The relative perfusion parameter values of symptomatic side were compared with non-symptomatic side. Of the 40 patients, 33 patients were taken into assessment. In all cases (n = 33), rCBF, rMTT, and rTTP in all regions of interest (ROIs) of the symptomatic side were significantly different from those of contralateral side. In unilateral MMS patients (n = 7), rCBF values were not significantly different between two sides in the temporal lobe and basal ganglia area; rTTP values were significantly higher in the symptomatic side. rMTT values were significantly higher only in the temporal lobe of symptomatic side. In bilateral MMS patients (n = 26), rCBF and rMTT in all ROIs of the symptomatic side were significantly different from those of contralateral side. However, there were no significant differences between two sides in all ROIs on rTTP values. This study demonstrates that rCBF and rMTT were more sensitive than rTTP for evaluating hemodynamic changes in patients with symptomatic bilateral MMS. Furthermore, patients with unilateral MMS may have a preserved rCBF compared to those with bilateral disease.
Nephrotoxicity of Epigenetic Inhibitors Used for the Treatment of Cancer
Scholpa, N.E.; Kolli, R.T.; Moore, M.; Arnold, R.D.; Glenn, T.C.; Cummings, B.S.
2016-01-01
This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors in vitro. The therapeutic efficacy of epigenetic inhibitors was determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-azacytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulsant with histone deacetylase inhibitor-like properties. 5-Aza, TSA or CBZ alone did not decrease MTT staining in PC-3 or LNCaP cells after 48 hr. In contrast, docetaxel, a frontline chemotherapeutic induced concentration-dependent decreases in MTT staining. Pretreatment with 5-Aza or TSA increased docetaxel-induced cytotoxicity in LNCaP cells, but not PC-3 cells. TSA pretreatment also increased cisplatin-induced toxicity in LNCaP cells. Carfilzomib (CFZ), a protease inhibitor approved for the treatment of multiple myeloma had minimal effect on LNCaP cell viability, but reduced MTT staining 50% in PC-3 cells compared to control, and pretreatment with 5-Aza further enhanced toxicity. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining in all cell lines after 48 hr. Interestingly, we found that the toxicity of epigenetic inhibitors to kidney cells was dependent on both the compound and the stage of cell growth. The effect of 5-Aza and TSA on DNA methyltransferase and histone deacetylase activity, respectively, was confirmed by assessing the methylation and acetylation of the CDK inhibitor p21. Collectively, these data show that combinatorial treatment with epigenetic inhibitors alters the efficacy of chemotherapeutics in cancer cells in a compound- and cell-specific manner; however, this treatment also has the potential to induce nephrotoxic cell injury. PMID:27543423
Salazar, Ana M; Vivas, Jeilyn; Sánchez, Elda E; Rodríguez-Acosta, Alexis; Ibarra, Carlos; Gil, Amparo; Carvajal, Zoila; Girón, María E; Estrella, Amalid; Navarrete, Luis F; Guerrero, Belsy
2011-07-01
The coral snake Micrurus tener tener (Mtt) from the Elapidae family inhabits the southwestern United States and produces severe cases of envenomations. Although the majority of Mtt venom components are neurotoxins and phospholipase A₂s, this study demonstrated, by SDS-PAGE and molecular exclusion chromatography (MEC), that these venoms also contain high-molecular-weight proteins between 50 and 150 kDa that target the hemostatic system. The biological aspects of other Micrurus venoms were also studied, such as the LD₅₀s of Micrurus isozonus (from 0.52 to 0.61 mg/kg). A pool from these venoms presented a LD₅₀ of 0.57 mg/kg, Micrurus f. fulvius (Mff) and Mtt had LD₅₀s of 0.32 and 0.78 mg/kg, respectively. These venoms contained fibrino(geno)lytic activity, they inhibited platelet aggregation, as well as factor Xa and/or plasmin-like activities. M. isozonus venoms from different Venezuelan geographical regions inhibited ADP-induced platelet aggregation (from 50 to 68%). Micrurus tener tener venom from the United States was the most active with a 95.2% inhibitory effect. This venom showed thrombin-like activity on fibrinogen and human plasma. Fractions of Mtt showed fibrino(geno)lytic activity and inhibition on plasmin amidolytic activity. Several fractions degraded the fibrinogen Aα chains, and fractions F2 and F7 completely degraded both fibrinogen Aα and Bβ chains. To our knowledge, this is the first report on thrombin-like and fibrino(geno)lytic activity and plasmin or factor Xa inhibitors described in Micrurus venoms. Further purification and characterization of these Micrurus venom components could be of therapeutic use in the treatment of hemostatic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sudarski, Sonja; Henzler, Thomas; Floss, Teresa; Gaa, Tanja; Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O; Attenberger, Ulrike I
2018-05-02
To compare in patients with untreated rectal cancer quantitative perfusion parameters calculated from 3 rd -generation dual-source dynamic volume perfusion CT (dVPCT) with 3-Tesla-MR-perfusion with regard to data variability and tumour differentiation. In MR-perfusion, plasma flow (PF), plasma volume (PV) and mean transit time (MTT) were assessed in two measurements (M1 and M2) by the same reader. In dVPCT, blood flow (BF), blood volume (BV), MTT and permeability (PERM) were assessed respectively. CT dose values were calculated. 20 patients (60 ± 13 years) were analysed. Intra-individual and intra-reader variability of duplicate MR-perfusion measurements was higher compared to duplicate dVPCT measurements. dVPCT-derived BF, BV and PERM could differentiate between tumour and normal rectal wall (significance level for M1 and M2, respectively, regarding BF: p < 0.0001*/0.0001*; BV: p < 0.0001*/0.0001*; MTT: p = 0.93/0.39; PERM: p < 0.0001*/0.0001*), with MR-perfusion this was true for PF and PV (p-values M1/M2 for PF: p = 0.04*/0.01*; PV: p = 0.002*/0.003*; MTT: p = 0.70/0.27*). Mean effective dose of CT-staging incl. dVPCT was 29 ± 6 mSv (20 ± 5 mSv for dVPCT alone). In conclusion, dVPCT has a lower data variability than MR-perfusion while both dVPCT and MR-perfusion could differentiate tumour tissue from normal rectal wall. With 3 rd -generation dual-source CT dVPCT could be included in a standard CT-staging without exceeding national dose reference values.
Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.
Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong
2012-06-01
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Kim, Jinhee; Lee, Hyejin; Kang, Ki Sung; Chun, Kwang-Hoon; Hwang, Gwi Seo
2014-01-01
Background Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis. PMID:25535476
Choi, Jung-Yun
2015-01-01
PURPOSE The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens (10×10×1.5 mm) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity. PMID:25932317
Yusof, Alia Md; Abd Ghafar, Norzana; Kamarudin, Taty Anna; Hui, Chua Kien; Yusof, Yasmin Anum Mohd
2016-02-24
This study aimed to evaluate the effects of Gelam honey on corneal keratocytes proliferative capacity and phenotypic characterization via MTT assay, gene expression and immunocytochemistry. Corneal keratocytes from New Zealand white rabbits were cultured in basal medium (BM) and serum enriched medium (BMS). Serial dilutions of Gelam honey (GH) were added to both media and cells were cultured until passage 1. MTT assay was performed on corneal keratocytes in both media to ascertain the optimal dose of GH that produced maximum proliferation. Gelam honey at the concentration of 0.0015% in both media showed the highest proliferative capacity with no morphological changes compared to their respective controls. The gene expression of aldehyde dehydrogenase (ALDH), a marker for quiescent keratocytes and vimentin, a marker for fibroblast, were higher in the GH enriched groups. The alpha smooth muscle actin (α-SMA) expression, marker for myofibroblast, was lower in GH treated groups compared to the controls. Immunocytochemistry results were in accordance to the gene expression analyses. Gelam honey at a concentration of 0.0015% promotes ex vivo corneal keratocytes proliferation while retaining desirable phenotype expression. The results serve as a basis for the development of Gelam honey as a potential natural product in promoting corneal wound healing.
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB
Zhang, Linlin; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB. PMID:28409156
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB.
Chen, Jian; Zhang, Linlin; Shu, Yilai; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang; Wu, Haitao; Li, Wulan
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF- κ B activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF- κ B inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF- α -induced NF- κ B activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF- κ B.
Engineering biofunctional magnetic nanoparticles for biotechnological applications
NASA Astrophysics Data System (ADS)
Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.
2010-09-01
Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology. Electronic supplementary information (ESI) available: Chemical, physical and magnetic characterization; R2 maps; stability of NPs at different conditions; size of glucose NPs in the presence of Concanavalin A; MTT assays of the samples are shown in figures S1-S10. Table S1 represents the hydrodynamic size of PMAO NPs after being washed with different solvents. See DOI: 10.1039/c0nr00104j
Ouyang, Guiping; Song, Baoan; Zhang, Huiping; Yang, Song; Jin, Linhong; Li, Qianzhu; Hu, Deyu
2005-10-31
A facile synthesis of 3-methylthio-3-arylamino-2-cyanoacrylates from 3,3-dimethylthioacrylate and aromatic amines or amino pyridines has been achieved in moderate to high yields (64.0% ~ 93.5%) in 30 minutes at 50 degrees C under microwave irradiation. This method is very simple and the reaction conditions are mild, environmentally friendly and more importantly, quick. In the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, some of the title compounds were found to possess good antiproliferation activity towards PC3 cells.
Zheng, Xiangrong; Zhang, Shangshang; Yang, Yujia; Wang, Xia; Zhong, Le; Yu, Xiaohe
2008-11-01
The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 mumol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The expression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regulated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (P<0.05). The MTT test showed that the proliferation rate of HUVEC transfected with HPVA under hypoxia exceeded that of the control group. We conclude that the HRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation of endothelial cells. Taking advantage of these facts could greatly improve the efficiency of gene therapy. The vector would be valuable for various gene transfer studies targeting endothelial cells.
2014-01-01
Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic. PMID:25038793
A Rapid, Flexible Approach to Conceptual Space Mission Tradespace Definition and Exploration
NASA Technical Reports Server (NTRS)
Girerd, Andre R.
2005-01-01
This paper provides an overview of the Mission Tradespace Tool (MTT), a methodology and software framework developed to improve JPL's early design process by offering a rapid, structured, and inexpensive way to identify feasible design architectures from a wide array of candidate architectures. There has been a growing consensus at JPL that to improve the quality of service offered to design customers it is desirable to explore a wide tradespace of candidate architectures prior to forming a conceptual design baseline. This paper describes the rationale behind the MTT's approach to meet this need. Notable features of the framework are introduced and explained.
Ameredes, Bill T; Hellmich, Mark R; Cestone, Christina M; Wooten, Kevin C; Ottenbacher, Kenneth J; Chonmaitree, Tasnee; Anderson, Karl E; Brasier, Allan R
2015-10-01
Multiinstitutional research collaborations now form the most rapid and productive project execution structures in the health sciences. Effective adoption of a multidisciplinary team research approach is widely accepted as one mechanism enabling rapid translation of new discoveries into interventions in human health. Although the impact of successful team-based approaches facilitating innovation has been well-documented, its utility for training a new generation of scientists has not been thoroughly investigated. We describe the characteristics of how multidisciplinary translational teams (MTTs) promote career development of translational research scholars through competency building, interprofessional integration, and team-based mentoring approaches. Exploratory longitudinal and outcome assessments from our experience show that MTT membership had a positive effect on the development of translational research competencies, as determined by a self-report survey of 32 scholars. We also observed that all trainees produced a large number of collaborative publications that appeared to be associated with their CTSA association and participation with MTTs. We conclude that the MTT model provides a unique training environment for translational and team-based learning activities, for investigators at early stages of career development. © 2015 Wiley Periodicals, Inc.
Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.
Powell, Heather M; Armour, Alexis D; Boyce, Steven T
2011-01-01
Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p < 0.001) and MTT values (p < 0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.
Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha
2014-01-01
Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. © 2013.
Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas; Ranjan, Shivendu; Dasgupta, Nandita
2017-01-01
In this paper, we report an enzyme dependent, green one-pot deoxygenation cum decoration method to synthesize diastase-conjugated reduced graphene oxide (DRG) nanosheets, DRG/gold nanoparticles (DRG/Au) composite. The DRG synthesis was completed in 7h under heating at 90°C on water bath. Selected area electron diffraction (SAED) and Atomic force microscopy (AFM) study has revealed the formation of bilayered reduced graphene oxide sheets. Transmission electron microscopy (TEM) images of DRG/Au composite have shown the uniform decoration of gold nanoparticles (AuNPs) onto the DRG nanosheet surface. Fourier transform infrared spectroscopy (FTIR) and Raman results additionally have shown the functionalization of enzyme molecules onto the DRG nanosheet surface after reduction making it as an effective platform towards the efficient binding of gold nanoparticles. In vitro cytotoxicity studies by MTT assay on A549 and HCT116 cell lines exhibited that the cytotoxicity of the prepared graphene oxide (GO), DRG and DRG/Au is dose dependant. These results have shown that this synthetic method is effective for the production of large scale graphene in a low cost, simple and green method. Since this process avoids the use of hazardous and toxic substances, the produced DRG/Au composites are likely to offer various potential applications in biology and medicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study
Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta
2016-01-01
Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526
Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Mallepalli, Suresh Kumar Reddy; Vadde, Ramakrishna; Amooru, Damu Gangaiah
2018-03-02
Extensive epidemiological and clinical studies revealed that Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (T2D) are most likely to appear simultaneously in aged people as T2D is a major risk factor for AD. Therefore, development of potential multifunctional agents for dual therapy of AD and T2D has received much attention. Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis have been used extensively in popular medicine. The present study was aimed at phytochemical profiling and evaluating multifunctional ability of titled plants in the AD and T2D dual therapy. Methanolic extracts and their derived fractions were evaluated for their inhibitory capacities against acetylcholinesterase (AChE) & butyrylcholinesterase (BuChE), and α- & β-glucosidase besides kinetic analysis of inhibition using methods of Elmann and Shibano, respectively. Antioxidant potency of active fractions was assessed by their DPPH and ABTS radical scavenging activities. Active fractions were tested by the MTT assay to verify cytotoxicity and neuroprotective ability in human nueroblastoma cell lines. Phytochemical screening was done with the aid of spectrophotometric methods. All the methanolic extracts of test plants (BAM, HIM, RMM) showed concentration dependent inhibitory activities against AChE, BuChE, α- and β-glucosidase enzymes. Subsequent fractionation and evaluation revealed that chloroform fractions BAC, HIC and RMC with IC 50 values of 12.29±2.14, 9.94±2.14, 16.65±1.99 and 27.38±1.24; 28.14±0.9, 5.16±0.22, 11.03±0.5 and 87.64±15.41; 41.35±1.6, 15.86±7.3, 26.04±0.37 and 25.33±0.3 were most prominent with regard to inhibition potential against AChE, BuChE, α- and β-glucosidase, respectively. Kinetic analysis of these active fractions proved that they disclosed mixed-type inhibition against AChE, BuChE, α- and β-glucosidase enzymes. In the MTT assay, active fractions BAC, HIC, RMC showed significant cell viability at high concentrations (400 μg). Moreover, in MTT assay, the active fractions displayed excellent neuroprotective effects against oxidative stress induced cell death and significant cell viability in SK N SH cells at all concentrations. The strong anticholinesterase, antiglucosidase, antioxidant and neuroprotective activities of methanolic extracts and their derived chloroform fractions indicate the potential of Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis as multifunctional therapeutic remedies for the dual therapy of T2D and AD.
