Science.gov

Sample records for mucin-domain-containing molecule-3 tim-3

  1. Investigation of T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) polymorphisms in essential thrombocythaemia (ET).

    PubMed

    Han, Fuyan; Wang, Guanghai; Li, Yuantang; Tian, Wenjun; Dong, Zhenfang; Cheng, Shiqing; Liu, Yiqing; Qu, Teng; Wang, Xiaoying; Wang, Yong; Zhang, Bingchang; Ju, Ying

    2017-07-01

    T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) is preferentially expressed on terminally differentiated Th1 cells and inhibits their IFN-γ production. It has been reported that chronic inflammation may be an important driving force for myeloproliferative neoplasms (MPNs). Therefore, we hypothesized that as an important inflammation regulator, TIM-3 may be involved in essential thrombocythaemia (ET). The goal of this study was to investigate whether the -1516G > T, -574G > T and +4259T > G single-nucleotide polymorphisms (SNPs) within the TIM-3 gene contribute to the genetic susceptibility of individuals to ET. Genotyping of the TIM-3 -1516G > T, -574G > T and + 4259T > G SNPs was performed in 175 patients with ET and in 151 controls via a polymerase chain reaction-restriction fragment length polymorphism assay. We also investigated the relationships between the genotypes of each SNP and the risk factors of ET such as routine blood indexes, age and JAK2 V617F mutation. The genotype and allele frequencies of the -1516G > T SNP (p = 0.016 and 0.019, respectively), the -574G > T SNP (p = 0.035 and 0.038, respectively) and the +4259T > G SNP (p = 0.036 and 0.038, respectively) of the ET patients and the controls were significantly different. A haplotype analysis found that the GGT and TGT haplotypes had significantly different distributions between ET and controls (p = 0.041 and 0.041, respectively). However, no significant differences were detected between the genotypes of all SNPs and routine blood indexes, age and JAK2V617F mutation. The -1516G > T, -574G > T and +4259T > G SNPs within TIM-3 gene might play an important role as a genetic risk factor in the pathogenesis of ET.

  2. T-Cell Immunoglobulin- and Mucin-Domain-Containing Molecule 3 Signaling Blockade Improves Cell-Mediated Immunity Against Malaria.

    PubMed

    Hou, Nan; Zou, Yang; Piao, Xianyu; Liu, Shuai; Wang, Lei; Li, Shanshan; Chen, Qijun

    2016-11-15

    Cell-mediated immune responses play important roles in immune protection against Plasmodium infection. However, impaired immunity, such as lymphocyte exhaustion, is a common phenomenon in malaria. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) is an important regulatory molecule in cell-mediated immunity and has been implicated in malaria. In this study, it was found that Tim-3 expression on key populations of lymphocytes was significantly increased in both Plasmodium falciparum-infected patients and Plasmodium berghei ANKA (PbANKA)-infected C57BL/6 mice. Upregulation of Tim-3 led to lymphocyte exhaustion, while blocking Tim-3 signaling with an anti-Tim-3 antibody restored lymphocyte activity in Plasmodium infections. Further, anti-Tim-3 treatment accelerated the parasite clearance and relieved the symptoms of cerebral malaria in PbANKA-infected mice. In conclusion, Tim-3 on immune cells negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3 signaling enhances sterile immunity and may play a protective role during malarial parasite infections. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. T cell immunoglobulin and mucin domain-containing molecule 3 on CD14(+) monocytes serves as a novel biological marker for diabetes duration in type 2 diabetes mellitus.

    PubMed

    Yan, Wen-Jiang; Sun, Peng; Wei, Dan-Dan; Wang, Shuang-Xi; Yang, Jing-Jing; Li, Yi-Hui; Zhang, Cheng

    2016-11-01

    Type 2 diabetes is a worldwide disease that is associated with increased rates of obesity and reduced physical activity. Obesity-associated insulin resistance in type 2 diabetes is a disorder in the balance between pro-inflammatory and anti-inflammatory signals. T cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) has been reported as an important regulatory inflammation molecule, and plays a pivotal role in several inflammation-related diseases. Peripheral blood mononuclear cells were obtained from type 2 diabetes patients (n = 31) and healthy donors (n = 18), and Tim-3 expression on peripheral blood mononuclear cells was evaluated by flow cytometry. We showed the downregulated expression of Tim-3 on CD14(+) monocytes from type 2 diabetes patients. In addition, the upregulated expression of Tim-3 on peripheral CD4(+) T cells and CD8(+) T cells was observed in the present study. The correlation analysis between Tim-3 expression on CD14(+) monocytes and diabetes duration showed the longer diabetes duration time, the lower Tim-3 expression on CD14 monocytes. The present results suggest that Tim-3 might participate in the progression of type 2 diabetes by its negative regulation on these immune cells, and Tim-3 on CD14(+) monocytes serves as a novel biological marker for diabetes duration in type 2 diabetes patients. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  4. Upregulation of T-cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Monocytes/Macrophages Associates with Gastric Cancer Progression.

    PubMed

    Wang, Zhenxin; Yin, Ni; Zhang, Zixiang; Zhang, Yi; Zhang, Guangbo; Chen, Weichang

    2017-02-01

    T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is an important immune regulatory molecule in cancer immune system. However, expression and function of Tim-3 in monocytes/macrophages in cancer progression mainly remain unclear. In this study, we analyzed Tim-3 levels in peripheral blood mononuclear cells (PBMCs) from 62 gastric cancer patients and 45 healthy controls using flow cytometry and then associated Tim-3 levels with clinical pathological data from patients. We found Tim-3 level was significantly upregulated in monocytes from gastric cancer patients compared with those from healthy controls, and that upregulated Tim-3 levels associated with depth of tumor invasion and tumor lymph node metastasis and advanced clinical stages of gastric cancer patients. Furthermore, tumor-bearing mouse experiments revealed that Tim-3 level on monocytes/macrophages associated with xenograft formation and growth. In addition, culture of monocytes from healthy controls with gastric cancer cell-conditioned medium upregulated Tim-3 expression, but IL-10, TNF-α, IFN-γ, or GM-CSF treatment or T-bet, Eomes, and T-bet/Eomes double gene knockout did not affect Tim-3 levels in blood monocytes/macrophages from human or mouse, respectively. Gal-9/Tim-3 signal was able to significantly stimulate monocyte to secrete IL-6, IL-8, and IL-10, but not IL-1β, IL-12p70, or TNF-α in presence of LPS. In conclusion, our study demonstrated that Tim-3 expressed by monocyte/macrophages might be an important mechanism in gastric cancer progression.

  5. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques.

    PubMed

    Fujita, Tsuyoshi; Burwitz, Benjamin J; Chew, Glen M; Reed, Jason S; Pathak, Reesab; Seger, Elizabeth; Clayton, Kiera L; Rini, James M; Ostrowski, Mario A; Ishii, Naoto; Kuroda, Marcelo J; Hansen, Scott G; Sacha, Jonah B; Ndhlovu, Lishomwa C

    2014-12-01

    The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.

  6. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma.

    PubMed

    Xu, Liyun; Huang, Yanyan; Tan, Linlin; Yu, Wei; Chen, Dongdong; Lu, ChangChang; He, Jianying; Wu, Guoqing; Liu, Xiaoguang; Zhang, Yongkui

    2015-12-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.

  7. Tim-3 induces Th2-biased immunity and alternative macrophage activation during Schistosoma japonicum infection.

    PubMed

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang; Chen, Qijun

    2015-08-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4(+) and CD8(+) T cells, NK1.1(+) cells, and CD11b(+) cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8(+) T cells or CD11b(+) cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b(+) cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.

  8. Tim-3 Induces Th2-Biased Immunity and Alternative Macrophage Activation during Schistosoma japonicum Infection

    PubMed Central

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang

    2015-01-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+ and CD8+ T cells, NK1.1+ cells, and CD11b+ cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+ T cells or CD11b+ cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+ cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection. PMID:25987707

  9. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases.

    PubMed

    Clayton, Kiera L; Haaland, Matthew S; Douglas-Vail, Matthew B; Mujib, Shariq; Chew, Glen M; Ndhlovu, Lishomwa C; Ostrowski, Mario A

    2014-01-15

    CD8(+) CTLs are adept at killing virally infected cells and cancer cells and releasing cytokines (e.g., IFN-γ) to aid this response. However, during cancer and chronic viral infections, such as with HIV, this CTL response is progressively impaired due to a process called T cell exhaustion. Previous work has shown that the glycoprotein T cell Ig and mucin domain-containing protein 3 (Tim-3) plays a functional role in establishing T cell exhaustion. Tim-3 is highly upregulated on virus and tumor Ag-specific CD8(+) T cells, and antagonizing Tim-3 helps restore function of CD8(+) T cells. However, very little is known of how Tim-3 signals in CTLs. In this study, we assessed the role of Tim-3 at the immunological synapse as well as its interaction with proximal TCR signaling molecules in primary human CD8(+) T cells. Tim-3 was found within CD8(+) T cell lipid rafts at the immunological synapse. Blocking Tim-3 resulted in a significantly greater number of stable synapses being formed between Tim-3(hi)CD8(+) T cells and target cells, suggesting that Tim-3 plays a functional role in synapse formation. Further, we confirmed that Tim-3 interacts with Lck, but not the phospho-active form of Lck. Finally, Tim-3 colocalizes with receptor phosphatases CD45 and CD148, an interaction that is enhanced in the presence of the Tim-3 ligand, galectin-9. Thus, Tim-3 interacts with multiple signaling molecules at the immunological synapse, and characterizing these interactions could aid in the development of therapeutics to restore Tim-3-mediated immune dysfunction.

  10. Combined blockade of Tim-3 and MEK inhibitor enhances the efficacy against melanoma.

    PubMed

    Liu, Yang; Cai, Pengcheng; Wang, Ning; Zhang, Qianwen; Chen, Fenghua; Shi, Liang; Zhang, Yang; Wang, Lin; Hu, Lihua

    2017-03-04

    Insights into the role of the mitogen-activated protein kinase (MAPK) pathway and immune checkpoints have led combined targeted therapy and immunotherapy to be a promising regimen. Trametinib, as a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, has demonstrated effectiveness in patients with advanced melanoma. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3), an immune checkpoint molecule, participates in multiple negative regulation of antitumor immunity. We for the first time to our knowledge reported the combination of trametinib and anti-Tim-3 monoclonal antibody (mAb) in treating B16-F10 melanoma mice. We discovered that trametinib remarkably promoted apoptosis and inhibited cell proliferation while inhibition of MEK improved the expression of Tim-3 and caused the decrease of CD8(+) T cells; to the contrary, anti-Tim-3 mAb enhanced antitumor immunity by stimulating CD8(+) T cells, thus the combined therapy produced potent antitumor effect cooperatively. Taken together, our study provides compelling evidence for combining trametinib and anti-Tim-3 mAb as a potential valuable regimen in treating melanoma.

  11. Blockade of Tim-3 Pathway Ameliorates Interferon-γ Production from Hepatic CD8+ T Cells in a Mouse Model of Hepatitis B Virus Infection

    PubMed Central

    Ju, Ying; Hou, Nan; Zhang, Xiaoning; Zhao, Di; Liu, Ying; Wang, Jinjin; Luan, Fang; Shi, Wei; Zhu, Faliang; Sun, Wensheng; Zhang, Lining; Gao, Chengjiang; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2009-01-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection. A significant increase of Tim-3 expression on hepatic T lymphocytes, especially on CD8+ T cells, was demonstrated in HBV model mice from day 7 to day 18. After Tim-3 knockdown by specific shRNAs, significantly increased IFN-γ production from hepatic CD8+ T cells in HBV model mice was observed. Very interestingly, we found Tim-3 expression on CD8+ T cells was higher in HBV model mice with higher serum anti-HBs production. Moreover, Tim-3 knockdown influenced anti-HBs production in vivo. Collectively, our data suggested that Tim-3 might act as a potent regulator of antiviral T-cell responses in HBV infection. PMID:19254478

  12. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy.

    PubMed

    Li, Yan-Hong; Zhou, Wen-Hui; Tao, Yu; Wang, Song-Cun; Jiang, Yun-Lan; Zhang, Di; Piao, Hai-Lan; Fu, Qiang; Li, Da-Jin; Du, Mei-Rong

    2016-01-01

    Decidual natural killer (dNK) cells actively participate in the establishment and maintenance of maternal-fetal immune tolerance and act as local guardians against infection. However, how dNK cells maintain the immune balance between tolerance and anti-infection immune responses during pregnancy remains unknown. Here, we demonstrated that the inhibitory molecule T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) are expressed on over 60% of dNK cells. Tim-3(+) dNK cells display higher interleukin (IL)-4 and lower tumor necrosis factor (TNF)-α and perforin production. Human trophoblast cells can induce the transformation of peripheral NK cells into a dNK-like phenotype via the secretion of galectin-9 (Gal-9) and the interaction between Gal-9 and Tim-3. In addition, trophoblasts inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokine and perforin production by dNK cells, which can be attenuated by Tim-3 neutralizing antibodies. Interestingly, a decreased percentage of Tim-3-expressing dNK cells were observed in human miscarriages and murine abortion-prone models. Moreover, T helper (Th)2-type cytokines were decreased and Th1-type cytokines were increased in Tim-3(+) but not Tim-3(-) dNK cells from human and mouse miscarriages. Therefore, our results suggest that the Gal-9/Tim-3 signal is important for the regulation of dNK cell function, which is beneficial for the maintenance of a normal pregnancy.

  13. TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma.

    PubMed

    Horlad, Hasita; Ohnishi, Koji; Ma, Chaoya; Fujiwara, Yukio; Niino, Daisuke; Ohshima, Koichi; Jinushi, Masahisa; Matsuoka, Masao; Takeya, Motohiro; Komohara, Yoshihiro

    2016-08-01

    Adult T-cell leukemia/lymphoma (ATLL), an aggressive type of malignant lymphoma, is highly resistant to chemotherapy. However, the detailed mechanisms of the chemoresistance of ATLL have never been elucidated. We previously demonstrated that direct cell-cell interaction between macrophages and lymphoma cells was significantly associated with lymphoma progression in patients with ATLL. The present study aimed to further analyze the effects of cell-cell interaction between macrophages and ATLL cells by means of cell culture studies and immunohistochemical analysis using human ATLL samples. It was found that direct co-culture with macrophages induced chemoresistance in the ATLL ATN-1 cell line, but not in other cell lines, including TL-Mor, ED and ATL-2S. It was also found that expression of the T cell Ig and mucin domain-containing molecule-3 (TIM-3) was induced in ATN-1 cells by their long-term co-culture with macrophages. TIM-3 gene transfection induced chemoresistance in the ATN-1 cells. Immunostaining of ATLL tissues showed TIM-3 expression in 25 out of 58 ATLL cases. Although TIM-3 expression was not associated with overall survival or T classification, it was associated with resistance to chemotherapy. TIM-3 expression is therefore considered to be a marker for predicting the efficacy of chemotherapy, and TIM-3-associated signals may be a therapeutic target for patients with ATLL.

  14. TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma

    PubMed Central

    Horlad, Hasita; Ohnishi, Koji; Ma, Chaoya; Fujiwara, Yukio; Niino, Daisuke; Ohshima, Koichi; Jinushi, Masahisa; Matsuoka, Masao; Takeya, Motohiro; Komohara, Yoshihiro

    2016-01-01

    Adult T-cell leukemia/lymphoma (ATLL), an aggressive type of malignant lymphoma, is highly resistant to chemotherapy. However, the detailed mechanisms of the chemoresistance of ATLL have never been elucidated. We previously demonstrated that direct cell-cell interaction between macrophages and lymphoma cells was significantly associated with lymphoma progression in patients with ATLL. The present study aimed to further analyze the effects of cell-cell interaction between macrophages and ATLL cells by means of cell culture studies and immunohistochemical analysis using human ATLL samples. It was found that direct co-culture with macrophages induced chemoresistance in the ATLL ATN-1 cell line, but not in other cell lines, including TL-Mor, ED and ATL-2S. It was also found that expression of the T cell Ig and mucin domain-containing molecule-3 (TIM-3) was induced in ATN-1 cells by their long-term co-culture with macrophages. TIM-3 gene transfection induced chemoresistance in the ATN-1 cells. Immunostaining of ATLL tissues showed TIM-3 expression in 25 out of 58 ATLL cases. Although TIM-3 expression was not associated with overall survival or T classification, it was associated with resistance to chemotherapy. TIM-3 expression is therefore considered to be a marker for predicting the efficacy of chemotherapy, and TIM-3-associated signals may be a therapeutic target for patients with ATLL. PMID:27446463

  15. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma.

    PubMed

    Li, Zhu; Li, Na; Li, Fang; Zhou, Zhihua; Sang, Jiao; Chen, Yanping; Han, Qunying; Lv, Yi; Liu, Zhengwen

    2016-12-01

    Immune checkpoint proteins programmed death-1 (PD-1) and T-cell immunoglobulin domain and mucin domain containing molecule-3 (TIM-3) expression and their gene polymorphisms have separately been shown to be associated with hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). This study simultaneously examined PD-1 and TIM-3 expression in liver tissues and PD1 and TIM3 polymorphisms and analyzed their correlations in 171 patients with HBV-related HCC and 34 patients with HBV-related cirrhosis.PD-1 and TIM-3 expression in liver tissues were examined by immunohistochemistry and the genotypes of PD1 rs10204525 and TIM3 rs10053538 polymorphisms were determined using genomic DNA extracted from peripheral blood as template.Both PD-1 and TIM-3 expressions in liver infiltrating lymphocytes of HCC tumor tissues were significantly higher than those in tumor adjacent tissues or cirrhotic tissues. The elevated PD-1 and TIM-3 expressions were significantly associated with higher tumor grades. The levels between PD-1 and TIM-3 expression in tumor tissues and tumor adjacent tissues had a significant positive intercorrelation. The expressions of PD-1 and TIM-3 in tumor tissues, tumor adjacent tissues, and cirrhotic tissues were significantly associated with PD1 and TIM3 polymorphisms, with genotype AA of PD1 rs10204525 and genotypes GT+TT of TIM3 rs10053538 being associated with significantly increased PD-1 and TIM-3 expression, respectively.These findings support the potential to improve the efficiency of immune checkpoint-targeted therapy and reduce resistance to the therapy by blocking both PD-1 and TIM-3 and suggest the potential to apply the genotype determination of PD1 rs10204525 and TIM3 rs10053538 as biomarkers of immune checkpoint-directed therapies.

  16. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma

    PubMed Central

    Li, Zhu; Li, Na; Li, Fang; Zhou, Zhihua; Sang, Jiao; Chen, Yanping; Han, Qunying; Lv, Yi; Liu, Zhengwen

    2016-01-01

    Abstract Immune checkpoint proteins programmed death-1 (PD-1) and T-cell immunoglobulin domain and mucin domain containing molecule-3 (TIM-3) expression and their gene polymorphisms have separately been shown to be associated with hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). This study simultaneously examined PD-1 and TIM-3 expression in liver tissues and PD1 and TIM3 polymorphisms and analyzed their correlations in 171 patients with HBV-related HCC and 34 patients with HBV-related cirrhosis. PD-1 and TIM-3 expression in liver tissues were examined by immunohistochemistry and the genotypes of PD1 rs10204525 and TIM3 rs10053538 polymorphisms were determined using genomic DNA extracted from peripheral blood as template. Both PD-1 and TIM-3 expressions in liver infiltrating lymphocytes of HCC tumor tissues were significantly higher than those in tumor adjacent tissues or cirrhotic tissues. The elevated PD-1 and TIM-3 expressions were significantly associated with higher tumor grades. The levels between PD-1 and TIM-3 expression in tumor tissues and tumor adjacent tissues had a significant positive intercorrelation. The expressions of PD-1 and TIM-3 in tumor tissues, tumor adjacent tissues, and cirrhotic tissues were significantly associated with PD1 and TIM3 polymorphisms, with genotype AA of PD1 rs10204525 and genotypes GT+TT of TIM3 rs10053538 being associated with significantly increased PD-1 and TIM-3 expression, respectively. These findings support the potential to improve the efficiency of immune checkpoint-targeted therapy and reduce resistance to the therapy by blocking both PD-1 and TIM-3 and suggest the potential to apply the genotype determination of PD1 rs10204525 and TIM3 rs10053538 as biomarkers of immune checkpoint-directed therapies. PMID:28033288

  17. The Coordinated Actions of TIM-3 on Cancer and Myeloid Cells in the Regulation of Tumorigenicity and Clinical Prognosis in Clear Cell Renal Cell Carcinomas.