Jing Yan; Kang Min; Liu Jin; Li Jingyu; Tang Anzhou
2015-04-01
To explore the proliferation inhibition and apoptosis of polysaccharides extracts from polysaccharides extracts from Hedyotic diffusa (PEHD) on Human Nasopharyngeal Carcinoma (NPC)cell line CNE2 cells in vitro. CNE2 cells treated with various concentrations of PEHD were detected by MTT assay at 24 h, 48 h, and 72 h. The apoptotic cells were analyzed by flow cytometry with Annexin V/PI staining. The expression levels of Bax, Bcl-2 and caspase-3 protein were examined by Western blotting method. The growth of CNE2 cells were suppressed after treatment with PEHD (P < 0.05), MTT assay showed that the highest cell inhibition rate reached to 76.5%, the inhibition in the doses from 2 to 6 mg/ml showed dose-and-time-dependent. The percent of apoptosis in 4 and 6 mg/ml PEHD treatment groups for 48 h were 31.32%, 46.28%, respectively, and significantly higher than that in control groups, 4.86% (P < 0.01). After the cells being treated with PEHD for 48 h, the expression of Bax and caspase-3 protein increased, and the expression of Bcl-2 protein decreased gradually. PEHD could inhibited the growth of CNE2 cells and was dose-and-time-dependent, the mechanism may involve induction of cell apoptosis, which was associated with the activation of Bax and caspase-3 protein and the down-regulation of Bcl-2 protein expression.
NASA Astrophysics Data System (ADS)
Abel, Ezra Elumalai; John Poonga, Preetam Raj; Panicker, Shirly George
2016-01-01
This study was aimed to determine the effectiveness of synthesized gold nanoparticles of an ethnobotanically and medicinally important plant species Cassia tora against colon cancer cells and to find its antibacterial and antioxidant activities. In order to improve the bioavailability of C. tora, we synthesized gold nanoparticles through green synthesis, by simple mixing and stirring of C. tora leaf powder and tetrachloroauric acid (HAuCl4) solution which gave a dispersion of gold nanoparticles conjugate with C. tora secondary metabolites (SMs) with characteristic surface plasmon resonance. It was characterized by Fourier transform infrared spectroscopy, zeta sizer, zeta potential and transmission electron microscopy. Antibacterial activity was carried out for gold nanoparticles conjugated with C. tora SMs, using well-diffusion method. The MTT assay for cell viability and markers such as catalase, nitric oxide and lipid peroxidation was predictable to confirm the cytotoxicity and antioxidant properties. The treatment of gold nanoparticles conjugated with C. tora SMs on Col320 cells showed reduction in the cell viability through MTT assay, and it also significantly suppressed the release of H2O2, LPO and NO production in a dose-dependent manner. C. tora SMs conjugate gold nanoparticles showed enhanced bioavailability, antioxidant and anticancer effect against colon cancer cell line (Col320).
Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel
2012-08-13
The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.
Hassanzadeh, Farshid; Mehdifar, Mozhdeh; Varshosaz, Jaleh; Khodarahmi, Ghadam Ali; Rostami, Mahboubeh
2018-02-14
Chemotherapy still encounters a serious drawback, the lack of selectivity of anticancer drugs toward neoplastic cells, thus, the normal cells are affected by the cytotoxic action of the drugs. This causes a narrow therapeutic index in most anticancer drugs. We describe the preparation of pullulan-tocopherol succinate-folic acid (Pu-TS-FA) micelles for the first time to targeted delivery of Epirubicin (EPI) to Hela and MCF-7 cell lines. We confirmed the structure of conjugate using spectroscopic methods. The degree of substitution for both folic acid and tocopherol succinate was calculated using 1HNMR. We prepared the micelles via direct dissolution method. All the physicochemical properties of micelles including size, zeta potential, polydispersity index (PDI), critical micelle concentration (CMC), entrapment efficiency (EE %) and release efficiency (RE24%) were determined. The morphology of particles was studied using transmission electron microscopy (TEM), and the in-vitro cell cytotoxicity of EPI loaded micelles was studied using MTT assay on MCF-7 and Hela cell lines. The optimized micelles showed the particle size of 149.5 nm, the zeta potential of -6.49 mV, a polydispersity index of 0.259 ± 0.07, LE% of 88 %, and RE24% of 63 ± 2.45 % with a relatively low CMC 194.87 µg/ml. TEM showed the relatively uniform spherical structure for particles and in vitro MTT assay showed that EPI loaded micelles were more toxic on Hela cell line than MCF7 as expected. Since the Pu-TS-FA micelle could improve the anticancer activity of epirubicin and would be a promising candidate for EPI treatment of cancers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.
2015-01-01
Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.
Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang
2011-08-01
To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.
Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study).
Aghazadeh, Marzieh; Zahedi Bialvaei, Abed; Aghazadeh, Mohammad; Kabiri, Fahimeh; Saliani, Negar; Yousefi, Mehdi; Eslami, Hosein; Samadi Kafil, Hossein
2016-02-01
Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections. The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract's effects on biofilm formation. Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract. The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000). The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after developing antibiotic resistance in microbes.
[Synthesis, characterization and antitumor activity of 5-fluorouracil-nicotinamide cocrystal].
Min, W U; Xingang, Liu; Yu, Xue; Qi, Chen; Xiurong, H U; Jun, Zhou; Guping, Tang
2017-03-25
Objective: To synthesize 5-fluorouracil-nicotinamide (5-FU-NCT) cocrystal and to investigate its physicochemical and biological properties. Methods: The cocrystal of 5-Fu-NCT was prepared through the cooling technology. PXRD, NMR, FTIR and DSC were used to characterize the structure of 5-FU-NCT cocrystal. Solubility was measured by HPLC method. Drug resistant human liver cancer BEL-7402/5-FU cells were treated with 5-FU-NCT cocrystal, the inhibition effect was tested by MTT and HE staining, and cancer cell migration was determined by scratch test. Results: According to PXRD, NMR, FTIR and DSC results, the cocrystal of 5-Fu-NCT had been synthesized successfully. The characteristic diffraction peaks (2θ/°) of the cocrystal were 16.4, 20.4, 22.3, 27.9 and 30.1. The solubility of 5-FU-NCT was 13.5 g/L as measured by HPLC. The antitumor activity tests showed that 5-FU-NCT cocrystal enhanced anticancer effect of 5-FU, and the IC50 of 5-FU and 5-FU-NCT was 129.6 μg/mL and 42.6 μg/mL, respectively. Conclusion: 5-Fu-NCT cocrystal have been synthesized successfully through the cooling technology and it shows an enhanced anticancer effect in comparison to 5-FU on BEL-7402/5-FU cells.
Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto
2017-01-01
Background: The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Material and Methods: Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H2O2) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. Results: The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H2O2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. Conclusion: These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds. PMID:28480396
Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts.
Bölükbaşı Ateş, Gamze; Ak Can, Ayşe; Gülsoy, Murat
2017-04-01
Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm 2 . Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.
Alépée, N; Grandidier, M H; Cotovio, J
2014-03-01
The EpiSkin™ skin corrosion test method was formally validated and adopted within the context of OECD TG 431 for identifying corrosive and non-corrosive chemicals. The EU Classification, Labelling and Packaging Regulation (EU CLP) system requires the sub-categorisation of corrosive chemicals into the three UN GHS optional subcategories 1A, 1B and 1C. The present study was undertaken to investigate the usefulness of the validated EpiSkin™ test method to identify skin corrosive UN GHS Categories 1A, 1B and 1C using the original and validated prediction model and adapted controls for direct MTT reduction. In total, 85 chemicals selected by the OECD expert group on skin corrosion were tested in three independent runs. The results obtained were highly reproducible both within (>80%) and between (>78%) laboratories when compared with historical data. Moreover the results obtained showed that the EpiSkin™ test method is highly sensitive (99%) and specific (80%) in discriminating corrosive from non-corrosive chemicals and allows reliable and relevant identification of the different skin corrosive UN GHS subcategories, with high accuracies being obtained for both UN GHS Categories 1A (83%) and 1B/1C (76%) chemicals. The overall accuracy of the test method to subcategorise corrosive chemicals into three or two UN GHS subcategories ranged from 75% to 79%. Considering those results, the revised OECD Test Guideline 431 permit the use of EpiSkin™ for subcategorising corrosive chemicals into at least two classes (Category 1A and Category 1B/1C). Copyright © 2013. Published by Elsevier Ltd.
Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina
2015-09-01
The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%).
Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina
2014-01-01
The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%). PMID:27134543
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
Wang, Yong-Fu; Li, Chao-Cui; Cai, Jing-Xia
2006-09-01
Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.
Brandão, Geraldo Célio; Kroon, Erna G.; Souza Filho, José D.
2017-01-01
A phytochemical study of Fridericia formosa (Bignoniaceae) ethanol extracts of leaves, stems, and fruits was guided by in vitro assays against vaccinia virus Western Reserve (VACV-WR), human herpes virus 1 (HSV-1), murine encephalomyocarditis virus (EMCV), and dengue virus type 2 (DENV-2) by the MTT method. All the ethanol extracts were active against DENV-2, HSV-1, and VACV-WR with best results for the fruits extract against DENV-2 (SI > 38.2). For VACV-WR and HSV-1, EC50 values > 200 μg mL−1 were determined, while no inhibition of the cytopathic effect was observed with EMCV. Five compounds were isolated and identified as the C-glucosylxanthones mangiferin (1), 2′-O-trans-caffeoylmangiferin (2), 2′-O-trans-coumaroylmangiferin (3), 2′-O-trans-cinnamoylmangiferin (5), and the flavonoid chrysin (4). The most active compound was 2′-O-trans-coumaroylmangiferin (3) with SI > 121.9 against DENV-2 and 108.7 for HSV-1. These results indicate that mangiferin cinnamoyl esters might be potential antiviral drugs. PMID:28634494
Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study
NASA Astrophysics Data System (ADS)
Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo
2006-07-01
With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.
Victor, Sunita Prem; Sharma, Chandra P
2013-08-01
The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular docking study, synthesis and biological evaluation of Mannich bases as Hsp90 inhibitors.
Gupta, Sayan Dutta; Bommaka, Manish Kumar; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, Chavali Venkata Satya; Gowrishankar, Naryanasamy Lachmana; Raghavendra, Nulgumnalli Manjunathaiah
2015-09-01
The ubiquitously expressed heat shock protein 90 is an encouraging target for the development of novel anticancer agents. In a program directed towards uncovering novel chemical scaffolds against Hsp90, we performed molecular docking studies using Tripos-Sybyl drug designing software by including the required conserved water molecules. The results of the docking studies predicted Mannich bases derived from 2,4-dihydroxy acetophenone/5-chloro 2,4-dihydroxy acetophenone as potential Hsp90 inhibitors. Subsequently, a few of them were synthesized (1-6) and characterized by IR, (1)H NMR, (13)C NMR and mass spectral analysis. The synthesized Mannich compounds were evaluated for their potential to suppress Hsp90 ATPase activity by the colorimetric Malachite green assay. Subsequently, the molecules were screened for their antiproilferative effect against PC3 pancreatic carcinoma cells by adopting the 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The activity profile of the identified derivatives correlated well with their docking results. Copyright © 2015 Elsevier B.V. All rights reserved.
Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering
NASA Astrophysics Data System (ADS)
Liu, Fwu-Hsing
2014-10-01
In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.
Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.
Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed
2016-01-01
The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessa, Maria João, E-mail: mjbessa8@gmail.com
Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2}more » nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity evaluation. • All nanomaterials decreased the HepG2 cell viability and caused DNA damage. • Nanokaolin is not a suitable clay substrate for the immobilization of TiO{sub 2} NPs. • Further toxicity studies must be performed in other clays to support nanoparticles.« less
Lackova, Zuzana; Buchtelova, Hana; Buchtova, Zaneta; Klejdus, Borivoj; Heger, Zbynek; Brtnicky, Martin; Kynicky, Jindrich; Zitka, Ondrej; Adam, Vojtech
2017-09-28
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL -1 . An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC 50 value of ~1 mmol·L -1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells.
NASA Astrophysics Data System (ADS)
Rahyussalim A., J.; Kurniawati, T.; Aprilya, D.; Anggraini, R.; Ramahdita, Ghiska; Whulanza, Yudan
2017-02-01
Scaffold as a biomaterial must fulfill some requirements to be safely implanted to the human body. Toxicity and biocompatibility test are needed to evaluate scaffold material in mediating cell proliferation and differentiation, secreting extracelullar matrix and carrying biomolecular signals for cell communication. An in vitro study with mesenchymal stem cells consisted of direct contact test and indirect contact test using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay was conducted on 4 scaffolds made of poly-L-lactic acid (PLA), polyvinyl alcohol (PVA), and hydroxyapatite-poly (vinyl alcohol) composite. There were cells-substrate adhesion impairment, morphological changes, cell death and reduction in cell proliferation seen at 2nd and 6th day in most tested scaffold. Cell count result at day-6 showed proliferation inhibition of more than 50% cell death (inhibition value >50) in all tested scaffold. In MTT assay, two scaffolds were proven non-toxic. In conclusion, various scaffold materials showed different toxicity effect. The toxicity and biocompatibility profile in this study is a preliminary data for further research aiming to use those local-made scaffolds to fill human bone defect in various needs.
Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Moura, Sidnei; Padilha, Francine F.; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling
2014-01-01
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment. PMID:25530785
Marques, E S; Tsuboy, M S F; Carvalho, J C T; Rosa, P C P; Perazzo, F F; Gaivão, I O M; Maistro, E L
2017-08-17
Euterpe oleracea Mart., popularly known as "açaí", is a tropical fruit from the Amazon region where it has considerable economic importance. Açaí has been used as food and for several medicinal purposes. Despite the widespread use of this fruit, there is a lack of data regarding the safety of using this fruit oil exclusively. Therefore, we evaluated the in vitro cytotoxic, genotoxic, and antigenotoxic effects of E. oleracea fruit oil (EOO) in cultured human lymphocytes (non-metabolizing cells) and HepG2 cell line (human hepatoma) (metabolizing cells) by using MTT, comet, and micronucleus assays. A wide range of EOO concentrations was tested with a preliminary MTT assay, which allowed selecting five concentrations for comet and micronucleus assays: 2.5, 10, 100, 500, and 1000 µg/mL. The results showed that none of the EOO tested concentrations presented cytotoxic effects. The genotoxic assessment revealed an absence of significant DNA and chromosome damage in human lymphocytes and HepG2 cells but did not show chemoprotection against the DNA damage induced by methyl methanesulfonate and benzo[a]pyrene, used as DNA-damaging agents.
Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Martins Rodrigues, Fernanda; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Roesch-Ely, Mariana; Moura, Sidnei; Padilha, Francine F; Collares, Tiago; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling
2014-01-01
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Effect of Mangiferin and Mahanimbine on Glucose Utilization in 3T3-L1 cells.
Kumar, B Dinesh; Krishnakumar, K; Jaganathan, Saravana Kumar; Mandal, Mahitosh
2013-01-01
Stem barks of Mangifera indica contain a rich content of mangiferin (xanthone glucoside), whereas Murraya koenigii leaves contain rich sources of mahanimbine (carbazole alkaloid) and used traditionally for the treatment of diabetes. To investigate the effects of mangiferin (xanthone glucoside) and mahanimbine (carbazole alkaloid) on glucose utilization in 3T3-L1 cells. Mangiferin was isolated from stem barks of Mangifera indica and mahanimbine was isolated from Murraya koenigii leaves. These isolated compounds were subjected to MTT assay and glucose utilization test with 3T3-L1 cells. Treatment of the 3T3-L1 cells with mangiferin and mahanimbine increased the glucose utilization in a dose-dependent manner. At a concentration of 1 mM, mangniferin showed 2-fold increase in glucose utilization compared with untreated control. In case of mahanimbine, the observed effect at 1 mM was almost equivalent to positive control (insulin at 1 μM). Moreover, MTT assay showed that both of these compounds were less toxic at a concentration of 1 mM (nearly 75% cells are viable). The present results indicated that these natural products (mangiferin and mahanimbine) exhibited potential ethnomedical uses in management of diabetes.
Park, Eun-Hye; Bae, Won-Young; Eom, Su-Jin; Kim, Kee-Tae; Paik, Hyun-Dong
Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products.
Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin
2016-01-01
In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer. PMID:27537897
Park, Eun-Hye; Bae, Won-Young; Eom, Su-Jin; Kim, Kee-Tae; Paik, Hyun-Dong
2017-01-01
Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products. PMID:28124843
Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin
2016-08-16
In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer.
In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes.
Zhou, Yuting; Song, Jianmin; Wang, Lei; Xue, Xuting; Liu, Xiaoman; Xie, Hui; Huang, Xin
2017-08-14
Hydrogels are an excellent type of material that can be utilized as a platform for cell culture. However, when a bulky hydrogel forms on the inside of cancer cells, the result would be different. In this study, we demonstrate a method for in situ gelation inside cancer cells that can efficiently induce cell death. Glutathione-responsive proteinosomes with good biocompatibility were prepared as carriers for sodium alginate to be endocytosed by cancer cells, where the chelation between sodium alginate and free calcium ions in the culture medium occurs during the diffusion process. The uptake of the hydrogel-loaded proteinosomes into the cancer cells, and then the triggered release of hydrogel with concomitant aggregation, was well-confirmed by monitoring the change of the Young's modulus of the cells based on AFM force measurements. Accordingly, when a large amount of hydrogel formed in cells, the cell viability would be inhibited by ∼90% by MTT assay at a concentration of 5.0 μM of hydrogel-loaded proteinosomes after 48 h incubation, which clearly proves the feasibility of the demonstrated method for killing cancer cells. Although more details regarding the mechanism of cell death should be conducted in the near future, such a demonstrated method of in situ gelation inside cells provides another choice for killing cancer cells.
Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida
2013-01-01
We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593
Neuroimaging patterns of cerebral hyperperfusion
NASA Astrophysics Data System (ADS)
Semenov, S.; Portnov, Yu; Semenov, A.; Korotkevich, A.; Kokov, A.
2017-08-01
Cerebral hyperperfusion syndrome (CHS) after revascularization is a rare phenomenon associated with post-ischemic (reactive) hyperemia and acute pathological hyperperfusion. First described on perfusion CT as a very often moderate CBF increase, MTT/TTP decrease within 30% like a temporary effect, according to a short-time deterioration of neurological symptoms (vestibular ataxia - 58%, vegetative dysfunction - 100%, asthenic syndrome - 100%) in early postoperative period in patients with cardiac ischemia who had undergone coronary artery bypass surgery. The acute pathological hyperperfusion carotid revascularization is a casuistic phenomenon with two- or three-fold CBV and MTT/TTP increase and high hemorrhage risk. Besides, we detected similar exchanges via perfusion CT called benign hyperemia, which marks extension of MTT/TTP and an increase of CBV from 27% to 48% (average 30%), but with normal CBF-parameters, indicating that venous stasis in acute venous ischemic stroke due cerebral venous sinus-trombosis (68%), only 6% in cardioembolic stroke and appears never in arterial stroke. Territorial coincidence registered for perifocal of necrosis zones of benign hyperemia and vasogenic edema accompanied on MRI (DWI, ADC). Secondary hemorrhagic transformation registered for primary non-hemorrhagic venous stroke in 27%, only in 9% for arterial stroke and in 60% for cardioembolic stroke. Probably, congestion is an increasingly predisposing factor secondary hemorrhaging than necrosis.
Garg, Munish; Lata, Kusum; Satija, Saurabh
2016-01-01
To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids.
Scintigraphic Evaluation of Mild to Moderate Dysphagia in Motor Neuron Disease.
Szacka, Katarzyna; Potulska-Chromik, Anna; Fronczewska-Wieniawska, Katarzyna; Spychała, Andrzej; Kròlicki, Leszek; Kuźma-Kozakiewicz, Magdalena
2016-04-01
Approximately 30% of patients with motor neuron disease (MND) present swallowing difficulties even in early disease stages. The aim of this study was to examine the usefulness of esophageal scintigraphy in detecting early stage of dysphagia in MND. Esophageal scintigraphy (ES) including mean transit time (MTT) estimation was performed in 121 MND patients presenting various levels of upper (UMN) and lower motor neuron (LMN) degeneration. ES detected dysphagia in more than 80% of MND patients who had referenced swallowing difficulties. In MND patients with ES-confirmed dysphagia, the MTT was increased approximately 2-fold without significant differences between the clinical phenotypes. The MTT was significantly longer in patients with bulbar-pseudobulbar syndrome in comparison to patients with isolated pseudobulbar syndrome, which indicates a higher involvement of the LMN deficiency in developing dysphagia in MND. The esophageal passage in MND was not dependent on age, sex, disease duration, or diagnosis delay. Interestingly, ES was also able to detect dysphagia in almost 70% of MND individuals who had no swallowing complaints (subclinical dysphagia). A more benign disease course and a higher percentage of male patients characterized this group. Esophageal scintigraphy is a helpful screening tool in determining early swallowing impairment in a high percent of patients with MND of various clinical phenotypes.
Role of Protein Kinase C Epsilon in Prostate Cancer and Metastasis
2013-08-01
detected by Western blot using an anti-Rac1 antibody. Depletion of PKCε with either #4 or #8 RNAi duplexed reduced Rac1 activation levels under serum ... serum deprivation condition was not abolished when PKCε was knocked down and therefore Rac1 activity was reduced. Although these results may implicate...medium supplemented with 10% serum . After different times the number of cells attached was quantified by MTT assay. (e) RWPE-1 cells were infected
Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon.
Leuner, Olga; Havlik, Jaroslav; Budesinsky, Milos; Vrkoslav, Vladimir; Chu, Jessica; Bradshaw, Tracey D; Hummelova, Jana; Miksatkova, Petra; Lapcik, Oldrich; Valterova, Irena; Kokoska, Ladislav
2013-10-01
Investigations into the chemical constituents of the seeds of the neglected tuber crop Pachyrhizus tuberosus (Leguminosae) resulted in the isolation of seven components: five rotenoids [12a-hydroxyerosone (1), 12a-hydroxydolineone (2), erosone (3), 12a-hydroxyrotenone (4) and rotenone (6)], a phenylfuranocoumarin [pachyrrhizine (5)] and an isoflavanone [neotenone (7)]. The compounds were isolated using several chromatography techniques and characterized and verified by NMR and HPLC/MS. The MTT assay was used to examine the selective cytotoxic effects of the methanolic P. tuberosus extract and isolated compounds in two human cancer cell lines [breast (MCF-7) and colorectal (HCT-116)] and in non-transformed human fibroblasts (MRC-5); IC50 values were calculated. The methanolic P. tuberosus extract displayed respectable cytotoxic effects against HCT-116 and MCF-7 cells with IC50 values of 7.3 and 6.3 microg/mL, respectively. Of the compounds, 6 exacted greatest cytotoxicity and selectivity towards the cancer cell lines tested, yielding IC50 values of 0.3 microg/mL against both MCF-7 and HCT-116 cells, and a 6-fold reduced activity against MRC-5 fibroblasts. Compound 4 also demonstrated cytotoxicity against MCF-7 and HCT-116 (1.1 and 1.8 microg/mL, respectively), and reduced cytotoxicity towards MRC-5 cells (7.5 mirog/mL). The results revealed from the in vitro cytotoxic MTT assay are worthy of further antitumor investigation.
Children's mental time travel during mind wandering.
Ye, Qun; Song, Xiaolan; Zhang, Yi; Wang, Qinqin
2014-01-01
The prospective bias is a salient feature of mind wandering in healthy adults, yet little is known about the temporal focus of children's mind wandering. In the present study, (I) we developed the temporal focus of mind wandering questionnaire for school-age children (TFMWQ-C), a 12-item scale with good test-retest reliability and construct validity. (II) The criterion validity was tested by thought sampling in both choice reaction time task and working memory task. A positive correlation was found between the temporal focus measured by the questionnaire and the one adopted during task-unrelated thoughts (TUTs) by thought sampling probes, especially in the trait level of future-oriented mind wandering. At the same time, children who experienced more TUTs tended to show worse behavioral performance during tasks. (III) The children in both tasks experienced more future-oriented TUTs than past-oriented ones, which was congruent with the results observed in adults; however, in contrast with previous research on adults, the prospective bias was not influenced by task demands. Together these results indicate that the prospective bias of mind wandering has emerged since the school-age (9∼13 years old), and that the relationship between mental time travel (MTT) during mind wandering and the use of cognitive resources differs between children and adults. Our study provides new insights into how this interesting feature of mind wandering may adaptively contribute to the development of children's MTT.
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-01-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis. PMID:28789364
Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Huang, Li-Ying; Yang, Ming-Chien; Liu, Ting-Yu; Tsai, Sung-Chen; Yang, Chih-Yung; Kuo, Chih-Yu; Chan, Tzu-Yi; Zou, Hui-Ming; Lian, Wei-Nan; Lin, Chi-Hung
2014-09-01
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
NASA Astrophysics Data System (ADS)
Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas
2016-09-01
Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-08-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis.
Lin, Zhen-Jian; Lu, Zhen-Yu; Zhu, Tian-Jiao; Fang, Yu-Chun; Gu, Qian-Qun; Zhu, Wei-Ming
2008-02-01
Six new tetramic acids derivatives, penicillenols A(1), A(2), B(1), B(2), C(1), and C(2) (1-6), together with citrinin, phenol A acid, phenol A, and dihydrocitrinin, were identified from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Their structures were elucidated on the basis of comprehensive spectral analysis. All the new compounds were evaluated for their cytotoxic effects on four cell lines by the MTT method. Penicillenols A(1) and B(1) showed cytotoxicities against HL-60 cell line with IC(50) values of 0.76 microM and 3.20 microM, respectively.
A. Al-Tamimi, Mohammad; Rastall, Bob; M. Abu-Reidah, Ibrahim
2016-01-01
Background: Essential oils (EOs) are complex mixtures of several components gifted with a wide array of biological activities. The present research was designed to evaluate whether commercial essential oils could be effective by examining their in vitro antioxidant, cytotoxic, and apoptotic properties of nine commercially available EOs in Palestine, namely, African rue, basil, chamomile, fennel, fenugreek, ginger, spearmint, sage, and thyme, and to assure their effective use. Methods: The cytotoxic activity was determined using HT29-19(A) non-muco secreting and HT29-muco secreting (MS) cell lines. MTT, and trypan blue tests, and DPPH radical scavenging have also been assayed on the studied EOs. Results: In this work chamomile oil showed the lowest IC50 at the content of 60 µL/mL, while all other EOs reached such a decrease when 70–80 µL/mL was used on HT-29 (MS) cell lines. In HT-29 19(A) cells, 50% of viability was obtained when 80 µL/mL of ginger and African rue was used, while all other EOs needed more than 80 µL/mL to reach such a decline in viability. Otherwise, an MTT assay on HT-29 (MS) displayed ginger EO with the lowest IC50, followed by African rue and sage, with 40, 48 and 53 µL/mL, respectively. Otherwise, for the rest of the EOs, the IC50 was obtained by assaying around 80 µL/mL. Ginger showed the lowest IC50 with 60 µL/mL and thyme was the highest with 77 µL/mL when HT-29 19(A) cells were used. Conclusion: The most active EOs were found to be ginger, chamomile oil, and African rue. In general, the results demonstrate that most commercial EOs tested in this work possess low, or no biological activities; this may be due to processing, storage conditions, and handling or other reasons, which may cause losses in the biological and pharmacological properties that endemically exist in the Eos; hence, more investigation is still required on commercial EOs before they are recommended to the public. PMID:28930137
A Al-Tamimi, Mohammad; Rastall, Bob; M Abu-Reidah, Ibrahim
2016-10-25
Background: Essential oils (EOs) are complex mixtures of several components gifted with a wide array of biological activities. The present research was designed to evaluate whether commercial essential oils could be effective by examining their in vitro antioxidant, cytotoxic, and apoptotic properties of nine commercially available EOs in Palestine, namely, African rue, basil, chamomile, fennel, fenugreek, ginger, spearmint, sage, and thyme, and to assure their effective use. Methods: The cytotoxic activity was determined using HT29-19(A) non-muco secreting and HT29-muco secreting (MS) cell lines. MTT, and trypan blue tests, and DPPH radical scavenging have also been assayed on the studied EOs. Results: In this work chamomile oil showed the lowest IC 50 at the content of 60 µL/mL, while all other EOs reached such a decrease when 70-80 µL/mL was used on HT-29 (MS) cell lines. In HT-29 19(A) cells, 50% of viability was obtained when 80 µL/mL of ginger and African rue was used, while all other EOs needed more than 80 µL/mL to reach such a decline in viability. Otherwise, an MTT assay on HT-29 (MS) displayed ginger EO with the lowest IC 50 , followed by African rue and sage, with 40, 48 and 53 µL/mL, respectively. Otherwise, for the rest of the EOs, the IC 50 was obtained by assaying around 80 µL/mL. Ginger showed the lowest IC 50 with 60 µL/mL and thyme was the highest with 77 µL/mL when HT-29 19(A) cells were used. Conclusion: The most active EOs were found to be ginger, chamomile oil, and African rue. In general, the results demonstrate that most commercial EOs tested in this work possess low, or no biological activities; this may be due to processing, storage conditions, and handling or other reasons, which may cause losses in the biological and pharmacological properties that endemically exist in the Eos; hence, more investigation is still required on commercial EOs before they are recommended to the public.
Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi
2014-01-01
Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum
2014-10-01
In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.
Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro
Samberg, Meghan E.; Oldenburg, Steven J.; Monteiro-Riviere, Nancy A.
2010-01-01
Introduction Products using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin. Objectives This study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo. Materials and Methods We used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured. Results The effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin. Conclusion This study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated. PMID:20064793
Anticancer activity of flavonol and flavan-3-ol rich extracts from Croton celtidifolius latex.
Biscaro, Fernanda; Parisotto, Eduardo Benedetti; Zanette, Vanilde Citadini; Günther, Tania Mara Fischer; Ferreira, Eduardo Antonio; Gris, Eliana Fortes; Correia, João Francisco Gomes; Pich, Claus Tröger; Mattivi, Fulvio; Filho, Danilo Wilhelm; Pedrosa, Rozangela Curi
2013-06-01
Croton celtidifolius Baill (Euphorbiaceae) is a tree found in the Atlantic Forest in Southern Brazil, where it is commonly known as "Sangue-de-Dragão". Its red latex is used traditionally for treating ulcers, diabetes and cancer. To evaluate antitumor activities of Croton celtififolius latex in vitro and in vivo. Phytochemical analyses were conducted using HPLC-DAD-MS. Cytotoxic, nuclease and pro-apoptotic properties were determined using the tetrazolium salt assay (MTT), plasmid DNA damage assay and ethidium bromide (EB)/acridine orange methods, respectively, and antitumor activity was determined in the Ehrlich ascites carcinoma (EAC) mouse model. Phytochemical studies indicated a high phenol content of flavonols (45.67 ± 0.24 and 18.01 ± 0.23 mg/mL of myricetin and quercetin, respectively) and flavan-3-ols (114.12 ± 1.84 and 1527.41 ± 16.42 mg/L of epicatechin and epigallocatechin, respectively) in latex. These compounds reduced MCF-7 and EAC cell viability in the MTT assay (IC50 = 169.0 ± 1.8 and 187.0 ± 2.2 μg/mL, respectively). Latex compounds caused significant DNA fragmentation and increased the number of apoptotic cells (negative control (NC), 12%; latex, 41%) as indicated by differential staining in the EB/acridine orange assay. The in vivo latex treatment at 3.12 mg/kg/day reduced the body weight by 7.57 ± 2.04 g and increased median survival time to 17.5 days when compared to the NC group (13.0 days). In addition, the highest latex concentration inhibited tumor growth by 56%. These results agree with ethno-pharmacological reports showing cytotoxicity and antitumor activity of C. celtidifolius latex. The mechanism of antitumor action may be related to direct DNA fragmentation that reduces survival and induces apoptosis.
Leite, Yulla Klinger de Carvalho; de Carvalho, Camila Ernanda Sousa; Feitosa, Matheus Levi Tajra; Alves, Michel Muálem de Moraes; Carvalho, Fernando Aécio de Amorim; Neto, Bartolomeu Cruz Viana; Miglino, Maria Angélica
2018-01-01
Background Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. Methods Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. Results The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs’ bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. Conclusion The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering. PMID:29736332
Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin
2014-10-01
In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P < 0.05). The ALP staining and ALP activity of MC3T3-E1 cells in Group A were significantly higher than those in Group B and Group C (P < 0.05). The sintered bone modified with surface mineralization/P24 composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.
Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae
2008-01-01
Purpose The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Methods Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT–PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. Results MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT–PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT–PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. Conclusions MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients. PMID:18615204
2013-01-01
Background An elevated PI/I ratio is attributable to increased secretory demand on β-cells. However, the effect of postprandial targeting therapy on proinsulin level is unknown. We evaluated the metabolic effect of glinide and sulfonylurea (SU) using the meal tolerance test (MTT). Methods MTT was applied to previously untreated Type 2 Diabetes Mellitus (T2DM) subjects. Twenty-two participants were given a test meal (450 kcal). Plasma glucose and insulin were measured at 0 (fasting), 30, 60, 120, and 180 min. Serum proinsulin and C-peptide immunoreactivity (CPR) were measured at 0 and 120 min. Postprandial profile was assessed at baseline and following 3 months treatment with either mitiglinide or glimepiride. Results Plasma glucose level at 30, 60, 120, and 180 min was significantly improved by mitiglinide. Whereas, glimepiride showed a significant improve plasma glucose at 0, 180 min. Peak IRI shifted from 120 to 30 min by mitiglinide treatment. The pattern of insulin secretion was not changed by glimepiride treatment. Whereas mitiglinide did not affect the PI/I ratio, glimepiride tended to increase the PI/I ratio. Moreover, although mitiglinide did not affect PI/I ratio as a whole, marked reduction was noted in some patients treated by mitiglinide. PI/I ratio was reduced significantly in the responder group. The responder subgroup exhibited less insulin resistance and higher insulinogenic index at baseline than non-responders. Moreover, the triglyceride level of responders was significantly lower than that of non-responders. Conclusions Mitiglinide improved postprandial insulin secretion pattern and thereby suppressed postprandial glucose spike. In T2DM patients with low insulin resistance and low triglyceride, mitiglinide recovered impaired β-cell function from the viewpoint of the PI/I ratio. Trial registration UMIN-CTR: UMIN000010467 PMID:24215809
Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.
Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil
2015-07-24
Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.
NASA Astrophysics Data System (ADS)
Widiyanti, Prihartini; Paramadini, Adanti W.; Jabbar, Hajria; Fatimah, Inas; Nisak, Fadila N. K.; Puspitasari, Rahma A.
2016-03-01
Cardiovascular disease is a global disease with high urgency. In the severe case of coronary heart disease while a blockage in the coronary arteries reach 75% or more, the patient required stent implantation. Stents are made of metal which has many limitations that can lead to blood clots and stent incompatibility toward the size of the blood vessels. There is a metal stent replacement solution that made from polymer material which is biocompatible. PLLA also has biocompatibility and good mechanical strength. PLLA stent will be coated with chitosan as a candidate for drug-coated stents which is able to work as a drug carrier. The aim of this study is to know the morphology information and biocompability status of PLLA coating chitosan as candidate of heart stent. Morphological results using SEM showed a smooth surface structure which reinforced clinical standard of stent material. Results of cytotoxicity test by MTT Assay method showed that the result of four samples in this experiment living cells is reached 90% which is non toxic and safe to use in the human body. %). The conclusion of this study is PLLA is polymer has potency to be used as stent material.
Wang, Gongke; Li, Xiangrong; Gou, Yaping; Chen, Yuhan; Yan, Changling; Lu, Yan
2013-10-01
The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 10(4)M(-1). According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.
2014-03-01
Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.
Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent
NASA Astrophysics Data System (ADS)
Atashi, Zahra; Divband, Baharak; Keshtkar, Ahmad; Khatamian, Maasoumeh; Farahmand-Zahed, Farzane; Nazarlo, Ali Kiani; Gharehaghaji, Nahideh
2017-09-01
In this study, ZSM-5 nano zeolite was used as a support material for iron oxide nanoparticles and the potential ability of the nanocomposite for magnetic resonance imaging (MRI) contrast agent was investigated. The nanocomposite was synthesized by hydrothermal method and characterized using X-ray diffraction and scanning electron microscopy. MRI was carried out by use of a 1.5 Tesla clinical scanner. The T2 weighted images were prepared and the r2 relaxivity was calculated. The sizes of Fe3O4 nanoparticles and related nanocomposite were 13-24 nm and 80-150 nm, respectively. Results of MTT assay confirmed that the prepared nanocomposite is cytocompatible. The r2 relaxivity of the Fe3O4@ZSM-5 nanocomposite was 457.1 mM-1 s-1. This study suggests that the Fe3O4@ZSM-5 nanocomposite has potential to use as an MRI T2 contrast agent.
Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.
Tsai, Ang-Chen; Ma, Teng
2016-01-01
Human mesenchymal stem cells (hMSCs) are considered as a primary candidate in cell therapy owing to their self-renewability, high differentiation capabilities, and secretions of trophic factors. In clinical application, a large quantity of therapeutically competent hMSCs is required that cannot be produced in conventional petri dish culture. Bioreactors are scalable and have the capacity to meet the production demand. Microcarrier suspension culture in stirred-tank bioreactors is the most widely used method to expand anchorage dependent cells in a large scale. Stirred-tank bioreactors have the potential to scale up and microcarriers provide the high surface-volume ratio. As a result, a spinner flask bioreactor with microcarriers has been commonly used in large scale expansion of adherent cells. This chapter describes a detailed culture protocol for hMSC expansion in a 125 mL spinner flask using microcarriers, Cytodex I, and a procedure for cell seeding, expansion, metabolic sampling, and quantification and visualization using microculture tetrazolium (MTT) reagent.
Lü, Xiaoying; Zheng, Buzhong; Tang, Xiaojun; Zhao, Lifeng; Lu, Jieyan; Zhang, Zhiwei; Zhang, Jizhong; Cui, Wei
2011-01-01
To evaluate the biomechanical properties and biocompatibility of natural hydroxyapatite/chitosan (HA/CS) composites. The natural HA/CS composites with a different proportion of HA and CS were prepared by the cross-linking method, and then the compressive strength, microstructure and pH values of extracts from these composites were measured by SEM and pH meter, respectively. Subsequently, the biocompatibility of the composites was evaluated by means of a series of biological tests, including MTT, acute systemic toxicity, heat source, and hemolysis tests in vitro. The chitosan content in the composites had significantly influenced the mechanical properties and microstructure of the composites. The pH value of the composite extract was approximately 7.0, which was very close to that of human plasma. Furthermore, the natural HA/CS composites showed no cytotoxicity, irritation, teratogenicity, carcinogenicity and special pyrogen. These results indicated that the natural HA/CS composite may be a potential bone repair material.
Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles
NASA Astrophysics Data System (ADS)
Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.
2015-06-01
Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).
Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin
2016-01-01
Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382
The magnetic graphene-based nanocomposite: An efficient anticancer delivery system
NASA Astrophysics Data System (ADS)
Jafarizad, Abbas; Jaymand, Mehdi; Taghizadehghalehjougi, Ali; Mohammadi-Nasr, Saeed; Jabbari, Amir Mohammad
2018-01-01
The aim of this study is the development of an efficient anticancer drug delivery nanosystem using PEGylated graphene oxide/magnetite nanoparticles (PEG-GO/Fe3O4). The nanosystem was loaded with mitoxantrone (MTX) as a universal anticancer drug. The cytotoxicity effect of the MTX-loaded GO-PEG/Fe3O4 nanocomposite was studied against U87 MG cell line using MTT cell viablity assay. The mechanism of action, the genes contributed in apoptosis (Casp 9, and Casp 3) and survival (BcL-2, BAX) have been investigated using quantitative real time-PCR. As the results of biological assays, controlled drug release behavior of the developed nanosystem as well as the inherent physicochemical and biological characteristics of both magnetit nanoparticles and graphene nanomaterials, we envision that the GO-PEG/Fe3O4 nanocomposite may be applied as enhanced drug delivery system for various cancer therapies (e.g., brain cancer) using both chemo- and photothermal therapy methods.
Luo, Binhua; Zhang, Huajie; Liu, Xuhan; Rao, Rong; Wu, Yun; Liu, Wei
2015-01-01
Fluorescence dye DiR and superparamagnetic iron oxide nanoparticles (SPIONs) embedded in PEG-PLGA nanobubbles (DiR-SPIO-NBs) were produced using double emulsion method on a membrane of Shirasu porous glass (SPG). The nanobubbles encapsulated with DiR and SPIONs had a liquid core (perfluoropentane) and a PEG-PLGA shell. DiR-SPIO-NBs showed biocompatibility based on MTT cytotoxicity and hemolysis studies. The PFP encapsulated in the nanobubbles experienced phase transition under ultrasonic irradation. Nanobubbles dispersed well in saline over 3 months, and the relaxivity was 127.9 mM(-1)s(-1), suggesting that it could be used as a contrast agent in MRI. The MR and fluorescence images in vivo demonstrated that the signal intensity in the spleen and liver was significantly enhanced with the treatment of nanobubbles. In addition, results of ultrasound images suggested that the nanobubbles had persistent contrast ability. In conclusion, nanobubbles could be utilized as an US/MRI/fluorescence contrast agent.
Diaconeasa, Zoriţa; Leopold, Loredana; Rugină, Dumitriţa; Ayvaz, Huseyin; Socaciu, Carmen
2015-01-01
The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs) obtained from two commercially available juices (blueberry and blackcurrant juices) on three tumor cell lines; B16F10 (murine melanoma), A2780 (ovarian cancer) and HeLa (cervical cancer). Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases. PMID:25622252
Nandrolone decanoate is able to modulate proliferation and adhesion of myoblasts.
Oliveira, E N; Fernandes, K P; Silva, C A; Oliveira, T S; Junior, J A; Bussadori, S K; Renno, A C; Mesquita-Ferrari, R A
2014-07-01
The search for a more efficient repair process of muscle injuries has become evident in clinical practice. The aim of the present study was to evaluate the effect of nandrolone decanoate (ND) on the proliferation, adhesion, and expression of myogenic regulatory factors (MRFs) in C2C12 cells.Methods. Cell proliferation and adhesion were assessed using an MTT assay. The expression of MRFs was assessed by real-time PCR.Results. ND applied at 10 or 25 µM concentration induced after 60 min an increase in adhesion, at 5 µM concentration induced after 5 days an increase in cell proliferation, and ND at 50 µM concentration led after 5 days to a decrease in cell proliferation in comparison with other groups. The steroid did not alter the expression of MRFs.Conclusions. The positive effects of ND regarding the proliferation and adhesion of C2C12 cells suggest that this steroid may have positive effects following a muscle injury.
NASA Astrophysics Data System (ADS)
Jahandar, Marzieh; Zarrabi, Ali; Shokrgozar, Mohammad Ali; Mousavi, Hajar
2015-12-01
Superparamagnetic iron oxide nanoparticles (SPIONs) with an average size of 10 nm have been successfully synthesized by the polyol method. Then, hyperbranched polyglycerol (HPG) branches have been introduced on the surface of SPIONs through ring opening polymerization of glycidol as a biocompatible surface modifier with a more hydrophilic nature than other biomedical polymers. The as-synthesized SPION-HPGs were analyzed by FT-IR, CHNS and TGA analysis which all exhibited the successful HPG grafting onto the SPION surface. The anticancer herbal drug, curcumin, was loaded on the resultant nanocarrier. The MTT assay demonstrated the non-cytotoxicity effect of SPION-HPGs and the low cytotoxicity effect of curcumin at low concentrations on L929 and MCF-7 cell lines as normal and cancerous cells, respectively. Moreover, these nanoparticles exhibited an improved effect as a contrast agent in magnetic resonance imaging. Thus, it is concluded that SPION-HPG has the potential to be used in theranostics applications due to its simultaneous drug delivery and imaging capabilities.
Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.
Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K
2010-08-01
Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.
Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne
2015-01-01
In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311
Preparation and in vivo/in vitro evaluation of formononetin phospholipid/vitamin E TPGS micelles.
Cheng, Xudong; Yan, Hongmei; Jia, Xiaobin; Zhang, Zhenhai
2016-01-01
To enhance the formononetin (FN) antitumor effect, we developed a passive targeting FN-contained formulation. FN-contained Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS)/phospholipid micelles were prepared by the solvent injection method. Particle size, polydispersity, zeta potential, encapsulation efficiency, drug release profile, and micelles morphology were evaluated and characterized by various methods including high-performance liquid chromatography, dynamic light scattering, and transmission electron microscopy. Cellular uptake of micelles was evaluated with fluorescence imaging coupled with HPLC method. Cytotoxicity of FN micelles and free FN was compared using MTT method. In vivo imaging was employed to assess the accumulation of DiR micelles and free DiR at tumor site. The antitumor effect of FN micelles was examined in tumor-bearing mice. The results showed that prepared FN micelles had an average particle diameter of 111.91 ± 5.82 nm with good stability. FN micelles enhanced the cellular uptake and improved cell cytotoxicity than free FN. Furthermore, DiR micelles quickly accumulated at the tumor site than free DiR. FN micelles significantly improved tumor inhibition rate compared to that observed with free FN in tumor-bearing mice with great biosafety. Thus, FN micelles demonstrated a clear treatment advantage and provided an ideal drug administration system to improve the antitumor effect of FN.
Hosseiny, Hossein
2017-01-01
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis (A. littoralis) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella, 17 isolates—including resistant isolates of S.E.1103 and S.E.49—had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC50 was 0.25 mg/mL and MBC50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine. PMID:28758958
Geetha, C S; Remya, N S; Leji, K B; Syama, S; Reshma, S C; Sreekanth, P J; Varma, H K; Mohanan, P V
2013-12-01
The aim of the study was to evaluate the cells-nanoparticle interactions and molecular toxicity after delayed hypersensitivity in Guinea pigs, exposed to hydroxyapatite nanoparticles (HANP). The study focuses on synthesizing and characterizing HANPs and gaining an insight into the cytotoxicity, molecular toxicity, hypersensitivity and oxidative stress caused by them in vitro and in vivo. HANP was synthesized by chemical method and characterized by standard methods. Cytotoxicity was assessed on L929 cells by MTT assay and in vitro studies were carried out on rat liver homogenate. In vivo study was carried out by topical exposure of Guinea pigs with HANP, repeatedly, and evaluating the skin sensitization potential, blood parameters, oxidative stress in liver and brain and DNA damage (8-hydroxyl-2-deoxyguanosine: 8-OHdG) in liver. The results of the study indicated that there was no cytotoxicity (up to 600μg/mL) and oxidative damage (up to 100μg/mL), when exposed to HANPs. It was also evident that, there was no skin sensitization and oxidative damage when HANP were exposed to Guinea pigs. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong
2008-11-01
To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.
Ren, Cong; Bao, Yong-rui; Meng, Xian-sheng; Diao, Yun-peng; Kang, Ting-guo
2013-01-01
Backgroud: To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation. Materials and Methods: Determination the cell viability by MTT colorimetric assay. We use kit to detect the activity of lactate dehydrogenase (LDH), Na+-K+-ATPase and Ca2+-ATPase. Do research on the effect which ferulic acid and its drug-containing plasma have to self-discipline, conductivity, action potential duration and other electrophysiological phenomena of myocardial cells by direct observation using a microscope and recording method of intracellular action potential. Results: The experimental datum showed that both can reduce the damage hydrosulfite to myocardial cell damage and improve myocardial viability, reduce the amount of LDH leak, increase activity of Na+-K+-ATPase, Ca2+-ATPase, and increase APA (Action potential amplitude), Vmax (Maximum rate of depolarization) and MPD (Maximum potential diastolic). Conclusion: Taken together, therefore, we can get the conclusion that ferulic acid drug-containing plasma has better protective effect injured myocardial cell than ferulic acid. PMID:23930002
Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher
2017-01-01
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546
Amran, Norliyana; Rani, Anis Najwa Abdul; Mahmud, Roziahanim; Yin, Khoo Boon
2016-01-01
The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Total antioxidant activities of extracts were assayed using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin-Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC50] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use. The phenolic and flavonoid compounds were present in B. racemosa and H. sabdariffa methanol extractsB. racemosa methanol extract was found to be potent antioxidant activityB. racemosa methanol extract have shown potent cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) toward MCF-7The phenolic and flavonoid compounds may contribute to the antioxidant and cytotoxic activity of B. racemosa. Abbreviations Used: MCF-7: Human breast cancer cell lines, DMEM: Modified eagle medium, DPPH: 2,2'-diphenyl-1-picrylhydrazyl radical, TPC: Total phenolic content, Na2CO3: Sodium carbonate, GAE: Gallic acid equivalents, TFC: Total flavonoid content, NaNO2: Sodium nitrite, AlCl3: Aluminum chloride, NaOH: Sodium hydroxide, QE: Quercetin equivalents, MTT: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, IC50: Inhibitory concentration, Analysis of variance, DLA: Dalton's lymphoma ascitic.