    PubMed

    Komohara, Yoshihiro; Morita, Tomoko; Annan, Dorcas A; Horlad, Hasita; Ohnishi, Koji; Yamada, Sohsuke; Nakayama, Toshiyuki; Kitada, Shohei; Suzu, Shinya; Kinoshita, Ichiro; Dosaka-Akita, Hirotoshi; Akashi, Koichi; Takeya, Motohiro; Jinushi, Masahisa

    2015-09-01

    Clear cell renal cell carcinoma (ccRCC) is one of most common cancers in urogenital organs. Although recent experimental and clinical studies have shown the immunogenic properties of ccRCC as illustrated by the clinical sensitivities to various immunotherapies, the detailed immunoregulatory machineries governing the tumorigenicity of human ccRCC remain largely obscure. In this study, we demonstrated the clinical significance and functional relevance of T-cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3) expressed on tumor cells and myeloid cells in patients with ccRCC. TIM-3 expression was detected on cancer cells and CD204(+) tumor-associated macrophages (TAM), and higher expression level of TIM-3 was positively correlated with shorter progression-free survival (PFS) in patients with ccRCC. We found that TIM-3 expression was detected on a large number of tumors, and there was significant correlation between an increased number of TAMs and high expression level of TIM-3 in patients with ccRCC. Furthermore, TIM-3 rendered RCC cells with the ability to induce resistance to sunitinib and mTOR inhibitors, the standard regimen for patients with ccRCC, as well as stem cell activities. TIM-3 expression was induced on CD14(+) monocytes upon long-term stimulation with RCC cells, and TIM-3-expressing myeloid cells play a critical role in augmenting tumorigenic activities of TIM-3-negative RCC cells. More importantly, treatment with anti-TIM-3 mAb suppressed its tumorigenic effects in in vitro and in vivo settings. These findings indicate the coordinated action of TIM-3 in cancer cells and in myeloid cells regulates the tumorigenicity of human RCC.

  18. Tim-3 is a Marker of Plasmacytoid Dendritic Cell Dysfunction during HIV Infection and Is Associated with the Recruitment of IRF7 and p85 into Lysosomes and with the Submembrane Displacement of TLR9.

    PubMed

    Schwartz, Jordan Ari; Clayton, Kiera L; Mujib, Shariq; Zhang, Hongliang; Rahman, A K M Nur-Ur; Liu, Jun; Yue, Feng Yun; Benko, Erika; Kovacs, Colin; Ostrowski, Mario A

    2017-03-06

    In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1(+) lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation.

  19. Regulation of osteoclastogenesis through Tim-3: possible involvement of the Tim-3/galectin-9 system in the modulation of inflammatory bone destruction.

    PubMed

    Moriyama, Kanako; Kukita, Akiko; Li, Yin-Ji; Uehara, Norihisa; Zhang, Jing-Qi; Takahashi, Ichiro; Kukita, Toshio

    2014-11-01

    Galectins are a unique family of lectins bearing one or two carbohydrate recognition domains (CRDs) that have the ability to bind molecules with β-galactoside-containing carbohydrates. It has been shown that galectins regulate not only cell growth and differentiation but also immune responses, as well as inflammation. Galectin-9, a tandem repeat type of galectin, was originally identified as a chemotactic factor for eosinophils, and is also involved in the regulatory process of inflammation. Here, we examined the involvement of galectin-9 and its receptor, T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3), in the control of osteoclastogenesis and inflammatory bone destruction. Expression of Tim-3 was detected in osteoclasts and its mononuclear precursors in vivo and in vitro. Galectin-9 markedly inhibited osteoclastogenesis as evaluated in osteoclast precursor cell line RAW-D cells and primary bone marrow cells of mice and rats. The inhibitory effects of galectin-9 on osteoclastogenesis was negated by the addition of β-lactose, an antagonist for galectin binding, suggesting that the inhibitory effect of galectin-9 was mediated through CRD. When galectin-9 was injected into rats with adjuvant-induced arthritis, marked suppression of bone destruction was observed. Inflammatory bone destruction could be efficiently ameliorated by controlling the Tim-3/galectin-9 system in rheumatoid arthritis.

  20. Modulation of Tim-3 Expression by Antigen-Dependent and -Independent Factors on T Cells from Patients with Chronic Hepatitis B Virus Infection

    PubMed Central

    Dong, Jie; Yang, Xiao-Fei; Wang, Lin-Xu; Wei, Xin; Wang, An-Hui; Hao, Chun-Qiu; Shen, Huan-Jun; Huang, Chang-Xing; Zhang, Ye; Lian, Jian-Qi

    2017-01-01

    T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) was up-regulated on viral specific T cells and contributed to T cells exhaustion during chronic hepatitis B virus (HBV) infection. However, modulation of Tim-3 expression was still not fully elucidated. To evaluate the potential viral and inflammatory factors involved in the inductor of Tim-3 expression on T cells, 76 patients with chronic HBV infection (including 40 chronic hepatitis B [CHB] and 36 asymptomatic HBV carriers [AsC]) and 40 of normal controls (NCs) were enrolled in this study. Tim-3 expressions on CD4+ and CD8+ T cells were assessed in response to HBV-encoding antigens, HBV peptide pools, and common γ-chain (γc) cytokines stimulation by flow cytometry. HBV peptides and anti-CD3/CD28 directly induced Tim-3 expression on T cells. γc cytokines also drive Tim-3 up-regulations on both CD4+ and CD8+ T cells in patients with chronic HBV infection. However, γc cytokines did not enhance the Tim-3 inductions by either anti-CD3/CD28 or HBV peptides stimulation. Furthermore, γc cytokines-mediated Tim-3 induction could not be abrogated by γc cytokine receptor-neutralizing antibodies. The current results suggested that elevation of Tim-3 expression on T cells could be regulated by both antigen-dependent and -independent manner in patients with chronic HBV infection. The role of γc cytokines in modulation of inhibitory pathway might be evaluated as immunotherapies in humans. PMID:28401068

  1. Genetic variations of PD1 and TIM3 are differentially and interactively associated with the development of cirrhosis and HCC in patients with chronic HBV infection.

    PubMed

    Li, Zhu; Li, Na; Zhu, Qianqian; Zhang, Guoyu; Han, Qunying; Zhang, Pingping; Xun, Meng; Wang, Yawen; Zeng, Xiaoyan; Yang, Cuiling; Liu, Zhengwen

    2013-03-01

    Cooperation or interaction of programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) molecules is more relevant than either molecule alone to immune dysfunction in chronic viral infection and cancers. This study simultaneously investigated polymorphisms at PD1 +8669 and TIM3 -1516 loci in 845 hepatitis B virus (HBV) chronically infected patients [151 asymptomatic carriers, 202 chronic hepatitis, 221 cirrhosis and 271 hepatocellular carcinoma (HCC)], 141 HBV infection resolvers and 318 healthy controls. Multivariate analysis showed that, in addition to gender, age, ALT, albumin and HBV DNA, PD1 +8669 genotype AA was associated with cirrhosis compared with patients without cirrhosis (OR, 2.410; P=0.001). TIM3 -1516 genotypes GT+TT, together with gender, age, ALT, AST, direct bilirubin, albumin and HBeAg status, were associated with HCC compared with cirrhosis patients without HCC (OR, 2.142; P=0.011). The combined carriage of PD1 +8669 AA/TIM3 -1516 GT or TT was higher in cirrhosis and HCC pooled patients than in patients without cirrhosis (OR, 2.326; P=0.020) and in HCC patients than in cirrhosis patients (OR, 2.232; P=0.013). These data suggest that PD1 and TIM3 polymorphisms may differentially and interactively predispose cirrhosis and HCC in chronic HBV infection.

  2. Upregulation of Tim-3 on CD4(+) T cells is associated with Th1/Th2 imbalance in patients with allergic asthma.

    PubMed

    Tang, Fei; Wang, Fukun; An, Liyun; Wang, Xianling

    2015-01-01

    T cell Ig and mucin domain-containing molecule-3 (Tim-3) is a negative regulator preferentially expressed on Th1 cells. Allergic asthma is a clinical syndrome well characterized by Th1/Th2 imbalance. To investigate the role of Tim-3 in the pathogenesis of asthma and its relationship with Th1/Th2 imbalance, a total of 40 patients with allergic asthma and 40 healthy controls were enrolled. Expression of Tim-3 and Th1/Th2 imbalance as well as the relationship between them was analyzed by flow cytometry and real-time PCR. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro and anti-Tim-3 was used to block Tim-3 signaling; Th1/Th2 cytokines in the culture supernatant were detected by enzyme linked immunosorbent assay (ELISA). CD4(+) T cells and B cells were sorted and co-cultured in vitro, and anti-Tim-3 was used to block Tim-3 signaling; Total IgG/IgE in the culture supernatant was detected by ELISA. The mRNA level of T-bet and IFN-γ were significantly decreased in allergic asthma patients, while GATA-3 and IL-4 were significantly increased. Expression of Tim-3 on CD4(+) T cells was much higher in allergic asthma patients and it was negatively correlated with T-bet/GATA-3 ratio or IFN-γ/IL-4 ratio. Blocking of Tim-3 significantly increased Th1 cytokines (TNF-α and IFN-γ) and decreased Th2 cytokines (IL-4, IL-5, IL-13) in the culture supernatant of PBMCs. Blocking of Tim-3 dramatically reduced the production of IgG and IgE in the co-culture supernatant of CD4(+) T cells and B cells. In conclusion, Tim-3 was up-regulated in allergic asthma patients and related with the Th1/Th2 imbalance. Blocking of Tim-3 may be of therapeutic benefit by enhancing the Th1 cytokines response, down-regulating the Th2 cytokines response, and reducing IgG/IgE production.

  3. DNA demethylation of the TIM-3 promoter is critical for its stable expression on T cells.

    PubMed

    Chou, F-C; Kuo, C-C; Chen, H-Y; Chen, H-H; Sytwu, H-K

    2016-04-01

    The T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is selectively expressed on terminally differentiated T helper 1 (Th1) cells and acts as a negative regulator that terminates Th1 responses. The dysregulation of TIM-3 expression on T cells is associated with several autoimmune phenotypes and with chronic viral infections; however, the mechanism of this regulation is unclear. In this study, we investigated the effect of DNA methylation on the expression of TIM-3. By analyzing the sequences of TIM-3 promoter regions in human and mouse, we identified a CpG island within the TIM-3 promoter and demonstrated that the promoter activity was controlled by DNA methylation. Furthermore, treatment with 5-aza-2'-deoxycytidine enhanced TIM-3 expression on mouse primary CD4(+) T cells under Th0-, Th1- or Th2-polarizing conditions. Finally, pyrosequencing analysis revealed that the methylation level of the TIM-3 promoter gradually decreased after each round of T-cell polarization, and this decrease was inversely correlated with TIM-3 expression. These data suggest that the DNA methylation of the TIM-3 promoter cooperates with lineage-specific transcription factors in the control of Th-cell development. In conclusion, DNA methylation-based regulation of TIM-3 may provide novel insights into understanding the dysregulation of TIM-3 expression under pathogenic conditions.

  4. HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression.

    PubMed

    Vali, Bahareh; Jones, R Brad; Sakhdari, Ali; Sheth, Prameet M; Clayton, Kiera; Yue, Feng-Yun; Gyenes, Gabor; Wong, David; Klein, Marina B; Saeed, Sahar; Benko, Erika; Kovacs, Colin; Kaul, Rupert; Ostrowski, Mario A

    2010-09-01

    Co-infection of HCV with HIV has been associated with more rapid progression of HCV-related disease. HCV-specific T-cell immune responses, which are essential for disease control, are attenuated in co-infection with HIV. T-cell exhaustion has recently been implicated in the deficient control of chronic viral infections. In the current study, we investigated the role of programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) expression in T-cell exhaustion during HCV/HIV co-infection. We show that in HCV/HIV co-infection, both total and HCV-specific T cells co-express Tim-3 and PD-1 in significantly higher frequencies, compared with HCV mono-infection. Co-expression of these two markers on HCV-specific CD8(+) T cells positively correlated with a clinical parameter of liver disease progression. HCV-specific CD8(+) T cells showed greater frequencies of Tim-3/PD-1 co-expression than HIV-specific CD8(+) T cells, which may indicate a greater degree of exhaustion in the former. Blocking Tim-3 or PD-1 pathways restored both HIV- and HCV-specific CD8(+) T-cell expansion in the blood of co-infected individuals. These data demonstrate that co-expression of Tim-3 and PD-1 may play a significant role in HCV-specific T-cell dysfunction, especially in the setting of HIV co-infection.

  5. TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection.

    PubMed

    Jayaraman, Pushpa; Jacques, Miye K; Zhu, Chen; Steblenko, Katherine M; Stowell, Britni L; Madi, Asaf; Anderson, Ana C; Kuchroo, Vijay K; Behar, Samuel M

    2016-03-01

    While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain-containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis.

  6. Overexpression of Tim-3 reduces Helicobacter pylori-associated inflammation through TLR4/NFκB signaling in vitro.

    PubMed

    Wang, Fucai; Mao, Zhirong; Liu, Dongsheng; Yu, Jing; Wang, Youhua; Ye, Wen; Lin, Dongjia; Zhou, Nanjin; Xie, Yong

    2017-03-21

    The present study aimed to investigate the interaction between T-cell immunoglobulin and mucin-domain-containing molecule-3 (Tim-3) and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF‑κB) signaling in Helicobacter pylori-infected RAW264.7 macrophage cells. RAW264.7 cells were co‑cultured with H. pylori SS1 at different bacteria/cell ratios, and subsequently the mRNA expression of Tim‑3, TLR4, and myeloid differentiation factor 88 (MyD88) was measured by reverse transcription-quantitative polymerase chain reaction (RT‑qPCR). Furthermore, the effect of Tim‑3 overexpression was examined by transfection of RAW264.7 with pLVX-IRES-ZsGreen-Tim-3 and co‑culturing with H. pylori. mRNA and protein expression levels were then analyzed for Tim‑3, TLR4, MyD88, and phosphorylated (p‑) NF‑κB by RT‑qPCR and western blot analysis respectively. The concentrations of pro‑inflammatory cytokines [tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL-6), interferon‑γ (IFN‑γ) and interleukin 10 (IL‑10)] released in the culture supernatants were measured by ELISA. H. pylori stimulation resulted in a significant increase of Tim‑3, TLR4, and MyD88 mRNA expression in RAW264.7 cells. H. pylori stimulation upregulated Tim‑3 expression even in the Tim‑3‑overexpressing RAW264.7 cells compared with unstimulated cells. TLR4, MyD88, and pNF‑κB protein expression and pro‑inflammatory cytokines (TNF‑α, IL‑6, and IFN‑γ) release levels were increased in the control RAW264.7 cells following H. pylori infection, but not in the Tim-3-overexpressing RAW264.7 cells. By contrast, IL‑10 levels were decreased following H. pylori infection in both control and Tim‑3‑overexpressing RAW264.7 cells. Overexpression of Tim-3 reduced H. pylori-associated inflammation in RAW264.7 macrophages, by downregulating expression of proteins in the TLR4 pathway and release of pro‑inflammatory cytokines. These findings suggest that Tim‑3 serves a crucial role

  7. Tim-3 Is Upregulated in NK Cells during Early Pregnancy and Inhibits NK Cytotoxicity toward Trophoblast in Galectin-9 Dependent Pathway.

    PubMed

    Sun, Jintang; Yang, Meixiang; Ban, Yanli; Gao, Wenjuan; Song, Bingfeng; Wang, Yang; Zhang, Yun; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2016-01-01

    NK cells accumulate at the maternal-fetal interface (MFI) and play essential roles in maintaining immune tolerance during pregnancy. The mechanisms that facilitate NK cells tolerance to fetal tissue are largely unknown. T cell Ig and mucin domain-containing protein 3 (Tim-3) is a newly defined molecule with essential immunological function in many physiological and pathological processes. Recent study showed that Tim-3 was involved in the regulation of immune tolerance at MFI. However, whether Tim-3 regulates NK cells cytotoxicity toward trophoblasts is unclear. Here, we showed Tim-3 was mainly expressed by decidual NK cells (dNK) and Tim-3 level in dNK was higher than peripheral NK cells (pNK). Tim-3(+) dNK expressed more levels of mature markers CD94 and CD69 than Tim-3- dNK cells and blocking Tim-3 significantly inhibited dNK IFN-γ and TNF-α secretion. Furthermore, we found TGF-β1 may contribute to such up-regulation of Tim-3 in NK cells. Interestingly, blocking Tim-3 enhanced NK cytotoxicity toward trophoblast cell line HTR-8 but not K562. We found HTR-8 expressed Tim-3 ligand Galectin-9, in contrast K562 did not. Small interfering RNA-mediated silencing of Galectin-9 expression enhanced NK cytotoxicity toward HTR-8. We further showed Tim-3/Galecin-9 inhibited NK cytotoxicity toward trophoblast partially via impairing the degranulation process. In addition, clinical data showed that abnormal Tim-3 level on pNK might be associated with recurrent spontaneous abortion (RSA). Thus, our data demonstrate Tim-3/Galectin-9 pathway maintains local tolerance by suppressing NK cytotoxicity toward trophoblasts which may represent a new immunologic tolerance mechanism at MFI.

  8. Tim-3 Is Upregulated in NK Cells during Early Pregnancy and Inhibits NK Cytotoxicity toward Trophoblast in Galectin-9 Dependent Pathway

    PubMed Central

    Sun, Jintang; Yang, Meixiang; Ban, Yanli; Gao, Wenjuan; Song, Bingfeng; Wang, Yang; Zhang, Yun; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2016-01-01

    NK cells accumulate at the maternal-fetal interface (MFI) and play essential roles in maintaining immune tolerance during pregnancy. The mechanisms that facilitate NK cells tolerance to fetal tissue are largely unknown. T cell Ig and mucin domain-containing protein 3 (Tim-3) is a newly defined molecule with essential immunological function in many physiological and pathological processes. Recent study showed that Tim-3 was involved in the regulation of immune tolerance at MFI. However, whether Tim-3 regulates NK cells cytotoxicity toward trophoblasts is unclear. Here, we showed Tim-3 was mainly expressed by decidual NK cells (dNK) and Tim-3 level in dNK was higher than peripheral NK cells (pNK). Tim-3+ dNK expressed more levels of mature markers CD94 and CD69 than Tim-3- dNK cells and blocking Tim-3 significantly inhibited dNK IFN-γ and TNF-α secretion. Furthermore, we found TGF-β1 may contribute to such up-regulation of Tim-3 in NK cells. Interestingly, blocking Tim-3 enhanced NK cytotoxicity toward trophoblast cell line HTR-8 but not K562. We found HTR-8 expressed Tim-3 ligand Galectin-9, in contrast K562 did not. Small interfering RNA-mediated silencing of Galectin-9 expression enhanced NK cytotoxicity toward HTR-8. We further showed Tim-3/Galecin-9 inhibited NK cytotoxicity toward trophoblast partially via impairing the degranulation process. In addition, clinical data showed that abnormal Tim-3 level on pNK might be associated with recurrent spontaneous abortion (RSA). Thus, our data demonstrate Tim-3/Galectin-9 pathway maintains local tolerance by suppressing NK cytotoxicity toward trophoblasts which may represent a new immunologic tolerance mechanism at MFI. PMID:26789128

  9. TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway.

    PubMed

    Tomkowicz, Brian; Walsh, Eileen; Cotty, Adam; Verona, Raluca; Sabins, Nina; Kaplan, Fred; Santulli-Marotto, Sandy; Chin, Chen-Ni; Mooney, Jill; Lingham, Russell B; Naso, Michael; McCabe, Timothy

    2015-01-01

    TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation.

  10. TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers

    PubMed Central

    SHANG, YONGJUN; LI, ZHANYONG; LI, HONG; XIA, HAIBO; LIN, ZHENHUA

    2013-01-01

    Signals from the T cell Ig- and mucin-domain-containing molecules (TIMs) have been demonstrated to be actively involved in regulating the progression of carcinomas. However, the expression and distribution of these molecules in osteosarcoma, the most common primary bone malignancy with poor prognosis, have not been investigated. In this study, the expression of TIMs was examined in nine invasive human osteosarcomas using immunohistochemistry, and the phenotypes were detected by dual immunofluorescence staining. Using immunohistochemistry, it was observed that only TIM-3, rather than TIM-1 or TIM-4, was expressed in these tumor specimens, where it was localized in the cytoplasm and plasma membrane of tumor cells. Dual immunofluorescence staining revealed that the expression of TIM-3 was observed in all cell types investigated, including CD68+ macrophages, CD31+ endothelial cells, CK-18+ epithelial cells and PCNA+ tumor cells. Notably, in sarcoma cells, TIM-3 was co-expressed with certain biomarkers of epithelial-mesenchymal transition (EMT), including vimentin, Slug, Snail and Smad. These combined results suggest that TIM-3 triggers tumor cells to acquire features of aggressive EMT and may be involved in the pathogenesis of this malignancy. PMID:24137353

  11. Abnormal expression of Tim-3 antigen on peripheral blood T cells is associated with progressive disease in osteosarcoma patients.

    PubMed

    Liu, Hongliang; Zhi, Liqiang; Duan, Ning; Su, Pengxiao

    2016-08-01

    T-cell immunoglobulin and mucin-domain-3-containing molecule 3 (TIM-3) plays a pivotal role in immune regulation and has been found in various tumors. However, the prevalence and distribution of Tim-3 in osteosarcoma (OS) is still unclear. The aim of this study was to investigate the prevalence and distribution of Tim-3 in OS. Tim-3 on peripheral T cells from 82 OS patients and 60 healthy controls were examined by flow cytometry. Plasma levels of IL-2, IFN-γ, and TNF-α were measured by ELSIA. Tim-3 on both CD4(+) T and CD8(+) T cells were significantly upregulated in OS patients compared with healthy controls, Tim-3(+) CD4(+) T, and Tim-3(+) CD8(+) T cells were both negatively associated with serum levels of IL-2 and IFN-γ and TNF-α. In addition, Tim-3 showed similar levels in patients with different tumor sites. Nevertheless, patients with advanced tumor stage, metastasis, and pathological tumor fracture displayed significantly higher Tim-3 on both CD4(+) T cells and CD8(+) T cells than those with early tumor stage, without metastasis and pathological tumor fracture. Moreover, high Tim-3 on peripheral CD4(+) T cells or CD8(+) T were significantly related to poor overall survival (P = 0.014, P = 0.035, respectively). In conclusion, Tim-3 may be a potential diagnostic and prognostic biomarker for OS progression.

  12. TIM-3 Regulates Distinct Functions in Macrophages.

    PubMed

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.

  13. TIM-3 Regulates Distinct Functions in Macrophages

    PubMed Central

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology. PMID:27379093

  14. Plasma soluble Tim-3 emerges as an inhibitor in sepsis: sepsis contrary to membrane Tim-3 on monocytes.

    PubMed

    Ren, F; Li, J; Jiang, X; Xiao, K; Zhang, D; Zhao, Z; Ai, J; Hou, C; Jia, Y; Han, G; Xie, L

    2015-11-01

    Immune dysfunction is the main characteristic of sepsis. T cell Ig and mucin domain protein 3 (Tim-3) on the monocytes has been reported to promote immune homeostasis during sepsis, but the influences of plasm soluble Tim-3 (sTim-3) on the immune system during sepsis remain unknown. Here, 100 patients with different severities of sepsis (40 sepsis, 42 severe sepsis, and 18 septic shock) were enrolled in this study. The Tim-3 and human leukocyte antigen-DR (HLA-DR) on the circulating monocytes were detected using flow cytometry. Plasma sTim-3 was detected by enzyme-linked immunosorbent assay. Inflammatory factors and two kinds of A disintegrin and metalloprotease (ADAM) - ADAM10 and ADAM17 were assessed. The Tim-3 and HLA-DR on the monocytes decreased with increasing sepsis severity. The sTim-3 was reduced in the sepsis and severe sepsis patients but was elevated in the septic shock patients who exhibited significant immunosuppression as predicted by HLA-DR. sTim-3 levels were negatively correlated with IL-12 and TNF-α. ADAM10 and ADAM17, sheddases of Tim-3, exhibited trends toward elevations in the septic shock group. In conclusion, sTim-3 was involved in the development of sepsis. The homeostasis-promoting role of the Tim-3 on the monocytes was disrupted, while the inhibitory role of sTim-3 emerged during sepsis-induced immunosuppression.

  15. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion

    PubMed Central

    Huang, Xiaoyuan; Bai, Xiangyang; Cao, Yang; Wu, Jingyi; Huang, Mei; Tang, Duozhuang; Tao, Si; Zhu, Tao; Liu, Yanling; Yang, Yang; Zhou, Xiaoxi; Zhao, Yanxia; Wu, Mingfu; Wei, Juncheng; Wang, Daowen; Xu, Gang; Wang, Shixuan

    2010-01-01

    Angiogenesis is increasingly recognized as an important prognosticator associated with the progression of lymphoma and as an attractive target for novel modalities. We report a previously unrecognized mechanism by which lymphoma endothelium facilitates the growth and dissemination of lymphoma by interacting with circulated T cells and suppresses the activation of CD4+ T cells. Global gene expression profiles of microdissected endothelium from lymphoma and reactive lymph nodes revealed that T cell immunoglobulin and mucin domain–containing molecule 3 (Tim-3) was preferentially expressed in lymphoma-derived endothelial cells (ECs). Clinically, the level of Tim-3 in B cell lymphoma endothelium was closely correlated to both dissemination and poor prognosis. In vitro, Tim-3+ ECs modulated T cell response to lymphoma surrogate antigens by suppressing activation of CD4+ T lymphocytes through the activation of the interleukin-6–STAT3 pathway, inhibiting Th1 polarization, and providing protective immunity. In a lymphoma mouse model, Tim-3–expressing ECs promoted the onset, growth, and dissemination of lymphoma by inhibiting activation of CD4+ T cells and Th1 polarization. Our findings strongly argue that the lymphoma endothelium is not only a vessel system but also a functional barrier facilitating the establishment of lymphoma immune tolerance. These findings highlight a novel molecular mechanism that is a potential target for enhancing the efficacy of tumor immunotherapy and controlling metastatic diseases. PMID:20176801

  16. Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-κB pathway and epithelial-mesenchymal transition.

    PubMed

    Feng, Z M; Guo, S M

    2016-09-02

    The aim of this study was to investigate the expression of T-cell immunoglobulin mucin domain molecule-3 (Tim-3) in osteosarcoma tissues, and analyze its effect on cell proliferation and metastasis in an osteosarcoma cell line. Tim-3 mRNA and protein expression in osteosarcoma tissue was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. Additionally, the cell viability, apoptosis rate, and invasive ability of the osteosarcoma cell line MG-63 were tested using the methyl thiazolyl tetrazolium assay, Annexin V-propidium iodide flow cytometry, and a Transwell assay, respectively, following Tim-3 interference using small interfering RNA (siRNA). We also analyzed the expression of Snail, E-cadherin, vimentin, and nuclear factor (NF)-kB in the cells by western blot. We observed that Tim-3 mRNA and protein was significantly overexpressed in osteosarcoma tissues, compared to the adjacent normal tissue (P < 0.01). Moreover, MG-63 cells transfected with the Tim-3 siRNA presented lower cell viability, a greater number of apoptotic cells, and decreased invasive ability (P < 0.01), compared to control cells. Additionally, we observed a decrease in Snail and vimentin expression, an increase in the E-cadherin level, and an increase in NF-kB p65 phosphorylation (P < 0.01) in Tim-3 siRNA-transfected MG-63 cells. Based on these results, we concluded that Tim-3 is highly expressed in osteosarcoma tissue. Moreover, we speculated that interfering in Tim-3 expression could significantly suppress osteosarcoma cell (MG-63) proliferation and metastasis via the NF-kB/Snail signaling pathway and epithelial-mesenchymal transition.

  17. Tim-3 as a diagnostic and prognostic biomarker of osteosarcoma.

    PubMed

    Ge, Wenhui; Li, Jing; Fan, Wenhao; Xu, Delong; Sun, Shangfei

    2017-07-01

    Osteosarcoma is the most frequent primary bone tumor that affects adolescents and children. However, diagnostic and prognostic biomarkers for osteosarcoma remain lacking. (Tim-3) T-cell immunoglobulin domain and mucin domain-3, which negatively regulates T cell helper (Th1) cells and affects cytokine expression, has attracted increasing attention due to its critical role in regulating both adaptive and innate immune cells. In this study, we evaluated serum soluble Tim-3 level in osteosarcoma patients to explore its diagnostic and prognostic value for this particular malignancy. Serum soluble Tim-3 level was measured with enzyme-linked immunosorbent assay in 120 osteosarcoma patients, 120 benign bone tumors patients and 120 healthy controls, followed by analysis of the correlation with clinic pathological characteristics. Receiver operating curves, Kaplan-Meier curves, and log-rank analyses as well as Cox proportional hazard models were used to evaluate the diagnostic and prognostic significance. Serum solubleTim-3 level was remarkably elevated in osteosarcoma patients. Osteosarcoma patients with larger tumor size, late stages and distant metastases were accompanied with higher levels of Tim-3. ROC/AUC analysis indicated thatTim-3 served as a reliable marker to distinguish healthy participants from Tim-3 patients. Osteosarcoma patients with higher Tim-3 had relatively lower survival. Multivariate analyses for overall survival revealed that high serum soluble Tim-3 level was an independent prognostic factor for osteosarcoma. Furthermore, Tim-3 levels of CD8+ and CD4+ T cells were elevated in peripheral circulation of osteosarcoma patients. Therefore, It was indicated in our research that elevated serum soluble Tim-3 level might be a novel potential diagnostic and prognostic biomarker for osteosarcoma patients.

  18. The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter.

    PubMed

    Yun, Su Jin; Jun, Ka-Jung; Komori, Kuniharu; Lee, Mi Jin; Kwon, Myung-Hee; Chwae, Yong-Joon; Kim, Kyongmin; Shin, Ho-Joon; Park, Sun

    2016-07-01

    Tim-3 is an immunomodulatory protein that is expressed constitutively on monocytes but is induced in activated T cells. The mechanisms involved in the regulation of TIM-3 transcription are poorly understood. In the present study, we investigated whether methylation of the TIM-3 promoter is involved in regulatingTIM-3 transcription in T cells, and identified a transcription factor that regulates TIM-3 transcription by associating with the TIM-3 minimal promoter region. Pyrosequencing of the TIM-3 promoter up to -1440bp revealed 11 hypermethylated CpG sites and 4 hypomethylated CpG sites in human CD4(+) T cells as well as in CD11b(+) cells. Dimethylation of histone H3 lysine 4 (H3K4), a mark of transcriptional activation, was predominantly found in the proximal TIM-3 promoter -954 to -34bp region, whereas trimethylation of H3K9 and H3K27, which are markers of transcriptional suppression, were mostly observed in the distal promoter -1549 to -1048bp region in human CD4(+) T cells and CD11b(+) cells. However, no change in the methylation status of CpG sites and the histone H3 in the TIM-3 promoter was found during induction of TIM-3 transcription in T cells. Finally, AP-1 involvement in TIM-3 transcription was shown in relation with the TIM-3 minimal promoter -146 to +144bp region. The present study defines the minimal TIM-3 promoter region and demonstrates its interaction with c-Jun during TIM-3 transcription in CD4(+) T cells.

  19. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer.

    PubMed

    Kang, Chiao-Wen; Dutta, Avijit; Chang, Li-Yuan; Mahalingam, Jayashri; Lin, Yung-Chang; Chiang, Jy-Ming; Hsu, Chen-Yu; Huang, Ching-Tai; Su, Wan-Ting; Chu, Yu-Yi; Lin, Chun-Yen

    2015-10-23

    TIM-3 functions to enforce CD8+ T cell exhaustion, a dysfunctional state associated with the tolerization of tumor microenvironment. Here we report apoptosis of IFN-γ competent TIM-3+ population of tumor-infiltrating CD8+ T cells in colon cancer. In humans suffering from colorectal cancer, TIM-3+ population is higher in cancer tissue-resident relative to peripheral blood CD8+ T cells. Both the TIM-3+ and TIM-3- cancer tissue-resident CD8+ T cells secrete IFN-γ of comparable levels, although apoptotic cells are more in TIM-3+ compared to TIM-3- population. In mouse CT26 colon tumor model, majority of tumor-infiltrating CD8+ T cells express TIM-3 and execute cytolysis function with higher effector cytokine secretion and apoptosis in TIM-3+ compared to TIM-3- population. The tumor cells secrete galectin-9, which increases apoptosis of tumor-infiltrating CD8+ T cells. Galectin-9/TIM-3 signaling blockade with anti-TIM-3 antibody reduces the apoptosis and in addition, inhibits tumor growth in mice. The blockade increases therapeutic efficacy of cyclophosphamide to treat tumor in mice as well. These results reveal a previously unexplored role of TIM-3 on tumor-infiltrating CD8+ T cells in vivo.

  20. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer.

    PubMed

    Zhou, Encheng; Huang, Qing; Wang, Ji; Fang, Chengfeng; Yang, Leilei; Zhu, Min; Chen, Jianhui; Chen, Lihua; Dong, Milian

    2015-01-01

    Tim-3 (T cell immunoglobulin and mucin domain 3), belonging to the member of the novel Tim family, has been confirmed that it plays a critical negative role in regulating the immune responses against viral infection and carcinoma. Recently, it has also been reported that the over-expression of Tim-3 is associated with poor prognosis in solid tumors. However, the role of Tim-3 in colorectal cancer remains largely unknown. In the current study, we aim to investigate the expression of Tim-3 in colorectal carcinoma and discuss the relationship between Tim-3 expression and colon cancer prognosis, thus speculating the possible role of Tim-3 in colon cancer progression. Colon cancer tissues and paired normal tissue were obtained from 201 patients with colon cancer for preparation of tissue microarray. Tim-3 expression was evaluated by immunohistochemical staining. The Tim-3 expression level was evaluated by q-RT-PCR, western blot and immunocytochemistry in four colon cancer cell lines (HT-29, HCT116, LoVo, SW620). Tim-3 was expressed in 92.5% tumor tissue samples and 86.5% corresponding normal tissue samples. Expression of Tim-3 was significantly higher in tumor tissues than in normal tissues (P < 0.0001). Tim-3 expression in colon cancer tissues is in correlation with colon cancer lymphatic metastasis and TNM (P < 0.0001). Multivariate analysis demonstrated that Tim-3 expression could be a potential independent prognostic factor for colon cancer patients (P < 0.0001). Kaplan-Meier survival analysis result showed that patients with higher Tim-3 expression had a significantly shorter survival time than those with lower Tim-3 expression patients. Our results indicated that Tim-3 might participate in the tumorgenesis of colon cancer and Tim-3 expression might be a potential independent prognostic factor for patients with colorectal cancer.

  1. The immune receptor Tim-3 acts as a trafficker in a Tim-3/galectin-9 autocrine loop in human myeloid leukemia cells

    PubMed Central

    Gonçalves Silva, Isabel; Rüegg, Laura; Gibbs, Bernhard F.; Bardelli, Marco; Fruehwirth, Alexander; Varani, Luca; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2016-01-01

    ABSTRACT The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells. PMID:27622049

  2. The immune receptor Tim-3 acts as a trafficker in a Tim-3/galectin-9 autocrine loop in human myeloid leukemia cells.

    PubMed

    Gonçalves Silva, Isabel; Rüegg, Laura; Gibbs, Bernhard F; Bardelli, Marco; Fruehwirth, Alexander; Varani, Luca; Berger, Steffen M; Fasler-Kan, Elizaveta; Sumbayev, Vadim V

    2016-07-01

    The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells.

  3. Tim-3 and Tim-4 as the potential targets for antitumor therapy.

    PubMed

    Cheng, Lin; Ruan, Zhihua

    2015-01-01

    Both Tim-3 and Tim-4 belong to the T-cell immunoglobulin and mucin domain (Tim) gene family, which plays a critical role in immunoregulation. Tim-3 has been suggested as a negative regulator of anti-tumor immunity due to its function on inducing T cells exhaustion in cancer. In addition to its expression on exhausted T cells, Tim-3 also has been reported to up-regulate on nature killer (NK) cells and promote NK cells functionally exhausted in cancer. While Tim-3 selectively expression on most types of leukemia stem cells, it promotes the progression of acute myeloid leukemia. Recently, data from experimental models of tumor discovered that Tim-3 and Tim-4 up-regulation on tumor associated dendritic cells and macrophages attenuated the anti-tumor effects of cancer vaccines and chemotherapy. Moreover, co-blockage of Tim-3 and PD-1, Tim-3 and CD137, Tim-3 and carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) could enhance cell-mediated immunity in advanced tumor, and combined treatment with anti-Tim-3 and anti-Tim-4 mAbs further increase the efficacy of cancer vaccines. The therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy to improve the clinical efficacy of cancer immunotherapy.

  4. Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection.

    PubMed

    Okagawa, Tomohiro; Konnai, Satoru; Ikebuchi, Ryoyo; Suzuki, Saori; Shirai, Tatsuya; Sunden, Yuji; Onuma, Misao; Murata, Shiro; Ohashi, Kazuhiko

    2012-05-23

    The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3) and its ligand, galectin-9 (Gal-9), are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV)-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection.

  5. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages.

    PubMed

    Yan, Wenjiang; Liu, Xiao; Ma, Hongxin; Zhang, Hualin; Song, Xiaojia; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2015-10-01

    Tumour-associated macrophages (TAMs) and their alternative activation contribute greatly to the development of hepatocellular carcinoma (HCC). Tim-3 is highly expressed on macrophages and regulates macrophage functions in several conditions. However, whether Tim-3 is involved in the activation and the function of TAMs has not been reported. Tim-3 expression in HCC samples was evaluated by flow cytometry, immunohistochemistry and confocal analysis. We analysed the effects of Tim-3 knockdown on macrophages in growth of H22 tumour homografts in BALB/c mice. Tim-3 interference was performed by neutralising antibody, small interfering RNA or short hairpin RNA-expressing lentivirus. Cytokine production was evaluated by reverse transcription PCR, ELISA or Cytometric Bead Array. The effects of Tim-3 interference in macrophages were examined with regard to alternative activation of macrophages and proliferation and migration of Hepa1-6 cells. Cell growth curve, colony formation and transwell assays were involved to estimate cell proliferation and migration. Tim-3 expression was significantly increased in both peripheral blood monocytes and TAMs in patients with HCC. The Tim-3 expression in monocytes/TAMs strongly correlated with higher tumour grades and the poor survival of patients with HCC. Consistently, HCC conditioned medium or transforming growth factor-β fostered Tim-3 expression and the alternative activation of macrophages. Moreover, Tim-3 interference in macrophages significantly inhibited the alternative activation of macrophages and suppressed HCC cell growth both in vitro and in vivo. Blocking interleukin 6 reversed the Tim-3-mediated effects on HCC cell growth in vitro. Tim-3 displays critical roles in microenvironment-induced activation and protumoral effects of TAMs in HCC. Interference of Tim-3 might be great potential in HCC therapy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  6. Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection

    PubMed Central

    Gorman, Jacob V.; Starbeck-Miller, Gabriel; Pham, Nhat-Long L.; Traver, Geri L.; Rothman, Paul B.; Harty, John T.; Colgan, John D.

    2014-01-01

    Tim-3 is a surface molecule expressed throughout the immune system that can mediate both stimulatory and inhibitory effects. Previous studies have provided evidence that Tim-3 functions to enforce CD8 T cell exhaustion, a dysfunctional state associated with chronic stimulation. In contrast, the role of Tim-3 in the regulation of CD8 T cell responses to acute and transient stimulation remains undefined. To address this knowledge gap, we examined how Tim-3 affects CD8 T cell responses to acute Listeria monocytogenes (LM) infection. Analysis of wild-type (WT) mice infected with LM revealed that Tim-3 was transiently expressed by activated CD8 T cells and was associated primarily with acquisition of an effector phenotype. Comparison of responses to LM by WT and Tim-3 KO mice showed that the absence of Tim-3 significantly reduced the magnitudes of both primary and secondary CD8 T cell responses, which correlated with decreased IFN-γ production and degranulation by Tim-3 KO cells stimulated with peptide antigen ex vivo. To address the T cell-intrinsic role of Tim-3, we analyzed responses to LM infection by WT and Tim-3 KO TCR-transgenic CD8 T cells following adoptive transfer into a shared WT host. In this setting, the accumulation of CD8 T cells and the generation of cytokine-producing cells were significantly reduced by the lack of Tim-3, demonstrating that this molecule has a direct effect on CD8 T cell function. Combined, our results suggest that Tim-3 can mediate a stimulatory effect on CD8 T cell responses to an acute infection. PMID:24567532

  7. Tim-3 identifies exhausted follicular helper T cells in breast cancer patients.

    PubMed

    Zhu, Shiguang; Lin, Jun; Qiao, Guangdong; Wang, Xingmiao; Xu, Yanping

    2016-09-01

    Breast cancer is the most common cancer diagnosed in women worldwide. Although a series of treatment options have improved the overall 5-year survival rate to 90%, individual responses still vary from patient to patient. New evidence suggested that the infiltration of CXCL13-expressing CD4(+) follicular helper cells (Tfh) in breast tumor predicted better survival. Here, we examined the regulation of Tfh function in breast cancer patients in depth. We found that the frequencies of circulating Tfh cells were not altered in breast cancer patients compared to healthy controls. However, the expression of PD-1 and Tim-3 in Tfh cells was significantly elevated in breast cancer patients. Interestingly, we observed a preferential upregulation of PD-1 in Tim-3(+) Tfh cells compared to Tim-3(-) Tfh cells. Coexpression of PD-1 and Tim-3 is typically a hallmark of functional exhaustion in chronic virus infections and tumor. To examine whether Tim-3(+) identifies exhausted Tfh cells, we stimulated Tfh cells with anti-CD3/CD28, and found that Tim-3(+) T cells expressed reduced frequencies of chemokine CXCL13 and cytokine interleukin 21 (IL-21), and contained fewer proliferating cells, than Tim-3(-) Tfh cells. Compared to those cocultured with Tim-3(-) Tfh cells, naive B cells cocultured with Tim-3(+) Tfh cells resulted in significantly less IgM, IgG and IgA production after 12 day incubation, demonstrating a reduction in Tim-3(+) Tfh-mediated B cell help. Moreover, the frequencies of Tim-3(+) Tfh cells in resected breast tumor were further upregulated than autologous blood, suggesting a participation of Tim-3(+) Tfh cells in tumor physiology. Overall, the data presented here provided new insight in the regulation of Tfh cells in breast cancer patients.