Comparison of methods for determining the effectiveness of antibacterial functionalized textiles.
Haase, Hajo; Jordan, Lisa; Keitel, Laura; Keil, Claudia; Mahltig, Boris
2017-01-01
Antimicrobial functionalization of textiles is important for various applications, such as protection of textile materials from decomposition, generation of more effective wound dressings, and the prevention of infections or malodors resulting from bacterial growth. In order to test the efficacy of new products, their antibacterial activity needs to be evaluated. At present, several different procedures are being used for this purpose, hindering comparisons among different studies. The present paper compares five of these assays using a sample panel of different textiles functionalized with copper (Cu) and silver (Ag) as antibacterial agents, and discusses the suitability of these methods for different analytical requirements. Bacterial viability was determined by measuring the optical density at 600 nm, a colorimetric assay based on MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) conversion, an agar diffusion assay, and colony formation, either after culturing in media containing textile samples, or after recovery from textiles soaked with bacterial suspension. All experiments were performed with a Gram-negative (Escherichia coli) and a Gram-positive (Staphylococcus warneri) model organism. In general, the results yielded by the different methods were of good comparability. To identify the most suitable test system for the particular type of antibacterial coating, several factors need to be taken into account, such as choosing appropriate endpoints for analyzing passive or active antibacterial effects, selection of relevant microorganisms, correcting for potential interference by leaching of colored textile coatings, required hands on time, and the necessary sensitivity.
Comparison of methods for determining the effectiveness of antibacterial functionalized textiles
Jordan, Lisa; Keitel, Laura; Keil, Claudia; Mahltig, Boris
2017-01-01
Antimicrobial functionalization of textiles is important for various applications, such as protection of textile materials from decomposition, generation of more effective wound dressings, and the prevention of infections or malodors resulting from bacterial growth. In order to test the efficacy of new products, their antibacterial activity needs to be evaluated. At present, several different procedures are being used for this purpose, hindering comparisons among different studies. The present paper compares five of these assays using a sample panel of different textiles functionalized with copper (Cu) and silver (Ag) as antibacterial agents, and discusses the suitability of these methods for different analytical requirements. Bacterial viability was determined by measuring the optical density at 600 nm, a colorimetric assay based on MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) conversion, an agar diffusion assay, and colony formation, either after culturing in media containing textile samples, or after recovery from textiles soaked with bacterial suspension. All experiments were performed with a Gram-negative (Escherichia coli) and a Gram-positive (Staphylococcus warneri) model organism. In general, the results yielded by the different methods were of good comparability. To identify the most suitable test system for the particular type of antibacterial coating, several factors need to be taken into account, such as choosing appropriate endpoints for analyzing passive or active antibacterial effects, selection of relevant microorganisms, correcting for potential interference by leaching of colored textile coatings, required hands on time, and the necessary sensitivity. PMID:29161306
[Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity].
Yu, Jia-jia; Cong, Deng-li; Jiang, Ying; Zhou, Yuan; Wang, Yan; Zhao, Chun-fang
2014-10-01
To investigate the chemical constituents of Corydalis ochotensis and their antitumor bioactivity. The compounds were isolated by silica gel column chromatography and recrystallization. Their structures were identified by spectroscopic analysis (NMR) and physicochemical properties. Their cytotoxic activity was studied by MTT. Six compounds were elucidated as protopine (1), ochotensimine (2), fumariline (3), sanguinarine (4), tetrahydroberberine (5) and berberine (6). Compound 1 had excellent inhibitory activity on HepG2, SW480 and A549 cells, and compound 4 had excellent inhibitory activity on Hep2, HepG2, SW480 and A549 cells. Compounds 3, 4 and 5 are isolated from this plant for the first time; In the MTT antitumor experiments,compounds 1 and 4 show an antitumor activity.
Bioactive saponins from the fruits of Aesculus pavia L.
Sun, Zhen-Liang; Zhang, Ming; Wu, Ying; Wan, Ai-Hong; Zhang, Rong
2011-10-01
Continued chemical investigation on the fruits of Aesculus pavia L. resulted in theisolation and identification of two new oleanolic acid saponins, namely vaccaroside A (1) andvaccaroside B (2). The isolated furostanol saponins were evaluated for cytotoxic activity againsthuman normal amniotic and human lung carcinoma cell lines using neutral red and MTT assays.In vitro experiments showed significant cytotoxicity in a dose dependent manner with IC₅₀ valuesin the range of 27.80-79.02 μM. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis and cytotoxic activity of two steroids: icogenin aglycone analogs.
Guan, Yu-Yao; Li, Shu-Zhen; Lei, Ping-Sheng
2017-05-01
During the process of icogenin analog research, we obtained two cytotoxic steroids: compound 4 and compound 6 casually. Their in vitro antitumor activities were tested by the standard MTT assay. The results disclosed that compound 4 (IC 50 = 3.65-6.90 μM) showed potential antitumor activities against HELA, KB cell lines and compound 6 (IC 50 = 2.40-9.05 μM) showed potential antitumor activities against HELA, BGC-823, KB, A549, HCT-8 cell lines.
Yang, Guo-Chun; Hu, Jia-Hui; Li, Bing-Long; Liu, Huan; Wang, Jia-Yue; Sun, Li-Xin
2018-06-20
Six new neo-clerodane diterpenoids (1: -6: ), scutebatas X - Z, A 1 -C 1 , along with twelve known ones (7: -18: ) were obtained via the phytochemical investigation of the aerial parts of Scutellaria barbata . Their structures were established by detailed spectroscopic analysis. The absolute configurations of 1: and 2: , as the representative members of this type, were identified based on a circular dichroic exciton chirality method. Moreover, in vitro cytotoxicity of compounds 1: -6: were evaluated against three human cancer cell lines (SGC-7901, MCF-7, and A-549) using the MTT method. Compound 6: showed cytotoxic activities against all the three cell lines with IC 50 values of 17.9, 29.9, and 35.7 µM, respectively. Georg Thieme Verlag KG Stuttgart · New York.
Preventing intimal thickening of vein grafts in vein artery bypass using STAT-3 siRNA
2012-01-01
Background Proliferation and migration of vascular smooth muscle cells (VSMCs) play a key role in neointimal formation which leads to restenosis of vein graft in venous bypass. STAT-3 is a transcription factor associated with cell proliferation. We hypothesized that silencing of STAT-3 by siRNA will inhibit proliferation of VSMCs and attenuate intimal thickening. Methods Rat VSMCs were isolated and cultured in vitro by applying tissue piece inoculation methods. VSMCs were transfected with STAT 3 siRNA using lipofectamine 2000. In vitro proliferation of VSMC was quantified by the MTT assay, while in vivo assessment was performed in a venous transplantation model. In vivo delivery of STAT-3 siRNA plasmid or scramble plasmid was performed by admixing with liposomes 2000 and transfected into the vein graft by bioprotein gel applied onto the adventitia. Rat jugular vein-carotid artery bypass was performed. On day 3 and7 after grafting, the vein grafts were extracted, and analyzed morphologically by haematoxylin eosin (H&E), and assessed by immunohistochemistry for expression of Ki-67 and proliferating cell nuclear antigen (PCNA). Western-blot and reverse transcriptase polymerase chain reaction (RT-PCR) were used to detect the protein and mRNA expression in vivo and in vitro. Cell apoptosis in vein grafts was detected by TUNEL assay. Results MTT assay shows that the proliferation of VSMCs in the STAT-3 siRNA treated group was inhibited. On day 7 after operation, a reduced number of Ki-67 and PCNA positive cells were observed in the neointima of the vein graft in the STAT-3 siRNA treated group as compared to the scramble control. The PCNA index in the control group (31.3 ± 4.7) was higher than that in the STAT-3 siRNA treated group (23.3 ± 2.8) (P < 0.05) on 7d. The neointima in the experimental group(0.45 ± 0.04 μm) was thinner than that in the control group(0.86 ± 0.05 μm) (P < 0.05).Compared with the control group, the protein and mRNA levels in the experimental group in vivo and in vitro decreased significantly. Down regulation of STAT-3 with siRNA resulted in a reduced expression of Bcl-2 and cyclin D1. However, apoptotic cells were not obviously found in all grafts on day 3 and 7 post surgery. Conclusions The STAT-3 siRNA can inhibit the proliferation of VSMCs in vivo and in vitro and attenuate neointimal formation. PMID:22216901
Pazhang, Yaghub; Jaliani, Hossein Zarei; Imani, Mehdi; Dariushnejad, Hassan
2016-01-01
Embelin and celastrol, inhibitors of XIAP and NF-κB proteins respectively, have been derived from natural sources and shown anti-tumor activities against different cancer cell lines. Some interactions have recently been discovered between XIAP and NF-κB pathways, but the effects of these inhibitors in combination have not been investigated yet. We have studied possible synergistic effects of embelin in combination with celastrol, in an acute myeloid leukemia model, HL-60 cell line. Cytotoxicity of embelin and celastrol, separately and in combination, was determined by MTT assay and flow cytometry. Chou-Talalay's method was used to assess the synergistic effect of two components. Immunocytochemistry and western blot analysis of the two tumor marker proteins. (survivin and COX-2) was also performed to investigate downstream effects of two components. Analysis of MTT assay and flow cytometry showed that there is a substantial synergistic effect in some affected fractions of drug-treated HL-60. cells, while in other affected fractions a mild synergism or additive effect was observed. Immunocytochemistry and western blot analysis revealed that the expression of survivin and COX-2 proteins was reduced in treated cells. Embelin and celastrol showed potent antitumor activity and synergistic effects in combination. Therefore targeting XIAP and NF-κB pathways simultaneously can be investigated in more detail to make use of embelin and celastrol as a combination therapy of cancer.
NASA Astrophysics Data System (ADS)
Ghorbani, Marjan; Hamishehkar, Hamed; Arsalani, Naser; Entezami, Ali Akbar
2015-07-01
In this work, a thermo and pH-responsive poly- N-isopropylacrylamide-co-itaconic acid containing thiol side groups were successfully synthesized to prepare Doxorubicin-loaded polymer@Au/Fe3O4 core/shell nanoparticles (DOX-NPs). Copolymer and NPs were fully characterized by FT-IR, HNMR, photo-correlation spectroscopy, SEM, X-ray diffraction, vibrating-sample magnetometer, thermal gravimetric analysis, and UV-Vis spectroscopy. The stimuli-responsive characteristics of NPs were evaluated by in vitro release study in simulated cancerous environment. The biocompatibility and cytotoxic properties of NPs and DOX-NPs are explored by MTT method. The prepared NPs with the size of 50 nm showed paramagnetic characteristics with suitable and stable dispersion at physiological medium and high loading capacity (up to 55 %) of DOX. DOX-NPs yielded a pH- and temperature-triggered release of entrapped drugs at tumor tissue environment (59 % of DOX release) compared to physiological condition (20 % of DOX release) during 48 h. In vitro cytotoxicity studies indicated that the NPs showed no cytotoxicity on A549 cells at different amounts after incubation for 72 h confirming its suitability as a drug carrier. DOX-NPs, on the other hand, caused an efficient anticancer performance as verified by MTT assay test. It was concluded that developed NPs by us in this study may open the possibilities for targeted delivery of DOX to the cancerous tissues.
Effects of Insecticidal Ketones Present in Mint Plants on GABAA Receptor from Mammalian Neurons
Sánchez-Borzone, Mariela Eugenia; Marin, Leticia Delgado; García, Daniel Asmed
2017-01-01
Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABAA-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticide activity, were able to behave as GABAA-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action. SUMMARY The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABAA receptor from mammalian neurons.All studied compounds: pulegone, menthone and dihydrocarvone, were able to behave as negative allosteric modulators and could exhibit convulsant activity in mammalian organisms.Citotoxicity assays demonstrated that only pulegone affected the cell viability. Abbreviations used: GABA: gamma aminobutyric acid, GABAA-R: GABAA receptor, MTT: 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazam, DMEM: Dulbecco's modified minimum essential mèdium, [3H]TBOB: [3H] t-Butylbicycloorthobenzoate PMID:28216893
Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing
2018-02-01
This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P <0.05), and the inhibitory effect of the combination group was more significant( P <0.01). The apoptotic rate of HeLa cells was significantly increased( P <0.05), and the apoptotic rate of the combination group was significantly increased( P <0.01) compared with the control group( P <0.05).In conclusion, G₀/G₁ phase showed the most significant differences between the two groups. RT-PCR and WB results showed that the gene and protein expressions of beclin1 and LC3Ⅱ were up-regulated, while the gene and protein expressions of p62 were down-regulated compared with the control group. The above-mentioned changes in the combination group were more significant. Through the analysis of the above experimental results, it is speculated that Astragalus polysaccharides may increase the sensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.
Huang, Hui; Zhu, Zheng-Qiu; Zhou, Zheng-Guo; Chen, Ling-Shan; Zhao, Ming; Zhang, Yang; Li, Hong-Bo; Yin, Li-Ping
2016-12-08
To assess the role of time-intensity curves (TICs) of the normal peripheral zone (PZ) in the identification of biopsy-proven prostate nodules using contrast-enhanced transrectal ultrasound (CETRUS). This study included 132 patients with 134 prostate PZ nodules. Arrival time (AT), peak intensity (PI), mean transit time (MTT), area under the curve (AUC), time from peak to one half (TPH), wash in slope (WIS) and time to peak (TTP) were analyzed using multivariate linear logistic regression and receiver operating characteristic (ROC) curves to assess whether combining nodule TICs with normal PZ TICs improved the prediction of prostate cancer (PCa) aggressiveness. The PI, AUC (p < 0.001 for both), MTT and TPH (p = 0.011 and 0.040 respectively) values of the malignant nodules were significantly higher than those of the benign nodules. Incorporating the PI and AUC values (both, p < 0.001) of the normal PZ TIC, but not the MTT and TPH values (p = 0.076 and 0.159 respectively), significantly improved the AUC for prediction of malignancy (PI: 0.784-0.923; AUC: 0.758-0.891) and assessment of cancer aggressiveness (p < 0.001). Thus, all these findings indicate that incorporating normal PZ TICs with nodule TICs in CETRUS readings can improve the diagnostic accuracy for PCa and cancer aggressiveness assessment.
Xu, Xiaowei; Jiang, Li; Luo, Man; Li, Jiaoxing; Li, Weidong; Sheng, Wenli
2015-06-01
The etiology of isolated vertigo has been a substantial diagnostic challenge for both neurologists and otolaryngologists. This study was designed to detect recurrent isolated vertigo due to cerebral hypoperfusion using perfusion-weighted magnetic resonance imaging (PWI). We recruited isolated vertigo patients whose clinical condition was suspected to be caused by hypodynamics of the brain; these individuals formed the case group. We generated two additional groups: a negative group composed of vertigo patients whose symptoms were caused by problems associated with the ear and a healthy control group. Each subject underwent PWI, and seven regions of interest (ROIs) were chosen. The relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were obtained from each ROI. We further calculated the absolute difference of relative parameter values between two mirrored ROIs. The significant difference in the relative MTT from the mirrored cerebellar ROI (|rMTTleft-right|) of the case group was larger than those from the negative and healthy control groups (p = 0.026 and p = 0.038, respectively). Signal differences in |rrCBVleft-right| and |rrCBFleft-right| were not found among the three groups. In summary, disequilibrium in the rMTT of the bilateral cerebellum in the case group implied that hypoperfusion of the posterior circulation could trigger recurrent isolated vertigo and could be shown efficiently using PWI.
Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system.
Dadras, Pegah; Atyabi, Fatemeh; Irani, Shiva; Ma'mani, Leila; Foroumadi, Alireza; Mirzaie, Zahra Hadavand; Ebrahimi, Marzieh; Dinarvand, R
2017-01-15
Theranostic polymeric NPs developed for both cancer diagnosis and cancer therapy. This multifunctional polymeric vehicle was prepared by a single emulsion evaporation method, using carboxyl-terminated PLGA. LHRH as a targeting moiety, was conjugated to the surface of polymeric carrier by applying polyethylene glycol. The results indicated that the diameter of NPs was ~185.4±4.6nm as defined by DLS. The entrapment efficacy of docetaxel, silibinin, and SPIONs was 84.6±4.1%, 80.6±2.7%, and 77.9±4.3%, respectively. The NPs showed a triphasic in-vitro drug release pattern. MTT assay was done on two cell lines, MCF-7 and SKOV-3. Enhanced cellular uptake ability of the targeted NPs to MCF-7 was evaluated in-vitro by confocal laser scanning microscopy. The results indicated that compared to non-targeted NPs, the LHRH targeted NPs had significant efficacy at IC50 concentration. The effect of the NPs on VEGF expression in MCF-7 and SKOV-3 cells was investigated by Real-Time PCR method. VEGF mRNA level expression in MCF-7 cell line reduced by 83% in comparison to control cell line. The designed NPs can be used as promising multifunctional platform for detection and targeted drug delivery in breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Ming, Ke; Chen, Yun; Yao, Fangke; Shi, Jintong; Yang, Jingjing; Du, Hongxu; Wang, Xunyi; Wang, Yixuan; Liu, Jiaguo
2017-01-01
To screen effective anti-duck hepatitis A virus (DHAV) drugs, we applied STMP-STPP method to prepare phosphorylated Codonopsis pilosula polysaccharide (pCPPS), the phosphorylation-modified product of Codonopsis pilosula polysaccharide (CPPS). The IR spectrum and field emission scanning electron microscope (FE-SEM) were subsequently used to analyze the structure of pCPPS. Several tests were conducted to compare the anti-DHAV activities of CPPS and pCPPS. The MTT method was used to compare the effect of the drugs on DHAV-infected duck embryonic hepatocytes (DEHs), and the Reed-Muench assay was employed to observe changes in the virulence of DHAV. We also applied real-time PCR to examine the relationship between virus replication and the expression of IFN-β. The results indicated that CPPS could not inhibit the replication of DHAV. In contrast, pCPPS increased the virus TCID 50 , inhibited viral replication and, accordingly, increased the survival rate of DEHs infected with DHAV. Because DHAV induced the expression of IFN-β, and the IFN-β expression level was positively associated with the number of DHAV, the reduction of IFN-β expression levels after pCPPS treatment demonstrated a decrease in the number of virus particles. These results indicated that pCPPS, which reduces the number of DHAV, was more effective than CPPS in anti-DHAV activity. Copyright © 2016 Elsevier B.V. All rights reserved.
The biotoxicity of hydroxyapatite nanoparticles to the plant growth.
Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing
2014-04-15
In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca(2+) concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth. Copyright © 2014 Elsevier B.V. All rights reserved.
HPLC analysis and cytotoxic activity of Vernonia cinerea.
Khay, Mom; Toeng, Phirom; Mahiou-Leddet, Valérie; Mabrouki, Fathi; Sothea, Kim; Ollivier, Evelyne; Elias, Riad; Bun, Sok-Siya
2012-10-01
The extracts of five Cambodian medicinal plants (Aganosma marginata, Dracaena cambodiana, Harrisonia perforata, Hymenodictyon excelsum and Vernonia cinerea) were evaluated in vitro for their cytotoxic activity against HT29 colon adenocarcinoma cells and HepG2 hepatoma cells, using the MTT assay. Among these five plants, Vernonia cinerea displayed potent cytotoxicity. One main sesquiterpene lactone, 8alpha-tigloyloxy-hirsutinolide-13-O-acetate was isolated from the whole plant of V. cinerea. This compound was active against both cancer cell lines (IC50 = 3.50 microM for HT29 and IC50 = 4.27 microM for HepG2). To quantify this compound in the plant, an analytical high-performance liquid chromatography (HPLC) method was developed and validated.
Zhang, X; Liu, X; Liu, L
2001-12-01
To explore the effects of HOXB2 anti-sense oligodeoxynucleotides (asodn) on the proliferation and the expression of human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 ASODN modified by thiophosphate were transfected into HUVECs by liposome mediation. MTT and RT-PCR methods were employed to determine the influence of different concentrations of ASODN on endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 ASODN, the endothelial proliferation was inhibited in dose-dependent manner. Simultaneously, the expression level of HOXB2 mRNA decreased significantly. HOXB2 might play important roles in the proliferation of endothelial cells.
Synthesis and anti-proliferative activity of fluoro-substituted chalcones.
Burmaoglu, Serdar; Algul, Oztekin; Anıl, Derya Aktas; Gobek, Arzu; Duran, Gulay Gulbol; Ersan, Ronak Haj; Duran, Nizami
2016-07-01
A series of novel fluoro-substituted chalcone derivatives have been synthesized. All synthesized compounds were characterized by (1)H nuclear magnetic resonance (NMR), (13)C NMR, and elemental analysis. Their anti-proliferative activities were evaluated against five cancer cells lines, namely, A549, A498, HeLa, A375, and HepG2 using the MTT method. Most of the compounds showed moderate to high activity with IC50 values in the range of 0.029-0.729μM. Of all the synthesized compounds, 10 and 19 exhibited the most potent anti-proliferative activities against cancer cells, and 10 was identified as the most promising compound. Copyright © 2016 Elsevier Ltd. All rights reserved.
You, Zaichun; Qian, Hang; Wang, Changzheng; He, Binfeng; Yan, Jiawei; Mao, Chengde; Wang, Guansong
2015-12-01
Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs) in the growth of pulmonary arterial smooth muscle cells (PASMCs) under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137-150, [1]). The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its TAE-Mg(2+) buffer. siRNA-DNA-NTs have a lower cytotoxicity and higher transfection efficiency and can, based on inhibition of mTOR expression, decrease PASMCs growth both hypoxic and normal condition.
Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run
2014-01-25
This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Jafari, T; Simchi, A; Khakpash, N
2010-05-01
Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). It was found that the size and size distribution of the nanoparticles increase by increasing the water to surfactant molar ratio (w). The particles were spherical in shape with a thin layer of gold. Complementary growth of the gold shell on the iron core was noticed. Meanwhile, two types of agglomeration including magnetic beads and magnetic colloidal nanocrystals clusters were observed dependent on the w-value. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles. MTT assay result indicated the synthesized nanoparticles are nontoxic that will be useful for biomedical applications. Copyright 2010 Elsevier Inc. All rights reserved.
Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A
2017-09-01
Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.
In vitro evaluation of corrosion and cytotoxicity of orthodontic brackets.
Costa, M T; Lenza, M A; Gosch, C S; Costa, I; Ribeiro-Dias, F
2007-05-01
The corrosion resistance of AISI 304 stainless steel (AISI 304 SS) and manganese stainless steel (low-nickel SS) brackets in artificial saliva was investigated. The cytotoxic effects of their corrosion products on L929 cell culture were compared by two assays, crystal violet, to evaluate cell viability, and MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide), for cell metabolism and proliferation. The atomic absorption spectroscopic analysis of the corrosion products demonstrated that nickel and manganese ion concentrations were higher for the AISI 304 SS-bracket immersion solution as compared with the low-nickel SS brackets. Scanning electron microscopy and energy-dispersive spectroscopy demonstrated less corrosion resistance for the AISI 304 SS brackets. Although none of the bracket extracts altered L929 cell viability or morphology, the AISI 304 SS-bracket extracts decreased cellular metabolism slightly. The results indicated that the low-nickel SS presents better in vitro biocompatibility than AISI 304 SS brackets. Abbreviations used: AISI, American Iron and Steel Institute; EDS, energy-dispersive spectroscopy; OD, optical density; ISO, International Organization for Standardization; MTT, (3-{4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NiSO(4), nickel sulfate; SEM, standard error of the mean; WHO, World Health Organization; and TNF, tumor necrosis factor.
Johnen, Christa; Hartmann, Bernd; Steffen, Ingo; Bräutigam, Kirsten; Witascheck, Tom; Toman, Nidal; Küntscher, Markus V; Gerlach, Jörg C
2006-03-01
The aim of this exploratory study was to investigate the isolation and expansion of keratinocytes and fibroblasts from donors with certain medical histories. Biopsies were taken from donors (N=32) falling into one or more of the following categories: a history of heavy smoking and/or alcohol abuse, drug abuse, diabetes mellitus or steroid treatment. Cells from donors who did not fall into any of the above-mentioned categories were used as controls. Proliferation and growth behaviour of cells were analyzed by measurement of passage duration, absorbance (MTT-assay) and light microscopy. Donors with a specific medical history required larger biopsy areas than the control group for isolating a sufficient number of fibroblasts and keratinocytes. Times to confluence were significantly prolonged and absorbances (MTT) were significantly reduced in several donor groups when compared to control cultures. Biopsies from donors with steroid treatment, drug abuse and combined nicotine and alcohol abuse could not be established beyond passage 0 degrees or 1 degree, respectively. We conclude that isolation and expansion of skin cells from donors with certain medical histories may require larger biopsies, prolonged expansion times or may even result in failure. These findings may therefore be of clinical importance in the field of autologous skin cell transplantation.
In vitro evaluation of low-intensity light radiation on murine melanoma (B16F10) cells.
Peidaee, P; Almansour, N M; Pirogova, E
2016-03-01
Changes in the energy state of biomolecules induced by electromagnetic radiation lead to changes in biological functions of irradiated biomolecules. Using the RRM approach, it was computationally predicted that far-infrared light irradiation in the range of 3500-6000 nm affects biological activity of proto-oncogene proteins. This in vitro study evaluates quantitatively and qualitatively the effects of selected far-infrared exposures in the computationally determined wavelengths on mouse melanoma B16F10 cells and Chinese hamster ovarian (CHO) cells by MTT (thiazolyl blue tetrazolium bromide) cell proliferation assay and confocal laser-scanning microscopy (CLSM). This paper also presents the findings obtained from irradiating B16F10 and CHO cells by the selected wavelengths in visible and near-infrared range. The MTT results show that far-infrared wavelength irradiation induces detrimental effect on cellular viability of B16F10 cells, while that of normal CHO cells is not affected considerably. Moreover, CLSM images demonstrate visible cellular detachment of cancer cells. The observed effects support the hypothesis that far-infrared light irradiation within the computationally determined wavelength range induces biological effect on cancer cells. From irradiation of selected visible and near-infrared wavelengths, no visible changes were detected in cellular viability of either normal or cancer cells.
Cytotoxicity of four denture adhesives on human gingival fibroblast cells.
Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-02-01
The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.
Response of UMR 106 cells exposed to titanium oxide and aluminum oxide nanoparticles.
Di Virgilio, Ana L; Reigosa, Miguel; de Mele, Monica Fernández Lorenzo
2010-01-01
The cytotoxicity potential of TiO(2) and Al(2)O(3) nanoparticles (NP) in UMR 106 cells was studied by evaluating the lysosomal activity with neutral red uptake assay (NR), and the mitochondrial activity with tetrazolium MTT test. Different NP concentrations (10-300 microg/mL range) were used. A significant (p < 0.001) increase in the absorbance (stronger for TiO(2) NP) was detected in both NR and MTT assays after 24-h exposure to the NP. However, the total cell proteins and the cell proliferation rate demonstrated (p < 0.05) that the cell viability decreased after 96 h exposure to NP. The formation of NP-containing vesicles within the cells was observed by transmission electronic microscopy. Such event could explain the high cellular activity detected during the early stages of exposure not related to the increase in cell viability. Results showed that the effects of NP on cell lines are dependent on the chemical composition of the particles, their concentration, exposure time, and the type of treated cell. It can be concluded that the presence of TiO(2) and Al(2)O(3) NP in the cell surroundings can lead to cytotoxic effects. In the case of osteoblast cells, such events may induce osseointegration failures in orthopedic and dental implants that release NP.
Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P
2016-11-01
As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.
[Effects of UO-126 on proliferation and fbw7 expression of HeLa cells].
Sun, Di; Shen, Yi; Wang, Shao-hua; Xiang, Zi-wu; Xie, Ying-shan; Jiang, Xin
2010-02-01
To observe the effects of UO-126 on the expression of F-box and WD repeat domain-containing protein 7(FBW7)and on the proliferation of human cervical cancer cell lines (HeLa cells). HeLa cells were treated with different concentrations of UO-126, MTT assay was used to observe the proliferation of HeLa cells. Immunofluorescence showed the location and expression of FBW7 in HeLa cells. The mRNA and protein expression of FBW7 were detected by RT-PCR and Western blot before and after mitogen-activated protein kinases (MAPK)signal was blocked by UO-126 a MAPK inhibitor. MTT results showed that the concentration range of MAPK signaling pathway inhibitor UO-126 inhibited the proliferation of HeLa cells in a concentration-and time-dependent manner(P<0.05). Immunofluorescence showed that the expression of positive FBW7 had increased after HeLa cells were treated with UO-126. RT-PCR and Western blot exhibited that the FBW7 mRNA and protein expression had significantly increased before and after HeLa cells were treated with UO-126(P<0.05). UO-126 could inhibit HeLa cells proliferation, FBW7 lied downstream of MAPK signaling pathway.
Kanimozhi, K; Basha, S Khaleel; Kumari, V Sugantha; Kaviyarasu, K
2018-07-01
Freeze drying and salt leaching methods were applied to fabricate Chitosan/Poly(vinyl alcohol)/Carboxymethyl cellulose (CPCMC) biomimetic porous scaffolds for soft tissue engineering. The properties of these scaffolds were investigated and compared to those by freeze drying and salt leaching methods respectively. The salt-leached CS/PVA/CMC scaffolds were easily formed into desired shapes with a uniformly distributed and interconnected pore structure with an average pore size. The mechanical strength of the scaffolds increased with the porosity, and were easily modulated by the addition of carboxymethyl cellulose. The morphology of the porous scaffolds observed using a SEM exhibited good porosity and interconnectivity of pores. MTT assay using L929 fibroblast cells demonstrated that the cell viability of the porous scaffold was good. Scaffolds prepared by salt leached method show larger swelling capacity, and mechanical strength, potent antibacterial activity and more cell viability than freeze dried method. It is found that salt leaching method has distinguished characteristics of simple, efficient, feasible and less economic than freeze dried scaffolds.
Wang, Xiaoqing; Zhang, Long; Chen, Qihui; Hou, Yuchuan; Hao, Yuanyuan; Wang, Chunxi; Shan, Hongli
2015-12-01
A degradable polycaprolactone(PCL)/poly(lactic-co-glycolic acid, LA:GA = 80:20) (PLGA) ureter tubular stent was fabricated by electrospinning. The structure and properties of the stents were investigated by the mechanical property testing, scanning electron microscopy (SEM), degradability test in vitro and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The stent was transplanted to the dorsal muscle of rabbit to evaluate its tissue compatibility. It was shown that the stent has the nano-structure. The mechanical test showed that with the increase in PCL concentration, the mechanical properties of the stent gradually increased, and it could meet the demands of a urethral stent. The collapse time of different concentration of PCL/PLGA (5%, 15%, and 25%) was 28, 42, and 56 days, respectively. These results provide strong evidence that the degradation time can be increased with the increase in PCL concentration. The results of the MTT assay show that the PCL/PLGA stent had no cytotoxicity. In muscle implantation tests, acute tissue reactions due to operation trauma were seen in all specimens at 1 week. After four weeks, the number of inflammatory cells had decreased significantly. Only a few inflammatory cells were seen in the PCL/PLGA stent group after 12 weeks, and the foreign body reaction was more severe in the control group. Animal orthotopic transplantation experiments of these ureteral stents will be done to evaluate its degradable model and tissue compatibility.
Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi
2017-10-01
The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Children’s mental time travel during mind wandering
Ye, Qun; Song, Xiaolan; Zhang, Yi; Wang, Qinqin
2014-01-01
The prospective bias is a salient feature of mind wandering in healthy adults, yet little is known about the temporal focus of children’s mind wandering. In the present study, (I) we developed the temporal focus of mind wandering questionnaire for school-age children (TFMWQ-C), a 12-item scale with good test–retest reliability and construct validity. (II) The criterion validity was tested by thought sampling in both choice reaction time task and working memory task. A positive correlation was found between the temporal focus measured by the questionnaire and the one adopted during task-unrelated thoughts (TUTs) by thought sampling probes, especially in the trait level of future-oriented mind wandering. At the same time, children who experienced more TUTs tended to show worse behavioral performance during tasks. (III) The children in both tasks experienced more future-oriented TUTs than past-oriented ones, which was congruent with the results observed in adults; however, in contrast with previous research on adults, the prospective bias was not influenced by task demands. Together these results indicate that the prospective bias of mind wandering has emerged since the school-age (9∼13 years old), and that the relationship between mental time travel (MTT) during mind wandering and the use of cognitive resources differs between children and adults. Our study provides new insights into how this interesting feature of mind wandering may adaptively contribute to the development of children’s MTT. PMID:25191301
Perfusion CT in acute stroke: effectiveness of automatically-generated colour maps.
Ukmar, Maja; Degrassi, Ferruccio; Pozzi Mucelli, Roberta Antea; Neri, Francesca; Mucelli, Fabio Pozzi; Cova, Maria Assunta
2017-04-01
To evaluate the accuracy of perfusion CT (pCT) in the definition of the infarcted core and the penumbra, comparing the data obtained from the evaluation of parametric maps [cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT)] with software-generated colour maps. A retrospective analysis was performed to identify patients with suspected acute ischaemic strokes and who had undergone unenhanced CT and pCT carried out within 4.5 h from the onset of the symptoms. A qualitative evaluation of the CBV, CBF and MTT maps was performed, followed by an analysis of the colour maps automatically generated by the software. 26 patients were identified, but a direct CT follow-up was performed only on 19 patients after 24-48 h. In the qualitative analysis, 14 patients showed perfusion abnormalities. Specifically, 29 perfusion deficit areas were detected, of which 15 areas suggested the penumbra and the remaining 14 areas suggested the infarct. As for automatically software-generated maps, 12 patients showed perfusion abnormalities. 25 perfusion deficit areas were identified, 15 areas of which suggested the penumbra and the other 10 areas the infarct. The McNemar's test showed no statistically significant difference between the two methods of evaluation in highlighting infarcted areas proved later at CT follow-up. We demonstrated how pCT provides good diagnostic accuracy in the identification of acute ischaemic lesions. The limits of identification of the lesions mainly lie at the pons level and in the basal ganglia area. Qualitative analysis has proven to be more efficient in identification of perfusion lesions in comparison with software-generated maps. However, software-generated maps have proven to be very useful in the emergency setting. Advances in knowledge: The use of CT perfusion is requested in increasingly more patients in order to optimize the treatment, thanks also to the technological evolution of CT, which now allows a whole-brain study. The need for performing CT perfusion study also in the emergency setting could represent a problem for physicians who are not used to interpreting the parametric maps (CBV, MTT etc.). The software-generated maps could be of value in these settings, helping the less expert physician in the differentiation between different areas.
NASA Astrophysics Data System (ADS)
Ge, Xiaoqian; Dong, Liang; Sun, Lining; Song, Zhengmei; Wei, Ruoyan; Shi, Liyi; Chen, Haige
2015-04-01
A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications. Electronic supplementary information (ESI) available: Schematic illustration of the formation of POSS-UCNPs. TEM images of NaYF4:Yb,Tm and NaYF4:Yb,Tm@NaGdF4 nanoparticles in cyclohexane; the TEM image of POSS-UCNPs(Tm) in water. DLS of POSS-UCNPs(Tm) in water. The energy dispersive X-ray (EDX) spectrum of POSS-UCNPs(Er). XPS of POSS-UCNPs(Er); XPS of Si element. UCL spectra of POSS-UCNPs(Er) in physiology saline as a function of time. UCL spectra of NaYF4:Yb,Tm@NaGdF4 [UCNPs(Tm)] and POSS-UCNPs(Tm), excited with a 980 nm laser (100 mW cm-2). In vivo UCL imaging of Kunming mice after intravenous injection with POSS-UCNPs(Tm) at different time points. See DOI: 10.1039/c5nr00950b
Chemical composition and biological activity of the essential oil from Thymus lanceolatus.
Khadir, Abdelmounaim; Sobeh, Mansour; Gad, Haidy A; Benbelaid, Fethi; Bendahou, Mourad; Peixoto, Herbenya; Sporer, Frank; Ashour, Mohamed L; Wink, Michael
2016-01-01
Thymus lanceolatus is a rare species, which grows wild in Algeria and Tunis. It is used traditionally as a drink and to flavor and preserve meat and poultry. The composition of the essential oil was determined by GLC/FID and GLC/MS. Forty-nine components were identified and quantified, accounting for 96.75% of the total detected components in the oil. The oxygenated monoterpenes (74.85%) constitute the major class of volatile secondary metabolites in the oil. Thymol was the most abundant constituent (69.61%) followed by γ-terpinene (8.38%). The antioxidant activity was evaluated using both diphenylpicrylhydrazyl (DPPH˙) reduction and 2-deoxyribose (2-DR) degradation prevention methods. The oil showed a very potent antioxidant activity with IC(50) values of 0.20 ± 0.07 and 4.96 ± 0.39 μg/mL for the DPPH˙ and 2-DR methods, respectively. The antimicrobial activity of the oil was assessed using the agar diffusion method, and the in vitro cytotoxicity on five different cancer cells was examined using the MTT assay. The oil revealed promising inhibitory activity against Gram positive bacteria, especially Bacillus subtilis and Streptococcus pyogenes with an MIC value of 62.5 μg/mL. Additionally, the highest cytotoxic activity was observed against the HL-60 cells with an IC(50) of 113.5 μg/mL. These results validate some of their traditional uses in food preservation.
NASA Astrophysics Data System (ADS)
Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun
2017-12-01
Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.
Klesiewicz, Karolina; Karczewska, Elżbieta; Nowak, Paweł; Skiba-Kurek, Iwona; Sito, Edward; Pańczyk, Katarzyna; Koczurkiewicz, Paulina; Żelaszczyk, Dorota; Pękala, Elżbieta; Waszkielewicz, Anna M; Budak, Alicja; Marona, Henryk; Gunia-Krzyżak, Agnieszka
2018-05-01
In this study, thirty-five N-substituted derivatives of cinnamic acid amide (cinnamamide) were evaluated for anti-Helicobacter pylori activity using an agar disc-diffusion method. Qualitative screening was performed on a reference H. pylori strain (ATCC 43504), resulting in the identification of the three most active compounds, 8 (R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide, minimal inhibitory concentration, MIC = 7.5 µg/mL), 23 ((2E)-3-(4-chlorophenyl)-N-(2-hydroxycyclohexyl)prop-2-enamide, MIC = 10 µg/mL), and 28 ((2E)-3-(4-chlorophenyl)-N-(4-oxocyclohexyl)prop-2-enamide, MIC = 10 µg/mL). These compounds were further tested on twelve well-characterized clinical strains, yielding MIC values that ranged from 10 to 1000 µg/mL. Preliminary safety assessments of the compounds were made using the MTT viability test for cytotoxicity and Ames test for mutagenicity, which showed them to be generally safe, although compounds 8 and 28 showed mutagenic activity at some of the tested concentrations. The results of this study showed the anti-H. pylori potential of cinnamamide derivatives.
Wang, Yao; Qiu, Jing; Zhu, Wentao; Wang, Xinru; Zhang, Ping; Wang, Dezhen; Zhou, Zhiqiang
2015-09-01
Myclobutanil, (RS)-2-(4-chlorophenyl)-2-(1H-1, 2, 4-triazol-1-ylmethyl) hexanenitrile is a widely used triazole fungicide. In this study, enantioselective metabolism and cytotoxicity were investigated in rat hepatocytes by chiral HPLC-MS/MS and the methyl tetrazolium (MTT) assay, respectively. Furthermore, tryptophan metabolism disturbance in rat hepatocytes after myclobutanil exposure was also evaluated by target metabolomics method. The half-life (t1/2) of (+)-myclobutanil was 10.66 h, whereas that for (-)-myclobutanil was 15.07 h. Such results indicated that the metabolic process of myclobutanil in rat hepatocytes was enantioselective with an enrichment of (-)-myclobutanil. For the cytotoxicity research, the calculated EC50 (12 h) values for rac-myclobutanil, (+)- and (-)-myclobutanil were 123.65, 150.65 and 152.60 µM, respectively. The results of tryptophan metabolites profiling showed that the levels of kynurenine (KYN) and XA were both up-regulated compared to the control, suggesting the activation effect of the KYN pathway by myclobutanil and its enantiomers which may provide an important insight into its toxicity mechanism. The data presented here could be useful for the environmental hazard assessment of myclobutanil. © 2015 Wiley Periodicals, Inc.
[6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway
Yao, Cheng; Oh, Jang-hee; Oh, Inn Gyung; Park, Chi-hyun; Chung, Jin Ho
2013-01-01
Aim: To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. Methods: B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Results: Treatment of the cells with [6]-shogaol (1, 5, 10 μmol/L) reduced the melanin content in a concentration-dependent manner. [6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity, and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells. Furthermore, [6]-shogaol (10 μmol/L) activated ERK, which was known to negatively regulate melanin synthesis in these cells. Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L). Conclusion: The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway. PMID:23123645
Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji
2016-10-18
BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.
Madeira, Jose Valdo; Macedo, Juliana Alves; Macedo, Gabriela Alves
2011-08-01
In this work, we introduce a biological detoxification method that converts toxic waste from castor beans into animal feed material. This method simultaneously induces the production of tannase and phytase by Paecilomyces variotii; both enzymes have high levels of activity and have the potential to be used in feedstuffs because they decrease overall anti-nutritional factors. The maximum tannase and phytase activities obtained were 2600 and 260 U/g after 48 and 72 h, respectively. SDS-PAGE electrophoresis of the fermented castor cake extracts revealed a reduction in ricin bands during fermentation, and the bands were no longer visible after 48 h. The cytotoxicity of the extracts was evaluated by MTT testing on RAW cells, and a progressive increase in cellular viability was obtained, reaching almost 100% after 72 h of fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xia, Wei-liang; Xie, Hai-yang; Shen, Yan; Wu, Li-ming; Zhang, Feng; Zheng, Shu-sen
2006-01-10
To investigate the effects of ciclosporin (CsA) and tacrolimus (FK506) on replication of hepatitis B virus (HBV) in vitro. HBV genome permanently transfected human liver cancer cells of the line HepG2.2.15 were cultured. CsA and FK506 at different concentrations were added into the culture fluid so as to identify the nontoxic concentrations by MTT method. Then the HepG2.2.15 cells were treated by CsA and FK506 at different nontoxic concentrations respectively for 4 days. ELISA was used to detect the HB surface antigen (HBsAg) and HB e antigen (HBeAg) in the supernatant. The relative replication level of HBV DNA was detected by slot blot analysis. MTT method confirmed that the nontoxic concentrations of CsA and FK506 were 0-40.0 microg/ml and 0-400 ng/ml respectively. After the treatment of CsA at the concentration of 1.3, 2.5, and 5.0 microg/ml, in comparison to the control group, the suppression rates of HBsAg expression in the HepG2.2.15 cells were 16.5% +/- 9.4%, 21.5% +/- 8.9%, and 33.1% +/- 5.3% respectively (all P < 0.05); the suppression rates of HBeAg expression in the HepG2.2.15 cells were 7.8% +/- 2.2%, 11.0% +/- 2.3%, and 20.8% +/- 1.5% respectively (all P < 0.05); and the HBV DNA replication levels were 56 +/- 16, 42 +/- 11, and 40 +/- 10 respectively (P > 0.05, P < 0.05, and P > 0.05). However, FK506 at different nontoxic concentrations showed no significant inhibitory effect on the levels of HBsAg, HBeAg, and HBV DNA. CsA dose-dependently inhibits the HBV replication in vitro, and FK506 does not exercise similar effects.
NASA Astrophysics Data System (ADS)
Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.
2010-02-01
Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.
Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H; Kunjithapatham, Rani; Buijs, Manon; Syed, Labiq H; Rao, Pramod P; Ota, Shinichi; Vali, Mustafa
2010-04-01
3-Bromopyruvate (3BrPA) is a pyruvate analog known for its alkylating property. Recently, several reports have documented the antiglycolytic and anticancer effects of 3BrPA and its potential for therapeutic applications. 3BrPA-mediated cytotoxicity has been evaluated in vitro by various methods including tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)-based assays such as MTT, MTS, and so on. However, growing body of evidences has shown that tetrazolium reagent may interfere with the test compounds. In this study, we investigated whether the tetrazolium reagent interferes with the assessment of 3BrPA cytotoxicity. The results of the tetrazolium-based MTS assay were compared with 3 distinct cell viability detection methods, that is, Trypan Blue staining, ATP depletion, and Annexin V staining in 2 different cell lines, Vx-2 and HepG2. The MTS assay data showed false positive results by indicating increased cell viability at 1 mM and 2 mM 3BrPA whereas the other cell viability assays demonstrated that both Vx-2 and HepG2 cells are not viable at the same treatment conditions. In order to validate the direct interaction of 3BrPA with MTS reagent, we tested cell-free media incubated with different concentrations of 3BrPA. The results of cell-free media showed an increase in absorbance in a dose-dependent manner confirming the interaction of MTS with 3BrPA. Thus, our data clearly demonstrate that 3BrPA interferes with the accuracy of MTS-based cytotoxicity evaluation. Hence, we suggest that employing multiple methods of biochemical as well as morphological cytotoxicity assays is critical to evaluate 3BrPA-mediated cell death.
NASA Astrophysics Data System (ADS)
Chang, Chi K.; Kong, Pak-Wing; Liu, Hai-Yang; Yeung, Lam-Lung; Koon, Ho-Kee; Mak, Nai-Ki
2006-02-01
Ten trans-A2B and A3-type corrole photosensitizers carrying functional groups were synthesized and screened for PDT activities. Photocytotoxicity was measured by the MTT cell reduction assay on a cultured human nasopharyngeal carcinoma (NPC) cell line (HONE-1). Experimental results indicated that corroles containing a single hydroxyphenyl substituent (3, 4 and 5) exhibit the highest activity among the corrole derivatives investigated. Confocal microscopy revealed that the site of cellular localization of the photosensitizers is predominantly at mitochondria. Also, nuclear staining detected apoptotic cell death.
A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
Chen, Xi; Li, Yan; Gu, Ning
2010-08-01
A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.
NASA Astrophysics Data System (ADS)
Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto
2017-05-01
Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.