  8. Tim-3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages.

    PubMed

    Jiang, Xingwei; Yu, Jiahui; Shi, Qingzhu; Xiao, Yan; Wang, Wei; Chen, Guojiang; Zhao, Zhi; Wang, Renxi; Xiao, He; Hou, Chunmei; Feng, Jiannan; Ma, Yuanfang; Shen, Beifen; Wang, Lili; Li, Yan; Han, Gencheng

    2015-10-01

    Tim-3 is involved in the physiopathology of inflammatory bowel disease (IBD), but the underlying mechanism is unknown. Here, we demonstrated that, in mouse with DSS colitis, Tim-3 inhibited the polarization of pathogenic pro-inflammatory M1 macrophages, while Tim-3 downregulation or blockade resulted in an increased M1 response. Adoptive transfer of Tim-3-silenced macrophages worsened DSS colitis and enhanced inflammation, while Tim-3 overexpression attenuated DSS colitis by decreasing the M1 macrophage response. Co-culture of Tim-3-overexpressing macrophages with intestinal lymphocytes decreased the pro-inflammatory response. Tim-3 shaped intestinal macrophage polarization may be TLR-4 dependent since Tim-3 blockade failed to exacerbate colitis or increase M1 macrophage response in the TLR-4 KO model. Finally, Tim-3 signaling inhibited phosphorylation of IRF3, a TLR-4 downstream transcriptional factor regulating macrophage polarization. A better understanding of this pathway may shed new light on colitis pathogenesis and result in a new therapeutic strategy.

  9. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation.

    PubMed

    Phong, Binh L; Avery, Lyndsay; Sumpter, Tina L; Gorman, Jacob V; Watkins, Simon C; Colgan, John D; Kane, Lawrence P

    2015-12-14

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.

  10. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells.

    PubMed

    Gautron, Anne-Sophie; Dominguez-Villar, Margarita; de Marcken, Marine; Hafler, David A

    2014-09-01

    T-cell immunoglobulin and mucin domain 3 (TIM-3) is an Ig-superfamily member expressed on IFN-γ-secreting Th1 and Tc1 cells and was identified as a negative regulator of immune tolerance. TIM-3 is expressed by a subset of activated CD4(+) T cells, and anti-CD3/anti-CD28 stimulation increases both the level of expression and the number of TIM-3(+) T cells. In mice, TIM-3 is constitutively expressed on natural regulatory T (Treg) cells and has been identified as a regulatory molecule of alloimmunity through its ability to modulate CD4(+) T-cell differentiation. Here, we examined TIM-3 expression on human Treg cells to determine its role in T-cell suppression. In contrast to mice, TIM-3 is not expressed on Treg cells ex vivo but is upregulated after activation. While TIM-3(+) Treg cells with increased gene expression of LAG3, CTLA4, and FOXP3 are highly efficient suppressors of effector T (Teff) cells, TIM-3(-) Treg cells poorly suppressed Th17 cells as compared with their suppression of Th1 cells; this decreased suppression ability was associated with decreased STAT-3 expression and phosphorylation and reduced gene expression of IL10, EBI3, GZMB, PRF1, IL1Rα, and CCR6. Thus, our results suggest that TIM-3 expression on Treg cells identifies a population highly effective in inhibiting pathogenic Th1- and Th17-cell responses.

  11. Tim-3 Up-regulation in Patients with Gastric Cancer and Peptic Ulcer Disease

    PubMed

    Naghavi-Alhosseini, Mahdieh; Tehrani, Mohsen; Ajami, Abolghasem; Rafiei, Alireza; Taghvaei, Tarang; Vahedi-Larijani, Laleh; Hossein-Nataj, Hadi; Asgarian-Omran, Hossein

    2017-03-01

    Background: T-cell immunoglobulin and mucin domain protein-3 (Tim-3), an inhibitory immunoregulatory receptor, has been recently implicated in tumor biology and tumor-associated immune suppression. In the present study, expression of Tim-3 was evaluated in gastric cancer (GC) and peptic ulcer disease (PUD) at both mRNA and protein levels. Methods: A total of 133 gastric tissue biopsies, comprising 43 from GC cases, 48 from PUD and 42 from non-ulcer dyspepsia (NUD) serving as controls were collected. Additionally, non-neoplastic adjacent tissue biopsies were also obtained from 6 patients with GC. Infection with Helicobacter pylori was determined by the rapid urease test for all participants and H&E staining was conducted for GC and PUD patients. Tim-3 relative mRNA expression was determined by SYBR Green based Real-Time PCR using β-actin as a reference gene. Tim-3 protein expression was also studied by immunohistochemistry in 7 GC, 7 PUD and 10 NUD tissue samples. Results: Tim-3 was expressed at higher levels in GC (p=0.030) and PUD (p=0.022) cases compared to he NUD group. Among paired samples obtained from gastric cancer patients, tumor tissues showed elevated Tim-3 expression (p=0.019) in comparison with adjacent non-neoplastic biopsies. Tim-3 mRNA findings were supported by detection of more Tim-3 protein in cancerous (p=0.002) and ulcerative (p=0.01) tissues than in controls. Tim-3 was similarly expressed in H. pylori positive and negative cases.Conclusion: Higher Tim-3 expression in patients with gastric cancer and peptic ulcer implies that it might be involved in immune regulation and establishment of these gastrointestinal diseases. Targeted immunotherapy by blocking of inhibitory receptors like Tim-3 could be a promising approach for gastric cancer treatment. Creative Commons Attribution License

  12. Tim-3 Up-regulation in Patients with Gastric Cancer and Peptic Ulcer Disease

    PubMed Central

    Naghavi-Alhosseini, Mahdieh; Tehrani, Mohsen; Ajami, Abolghasem; Rafiei, Alireza; Taghvaei, Tarang; Vahedi-Larijani, Laleh; Hossein-Nataj, Hadi; Asgarian-Omran, Hossein

    2017-01-01

    Background: T-cell immunoglobulin and mucin domain protein-3 (Tim-3), an inhibitory immunoregulatory receptor, has been recently implicated in tumor biology and tumor-associated immune suppression. In the present study, expression of Tim-3 was evaluated in gastric cancer (GC) and peptic ulcer disease (PUD) at both mRNA and protein levels. Methods: A total of 133 gastric tissue biopsies, comprising 43 from GC cases, 48 from PUD and 42 from non-ulcer dyspepsia (NUD) serving as controls were collected. Additionally, non-neoplastic adjacent tissue biopsies were also obtained from 6 patients with GC. Infection with Helicobacter pylori was determined by the rapid urease test for all participants and H&E staining was conducted for GC and PUD patients. Tim-3 relative mRNA expression was determined by SYBR Green based Real-Time PCR using β-actin as a reference gene. Tim-3 protein expression was also studied by immunohistochemistry in 7 GC, 7 PUD and 10 NUD tissue samples. Results: Tim-3 was expressed at higher levels in GC (p=0.030) and PUD (p=0.022) cases compared to he NUD group. Among paired samples obtained from gastric cancer patients, tumor tissues showed elevated Tim-3 expression (p=0.019) in comparison with adjacent non-neoplastic biopsies. Tim-3 mRNA findings were supported by detection of more Tim-3 protein in cancerous (p=0.002) and ulcerative (p=0.01) tissues than in controls. Tim-3 was similarly expressed in H. pylori positive and negative cases. Conclusion: Higher Tim-3 expression in patients with gastric cancer and peptic ulcer implies that it might be involved in immune regulation and establishment of these gastrointestinal diseases. Targeted immunotherapy by blocking of inhibitory receptors like Tim-3 could be a promising approach for gastric cancer treatment. PMID:28441784

  13. Distinct role of Tim-3 in systemic lupus erythematosus and clear cell renal cell carcinoma.

    PubMed

    Zheng, Hongying; Guo, Xingqing; Tian, Qingwu; Li, Hui; Zhu, Yuanqi

    2015-01-01

    Tim-3 is considered as one of the T-cell immunoglobulin mucin (TIM) gene family members, which contributes to the activating or silencing genes, but the mechanism of Tim-3 function in mediating SLE or tumor metastasis has not been well explored. Here, we reported Tim-3 was high expressed in the peripheral blood mononuclear cells (PBMCs) of patients with SLE, detected by RT-PCR, significantly, GATA-3 mRNA expression also increased in patients with SLE, compared with the healthy control groups. The bioinformatics used to detect the TCGA database indicated the abnormal expression of Tim-3 was involved in several different cancer types. Further, the higher expression of Tim-3 in kidney renal clear cell carcinoma TCGA database indicated it was a marker for worse 5-year survival. The high expression of Tim-3 in different ccRCC cell lines was detected in both RNA level and protein level. Further, two kinds of relative Tim-3 siRNAs in ccRCC cell lines inhibit cell migration and invasion in vitro, However, the inhibition could be partially rescued by the additional GATA3 knockdown. Further, the down regulation in the RNA and protein levels of GATA3, and the negative correlation between Tim-3 and GATA3 implied that suppression of downstream GATA3 was an important mechanism by which Tim-3 triggered metastasis in ccRCC cell lines. Together, our experiments reveal the role for Tim-3 in facilitating SLE or invasive potential of ccRCC cells by either activating GATA3 or inhibiting GATA3, suggesting that Tim-3 might be a potential therapeutic target for treating SLE or clear cell renal cell carcinoma.

  14. Down-regulated expression of Tim-3 promotes invasion and metastasis of colorectal cancer cells.

    PubMed

    Sun, Q Y; Qu, C H; Liu, J Q; Zhang, P; Yao, J

    2017-01-01

    To explore how Tim-3 is expressed and how its expression influences invasion and metastasis of colorectal cancer (CRC) cells. A total of 188 CRC patients were prospectively collected for this study. Meanwhile, 135 normal controls were incorporated during the same period. Intestinal samples of the CRC radical cancerous tissues, paracancerous tissues ( 5.0 cm beyond the cancer tissue) were collected for the following experiment. Furthermore, peripheral venous blood samples (10 ml) were collected from each subject. Immunohistochemical analysis, quantitative real-time polymerase chain reaction (RT-qPCR) and western blot were performed for the detection of Tim-3 in different tissues. The immunohistochemical staining results showed that a positive Tim-3 signal was localized in the cytoplasm and nucleus, observed as yellow or brown granules. Tim-3 was largely expressed in colon carcinoma tissues and normal colon mucosa tissues but was rarely expressed in the cell membrane. RT-qPCR results indicated that Tim-3 mRNA levels were significantly lower in CRC tissues than in paracancerous tissues and normal colon mucosa tissues. A trend of decreased Tim-3 mRNA levels was also found in the paracancerous tissues compared with the normal colon mucosa tissues (all P < 0.05). Western blot results revealed reduced Tim-3 protein expression in CRC tissues compared with normal colon mucosa tissues and paracancerous tissues, and Tim-3 protein expression was much lower in the paracancerous tissues than in the normal colon mucosa tissues (all P < 0.05). Furthermore, obviously lower Tim-3 mRNA levels were found in the poorly differentiated CRC patients and in those with lymph node metastasis and distant metastasis (all P < 0.05). Collectively, Tim-3 expression was mainly located in the cytoplasm and nucleus, showing down-regulated expression in colon carcinoma tissues compared with normal and paracancerous tissues. Reduced Tim-3 expression may promote CRC invasion and metastasis providing a

  15. Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2

    PubMed Central

    Wang, Zhiding; Sun, Dejun; Chen, Guojiang; Li, Ge; Dou, Shuaijie; Wang, Renxi; Xiao, He; Hou, Chunmei; Li, Yan; Feng, Jiannan; Shen, Beifen; Han, Gencheng

    2017-01-01

    T cell immunoglobulin mucin-3 (Tim-3) is an immune checkpoint inhibitor and its dysregulation has been related to T cell tolerance and many immune disorders, such as tumors and infection tolerance. However, the physiopathology roles of Tim-3 in innate immunity remain elusive. Here, we demonstrate that Tim-3 inhibits macrophage phagocytosis of L. monocytogenes by inhibiting the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway and increases bacterial burden. Tim-3 signaling promotes Nrf2 degradation by increasing its ubiquitination and, as a result, decreasing its nuclear translocation. CD36 and heme oxygenase-1 (HO-1), two downstream molecules in the Tim-3-Nrf2 signaling axis, are involved in the Tim-3- mediated immune evasion of L. monocytogenes both in vitro and in vivo. We here identified new mechanisms by which Tim-3 induces infection tolerance. By modulating the Tim-3 pathway, we demonstrate the feasibility of manipulating macrophage function as a potent tool for treating infectious diseases, such as Listeria infection. PMID:28205579

  16. Tim-3: an activation marker and activation limiter of innate immune cells.

    PubMed

    Han, Gencheng; Chen, Guojiang; Shen, Beifen; Li, Yan

    2013-12-10

    Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss (1) how Tim-3 is expressed and regulated on different innate immune cells; (2) how it affects the activity of different innate immune cells; and (3) how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  17. Identification of TIM3 2'-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy.

    PubMed

    Hervas-Stubbs, Sandra; Soldevilla, Mario M; Villanueva, Helena; Mancheño, Uxua; Bendandi, Maurizio; Pastor, Fernando

    2016-01-26

    TIM3 belongs to a family of receptors that are involved in T-cell exhaustion and Treg functions. The development of new therapeutic agents to block this type of receptors is opening a new avenue in cancer immunotherapy. There are currently several clinical trials ongoing to combine different immune-checkpoint blockades to improve the outcome of cancer patients. Among these combinations we should underline PD1:PDL1 axis and TIM3 blockade, which have shown very promising results in preclinical settings. Most of these types of therapeutic agents are protein cell-derived products, which, although broadly used in clinical settings, are still subject to important limitations. In this work we identify by HT-SELEX TIM3 non-antigenic oligonucleotide aptamers (TIM3Apt) that bind with high affinity and specificity to the extracellular motives of TIM3 on the cell surface. The TIM3Apt1 in its monomeric form displays a potent antagonist capacity on TIM3-expressing lymphocytes, determining the increase of IFN-γ secretion. In colon carcinoma tumor-bearing mice, the combinatorial treatment of TIM3Apt1 and PDL1-antibody blockade is synergistic with a remarkable antitumor effect. Immunotherapeutic aptamers could represent an attractive alternative to monoclonal antibodies, as they exhibit important advantages; namely, lower antigenicity, being chemically synthesized agents with a lower price of manufacture, providing higher malleability, and antidote availability.

  18. Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2.

    PubMed

    Wang, Zhiding; Sun, Dejun; Chen, Guojiang; Li, Ge; Dou, Shuaijie; Wang, Renxi; Xiao, He; Hou, Chunmei; Li, Yan; Feng, Jiannan; Shen, Beifen; Han, Gencheng

    2017-02-16

    T cell immunoglobulin mucin-3 (Tim-3) is an immune checkpoint inhibitor and its dysregulation has been related to T cell tolerance and many immune disorders, such as tumors and infection tolerance. However, the physiopathology roles of Tim-3 in innate immunity remain elusive. Here, we demonstrate that Tim-3 inhibits macrophage phagocytosis of L. monocytogenes by inhibiting the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway and increases bacterial burden. Tim-3 signaling promotes Nrf2 degradation by increasing its ubiquitination and, as a result, decreasing its nuclear translocation. CD36 and heme oxygenase-1 (HO-1), two downstream molecules in the Tim-3-Nrf2 signaling axis, are involved in the Tim-3- mediated immune evasion of L. monocytogenes both in vitro and in vivo. We here identified new mechanisms by which Tim-3 induces infection tolerance. By modulating the Tim-3 pathway, we demonstrate the feasibility of manipulating macrophage function as a potent tool for treating infectious diseases, such as Listeria infection.

  19. Tim-3: Expression on immune cells and roles at the maternal-fetal interface.

    PubMed

    Hu, Xiao-Hui; Tang, Mao-Xing; Mor, Gil; Liao, Ai-Hua

    2016-11-01

    Successful pregnancy relies on the accurate regulation of the maternal-fetal immune system. Without enough tolerance in the uterine microenvironment, the mother and the hemiallogeneic fetus could not peacefully coexist. T cell immunoglobulin and mucin domain (Tim)-3 is a molecule originally regarded as to be expressed on terminally differentiated IFN-γ expressing CD4(+) T cells (Th1). The engagement of Tim-3 with its ligand, galectin-9 (Gal-9) could induce the exhaustion or apoptosis of effector T cells, and thus might regulate the tolerance. Tim-3 pathway also participates in regulating the activities of CD4(+) regulatory T cells, monocyte-macrophages, dendritic cells and natural killer cells. Dysregulation of Tim-3 expression can elicit excessive or inhibited inflammatory responses and ultimately result in autoimmune diseases, viral or tumor evasion and pregnancy complications. In this review, we will mainly focus on the expression of Tim-3 on local immune cells and its function in pregnancy. In addition, meaningful questions that need further investigation and the potential roles of Tim-3 in fetal tolerance will be discussed. Deeper understanding of the immune checkpoint receptor Tim-3 will shed new light on exploring the pathogenesis of some pregnancy complications, including pre-eclampsia, intrauterine growth restriction, recurrent spontaneous abortion and preterm birth. Tim-3 pathway might be a new target of immune therapy for pregnancy complications in the future.

  20. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3).

    PubMed

    Wang, Hong-wei; Zhu, Xin-li; Qin, Li-ming; Qian, Hai-jun; Wang, Yiner

    2015-01-01

    Microglia are the main innate immune cells in the central nervous system that are actively involved in maintaining brain homeostasis and diseases. T cell Ig and mucin domain protein 3 (Tim-3) plays critical roles in both the adaptive and the innate immune system and is an emerging therapeutic target for treatment of various disorders. In the brain Tim-3 is specifically expressed on microglia but its functional role is unclear. Here, we showed that Tim-3 was up-regulated on microglia by ATP or LPS stimulation. Tim-3 activation with antibodies increased microglia expression of TGF-β, TNF-α and IL-1β. Blocking of Tim-3 with antibodies decreased the microglial phagocytosis of apoptotic neurons. Tim-3 blocking alleviated the detrimental effect of microglia on neurons and promoted NG2 cell differentiation in co-cultures. Finally, MAPKs namely ERK1/2 and JNK proteins were phosphorylated upon Tim-3 activation in microglia. Data indicated that Tim-3 modulates microglia activity and regulates the interaction of microglia-neural cells.

  1. Impaired functional responses in follicular lymphoma CD8(+)TIM-3(+) T lymphocytes following TCR engagement.

    PubMed

    Gravelle, Pauline; Do, Catherine; Franchet, Camille; Mueller, Sabina; Oberic, Lucie; Ysebaert, Loïc; Larocca, Luigi Maria; Hohaus, Stefan; Calmels, Marie-Noëlle; Frenois, François-Xavier; Kridel, Robert; Gascoyne, Randy D; Laurent, Guy; Brousset, Pierre; Valitutti, Salvatore; Laurent, Camille

    2016-01-01

    Upregulation of T cell immunoglobulin-3 (TIM-3) has been associated with negative regulation of the immune response in chronic infection and cancer, including lymphoma. Here, we investigated the possible correlation between TIM-3 expression by ex vivo cytotoxic T cells (CTL) from follicular lymphoma (FL) biopsies and their functional unresponsiveness that could limit the favorable impact of CTL on disease progression. We report a high percentage of CD8(+)TIM-3(+)T cells in lymph nodes of FL patients. When compared to their CD8(+)TIM-3(-) counterparts, CD8(+)TIM-3(+) T cells exhibited defective cytokine production following TCR engagement. Furthermore, CD8(+)TIM-3(+) T cells display ex vivo markers of lytic granule release and remain unresponsive to further TCR-induced activation of the lytic machinery. Although confocal microscopy showed that TIM-3 expression on CD8(+) T cells correlated with minor alterations of immunological synapse, a selective reduction of ERK signaling in CD8(+)TIM-3(+)T cells was observed by phospho-flow analysis. Finally, short relapse-free survival despite rituximab(R)-chemotherapy was observed in patients with high content of TIM-3(+) cells and a poor infiltrate of granzyme B(+) T cells in FL lymph nodes. Together, our data indicate that, besides selective TCR early signaling defects, TIM-3 expression correlates with unresponsiveness of ex vivo CD8(+) T cells in FL. They show that scores based on the combination of exhaustion and cytolytic markers in FL microenvironment might be instrumental to identify patients at early risk of relapses following R-chemotherapy.

  2. A Novel Soluble Form of Tim-3 Associated with Severe Graft-versus-Host Disease

    PubMed Central

    Hansen, John A.; Hanash, Samir M.; Tabellini, Laura; Baik, Chris; Lawler, Richard L.; Grogan, Bryan M.; Storer, Barry; Chin, Alice; Johnson, Melissa; Wong, Chee-Hong; Zhang, Qing; Martin, Paul J.; McDonald, George B.

    2014-01-01

    The T cell Ig and mucin domain 3 (Tim-3) receptor has been implicated as a negative regulator of adaptive immune responses. We have utilized a proteomic strategy to identify novel proteins associated with graft versus host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). Mass spectrometry analysis of plasma from subjects with mid-gut and upper-gut GVHD compared with those without GVHD identified increased levels of a protein identified with high confidence as Tim-3. A follow-up validation study using an immunoassay to measure Tim-3 levels in individual plasma samples from 127 patients demonstrated significantly higher plasma Tim-3 concentrations in patients with the more severe mid-gut GVHD, compared with those with upper-gut GVHD (P = .005), patients without GVHD (P = .002), and normal controls (P < .0001). Surface expression of Tim-3 was increased on CD8+ T cells from patients with grade 2 to 4 acute GVHD (P = .01). Mass spectrometry–based profiling of plasma from multiple subjects diagnosed with common diseases provided evidence for restricted release of soluble Tim-3 in the context of GVHD. These findings have mechanistic implications for the development of novel strategies for targeting the Tim-3 immune regulatory pathway as an approach to improving control of GVHD. PMID:23791624

  3. Molecular cloning, characterization and expression analysis of Tim-3 and Galectin-9 in the woodchuck model.

    PubMed

    Liu, Yanan; Wang, Junzhong; Wang, Lu; Wang, Baoju; Yang, Shangqing; Wang, Qin; Luo, Jinzhuo; Feng, Xuemei; Yang, Xuecheng; Lu, Yinping; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2017-03-01

    In recent years, a critical role for T cell immunoglobulin mucin domain 3 (Tim-3) and its ligand Galectin-9 (Gal-9) has emerged in infectious disease, autoimmunity and cancer. Manipulating this immune checkpoint may have immunotherapeutic potential and could represent an alternative approach for improving immune responses to viral infections and cancer. The woodchuck (Marmot monax) infected by woodchuck hepatitis virus (WHV) represents an informative animal model to study HBV infection and HCC. In the current study, the cDNA sequences of woodchuck Tim-3 and Gal-9 were cloned, sequenced and characterized. The extracellular domain of Tim-3 cDNA sequence consisted of 576bp coding sequence (CDS) that encoded 192 amino acids. The 1076bp full-length Gal-9 cDNA sequence consisted of 1059bp coding sequence (CDS) that encoded 352 amino acids with a molecular weight of 39.7kDa. The phylogenetic tree analysis revealed that the woodchuck Tim-3 and Gal-9 had the closest genetic relationship with Ictidomys tridecemlineatus. The result of quantification PCR analysis showed that ubiquitous expression of Gal-9 but not Tim-3 in different tissues of naive woodchucks. Elevated liver Gal-9 expression was observed in woodchucks with chronic WHV infection. Moreover, a polyclonal antibody against the extracellular domain of woodchuck Tim-3 were generated and identified by flow cytometry. Our results serve as a foundation for further insight into the role of Tim-3/Galectin-9 signaling pathway in viral hepatitis and HCC in the woodchuck model.

  4. The TIM-3 pathway ameliorates Theiler's murine encephalomyelitis virus-induced demyelinating disease.

    PubMed

    Kaneyama, Tomoki; Tomiki, Hiroki; Tsugane, Sayaka; Inaba, Yuji; Ichikawa, Motoki; Akiba, Hisaya; Yagita, Hideo; Kim, Byung S; Koh, Chang-Sung

    2014-07-01

    Infection by Theiler's murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis. T-cell immunoglobulin and mucin domain-3 (TIM-3) has been demonstrated to play a crucial role in the maintenance of peripheral tolerance. In this study, we examined the regulatory role of the TIM-3 pathway in the development of TMEV-induced demyelinating disease (TMEV-IDD). The expression of TIM-3 was increased at both protein and mRNA levels in the spinal cords of mice with TMEV-IDD compared with naive controls. In addition, by utilizing a blocking mAb, we demonstrate that TIM-3 negatively regulates TMEV-specific ex vivo production of IFN-γ and IL-10 by CD4(+) T cells and IFN-γ by CD8(+) T cells from the CNS of mice with TMEV-IDD at 36 days post-infection (dpi). In vivo blockade of TIM-3 by using the anti-TIM-3 mAb resulted in significant exacerbation of the development of TMEV-IDD both clinically and histologically. The number of infiltrating mononuclear cells in the CNS was also increased in mice administered with anti-TIM-3 mAb both at the induction phase (10 dpi) and at the effector phase (36 dpi). Flow cytometric analysis of intracellular cytokines revealed that the number of CD4(+) T cells producing TNF, IL-4, IL-10 and IL-17 was significantly increased at the effector phase in the CNS of anti-TIM-3 mAb-treated mice. These results suggest that the TIM-3 pathway plays a critical role in the regulation of TMEV-IDD.

  5. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9

    SciTech Connect

    Weyer, Philipp S. van de; Muehlfeit, Michael; Klose, Christoph; Bonventre, Joseph V.; Walz, Gerd; Kuehn, E. Wolfgang . E-mail: wolfgang.kuehn@uniklinik-freiburg.de

    2006-12-15

    Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T{sub H}1-specific type 1 membrane protein and regulates T{sub H}1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T{sub H}1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention.

  6. A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice.

    PubMed

    Gefen, Tal; Castro, Iris; Muharemagic, Darija; Puplampu-Dove, Yvonne; Patel, Shradha; Gilboa, Eli

    2017-10-04

    T cell immunoglobulin-3 (TIM-3) is a negative regulator of interferon-γ (IFN-γ) secreting CD4(+) T cells and CD8(+) T cytotoxic cells. Recent studies have highlighted the role of TIM-3 as an important mediator of CD8(+) T cell exhaustion in the setting of chronic viral infections and cancer. In murine tumor models, antibody blockade of TIM-3 with anti-TIM-3 antibodies as monotherapy has no or minimal antitumor activity, suggesting that TIM-3 signaling exerts an accessory or amplifying effect in keeping immune responses in check. Using a combined bead and cell-based systemic evolution of ligands by exponential enrichment (SELEX) protocol, we have isolated nuclease-resistant oligonucleotide aptamer ligands that bind to cell-associated TIM-3 with high affinity and specificity. A trimeric form of the TIM-3 aptamer blocked the interaction of TIM-3 with Galectin-9, reduced cell death, and enhanced survival, proliferation, and cytokine secretion in vitro. In tumor-bearing mice, the aptamer delayed tumor growth as monotherapy and synergized with PD-1 antibody in prolonging the survival of the tumor-bearing mice. Both in vitro and in vivo, the trimeric aptamer displayed superior activity compared to the currently used RMT3-23 monoclonal antibody. This study suggests that multi-valent aptamers could represent an alternative platform to generate potent ligands to manipulate the function of TIM-3 and other immune modulatory receptors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Elevated TIM3+ hematopoietic stem cells in untreated myelodysplastic syndrome displayed aberrant differentiation, overproliferation and decreased apoptosis.

    PubMed

    Tao, Jing-lian; Li, Li-juan; Fu, Rong; Wang, Hua-quan; Jiang, Hui-juan; Yue, Lan-zhu; Zhang, Wei; Liu, Hui; Ruan, Er-bao; Qu, Wen; Wang, Guo-jin; Wang, Xiao-ming; Wu, Yu-hong; Liu, Hong; Song, Jia; Guan, Jing; Xing, Li-min; Shao, Zong-hong

    2014-06-01

    TIM3, as a negative regulator of anti-tumor immunity, is highly expressed on LSCs, but not on normal HSCs. TIM3 on HSCs in MDS patients has not been clarified. Here, both the percentage of TIM3 on HSCs and the MFI of TIM3+ HSCs were higher in untreated MDS than control and were closed to AML, and excessive TIM3+ HSCs was closely related to clinical parameters: WPSS score, karyotype analysis, morphologic blasts, the number of cytopenia involving hematopoietic lineages, anemia and granulocytopenia. TIM3+ HSCs expressed lower CD11b, TpoR, EpoR, G-CSFR and Annexin V, and higher CD71 and GATA2. TIM3+ HSCs displayed aberrant differentiation, overproliferation and decreased apoptosis. TIM3 might be a promising marker for identifying malignant clone cells in MDS and a candidate for targeted therapy.

  8. Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer.

    PubMed

    Xu, Benling; Yuan, Long; Gao, Quanli; Yuan, Peng; Zhao, Peng; Yuan, Huijuan; Fan, Huijie; Li, Tiepeng; Qin, Peng; Han, Lu; Fang, Weijia; Suo, Zhenhe

    2015-08-21

    T-cell exhaustion represents a progressive loss of T-cell function. The inhibitory receptor PD-1 is known to negatively regulate CD8+ T cell responses directed against tumor antigen, but the blockades of PD-1 pathway didn't show the objective responses in patients with colorectal cancer (CRC). Thus, further exploring the molecular mechanism responsible for inducing T-cell dysfunction in CRC patients may reveal effective strategies for immune therapy. This study aims to characterize co-inhibitory receptors on T cells in CRC patients to identify novel targets for immunotherapy. In this study, peripheral blood samples from 20 healthy controls and 54 consented CRC patients, and tumor and matched paraneoplastic tissues from 7 patients with advanced CRC, subjected to multicolor flow cytometric analysis of the expression of PD-1 and Tim-3 receptors on CD8+ T cells. It was found that CRC patients presented with significantly higher levels of circulating Tim-3+PD-1+CD8+ T cells compared to the healthy controls (medians of 3.12% and 1.99%, respectively, p = 0.0403). A similar increase of Tim-3+PD-1+CD8+ T cells was also observed in the tumor tissues compared to paraneoplastic tussues. Tim-3+PD-1+CD8+ T cells in tumor tissues produced even less cytokine than that in paraneoplastic tissues. Functional ex vivo experiments showed that Tim-3+PD-1+CD8+ T cells produced significantly less IFN-γ than Tim-3-PD-1-CD8+ T cells, followed by Tim-3+PD-1-CD8+ T cells, and Tim-3-PD-1+CD8+ T cells, indicating a stronger inhibition of IFN-γ production of Tim-3+CD8+ T cells . It is also found in this study that Tim-3+PD-1+CD8+ T cell increase in circulation was correlated with clinical cancer stage but not histologic grade and serum concentrations of cancer biomarker CEA. Our results indicate that upregulation of the inhibitory receptor Tim-3 may restrict T cell responses in CRC patients, and therefore blockage of Tim-3 and thus restoring T cell responses may be a potential therapeutic

  9. Expression of human T cell immunoglobulin domain and mucin-3 (TIM-3) and TIM-3 ligands in peripheral blood from patients with systemic lupus erythematosus.

    PubMed

    Jiao, Qingqing; Qian, Qihong; Zhao, Zuotao; Fang, Fumin; Hu, Xiaohan; An, Jingnan; Wu, Jian; Liu, Cuiping

    2016-10-01

    Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease. The T cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its level of expression in the immune cells of patients with SLE is still uncertain. The aim of this study was to examine whether TIM-3 and Galectin-9 (Gal-9) contribute to the pathogenesis of SLE. In total, 30 patients with SLE and 30 healthy controls were recruited, and their levels of TIM-3 expression in peripheral blood mononuclear cells (PBMCs) were examined via flow cytometry. Meanwhile, the levels of Gal-9 expression in serum and in PBMCs were measured via an enzyme-linked immunosorbent assay (ELISA) kit and immunofluorescence staining, respectively. The relation between the level of TIM-3 or Gal-9 expression and the SLE disease activity index (SLEDAI) was also studied. Finally, the function of the TIM-3 and Gal-9 pathway in the pathogenesis of SLE was explored. Our results showed that the levels of expression of TIM-3 and Gal-9 on CD4(+) T cells, CD8(+) T cells, CD56(+) T cells and in serum in patients with SLE were significantly higher than those of healthy controls. We found that the level of Gal-9 expression was significantly higher in both serum and PMBCs of patients with SLE than in healthy controls. The up-regulation of TIM-3 and Gal-9 expression in patients with SLE was closely related to the SLEDAI scores. In addition, Gal-9 blocking antibody significantly inhibited CD3-stimulated PBMC proliferation and Th1-derived cytokines (IL-2, IFN-γ, and TNF-α), Th2-derived cytokines (IL-4, IL-10), a Th17-derived cytokine (IL-17A), and release of a pro-inflammatory factor (IL-6) in patients with SLE. The results suggest that increased expression of TIM-3 and Gal-9 may be a biomarker for SLE diagnosis and that the TIM-3 pathway may be a target for SLE treatment.

  10. Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients

    PubMed Central

    Sada-Ovalle, Isabel; Ocaña-Guzman, Ranferi; Pérez-Patrigeón, Santiago; Chávez-Galán, Leslie; Sierra-Madero, Juan; Torre-Bouscoulet, Luis; Addo, Marylyn M.

    2015-01-01

    Introduction T cell immunoglobulin and mucin domain (Tim) 3 and programmed death 1 (PD-1) are co-inhibitory receptors involved in the so-called T cell exhaustion, and in vivo blockade of these molecules restores T cell dysfunction. High expression of Tim-3 and PD-1 is induced after chronic antigen-specific stimulation of T cells during HIV infection. We have previously demonstrated that the interaction of Tim-3 with its ligand galectin-9 induces macrophage activation and killing of Mycobacterium tuberculosis. Our aim in this study was to analyze the Tim-3 expression profile before and after six months of antiretroviral therapy and the impact of Tim-3 and PD-1 blocking on immunity against M. tuberculosis. Materials and methods HIV+ patients naïve to anti-retroviral therapy (ART) were followed up for six months. Peripheral immune-cell phenotype (CD38/HLA-DR/galectin-9/Tim-3 and PD-1) was assessed by flow cytometry. Supernatants were analyzed with a multiplex cytokine detection system (human Th1/Th2 cytokine Cytometric Bead Array) by flow cytometry. Control of bacterial growth was evaluated by using an in vitro experimental model in which virulent M. tuberculosis-infected macrophages were cultured with T cells in the presence or absence of Tim-3 and PD-1 blocking antibodies. Interleukin-1 beta treatment of infected macrophages was evaluated by enumerating colony-forming units. Results We showed that HIV+ patients had an increased expression of Tim-3 in T cells and were able to control bacterial growth before ART administration. By blocking Tim-3 and PD-1, macrophages and T cells recovered their functionality and had a higher ability to control bacterial growth; this result was partially dependent on the restitution of cytokine production. Conclusions In this study, we demonstrated that increased Tim-3 expression can limit the ability of the immune system to control the infection of intracellular bacteria such as M. tuberculosis. The use of ART and the in vitro

  11. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection.

    PubMed

    Moorman, Jonathan P; Wang, Jia M; Zhang, Ying; Ji, Xiao J; Ma, Cheng J; Wu, Xiao Y; Jia, Zhan S; Wang, Ke S; Yao, Zhi Q

    2012-07-15

    Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.

  12. Tim-3 pathway affects NK cell impairment in patients with active tuberculosis.

    PubMed

    Wang, Feng; Hou, Hongyan; Wu, Shiji; Tang, Qing; Huang, Min; Yin, Botao; Huang, Jing; Liu, Weiyong; Mao, Lie; Lu, Yanfang; Sun, Ziyong

    2015-12-01

    Active tuberculosis (TB) patients show impaired NK cell function, and the underlying mechanism remains largely unknown. In this study, we confirmed the decrease in activation, cytokine secretion, and degranulation potential of NK cells in active TB patients. We further investigated whether coinhibitory receptor Tim-3 was involved with impairment of NK cells. Our results revealed that the expression of Tim-3 on NK cells was increased in active TB patients. Tim-3 expression was inversely correlated with IL-12-stimualted IFN-γ production. Moreover, blocking the Tim-3 pathway restored IFN-γ secretion and degranulation of NK cells. Blocking this pathway also increased NK cell cytotoxicity against K562 target cells, and improved the ability of NK cells to control Mtb growth in monocyte-derived macrophages. The Tim-3 expression on NK cells was also observed to be significantly decreased in TB patients post-treatment. In this study, we have identified that Tim-3 is involved with NK cell impairment in TB patients.

  13. Quantitative assessment of TIM-3 polymorphisms and cancer risk in Chinese Han population.

    PubMed

    Gao, Xueren; Yang, Jiaojiao; He, Youji; Zhang, Jianqiong

    2016-06-14

    Previous studies have investigated the associations of TIM-3 polymorphisms (-1516G/T, -574G/T, and +4259T/G) with cancer risk in Chinese Han population, but the results remain conflicting. Therefore, we conducted a meta-analysis to derive a more precise estimation of the associations. The pooled data showed that TIM-3 polymorphisms (-1516G/T, -574G/T, and +4259T/G) were significantly associated with an increased risk of overall cancer in Chinese Han population. Subgroup analyses based on cancer system showed that TIM-3 -1516G/T polymorphism was only associated with an increased risk of digestive system cancer in Chinese Han population. TIM-3 -574G/T polymorphism was associated with an increased risk of digestive system cancer and other cancer in Chinese Han population. TIM-3 +4259T/G polymorphism was only associated with an increased risk of other cancer in Chinese Han population. In summary, our results indicated that TIM-3 polymorphisms (-1516G/T, -574G/T, and +4259T/G) were associated with the increased risk of cancer in Chinese Han population.

  14. Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis.

    PubMed

    Cheng, Gui; Li, Min; Wu, Jun; Ji, Mei; Fang, Cheng; Shi, Hongbing; Zhu, Danxia; Chen, Lujun; Zhao, Jiemin; Shi, Liangrong; Xu, Bin; Zheng, Xiao; Wu, Changping; Jiang, Jingting

    2015-01-01

    As a negative regulatory molecule, T-cell immunoglobulin-and mucin domain-3 (Tim-3) plays a crucial role in the tumor immunological tolerance. In the present study, we aimed to determine the Tim-3 expression in gastric cancer tissue and its relationship with clinicopathological parameters and prognosis. The Tim-3 expression was assessed in 52 gastric cancer specimens and 15 gastritis tissues by flow cytometry, and gastritis tissues served as the control. As a result, we found that the Tim-3 expressions on CD4(+)T cells and CD8(+)T cells in gastric cancer tissue was significantly higher than those in gastritis tissue (P=0.022, P=0.047, respectively). The median expression level of Tim-3 on CD4(+)T cells were significantly correlated with clinicopathological parameters, such as tumor size, lymph node metastasis, the depth of tumor invasion and TNM staging (P=0.042, P=0.026, P=0.001, P=0.003, respectively), while it was not correlated with sex, age and histological subtype (all P>0.05). In CD8(+)T cells, the Tim-3 expression was relevant to tumor invasion and TNM staging (P=0.035, P=0.017, respectively), while it was irrelevant to other clinicopathological parameters (all P>0.05). Additionally, Kaplan-Meier survival curves showed that the median overall survival time of patients with lower Tim-3 expression was greater than that of patients with higher Tim-3 expression in CD4(+)T cells and CD8(+)T cells (χ(2)=18.036, P<0.001 and χ(2)=18.036, P<0.001, respectively). Moreover, the multivariate analysis revealed that the Tim-3 expression and TNM stage were independent prognostic factors for gastric cancer patients (P=0.029, P=0.043 and P=0.003, respectively). These results suggest that Tim-3 played an important role in the development and progression of gastric cancer, and it could be used as an independent prognostic factor for gastric cancer patients.

  15. Negative CD4+TIM-3 Signaling Confers Resistance Against Cold Preservation Damage in Mouse Liver Transplantation

    PubMed Central

    Zhang, Yu; Shen, Xiu-da; Gao, Feng; Nguyen, Terry T.; Shang, Xuanming; Lee, Nayun; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.