Cognitive mapping in mental time travel and mental space navigation.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-09-01
The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-01-01
Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585
In Vitro Analysis of Fibronectin-Modified Titanium Surfaces
Chang, Yu-Chi; Lee, Wei-Fang; Feng, Sheng-Wei; Huang, Haw-Ming; Lin, Che-Tong; Teng, Nai-Chia; Chang, Wei Jen
2016-01-01
Background Glow discharge plasma (GDP) procedure is an effective method for grafting various proteins, including albumin, type I collagen, and fibronectin, onto a titanium surface. However, the behavior and impact of titanium (Ti) surface modification is yet to be unraveled. Purpose The purpose of this study is to evaluate and analyze the biological properties of fibronectin-grafted Ti surfaces treated by GDP. Materials and Methods Grade II Ti discs were initially cleaned and autoclaved to obtain original specimens. Subsequently, the specimens were GDP treated and grafted with fibronectin to form Ar-GDP (Argon GDP treatment only) and GDP-fib (fibronectin coating following GDP treatment) groups. Blood coagulation test and MG-63 cell culture were performed to evaluate the biological effects on the specimen. Results There was no significant difference between Ar-GDP and GDP-fib groups in blood compatibility analysis. While in the MTT test, cellular proliferation was benefited from the presence of fibronectin coating. The numbers of cells on Ar-GDP and GDP-fib specimens were greater than those in the original specimens after 24 h of culturing. Conclusions GDP treatment combined with fibronectin grafting favored MG-63 cell adhesion, migration, and proliferation on titanium surfaces, which could be attributed to the improved surface properties. PMID:26731536
Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian
2018-06-01
To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Brun, Jean-Frédéric; Ghanassia, Edouard; Fédou, Christine; Bordenave, Sylvain; Raynaud de Mauverger, Eric; Mercier, Jacques
2013-04-01
We investigated the measurement of insulin sensitivity (S I) with a standardized hyperglucidic breakfast (SHB) compared to minimal model analysis of an intravenous glucose tolerance test (S I-IVGTT) in 17 patients clinically referred as type 2 diabetics, not yet treated by insulin, and representing a wide range of body mass index and S I. To classify the patients, ten meal-tolerance test-based calculations of S I (MTT-S I) were compared to S I-IVGTT, and their reference values and distribution were measured on a separate sample of 200 control SHBs and 209 control IVGTTs. Eight MTT-SI indices exhibit significant correlations with S I-IVGTT: Mari's OGIS index, BIGTT-SI|0-30-120, BIGTT-SI|0-60-120, 1/G b I m, Caumo's oral minimal model (OMM), Sluiter's index "A" = 10(4)/(I p·G p), Matsuda's composite index given by the formula ISIcomp = 10(4)/(I b G b I m G m)(0.5), S I = 1/I b G b I m G m with r (2) ranging between 0,53 and 0,28. S I-IVGTT and S I-MTT exhibited in the lower range a very different (non-normal) pattern of distribution and thus the cutoff value for defining insulin resistance varied among indices. With such cutoffs, S I-MTT < 6.3 min(-1)/(μU/ml) 10(-4) with Caumo's OMM was the best predictor of insulin resistance defined as S I-IVGTT < 2 min(-1)/(μU/ml) 10(-4). Other indices, including OGIS and BIGTT, resulted in more misclassifications of patients. HOMA-IR and QUICKI were poor predictors. The formula [Formula: see text] satisfactorily predicts IVGTT-derived glucose effectiveness in type 2 diabetics. Thus, SHB appears suitable for the measurement of S I and S G in type 2 diabetics, and the OMM seems to provide the most accurate SHB-derived index in this population.
The effect of SiO2/Au core-shell nanoparticles on breast cancer cell's radiotherapy.
Darfarin, Ghazal; Salehi, Roya; Alizadeh, Effat; Nasiri Motlagh, Behnam; Akbarzadeh, Abolfazl; Farajollahi, Alireza
2018-05-09
Recently it has been shown that radiation dose enhancement could be achievable in radiotherapy using nanoparticles (NPs). In this study, evaluation was made to determine efficiency of gold-silica shell-core NP in megavoltage irradiation of MCF7 breath cancer cells. Gold-silicon oxide shell-core NPs were obtained by conjugation of gold NP with amine or thiol functionalized silica NPs (AuN@SiO 2 and AuS@SiO 2 ). Cellular uptake and cytotoxicity of NPs were examined by fluorescent microscopy and MTT assay, respectively. MCF-7 breast cancer cells were treated with both NPs and irradiation was made with X-ray energies of 6 and 18 MV to the absorbed dose of 2, 4 and 8 Gy using Simense linear accelerator. The efficiency of radiation therapy was then evaluated by MTT and Brdu assay, DAPI staining and cell cycle analysis. TEM images indicated that synthesized NPs had average diameter of 25 nm. Cellular uptake demonstrated that the internalization of AuS@SiO 2 and AuN@SiO 2 NPs amounted to 18% and 34%, 3 h post treatment, respectively. Nontoxicity of prepared NPs on MCF-7 cells was proved by MTT and Brdu assays as well as DAPI staining and cell cycle studies. The highest enhancement in radiation dose was observed in the cells that irradiated with radiation energy of 18 MV and absorbed of 8 Gy at NPs concentration of 200 ppm. The Brdu findings revealed that the cytotoxicity and apoptosis on MCF-7 cells are dose dependent with a significantly more death in AuN@SiO 2 (amine) exposed cells (p < .05). Analysis also revealed interruption in cell cycle by demonstrating lack of cells, in S phase in amine treated cells (AuN@SiO 2 ) at given dose of 8 Gy using 18 MV X-ray in comparison to thiol treated cells. Based on the results of the study it can be concluded that the gold-silicon oxide shell-core NPs could play an effective role in radiotherapy of MCF-7 breast cancer cells.
Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin
2014-07-28
Studies involving transition-metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2 , WS2 , and WSe2 , and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose-dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL(-1) ; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in-depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial-induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST-8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are less toxic. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of hypoxia-inducible factor-1α silencing on the proliferation of CBRH-7919 hepatoma cells
Xu, Lin-Feng; Ni, Jia-Yan; Sun, Hong-Liang; Chen, Yao-Ting; Wu, Yu-Dan
2013-01-01
AIM: To study the effects of hypoxia-inducible factor-1α (HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells. METHODS: The CBRH-7919 rat hepatoma cell line was used in this study and the hypoxic model was constructed using CoCl2. The HIF-1α-specific RNAi sequences were designed according to the gene coding sequence of rat HIF-1α obtained from GeneBank. The secondary structure of the HIF-1α gene sequence was analyzed using RNA draw software. The small interfering RNA (siRNA) transfection mixture was produced by mixing the siRNA and Lipofectamine2000TM, and transfected into the hypoxic hepatoma cells. Real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assay were used to detect the expression levels of mRNA and protein. HIF-1α and vascular endothelial growth factor (VEGF) mRNA was determined using real time RT-PCR; the protein expression levels of AKT, p-AKT, p21 and cyclinD1 were determined using Western blotting. The proliferation of hepatoma cells was observed using the methyl thiazolyl tetrazolium (MTT) assay and the bromodeoxyuridine (BrdU) incorporation cell proliferation assay. RESULTS: Under induced hypoxia, the viability of the hepatoma cells reached a minimum at 800 μmol/L CoCl2; the viability of the cells was relatively high at CoCl2 concentrations between 100 μmol/L and 200 μmol/L. Under hypoxia, the mRNA and protein expression levels of HIF-1α and VEGF were significantly higher than that of hepatoma cells that were cultured in normaxia. HIF-1α-specific RNAi sequences were successfully transfected into hepatoma cells. The transfection of specific siRNAs significantly inhibited the mRNA and protein expression levels of HIF-1α and VEGF, along with the protein expression levels of p-AKT and cyclinD1; the protein expression of p21 was significantly increased, and there was no significant difference in the expression of AKT. The MTT assay showed that the amount of hepatoma cells in S phase in the siRNA transfection group was obviously smaller than that in the control group; in the siRNA transfection group, the amount of hepatoma cells in G1 phase was more than that in the control group. The BrdU incorporation assay showed that the number of BrdU positive hepatoma cells in the siRNA transfection group was less than that in the control group. The data of the MTT assay and BrdU incorporation assay suggested that HIF-1α silencing using siRNAs significantly inhibited the proliferation of hepatoma cells. CONCLUSION: Hypoxia increases the expression of HIF-1α, and HIF-1α silencing significantly inhibits the proliferation of hypoxic CBRH-7919 rat hepatoma cells. PMID:23555163
Plasma surface modification of rigid contact lenses decreases bacterial adhesion.
Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing
2013-11-01
Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.
Ambili R; Janam, Prasanthila; Saneesh Babu, P S; Prasad, Manu; Vinod, D; Anil Kumar, P R; Kumary, T V; Asha Nair, S; Radhakrishna Pillai, M
2017-01-20
Andrographolide is a herbal extract traditionally used in South Asian countries for treating inflammatory diseases. To evaluate the efficacy of andrographolide in management of periodontal disease which is a highly prevalent oral disease. Periodontal ligament fibroblasts (PDLF) were cultured from healthy and diseased periodontium using explant culture methods. The safe dose of AG was determined using MTT assay. LPS (lipopolysaccharide) of the most important periodontopathogen, P gingivalis was used to activate NF-κB and STAT3 in PDLF. The efficacy of AG in inhibiting NF-κB and STAT3 was analyzed using immunofluorescence. Down regulation of expression of target genes of these transcription factors related to inflammation and bone resorption were analyzed using real time PCR. AG up to the concentration of 25μM was found to be safe as determined by MTT assay. Statistically significant activation of NF-κB and STAT3 in cultured PDLF was observed in diseased group compared to healthy controls before and after LPS challenge. 5μM AG pretreatment significantly inhibited activation of NF-κB and STAT3 and down regulated expression of inflammatory and bone resorptive genes in cultured PDLF. The findings of the present study propose the adjunctive use of a novel herbal drug andrographolide as a promising host modulation agent for periodontal therapy by inhibiting NF-κB and STAT3 activation and inhibition of inflammation and bone resorption related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mohammadi, A; Mansoori, B; Aghapour, M; Baradaran, B
2016-03-31
Prostate cancer is considered as the major cause of death among men around the world. There are a number of medicinal plants triggering apoptosis response in cancer cells, thus have a therapeutic potential. Therefore, further studies to characterize beneficial properties of these plants in order to introduce novel anti-cancer drugs are the interest of recent researches on the alternative medicine. On the other hand, due to traditional uses and availability of Urtica dioica extract, we decided to evaluate the efficacy of this medicinal herb on pc3 prostate cancer cell line. In the present study the cytotoxic effects of Urtica dioica extract were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and trypan blue viability dye. Then, DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were exploited to measure cell death and apoptosis stage. The expression levels of caspase 3, caspase 9 and Bcl-2 genes were quantified by Real-Time PCR. Finally, Cell cycle was analyzed by flow cytometry. MTT assay showed that dichloromethanolic extract of Urtica dioica significantly inhibited the cell growth. According to the DNA fragmentation and TUNEL assay results, the herbal extract was able to induce apoptosis in prostate cancer cells. Our findings also demonstrated that the plant extract substantially increases the caspase 3 and 9 mRNA expression, while decreases Bcl-2. Cell cycle arrest was occurred in G2 stage, due to the results of flow cytometry. These results indicate that dichloromethanolic extract of Urtica dioica can successfully induce apoptosis in PC3 cells. Therefore, it could be used as a novel therapeutic candidate for prostate tumor treatment.
Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong
2018-01-01
Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism. © 2018 AOCS.
Maiti, Swati; Sasmal, Kankaayan; Sinha, Sudarson Sekhar; Singh, Mukesh
2016-02-01
Pharmaceuticals and personal care products (PPCPs) are among the most important emerging environmental contaminants in recent time. PPCPs include wide range of cosmetics, among which hair dyes, are immensely popular in modern society. However, impact of hair dye and its residual discharged to the environment in relation to human health and ecological imbalance have not been widely studied. Based on the result of initial survey among the group of populations of eastern India, three most popular and commonly used permanent hair dyes are selected. Working sample of dye is prepared as recommended on the instructions booklet of the hair dye. The effect of three dyes is studied on Escherichia coli, human red blood cells (RBC), white blood cells (WBC) and Allium cepa bulbs by growth inhibition, hemolysis, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and A. cepa micronuclei assays respectively. The Lethal dose (LD) demonstrated significant differences among three dyes and the model systems. In vitro hemolytic assays performed on RBC, and MTT assays on WBC show the cytotoxic effects of hair dye. Significant growth inhibition of E. coli has also been noted. In addition, the root tips of A. cepa treated with the dye have shown major chromosomal abnormalities coupled with cell division retardation. Here low mitotic index confirm cell division retardation. Finally, results of in vitro studies of dye-DNA interactions demonstrate electrostatic interaction. Combing all these results it confirms that hair dyes are cytotoxic and may cause mutagenic effect on living cells irrespective of microbes, plant and animal system. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Hua; Cao, Yumei; Chen, Yuru; Li, Guangxi; Yu, Hanshu
2018-04-01
The present study investigated the inhibitory effects of apatinib on the proliferation of the SMMC-7721 hepatocellular carcinoma cell line to explore the possible mechanism. The MTT assay was used to detect the inhibitory effects of the different concentrations of apatinib on the proliferation of SMMC-7721 cells. Annexin V/PI double staining was performed to investigate the effects of apatinib on the apoptosis of SMMC-7721 cells. Expression of the apoptosis-related genes Bcl-2, Bax and caspase-9 after apatinib treatment was detected by reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. Expression of the PI3K, p-PI3K, Akt and p-Akt proteins after apatinib treatment was detected using western blot analysis. The MTT results showed that apatinib inhibited the in vitro proliferation of SMMC-7721 cells. Annexin V/PI double staining showed that apatinib induced the apoptosis of SMMC-7721 cells in a concentration-dependent manner. Results of RT-qPCR and western blot analysis showed that apatinib was able to induce the expression of pro-apoptotic genes Bax and caspase-9 and inhibited the expression of anti-apoptotic gene Bcl-2 . In addition, the western blot analysis revealed that p-PI3K and p-Akt was significantly decreased following apatinib treatment, while no significant differences were found in the total protein levels of PI3K and Akt. The results of the present show that apatinib is capable of promoting the apoptosis of SMMC-7721 cells by inhibiting the PI3K/Akt signal transduction pathway, upregulating the expression of pro-apoptotic genes Bax and caspase-9 , and downregulating the expression level of the anti-apoptotic gene Bcl-2 .
Guohua, Hui; Hongyang, Lu; Zhiming, Jiang; Danhua, Zhu; Haifang, Wan
2017-11-15
Small cell lung cancer (SCLC) is a smoking-related cancer disease. Despite improvement in clinical survival, SCLC outcome remains extremely poor. Cisplatin (DDP) is the first-line chemotherapy drug for SCLC, but the choice of second-line chemotherapy drugs is not clear. In this paper, a SCLC cell-based sensor was proposed, and its applications in chemotherapy effects rapid evaluation for anticancer drugs were investigated. SCLC cell lines lung adenocarcinoma cell (LTEP-P) and DDP-resistant lung adenocarcinoma cell (LTEP-P/DDP-1.0) are cultured on carbon screen-printed electrode (CSPE) to fabricate integrated cell-based sensor. Several chemotherapy anticancer drugs, including cisplatin, ifosmamide, gemcitabine, paclitaxel, docetaxel, vinorelbine, etoposide, camptothecin, and topotecan, are selected as experimental chemicals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests are conducted to evaluate chemotherapy drug effects on LTEP-P and LTEP-P/DDP-1.0 cell lines. Electrical cell-substrate impedance sensing (ECIS) responses to anti-tumor chemicals are measured and processed by double-layered cascaded stochastic resonance (DCSR). Cisplatin solutions in different concentrations measurement results demonstrate that LTEP-P cell-based sensor presents quantitative analysis abilities for cisplatin and topotecan. Cisplatin and its mixtures can also be discriminated. Results demonstrate that LTEP-P cell-based sensor sensitively evaluates chemotherapy drugs' apoptosis function to SCLC cells. LTEP-P/DDP-1.0 cell-based sensor responses demonstrate that gemcitabine, vinorelbine, and camptothecin are ideal second-line drugs for clinical post-cisplatin therapy than other drugs according to MTT test results. This work provides a novel way for SCLC second-line clinical chemotherapy drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.
Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway
2011-01-01
Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176