    2016-01-01

    Ischemia-reperfusion injury (IRI), an innate immunity-driven local inflammation, remains the major problem in clinical organ transplantation. T cell immunoglobulin and mucin domain (TIM-3) – Galectin-9 (Gal-9) signaling regulates CD4+ Th1 immune responses. Here, we explored TIM-3 – Gal-9 function in a clinically relevant murine model of hepatic cold storage and orthotopic liver transplantation (OLT). C57BL/6 livers, preserved for 20h at 4°C in UW solution, were transplanted to syngeneic mouse recipients. Up-regulation of TIM-3 on OLT-infiltrating activated CD4+ T cells was observed in the early IRI phase (1h). By 6h of reperfusion, OLTs in recipients treated with a blocking anti-TIM-3 Ab were characterized by: 1/ enhanced hepatocellular damage (sALT levels, liver Suzuki's histological score); 2/ polarized cell infiltrate towards Th1/Th17-type phenotype; 3/ depressed T cell exhaustion markers (PD-1, LAG3); and 4/ elevated neutrophil and macrophage infiltration/activation. In parallel studies, adoptive transfer of CD4+ T cells from naïve WT, but not from TIM-3 Tg donors, readily recreated OLT damage in otherwise IR-resistant RAG−/− test recipients. Furthermore, pre-treatment of mice with rGal-9 promoted hepatoprotection against preservation-association liver damage, accompanied by enhanced TIM-3 expression in OLTs. Thus, CD4+ T cell-dependent “negative” TIM-3 costimulation is essential for hepatic homeostasis and resistance against IR stress in OLTs. PMID:25676534

  16. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action

    PubMed Central

    Du, Wenwen; Yang, Min; Turner, Abbey; Xu, Chunling; Ferris, Robert L.; Huang, Jianan; Kane, Lawrence P.; Lu, Binfeng

    2017-01-01

    Cancer immunotherapy has produced impressive clinical results in recent years. Despite the success of the checkpoint blockade strategies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1), a large portion of cancer patients have not yet benefited from this novel therapy. T cell immunoglobulin and mucin domain 3 (TIM-3) has been shown to mediate immune tolerance in mouse models of infectious diseases, alloimmunity, autoimmunity, and tumor Immunity. Thus, targeting TIM-3 emerges as a promising approach for further improvement of current immunotherapy. Despite a large amount of experimental data showing an immune suppressive function of TIM-3 in vivo, the exact mechanisms are not well understood. To enable effective targeting of TIM-3 for tumor immunotherapy, further in-depth mechanistic studies are warranted. These studies will also provide much-needed insight for the rational design of novel combination therapy with other checkpoint blockers. In this review, we summarize key evidence supporting an immune regulatory role of TIM-3 and discuss possible mechanisms of action. PMID:28300768

  17. Role of Tim-3 in hepatitis B virus infection: An overview.

    PubMed

    Liu, Yuan; Gao, Li-Fen; Liang, Xiao-Hong; Ma, Chun-Hong

    2016-02-21

    Hepatitis B virus (HBV) infection has received increasing public attention. HBV is the prototypical member of hepadnaviruses, which naturally infect only humans and great apes and induce the acute and persistent chronic infection of hepatocytes. A large body of evidence has demonstrated that dysfunction of the host anti-viral immune response is responsible for persistent HBV replication, unresolved inflammation and disease progression. Many regulatory factors are involved in immune dysfunction. Among these, T cell immunoglobulin domain and mucin domain-3 (Tim-3), one of the immune checkpoint proteins, has attracted increasing attention due to its critical role in regulating both adaptive and innate immune cells. In chronic HBV infection, Tim-3 expression is elevated in many types of immune cells, such as T helper cells, cytotoxic T lymphocytes, dendritic cells, macrophages and natural killer cells. Tim-3 over-expression is often accompanied by impaired function of the above-mentioned immunocytes, and Tim-3 inhibition can at least partially rescue impaired immune function and thus promote viral clearance. A better understanding of the regulatory role of Tim-3 in host immunity during HBV infection will shed new light on the mechanisms of HBV-related liver disease and suggest new therapeutic methods for intervention.

  18. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia.

    PubMed

    Koh, Han Seok; Chang, Chi Young; Jeon, Sae-Bom; Yoon, Hee Jung; Ahn, Ye-Hyeon; Kim, Hyung-Seok; Kim, In-Hoo; Jeon, Sung Ho; Johnson, Randall S; Park, Eun Jung

    2015-03-20

    Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases.

  19. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action.

    PubMed

    Du, Wenwen; Yang, Min; Turner, Abbey; Xu, Chunling; Ferris, Robert L; Huang, Jianan; Kane, Lawrence P; Lu, Binfeng

    2017-03-16

    Cancer immunotherapy has produced impressive clinical results in recent years. Despite the success of the checkpoint blockade strategies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1), a large portion of cancer patients have not yet benefited from this novel therapy. T cell immunoglobulin and mucin domain 3 (TIM-3) has been shown to mediate immune tolerance in mouse models of infectious diseases, alloimmunity, autoimmunity, and tumor Immunity. Thus, targeting TIM-3 emerges as a promising approach for further improvement of current immunotherapy. Despite a large amount of experimental data showing an immune suppressive function of TIM-3 in vivo, the exact mechanisms are not well understood. To enable effective targeting of TIM-3 for tumor immunotherapy, further in-depth mechanistic studies are warranted. These studies will also provide much-needed insight for the rational design of novel combination therapy with other checkpoint blockers. In this review, we summarize key evidence supporting an immune regulatory role of TIM-3 and discuss possible mechanisms of action.

  20. Tim-3 and its role in regulating anti-tumor immunity.

    PubMed

    Das, Madhumita; Zhu, Chen; Kuchroo, Vijay K

    2017-03-01

    Immunotherapy is being increasingly recognized as a key therapeutic modality to treat cancer and represents one of the most exciting treatments for the disease. Fighting cancer with immunotherapy has revolutionized treatment for some patients and therapies targeting the immune checkpoint molecules such as CTLA-4 and PD-1 have achieved durable responses in melanoma, renal cancer, Hodgkin's diseases and lung cancer. However, the success rate of these treatments has been low and a large number of cancers, including colorectal cancer remain largely refractory to CTLA-4 and PD-1 blockade. This has provided impetus to identify other co-inhibitory receptors that could be exploited to enhance response rates of current immunotherapeutic agents and achieve responses to the cancers that are refectory to immunotherapy. Tim-3 is a co-inhibitory receptor that is expressed on IFN-g-producing T cells, FoxP3+ Treg cells and innate immune cells (macrophages and dendritic cells) where it has been shown to suppress their responses upon interaction with their ligand(s). Tim-3 has gained prominence as a potential candidate for cancer immunotherapy, where it has been shown that in vivo blockade of Tim-3 with other check-point inhibitors enhances anti-tumor immunity and suppresses tumor growth in several preclinical tumor models. This review discusses the recent findings on Tim-3, the role it plays in regulating immune responses in different cell types and the rationale for targeting Tim-3 for effective cancer immunotherapy.

  1. Decreased TIM-3 expression of peripheral blood natural killer cells in patients with severe aplastic anemia.

    PubMed

    Zhang, Tian; Yuan, Xin; Liu, Chunyan; Li, Yi; Liu, Hui; Li, Lijuan; Ding, Kai; Wang, Ting; Wang, Honglei; Shao, Zonghong; Fu, Rong

    2017-08-01

    Severe aplastic anemia (SAA) is an autoimmune disease characterized by severe pancytopenia and bone marrow failure. In our previous studies, we found natural killer (NK) cells were aberrant in SAA patients. T cell immunoglobulin mucin-3 (TIM-3), an important regulator of immunity, is widely detected on NK cells and may contribute as a marker of activation and maturation of NK cells. In this study, we found that SAA untreated patients had lower TIM-3 expression on NK cells and CD56(dim) NK subsets compared with normal controls, and were correlated with the severity of pancytopenia of SAA. After immunosuppressive therapy (IST), TIM-3 expression recovered to normal level. Moreover, the TIM-3 mRNA levels in NK cells significantly increased in SAA remission patients after IST. We inferred that low expression of TIM-3 on NK cells might lead to NK cells dysfunction and involve in the progress of bone marrow failure in SAA. Copyright © 2017. Published by Elsevier Inc.

  2. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia

    PubMed Central

    Koh, Han Seok; Chang, Chi Young; Jeon, Sae-Bom; Yoon, Hee Jung; Ahn, Ye-Hyeon; Kim, Hyung-Seok; Kim, In-Hoo; Jeon, Sung Ho; Johnson, Randall S.; Park, Eun Jung

    2015-01-01

    Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases. PMID:25790768

  3. T-bet-mediated Tim-3 expression dampens monocyte function during chronic hepatitis C virus infection.

    PubMed

    Yi, Wenjing; Zhang, Peixin; Liang, Yan; Zhou, Yun; Shen, Huanjun; Fan, Chao; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhansheng; Zhang, Ying

    2017-03-01

    Hepatitis C virus (HCV) induces a high rate of chronic infection via dysregulation of host immunity. We have previously shown that T-cell immunoglobulin and mucin domain protein-3 (Tim-3) is up-regulated on monocyte/macrophages (M/Mφ) during chronic HCV infection; little is known, however, about the transcription factor that controls its expression in these cells. In this study, we investigated the role of transcription factor, T-box expressed in T cells (T-bet), in Tim-3 expression in M/Mφ in the setting of HCV infection. We demonstrate that T-bet is constitutively expressed in resting CD14(+) M/Mφ in the peripheral blood. M/Mφ from chronically HCV-infected individuals exhibit a significant increase in T-bet expression that positively correlates with an increased level of Tim-3 expression. Up-regulation of T-bet is also observed in CD14(+) M/Mφ incubated with HCV(+) Huh7.5 cells, as well as in primary M/Mφ or monocytic THP-1 cells exposed to HCV core protein in vitro, which is reversible by blocking HCV core/gC1qR interactions. Moreover, the HCV core-induced up-regulation of T-bet and Tim-3 expression in M/Mφ can be abrogated by incubating the cells with SP600125 - an inhibitor for the c-Jun N-terminal kinase (JNK) signalling pathway. Importantly, silencing T-bet gene expression decreases Tim-3 expression and enhances interleukin-12 secretion as well as signal transducer and activator of transcription 1 phosphorylation. These data suggest that T-bet, induced by the HCV core/gC1qR interaction, enhances Tim-3 expression via the JNK pathway, leading to dampened M/Mφ function during HCV infection. These findings reveal a novel mechanism for Tim-3 regulation via T-bet during HCV infection, providing new targets to combat this global epidemic viral disease.

  4. Identification of TIM3 2′-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy

    PubMed Central

    Soldevilla, Mario M.; Villanueva, Helena; Mancheño, Uxua; Bendandi, Maurizio

    2016-01-01

    TIM3 belongs to a family of receptors that are involved in T-cell exhaustion and Treg functions. The development of new therapeutic agents to block this type of receptors is opening a new avenue in cancer immunotherapy. There are currently several clinical trials ongoing to combine different immune-checkpoint blockades to improve the outcome of cancer patients. Among these combinations we should underline PD1:PDL1 axis and TIM3 blockade, which have shown very promising results in preclinical settings. Most of these types of therapeutic agents are protein cell-derived products, which, although broadly used in clinical settings, are still subject to important limitations. In this work we identify by HT-SELEX TIM3 non-antigenic oligonucleotide aptamers (TIM3Apt) that bind with high affinity and specificity to the extracellular motives of TIM3 on the cell surface. The TIM3Apt1 in its monomeric form displays a potent antagonist capacity on TIM3-expressing lymphocytes, determining the increase of IFN-γ secretion. In colon carcinoma tumor-bearing mice, the combinatorial treatment of TIM3Apt1 and PDL1-antibody blockade is synergistic with a remarkable antitumor effect. Immunotherapeutic aptamers could represent an attractive alternative to monoclonal antibodies, as they exhibit important advantages; namely, lower antigenicity, being chemically synthesized agents with a lower price of manufacture, providing higher malleability, and antidote availability. PMID:26683225

  5. Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells.

    PubMed

    Gonçalves Silva, Isabel; Gibbs, Bernhard F; Bardelli, Marco; Varani, Luca; Sumbayev, Vadim V

    2015-10-20

    The T cell immunoglobulin and mucin domain 3 (Tim-3) is a plasma membrane-associated receptor which is involved in a variety of biological responses in human immune cells. It is highly expressed in most acute myeloid leukaemia (AML) cells and therefore may serve as a possible target for AML therapy. However, its biochemical activities in primary human AML cells remain unclear. We therefore analysed the total expression and surface presence of the Tim-3 receptor in primary human AML blasts and healthy primary human leukocytes isolated from human blood. We found that Tim-3 expression was significantly higher in primary AML cells compared to primary healthy leukocytes. Tim-3 receptor molecules were distributed largely on the surface of primary AML cells, whereas in healthy leukocytes Tim-3 protein was mainly expressed intracellularly. In primary human AML blasts, both Tim-3 agonistic antibody and galectin-9 (a Tim-3 natural ligand) significantly upregulated mTOR pathway activity. This was in line with increased accumulation of hypoxia-inducible factor 1 alpha (HIF-1α) and secretion of VEGF and TNF-α. Similar results were obtained in primary human healthy leukocytes. Importantly, in both types of primary cells, Tim-3-mediated effects were compared with those induced by lipopolysaccharide (LPS) and stem cell factor (SCF). Tim-3 induced comparatively moderate responses in both AML cells and healthy leukocytes. However, Tim-3, like LPS, mediated the release of both TNF-α and VEGF, while SCF induced mostly VEGF secretion and did not upregulate TNF-α release.

  6. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma.

    PubMed

    Liu, Zengjin; Han, Huamin; He, Xin; Li, Shouwei; Wu, Chenxing; Yu, Chunjiang; Wang, Shengdian

    2016-03-01

    Glioma is known to induce local and systemic immunosuppression, which inhibits antitumor T cell responses. The galectin-9-Tim-3-pathway negatively regulates T cell pathways in the tumor immunosuppressive environment. The present study assessed the expression of Tim-3 and galectin-9 in glioma patients, and evaluated the association between the expression of Tim-3 and galectin-9 with clinical characteristics. The present study identified that Tim-3 expression was significantly increased in peripheral blood T cells of glioma patients compared with those of healthy controls, and was additionally increased on tumor-infiltrating T cells. The expression of Tim-3 on tumor-infiltrating T cells was associated with the World Health Organization (WHO) grade of glioma, but negatively correlated with the Karnofsky Performance Status score of the glioma patients. Immunohistochemical analysis revealed that the expression of galectin-9 in tumor tissues was associated with Tim-3 expression on tumor-infiltrating T cells and the WHO grade of glioma. These findings suggest that the galectin-9-Tim-3 pathway may be critical in the immunoevasion of glioma and may be a potent target for immunotherapy in glioma patients.

  7. Tim-3 is highly expressed in T cells in acute myeloid leukemia and associated with clinicopathological prognostic stratification.

    PubMed

    Li, Caixia; Chen, Xiaochen; Yu, Xiao; Zhu, Yibei; Ma, Chao; Xia, Rui; Ma, Jinfeng; Gu, Caihong; Ye, Lu; Wu, Depei

    2014-01-01

    T cells immunoglobulin mucin 3 (Tim-3) is an important inhibitory stimulatory molecule, which has been reported to play a vital role in the tumor immune escape and be correlated with clinicopathological prognostic stratification in solid tumor. However, the related research is rare of Tim-3 in non-solid tumor, such as acute myeloid leukemia (AML). In this study, we investigated the expression characteristics of Tim-3 on the peripheral blood T cells of newly diagnosed AML patients and its clinical significance. Peripheral blood was obtained from 36 patients with newly diagnosed AML before intervention, with peripheral blood from 20 cases of healthy volunteers collected as normal control. Expression levels of Tim-3 on the peripheral blood T cells were assayed with flow cytometry. We found that Tim-3 expression on the peripheral blood CD4+ T cells and CD8+ T cells in newly diagnosed AML patients were significantly increased compared with that of normal control. CD4+ T cells/CD8+ T cell ratio (CD4/CD8) of peripheral blood in AML patients was significantly correlated with NCCN high risk group. The higher expression level of Tim-3 on CD4+ T cells in the peripheral blood of AML patients had significant correlation with FLT3-ITD mutation, the higher expression level of Tim-3 on CD8+ T cells in AML patients was significantly correlated with NCCN high risk group. To conclude, our results support the concept that Tim-3 is highly expressed on the peripheral blood T cells of AML patients, and Tim-3 expression significantly correlates with clinicopathological prognostic stratification in AMLTim-3, T cell, acute myeloid leukemia, tumor immune escape, clinicopathological prognostic stratification.

  8. Tim3/galectin-9 alleviates the inflammation of TAO patients via suppressing Akt/NF-kB signaling pathway.

    PubMed

    Luo, Li-Hua; Li, Dong-Mei; Wang, Yan-Ling; Wang, Kang; Gao, Li-Xin; Li, Shuang; Yang, Ji-Gang; Li, Chun-Lin; Feng, Wei; Guo, Hong

    2017-09-30

    Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease. Studies showed that T helper 1 (Th1), Th2, and Th17 cells play important roles in the pathology of TAO. Tim-3 and its only known ligand Galectin-9 (Gal-9) is related to the suppression of Th1 and Th17 cytokine secretion. This study aims to investigate the role of Tim3/Gal-9 in the inflammatory response of TAO. In this study, the levels of Tim3, Gal-9, and cytokines of Th1 (TNF-α and IFN-γ), Th2 (IL-4), and Th17 (IL-17) cells were analyzed in the blood samples of TAO patients and healthy controls as well as in orbital fibroblasts. Tim3 overexpression and Gal-9 neutralizing antibody were used in TAO and LPS-stimulated control orbital fibroblasts to further investigate the role and mechanism of Tim3/Gal-9 on the inflammation of TAO. We found Tim3 and Gal-9 expression was significantly downregulated in TAO patients and further lower in active TAO than inactive TAO or controls. Th1, Th2, and Th17 cytokines were all increased in TAO patients. Th1 and Th17 cytokines were higher in active TAO patients than in inactive TAO patients, while Th2 cytokines were enhanced in inactive TAO. Tim3 overexpression decreased the levels of Th1 and Th17 cytokines, but not Th2 cytokine in TAO or LPS-stimulated control orbital fibroblasts. These effects were abrogated by Gal-9 neutralizing antibody. Moreover, Tim3 reduced the levels of p-Akt and p-p65 in TAO or LPS-induced control orbital fibroblasts that were reversed by Gal-9 blocking. In conclusion, Tim3/Gal-9 alleviates the inflammation of TAO patients via suppressing Akt/NF-κB signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3)

    PubMed Central

    Homayouni, Vida; Ganjalikhani-hakemi, Mazdak; Rezaei, Abbas; Khanahmad, Hossein; Behdani, Mahdi; Lomedasht, Fatemeh Kazemi

    2016-01-01

    Objective(s): As T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune regulatory molecule; its blocking or stimulating could alter the pattern of immune response towards a desired condition. Based on the unique features of nanobodies, we aimed to construct an anti-TIM-3 nanobody as an appropriate tool for manipulating immune responses for future therapeutic purposes. Materials and Methods: We immunized a camel with TIM-3 antigen and then, synthesized a VHH phage: mid library from its B cell’s transcriptome using nested PCR. Library selection against TIM-3antigen was performed in three rounds of panning. Using phage-ELISA, the most reactive colonies were selected for sub-cloning in soluble protein expression vectors. The Nanobody was purified and confirmed with a nickel-nitrilotriacetic acid (Ni-NTA) column, SDS-PAGE and Western blotting. A flowcytometric analysis was performed to analyze the binding and biologic activities of theTIM-3 specific nanobody with TIM-3 expressing HL-60 and HEK cell lines. Results: Specific 15kD band representing for nanobody was observed on the gel and confirmed with Western blotting. The nanobody showed significant specific immune-reactivity against TIM-3 with a relatively high binding affinity. The nanobody significantly suppressed the proliferation of TIM-3 expressing HL-60 cell line. Conclusion: Finally, we successfully prepared a functional anti-humanTIM-3 specific nanobody with a high affinity and an anti-proliferative activity on an AML cell line in vitro. PMID:27917276

  10. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer

    PubMed Central

    Sakuishi, Kaori; Ngiow, Shin Foong; Sullivan, Jenna M.; Teng, Michele W. L.; Kuchroo, Vijay K.; Smyth, Mark J.; Anderson, Ana C.

    2013-01-01

    T-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer. PMID:23734331

  11. TIM-3 Genetic Variations Affect Susceptibility to Osteoarthritis by Interfering with Interferon Gamma in CD4+ T Cells.

    PubMed

    Li, Shufeng; Ren, Yanjun; Peng, Dayong; Yuan, Zhen; Shan, Shiying; Sun, Huaqiang; Yan, Xinfeng; Xiao, Hong; Li, Guang; Song, Haihan

    2015-10-01

    Osteoarthritis (OA) is the most common type of arthritis, in which T cell responses and cytokines may play critical roles in the development of the disease. TIM-3 may affect immune responses and is correlated with decreased expression of interferon gamma (INF-γ) in CD4+ T cells. In the current study, we investigated the association between polymorphisms in the TIM-3 gene and susceptibility to OA. Two polymorphisms in TIM-3, -574G/T and +4259T/G polymorphisms, were identified in OA cases and healthy donors by polymerase chain reaction-restriction fragment length polymorphism method. Data revealed that the prevalence of TIM-3 +4259T/G genotype was significantly elevated in OA patients than in the healthy donors after adjustment (Odds ratio [OR] = 2.67, 95% confidence interval [CI] 1.32-5.11, P < 0.001). Similarly, the TIM-3 +4259G allele presented a positive association with the risk of OA after adjustment (OR = 2.58, 95% CI 1.29-4.82, P = 0.003). The TIM-3 -574G/T polymorphism did not show any correlation with the disease. We further examined whether the two TIM-3 polymorphisms could affect INF-γ expression in CD4+ T cells. Data revealed that subjects carrying polymorphic +4259TG genotype had significantly higher mRNA and protein levels of INF-γ in CD4+ T cells compared to wild-type GG genotype (P < 0.001 and P < 0.01). These results indicated that TIM-3 polymorphism is associated with increased susceptibility to OA possibly by upregulating INF-γ expression in CD4+ T cells.

  12. Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients.

    PubMed

    Zhang, Yang; Cai, Pengcheng; Li, Lei; Shi, Liang; Chang, Panpan; Liang, Tao; Yang, Qianqian; Liu, Yang; Wang, Lin; Hu, Lihua

    2017-02-01

    T-cell immunoglobulin domain and mucin domain-3(TIM-3) is an activation induced inhibitory molecule involved in immune tolerance and is recently reported to induce T cell exhaustion which is mediated by carcinoembryonic antigen cell adhesion molecule 1(CEACAM1), another well-known molecule expressed on activated T cells and involved in T cell inhibition. To investigate the expression of TIM-3 and CEACAM1 on circulating CD8(+) T cells and tumor infiltrating lymphocytes (TILs), 65 diagnosed colorectal cancer (CRC) patients and 38 healthy controls were enrolled in this study and the results showed that TIM-3 and CEACAM1 were both highly expressed on circulating CD8(+) T cells in CRC patients and elevated on TILs compared with paraneoplastic T cells. Furthermore, TIM-3(+)CEACAM1(+) CD8(+) T cells represented the most dysfunctional population with the least IFN-γ production. In addition, the expressions of TIM-3 and CEACAM1 were correlated with advanced stage and could be independent risk factors for CRC. We for the first time to our knowledge suggested that co-expression of TIM-3 and CEACAM1 can mediate T cell exhaustion and may be potential biomarkers for CRC prediction, highlighting the possibility of being immunotherapy targets.

  13. Recipient T cell TIM-3 and hepatocyte galectin-9 signalling protects mouse liver transplants against ischemia-reperfusion injury.

    PubMed

    Liu, Yuanxing; Ji, Haofeng; Zhang, Yu; Shen, Xiuda; Gao, Feng; He, Xiangyi; Li, Gabriella A; Busuttil, Ronald W; Kuchroo, Vijay K; Kupiec-Weglinski, Jerzy W

    2015-03-01

    By binding to T cell immunoglobulin mucin-3 (TIM-3) on activated Th1 cells, galectin-9 (Gal-9) negatively regulates Th1-type alloimmunity. Although T cells contribute to hepatic ischemia-reperfusion injury (IRI), it is unknown whether negative T cell-dependent TIM-3 co-stimulation may rescue IR-stressed orthotopic liver transplants from innate immunity-driven inflammation. We used wild type (WT) and TIM-3 transgenic (Tg) mice (C57BL/6) as liver donors and recipients in a clinically-relevant model of hepatic cold storage (20 h at 4°C in UW solution) and syngeneic orthotopic liver transplantation (OLT). Orthotopic liver transplants in WT or TIM-3Tg→TIM-3Tg groups were resistant against IR-stress, evidenced by preserved hepatocellular function (serum ALT levels) and liver architecture (Suzuki's score). In contrast, orthotopic liver transplants in WT or TIM-3Tg→WT groups were susceptible to IRI. TIM-3 induction in circulating CD4+ T cells of the recipient: (1) depressed T-bet/IFN-γ, while amplifying GATA3 and IL-4/IL-10 expression in orthotopic liver transplants; (2) promoted T cell exhaustion (PD-1, LAG-3) phenotype; and (3) depressed neutrophil and macrophage infiltration/function in orthotopic liver transplants. In parallel studies, we documented for the first time that Gal-9, a natural TIM-3 ligand, was produced primarily by and released from IR-stressed hepatocytes, both in vivo and in vitro. Moreover, exogenous recombinant Gal-9 (rGal-9) potentiated liver resistance against IRI by depressing T cell activation and promoting apoptosis of CD4+ T cells. Harnessing TIM-3/Gal-9 signalling at the T cell-hepatocyte interface facilitates homeostasis in IR-stressed orthotopic liver transplants. Enhancing anti-oxidant hepatocyte Gal-9 potentiates liver IR-resistance. Negative regulation by recipient TIM-3+CD4+ cells provides evidence for cytoprotective functions of a discrete T cell subset, which should be spared when applying T cell-targeted immunosuppression in

  14. Recipient T-Cell TIM-3 and Hepatocyte Galectin-9 Signaling Protects Mouse Liver Transplants Against Ischemia-Reperfusion Injury

    PubMed Central

    Liu, Yuanxing; Ji, Haofeng; Zhang, Yu; Shen, Xiuda; Gao, Feng; He, Xiangyi; Li, Gabriella A.; Busuttil, Ronald W.; Kuchroo, Vijay K.; Kupiec-Weglinski, Jerzy W.

    2015-01-01

    Background & Aims By binding to T-cell immunoglobulin mucin-3 (TIM-3) on activated Th1 cells, Galectin-9 (Gal-9) negatively regulates Th1-type alloimmunity. Although T cells contribute to hepatic ischemia-reperfusion injury (IRI), it is unknown whether negative T cell-dependent TIM-3 costimulation may rescue IR-stressed orthotopic liver transplants (OLT) from innate immunity-driven inflammation. Methods We used WT and TIM-3Tg mice (C57BL6) as liver donors and recipients in a clinically-relevant model of hepatic cold storage (20h at 4°C in UW solution) and syngeneic OLT. Results OLTs in WT or TIM-3Tg->TIM-3Tg groups were resistant against IR- stress, evidenced by preserved hepatocellular function (sALT levels) and liver architecture (Suzuki’s score). In contrast, OLTs in WT or TIM-3Tg->WT groups were susceptible to IRI. TIM-3 induction in recipient circulating CD4+ T cells: 1/ depressed Tbet/IFN-γ, while amplifying GATA3 and IL-4/IL-10 expression in OLTs; 2/ promoted T cell exhaustion (PD-1, LAG-3) phenotype; and 3/ depressed neutrophil and macrophage infiltration/function in OLTs. In parallel studies, we have documented, for the first time that Gal-9, a natural TIM-3 ligand, was produced primarily by and released from IR-stressed hepatocytes, both in-vivo and in-vitro. Moreover, exogenous rGal-9 potentiated liver resistance against IRI by depressing T cell activation and promoting apoptosis of CD4+ T cells. Conclusion Harnessing TIM-3–Gal-9 signaling at T cell–hepatocyte interface facilitates homeostasis in IR-stressed OLTs. Enhancing anti-oxidant hepatocyte Gal-9 potentiates liver IR-resistance. Negative regulation by recipient TIM-3+CD4+ cells provides evidence for cytoprotective functions of a discrete T cell subset, which should be spared when applying T cell-targeted immunosuppression in transplant recipients. PMID:25450716

  15. Interference with Tim-3 protein expression attenuates the invasion of clear cell renal cell carcinoma and aggravates anoikis

    PubMed Central

    Yu, Muming; Lu, Bin; Liu, Yancun; Me, Ying; Wang, Lijun; Li, Hui

    2017-01-01

    Tumor cells resistant to anoikis are considered to be candidates for metastasis. In the present study, the role of Tim-3 in anoikis and its influence on the invasion of clear cell renal cell carcinoma (ccRCC) was investigated. Here, polyhydroxylethylmethacrylate (poly-HEMA) was applied to two ccRCC cell lines, 786-O and Caki-2, to induce detachment from the extracellular matrix (ECM). Tim-3 mRNA and protein expression levels were assayed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot, respectively. Anoikis was measured by Ho33342/PI double staining, acridine orange staining, and further determined using the CytoSelect™ 24-well Anoikis Assay kit. Apoptosis was measured using flow cytometry, E-cadherin and N-cadherin protein expression were determined using western blotting and a Chemicon cell invasion assay kit was used to quantify the invasive capacity of 786-O and Caki-2 cells. It was demonstrated that detachment from the ECM decreases transcription and the protein expression level of Tim-3 in 786-O and Caki-2 cells compared with control cells. Interference with Tim-3 expression using small interfering RNA exacerbated anoikis in 786-O and Caki-2 cells induced by poly-HEMA treatment. E-cadherin upregulation, N-cadherin downregulation, and ECM detachment-induced reduction in invasion ability were all exacerbated by knockdown of Tim-3. In conclusion, interference with Tim-3 expression may attenuate the invasion of renal cell carcinoma by aggravating anoikis, indicating Tim-3 as a potential therapeutic target for treating ccRCC. PMID:28112366

  16. Involvement of Galectin-9/TIM-3 Pathway in the Systemic Inflammatory Response in Early-Onset Preeclampsia

    PubMed Central

    Miko, Eva; Meggyes, Matyas; Bogar, Barbara; Schmitz, Nora; Barakonyi, Aliz; Varnagy, Akos; Farkas, Balint; Tamas, Peter; Bodis, Jozsef; Szekeres-Bartho, Julia; Illes, Zsolt; Szereday, Laszlo

    2013-01-01

    Background Preeclampsia is a common obstetrical disease affecting 3-5% of pregnancies and representing one of the leading causes of both maternal and fetal mortality. Maternal symptoms occur as an excessive systemic inflammatory reaction in response to the placental factors released by the oxidatively stressed and functional impaired placenta. The T-cell immunoglobulin domain and mucin domain (TIM) family is a relatively newly described group of molecules with a conserved structure and important immunological functions. Identification of Galectin-9 as a ligand for TIM-3 has established the Galectin-9/TIM-3 pathway as an important regulator of Th1 immunity and tolerance induction. Methods The aim of our study was to investigate the expression and function of Galectin-9 and TIM-3 molecules by peripheral blood mononuclear cells and the possible role of Galectin-9/TIM-3 pathway in the immunoregulation of healthy pregnancy and early-onset preeclampsia. We determined TIM-3 and Gal-9 expression and cytotoxicicty of peripheral lymphocytes of early-onset preeclamptic women and healthy pregnant woman using flow cytometry. Results Investigating peripheral lymphocytes of women with early-onset preeclampsia, our results showed a decreased TIM-3 expression by T cells, cytotoxic T cells, NK cells and CD56dim NK cells compared to healthy pregnant women. Interestingly, we found a notably increased frequency of Galectin-9 positive cells in each investigated lymphocyte population in the case of early-onset preeclamptic patients. We further demonstrated increased cytotoxic activity by cytotoxic T and CD56dim NK cells in women with early-onset preeclampsia. Our findings showed that the strongest cellular cytotoxic response of lymphocytes occurred in the TIM-3 positive subpopulations of different lymphocytes subsets in early-onset preeclampsia. Conclusion These data suggest that Gal-9/TIM-3 pathway could play an important role in the immune regulation during pregnancy and the altered

  17. Involvement of T cell Ig Mucin-3 (Tim-3) in the negative regulation of inflammatory bowel disease.

    PubMed

    Li, Xia; Chen, Guojiang; Li, Yurong; Wang, Renxi; Wang, Liyan; Lin, Zhou; Gao, Xudong; Feng, Jiannan; Ma, Yuanfang; Shen, Beifen; Li, Yan; Han, Gencheng

    2010-02-01

    Augmented intestinal T cells, especially CD4(+)T cells, are involved in the pathogenesis of inflammatory bowel disease (IBD). We used a murine 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model to investigate whether Tim-3, a negative regulator of CD4(+)T cells, is involved in the suppression of IBD. We found that blocking the Tim-3 signal pathway exacerbated TNBS-induced colitis, as shown by increased weight loss and aggravated tissue injury. Blockade of the Tim-3 pathway resulted in an increase in Tim-3(+)CD4T cells, a biased T effector cell response, and a decrease in Treg cells. It also resulted in an altered profile of co-stimulatory molecules expressed on lymphocytes, which partially explained the biased polarization of different T cell subsets. Our data suggest that the Tim-3 pathway is highly involved in the negative regulation of IBD. A better understanding of this pathway may shed new light on the pathogenesis of this disease.

  18. Tim-3 and PD-1 regulate CD8(+) T cell function to maintain early pregnancy in mice.

    PubMed

    Xu, Yuan-Yuan; Wang, Song-Cun; Lin, Yi-Kong; Li, Da-Jin; DU, Mei-Rong

    2017-06-21

    During pregnancy, CD8(+) T cells are important regulators in the balance of fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are well-recognized negative co-stimulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that CD8(+) T cells co-expressing Tim-3 and PD-1 were down-regulated in the deciduae of female mice in abortion-prone matings compared with normal pregnant mice. In addition to their reduced numbers, the Tim-3(+)PD-1(+)CD8(+) T cells produced lower levels of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, as well as a higher level of the pro-inflammatory cytokine interferon (IFN)-γ, relative to those from normal pregnancy. Furthermore, normal pregnant CBA/J females challenged with Tim-3- and/or PD-1-blocking antibodies were more susceptible to fetal resorption. These findings indicate that Tim-3 and PD-1 pathways play critical roles in regulating CD8(+) T cell function and maintaining normal pregnancy.

  19. TIM-3 Rs10515746 (A/C) and Rs10053538 (C/A) Gene Polymorphisms and Risk of Multiple Sclerosis

    PubMed Central

    YAGHOOBI, Esmat; ABEDIAN, Saeed; BABANI, Omid; IZAD, Maryam

    2016-01-01

    Background: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by auto-reactive T cells against myelin antigens. T-cell immunoglobulin mucin -3 (TIM-3) is a negative regulator glycoprotein expressed by a range of immune cells, including, Th1 cells, activated CD8+ T cells and in a lower level on Th17 cells. A defect in TIM-3 regulation has been shown in multiple sclerosis patients. In humans, several single nucleotide polymorphisms (SNPs) have been identified in the TIM-3 gene and are associated with inflammatory diseases. The aim of this study was to analyze the association between TIM-3 -574A>C and -1516 C>A SNPs in the promoter region, and susceptibility to MS. Methods: DNA samples from 102 patients and 102 healthy controls were genotyped using RFLP-PCR method. Results: In this case-control study, analysis of the alleles and genotypes revealed a significant higher frequency of C/C and lower frequency of A/C genotypes for -574 locus of TIM-3 gene in MS patients (P=0.0002). We also found that C/C genotype for locus of -1516 increased in MS patients, while A/C genotype decreased (P=0.012). Allele C of -574C/C and -1516 C>A SNPs were also more frequent in MS patients (P=0.036 and 0.0027 respectively). Conclusion: -574 A>C and -1516 C>A SNPs in the promoter region of TIM3 gene may affect the disease susceptibility. PMID:27398337

  20. Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk.

    PubMed

    Li, Jing; Shayan, Gulidanna; Avery, Lyndsay; Jie, Hyun-Bae; Gildener-Leapman, Neil; Schmitt, Nicole; Lu, Bin Feng; Kane, Lawrence P; Ferris, Robert L

    2016-01-01

    Programmed Death 1 (PD-1) and T cell Ig and mucin domain-3 protein (Tim-3) are immune checkpoint receptors highly expressed on tumor infiltrating T lymphocytes (TIL). PD-1 inhibits T cell activation and type-1 T cell responses, while Tim-3 is proposed to mark more extensively exhausted cells, although the mechanisms underlying Tim-3 function are not clear. Trials of anti-PD-1 therapy have identified a large subset of non-responder patients, likely due to expression of alternative checkpoint molecules like Tim-3. We investigated the phenotypic and functional characteristics of T cells with differential expression of PD-1 (high/low) and Tim-3 (positive/negative), using TIL directly isolated from head and neck squamous cell carcinomas (HNSCC). Unexpectedly, we found that expression of Tim-3 alone does not necessarily mark TIL as dysfunctional/exhausted. In Tim-3-TIL, PD-1 levels correlate with T cell dysfunction, with a PD-1(low/intermed) phenotype identifying recently activated and still functional cells, whereas PD-1(hi)Tim-3(-) T cells are actually exhausted. Nonetheless, PD-1(intermed) cells are still potently suppressed by PD-L1. PD-1 expression was associated with reduced phosphorylation of ribosomal protein S6 (pS6), whereas Tim-3 expression was associated with increased pS6. Using a novel mouse model for inducible Tim-3 expression, we confirmed that expression of Tim-3 does not necessarily render T cells refractory to further activation. These results suggest the existence of PD-1 and Tim-3 crosstalk in regulating antitumor T cell responses, with important implications for anti-PD-1 immunotherapy.

  1. A Disintegrin and Metalloprotease (ADAM) 10 and ADAM17 Are Major Sheddases of T Cell Immunoglobulin and Mucin Domain 3 (Tim-3)*

    PubMed Central

    Möller-Hackbarth, Katja; Dewitz, Christin; Schweigert, Olga; Trad, Ahmad; Garbers, Christoph; Rose-John, Stefan; Scheller, Jürgen

    2013-01-01

    T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4+ and CD8+ effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu181–Asp190 of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14+ monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14+ monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14+ monocytes. PMID:24121505

  2. The Influence of Tim-3 Signaling on Central Nervous System Autoimmune Disease is Determined by the Effector Function of the Pathogenic T Cells

    PubMed Central

    Lee, Sarah Y.; Goverman, Joan M.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) mediated by self-reactive, myelin-specific T cells. Both CD4+ and CD8+ T cells play important roles in the pathogenesis of MS. MS is studied using experimental autoimmune encephalomyelitis (EAE), an animal model mediated by myelin-specific T cells. Tim-3 is a cell-surface receptor expressed on CD4+ IFN-γ-secreting Th1 cells, and triggering Tim-3 signaling ameliorated EAE by inducing death in pathogenic Th1 cells in vivo. This suggested that enhancing Tim-3 signaling might be beneficial in patients with MS. However, Tim-3 is also expressed on activated CD8+ T cells, microglia, and dendritic cells (DCs), and the combined effect of manipulating Tim-3 signaling on these cell types during CNS autoimmunity is unknown. Furthermore, CD4+ IL-17-secreting Th17 cells also play a rolein MS but do not express high levels of Tim-3. We investigated Tim-3 signaling in EAE models that include myelin-specific Th17, Th1 and CD8+ T cells. We found that preventing Tim-3 signaling in CD4+ T cells altered the inflammatory pattern in the CNS due to differential effects on Th1 versus Th17 cells. In contrast, preventing Tim-3 signaling during CD8+ T cell-mediated EAE exacerbated disease. We also analyzed the importance of Tim-3 signaling in EAE in innate immune cells. Tim-3 signaling in DCs and microglia did not affect the manifestation of EAE in these models. These results indicate that the therapeutic efficacy of targeting Tim-3 in EAE is dependent on the nature of the effector T cells contributing to the disease. PMID:23562810

  3. Tim-3 promotes tumor-promoting M2 macrophage polarization by binding to STAT1 and suppressing the STAT1-miR-155 signaling axis.

    PubMed

    Jiang, Xingwei; Zhou, Tingting; Xiao, Yan; Yu, Jiahui; Dou, Shuaijie; Chen, Guojiang; Wang, Renxi; Xiao, He; Hou, Chunmei; Wang, Wei; Shi, Qingzhu; Feng, Jiannan; Ma, Yuanfang; Shen, Beifen; Li, Yan; Han, Gencheng

    2016-01-01

    T cell Ig mucin-3 (Tim-3), an immune checkpoint inhibitor, shows therapeutic potential. However, the molecular mechanism by which Tim-3 regulates immune responses remains to be determined. In particular, very little is known about how Tim-3 works in innate immune cells. Here, we demonstrated that Tim-3 is involved in the development of tumor-promoting M2 macrophages in colon cancer. Manipulation of the Tim-3 pathway significantly affected the polarization status of intestinal macrophages and the progression of colon cancer. The Tim-3 signaling pathway in macrophages was explored using microarray, co-immunoprecipitation, gene mutation, and high-content analysis. For the first time, we demonstrated that Tim-3 polarizes macrophages by directly binding to STAT1 via residue Y256 and Y263 in its intracellular tail and inhibiting the STAT1-miR-155-SOCS1 signaling axis. We also identified a new signaling adaptor of Tim-3 in macrophages, and, by modulating the Tim-3 pathway, demonstrated the feasibility of altering macrophage polarization as a potential tool for treating this kind of disease.

  4. Expression of TIM-3 on CD4+ and CD8+ T cells in the peripheral blood and synovial fluid of rheumatoid arthritis.

    PubMed

    Li, Shufeng; Peng, Dayong; He, Yeteng; Zhang, Hu; Sun, Huaqiang; Shan, Shiying; Song, Yuanlin; Zhang, Shuzhen; Xiao, Hong; Song, Haihan; Zhang, Ming

    2014-10-01

    Rheumatoid arthritis (RA) is characterized by a chronic inflammatory process that targets the synovial lining of diarthrodial joints. TIM-3 plays a key role in the negative regulation of the immune response. In this study, we investigated the expression of TIM-3 on CD4+ and CD8+ T cells from systemic (peripheral blood) and local (synovial fluid) perspectives of RA. Level of TIM-3+ cells from peripheral blood and synovial fluid of patients as well as peripheral blood of healthy controls was measured by flow cytometry. Results showed that TIM-3 expression was significantly increased in both CD4+ and CD8+ T cells in the peripheral blood of RA (p < 0.001 and p < 0.001, respectively). Furthermore, patients revealed even higher expression of TIM-3 in CD4+ and CD8+ T cells in synovial fluid than in peripheral blood. When comparing TIM-3 level with the severity of RA, we identified that the percentage of TIM-3 on both peripheral CD4+ and peripheral CD8+ T cells was negatively correlated with disease activity score 28 (DAS28) of the patients. Similarly, TIM-3 on synovial fluid CD4+ and CD8+ T cells also revealed inverse correlation with DAS28 of the cases. Our data demonstrate a negative correlation between TIM-3 and the disease progression of RA.

  5. Tim-3 expression by peripheral natural killer cells and natural killer T cells increases in patients with lung cancer--reduction after surgical resection.

    PubMed

    Xu, Li-Yun; Chen, Dong-Dong; He, Jian-Ying; Lu, Chang-Chang; Liu, Xiao-Guang; Le, Han-Bo; Wang, Chao-Ye; Zhang, Yong-Kui

    2014-01-01

    The purpose of this study was to investigate Tim-3 expression on peripheral CD3-CD56+ natural killer (NK) cells and CD3+CD56+ natural killer T (NKT) cells in lung cancer patients. We analyzed Tim-3+CD3-CD56+ cells, Tim-3+CD3-CD56dim cells, Tim-3+CD3-CD56bright cells, and Tim- 3+CD3+CD56+ cells in fresh peripheral blood from 79 lung cancer cases preoperatively and 53 healthy controls by flow cytometry. Postoperative blood samples were also analyzed from 21 members of the lung cancer patient cohort. It was showed that expression of Tim-3 was significantly increased on CD3-CD56+ cells, CD3- CD56dim cells and CD3+CD56+ cells in lung cancer patients as compared to healthy controls (p=0.03, p=0.03 and p=0.04, respectively). When analyzing Tim-3 expression with cancer progression, results revealed more elevated Tim-3 expression in CD3-CD56+ cells, CD3-CD56dim cells and CD3+CD56+ cells in cases with advanced stages (III/IV) than those with stage I and II (p=0.02, p=0.04 and p=0.01, respectively). In addition, Tim-3 expression was significantly reduced on after surgical resection of the primary tumor (p<0.01). Tim-3 expression in natural killer cells from fresh peripheral blood may provide a useful indicator of disease progression of lung cancer. Furthermore, it was indicated that Tim-3 might be as a therapeutic target.

  6. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer.

    PubMed

    Shayan, Gulidanna; Srivastava, Raghvendra; Li, Jing; Schmitt, Nicole; Kane, Lawrence P; Ferris, Robert L

    2017-01-01

    Programmed Death 1 (PD-1) and T cell Ig and mucin domain-3 protein (Tim-3) are immune checkpoint receptors that are expressed on tumor-infiltrating lymphocytes (TIL) in tumor-bearing mice and humans. As anti-PD-1 single agent response rates are only <20% in head and neck squamous cell carcinoma (HNSCC) patients, it is important to understand how multiple inhibitory checkpoint receptors maintain suppressed cellular immunity. One such receptor, Tim-3, activates downstream proliferative pathways through Akt/S6, and is highly expressed in dysfunctional TIL. We observed that PD-1 and Tim-3 co-expression was associated with a more exhausted phenotype, with the highest PD-1 levels on TIL co-expressing Tim-3. Dampened Akt/S6 phosphorylation in these PD-1(+)Tim-3(+) TIL, when the PD-1 pathway was ligated, suggested that signaling cross-talk could lead to escape through Tim-3 expression. Indeed, PD-1 blockade of human HNSCC TIL led to further Tim-3 upregulation, supporting a circuit of compensatory signaling and potentially permitting escape from anti-PD-1 blockade in the tumor microenvironment. Also, in a murine HNC tumor model that is partially responsive to anti-PD-1 therapy, Tim-3 was upregulated in TIL from persistently growing tumors. Significant antitumor activity was observed after sequential addition of anti-Tim-3 mAb to overcome adaptive resistance to anti-PD-1 mAb. This increased Tim-3-mediated escape of exhausted TIL from PD-1 inhibition that was mediated by phospho-inositol-3 kinase (PI3K)/Akt complex downstream of TCR signaling but not cytokine-mediated pathways. Taken together, we conclude that during PD-1 blockade, TIL upregulate Tim-3 in a PI3K/Akt-dependent manner, providing further support for dual targeting of these molecules for more effective cancer immunotherapy.

  7. The amelioration of composite tissue allograft rejection by TIM-3-modified dendritic cell: Regulation of the balance of regulatory and effector T cells.

    PubMed

    Wang, Yaojun; Zheng, Zhao; Zhu, Xiongxiang; Han, Juntao; Dong, Maolong; Tao, Ke; Wang, Hongtao; Wang, Yunchuan; Hu, Dahai

    2016-01-01

    T cell-dependent immune responses play a central role in allograft rejection. Exploring ways to disarm alloreactive T cells represents a potential strategy to promote long-term allograft acceptance and survival. T cell Ig domain and mucin domain 3 (TIM-3) has previously been demonstrated as a central regulator of T helper 1 (Th1) responses and immune tolerance. Hence, TIM-3 may be an important molecule for decreasing immunological rejection during composite tissue allotransplantation (CTA). In this study, BALB/c and C57BL/6 mice were chosen as the experimental animals. The effects of TIM-3 on allograft rejection were explored using TIM-3-modified mature dendritic cells (TIM-3 mDCs). A laser speckle blood flow (LSBF) imager was used to evaluate blood distribution of the BALB/c mice. ELISA, MTT, ELISPOT assays and flow cytometry analysis were carried out for further researches. We found that TIM-3 could obviously prolong the survival time of the transplanted limbs. And TIM-3 could mitigate the immune response and thus enhance immune tolerance after CTA. Also, TIM-3 can induce lymphocyte hyporesponsiveness, including facilitating lymphocyte apoptosis, decreasing lymphocyte proliferation, and influencing the secretion of inflammatory cytokines by CD4(+) T cells. Furthermore, TIM-3 overexpression could induce CD4(+) T cells to differentiate into regulatory T cells (Tregs), which recalibrate the effector and regulatory arms of the alloimmune response. In summary, we concluded that TIM-3 can mitigate allograft rejection and thus enhance immune tolerance by inducing lymphocyte hyporesponsiveness and increasing the number of Tregs of the alloimmune response. TIM-3 may be a potential therapeutic molecule for allograft rejection in CTA.

  8. Tim-3 is differently expressed in genetically susceptible C57BL/6 and resistant BALB/c mice during oral infection with Toxoplasma gondii

    PubMed Central

    Berrocal Almanza, L. C.; Muñoz, M.; Kühl, A. A.; Kamradt, T.; Heimesaat, M. M.

    2013-01-01

    Tim-3 has opposing roles in innate and adaptive immunities. It not only dampens CD4+ and CD8+ T cells responses but also enhances the ability of macrophages to eliminate intracellular pathogens. After peroral infection with 100 cysts of Toxoplasma gondii genetically susceptible C57BL/6 mice develop an unchecked Th1 response associated with the development of small intestinal immunopathology. Here we report that upon infection with T. gondii, both susceptible C57BL/6 and resistant BALB/c mice exhibit increased frequencies of Tim-3+ cells in spleens and mesenteric lymph nodes. The number of Tim-3+ cells was significantly higher in C57BL/6 than in BALB/c mice. Tim-3 was expressed by macrophages, dendritic, natural killer, as well as CD4+ and CD8+ T cells. Highest frequencies of Tim-3+ cells were observed at the peak of Th1 responses (day 7 post infection) concurrent with the development of ileal immunopathology. Infected Tim-3-deficient BALB/c mice did not develop ileal immunopathology nor did their parasite loads differ from those in wildtype BALB/c mice. Thus, although Tim-3 is markedly upregulated upon infection and differentially regulated in susceptible and resistant mice upon infection with T. gondii, the absence of Tim-3 is not sufficient to overcome the genetic resistance of BALB/c mice to the development of Th1-driven small intestinal immunopathology. PMID:24265941

  9. [A TIM-3/galectin-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemia progression].

    PubMed

    Kikushige, Yoshikane

    2016-04-01

    Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. We previously reported that the T-cell immunoglobulin mucin-3 (TIM-3) is expressed on the LCS surface in most types of AML. Since only the TIM-3(+), i.e. not the TIM-3(-), fraction of human AML cells can reconstitute human AML in immunodeficient mice, we hypothesized that the TIM-3 has an essential function in maintaining AML LSCs. Herein, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for human AML LSC development. Serum Gal-9 was significantly elevated in primary AML patients and in mice xenografted with human AML. Neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML, as well as Gal-9 ligation of TIM-3 co-activated NF-κB and β-catenin signaling, suggesting that TIM-3 signaling is necessary for LSC self-renewal. Interestingly, identical changes were found to be involved in the progressive transformation of a variety of pre-leukemic disorders into myeloid leukemia. Thus, molecules constituting the TIM-3/Gal-9 autocrine loop are potential therapeutic targets applicable to most types of myeloid leukemia.

  10. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy.

    PubMed

    Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R

    2015-05-07

    CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-γ producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy.

  11. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients

    PubMed Central

    Fourcade, Julien; Sun, Zhaojun; Benallaoua, Mourad; Guillaume, Philippe; Luescher, Immanuel F.; Sander, Cindy; Kirkwood, John M.; Kuchroo, Vijay

    2010-01-01

    The paradoxical coexistence of spontaneous tumor antigen–specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1–specific CD8+ T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1–specific CD8+ T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1+ NY-ESO-1–specific CD8+ T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3+PD-1+ NY-ESO-1–specific CD8+ T cells are more dysfunctional than Tim-3−PD-1+ and Tim-3−PD-1− NY-ESO-1–specific CD8+ T cells, producing less IFN-γ, TNF, and IL-2. Tim-3Tim-3L blockade enhanced cytokine production by NY-ESO-1–specific CD8+ T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1–specific CD8+ T cells upon prolonged antigen stimulation and acted in synergy with PD-1–PD-L1 blockade. Collectively, our findings support the use of Tim-3Tim-3L blockade together with PD-1–PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma. PMID:20819923

  12. Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade.

    PubMed

    Grabmeier-Pfistershammer, Katharina; Stecher, Carmen; Zettl, Markus; Rosskopf, Sandra; Rieger, Armin; Zlabinger, Gerhard J; Steinberger, Peter

    2017-09-04

    Persistent stimulation with antigens derived from viruses that establish chronic infections or tumour antigens results in the exhaustion of T cells. Coinhibitory receptors like PD-1 and CTLA-4 function as immune checkpoints on exhausted T cells. Blocking these molecules with antibodies improve immunity to cancer cells. Immune checkpoint inhibitors targeting other coinhibitory receptors might have a similar role in improving T cell function and thus also utility in cancer therapy. Using HIV-specific T cells as a model for exhaustion we have evaluated the capacity of antibodies targeting TIM-3, BTLA, CD160, LAG-3 and CTLA-4 alone or in combination with a PD-1 antibody to enhance proliferation and cytokine production in response to Gag and Nef peptides. Antibodies targeting BTLA and TIM-3 enhanced CD8 T cell proliferation. Moreover, our results indicate that blocking BTLA and TIM-3 in combination with PD-1 might be especially effective in enhancing responses of exhausted human T cells. Copyright © 2017. Published by Elsevier Inc.

  13. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia.

    PubMed

    Zhou, Qing; Munger, Meghan E; Veenstra, Rachelle G; Weigel, Brenda J; Hirashima, Mitsuomi; Munn, David H; Murphy, William J; Azuma, Miyuki; Anderson, Ana C; Kuchroo, Vijay K; Blazar, Bruce R

    2011-04-28

    Tumor-associated immune suppression can lead to defective T cell-mediated antitumor immunity. Here, we identified a unique phenotype of exhausted T cells in mice with advanced acute myelogenous leukemia (AML). This phenotype is characterized by the coexpression of Tim-3 and PD-1 on CD8(+) T cells in the liver, the major first site of AML metastases. PD-1 and Tim-3 coexpression increased during AML progression. PD-1(+)Tim-3(+) CD8(+) T cells were deficient in their ability to produce IFN-γ, TNF-α, and IL-2 in response to PD-1 ligand (PDL1) and Tim-3 ligand (galectin-9) expressing AML cells. PD-1 knockout (KO), which were partially resistant to AML challenge, up-regulated Tim-3 during AML progression and such Tim-3(+)PD-1- KO CD8(+) T cells had reduced cytokine production. Galectin-9 KO mice were more resistant to AML, which was associated with reduced T-regulatory cell accumulation and a modest induction of PD-1 and Tim-3 expression on CD8(+) T cells. Whereas blocking the PD-1/PDL1 or Tim-3/galectin-9 pathway alone was insufficient to rescue mice from AML lethality, an additive effect was seen in reducing-albeit not eliminating-both tumor burden and lethality when both pathways were blocked. Therefore, combined PD-1/PDL1 and Tim-3/galectin-9 blockade may be beneficial in preventing CD8(+) T-cell exhaustion in patients with hematologic malignancies such as advanced AML.

  14. Preferential Tim-3 expression on Treg and CD8(+) T cells, supported by tumor-associated macrophages, is associated with worse prognosis in gastric cancer.

    PubMed

    Shen, Pinying; Yue, Rongxi; Tang, Jiahong; Si, Haige; Shen, Liqun; Guo, Changsheng; Zhang, Lixin; Han, Huaizhong; Song, Haihan K; Zhao, Pengfei; Wang, Ning; Song, Zongchang; Guo, Chunliang

    2016-01-01

    While infection with H. pylori is a strong risk factor for gastric cancer, most H. pylori-colonized individuals, even those with the high-risk CagA(+)VacA(+) strain, remain asymptomatic over their lifetime. We hypothesized that the discordant outcomes were due to differences in the host immune responses. Previously, Tim-3-mediated immune modulation was observed in H. pylori-challenged mice. In this study, we compared Tim-3-related responses in CagA(+)VacA(+) H. pylori-infected asymptomatic individuals and H. pylori-associated gastric adenocarcinoma patients. We showed that compared to H. pylori-uninfected individuals, both H. pylori-infected asymptomatic and gastric cancer patients upregulated Tim-3 overall. However, the Tim-3 upregulation was enriched on Th1 cells in asymptomatic patients and on Treg and CD8(+) T cells in gastric cancer patients, with respective differences in T cell subset functions. In gastric cancer patients, high Tim-3 expression on Treg and CD8(+) T cells, but not on Th1 cells, was associated with worse prognosis. H. pylori-antigen presentation by tumor-associated macrophages upregulated Tim-3 expression more effectively than by blood monocyte-derived macrophages in vitro. The upregulation of Tim-3 in vitro depended on the concentration of H. pylori antigen but not on whether the cells were from asymptomatic or cancer patients. These data suggest that the discrepancy in Tim-3 upregulation in asymptomatic and cancer subjects is induced by cancer but not the other way around. Once gastric cancer is developed, Tim-3 expression is associated with worse prognosis.

  15. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia

    PubMed Central

    Zhou, Qing; Munger, Meghan E.; Veenstra, Rachelle G.; Weigel, Brenda J.; Hirashima, Mitsuomi; Munn, David H.; Murphy, William J.; Azuma, Miyuki; Anderson, Ana C.; Kuchroo, Vijay K.

    2011-01-01

    Tumor-associated immune suppression can lead to defective T cell-mediated antitumor immunity. Here, we identified a unique phenotype of exhausted T cells in mice with advanced acute myelogenous leukemia (AML). This phenotype is characterized by the coexpression of Tim-3 and PD-1 on CD8+ T cells in the liver, the major first site of AML metastases. PD-1 and Tim-3 coexpression increased during AML progression. PD-1+Tim-3+ CD8+ T cells were deficient in their ability to produce IFN-γ, TNF-α, and IL-2 in response to PD-1 ligand (PDL1) and Tim-3 ligand (galectin-9) expressing AML cells. PD-1 knockout (KO), which were partially resistant to AML challenge, up-regulated Tim-3 during AML progression and such Tim-3+PD-1- KO CD8+ T cells had reduced cytokine production. Galectin-9 KO mice were more resistant to AML, which was associated with reduced T-regulatory cell accumulation and a modest induction of PD-1 and Tim-3 expression on CD8+ T cells. Whereas blocking the PD-1/PDL1 or Tim-3/galectin-9 pathway alone was insufficient to rescue mice from AML lethality, an additive effect was seen in reducing—albeit not eliminating—both tumor burden and lethality when both pathways were blocked. Therefore, combined PD-1/PDL1 and Tim-3/galectin-9 blockade may be beneficial in preventing CD8+ T-cell exhaustion in patients with hematologic malignancies such as advanced AML. PMID:21385853

  16. Characterization of age-associated exhausted CD8⁺ T cells defined by increased expression of Tim-3 and PD-1.

    PubMed

    Lee, Kyoo-A; Shin, Kwang-Soo; Kim, Ga-Young; Song, You Chan; Bae, Eun-Ah; Kim, Il-Kyu; Koh, Choong-Hyun; Kang, Chang-Yuil

    2016-04-01

    Aging is accompanied by altered T-cell responses that result in susceptibility to various diseases. Previous findings on the increased expression of inhibitory receptors, such as programmed cell death protein 1 (PD-1), in the T cells of aged mice emphasize the importance of investigations into the relationship between T-cell exhaustion and aging-associated immune dysfunction. In this study, we demonstrate that T-cell immunoglobulin mucin domain-3 (Tim-3), another exhaustion marker, is up-regulated on aged T cells, especially CD8(+) T cells. Tim-3-expressing cells also produced PD-1, but Tim-3(+) PD-1(+) CD8(+) T cells had a distinct phenotype that included the expression of CD44 and CD62L, from Tim-3(-) PD-1(+) cells. Tim-3(+) PD-1(+) CD8(+) T cells showed more evident properties associated with exhaustion than Tim-3(-) PD-1(+) CD8(+) T cells: an exhaustion-related marker expression profile, proliferative defects following homeostatic or TCR stimulation, and altered production of cytokines. Interestingly, these cells produced a high level of IL-10 and induced normal CD8(+) T cells to produce IL-10, which might contribute to immune dysregulation in aged mice. The generation of Tim-3-expressing CD8(+) T cells in aged mice seems to be mediated by encounters with antigens but not by specific infection, based on their high expression of CD49d and their unbiased TCR Vβ usage. In conclusion, we found that a CD8(+) T-cell population with age-associated exhaustion was distinguishable by its expression of Tim-3. These results provide clues for understanding the alterations that occur in T-cell populations with age and for improving dysfunctions related to the aging of the immune system.

  17. MicroRNA-155 regulates interferon-γ production in natural killer cells via Tim-3 signalling in chronic hepatitis C virus infection.

    PubMed

    Cheng, Yong Q; Ren, Jun P; Zhao, Juan; Wang, Jia M; Zhou, Yun; Li, Guang Y; Moorman, Jonathan P; Yao, Zhi Q

    2015-08-01

    Host immune responses must be tightly regulated by an intricate balance between positive and negative signals while fighting pathogens; persistent pathogens may usurp these regulatory mechanisms to dampen host immunity to facilitate survival in vivo. Here we report that Tim-3, a negative signalling molecule expressed on monocytes and T cells, is up-regulated on natural killer (NK) cells in individuals chronically infected with hepatitis C virus (HCV). Additionally, the transcription factor T-bet was also found to be up-regulated and associated with Tim-3 expression in NK cells during chronic HCV infection. MicroRNA-155 (miR-155), an miRNA that inhibits signalling proteins involved in immune responses, was down-regulated in NK cells by HCV infection. This Tim-3/T-bet over-expression and miR-155 inhibition were recapitulated in vitro by incubating primary NK cells or NK92 cell line with Huh-7 hepatocytes expressing HCV. Reconstitution of miR-155 in NK cells from HCV-infected patients led to a decrease in T-bet/Tim-3 expression and an increase in interferon-γ production. Blocking Tim-3 signalling also enhanced interferon-γ production in NK cells by improving signal transducer and activator of transcription-5 phosphorylation. These data indicate that HCV-induced, miR-155-regulated Tim-3 expression regulates NK cell function, suggesting a novel mechanism for balancing immune clearance and immune injury during chronic viral infection.

  18. Feto-maternal immune regulation by TIM-3/galectin-9 pathway and PD-1 molecule in mice at day 14.5 of pregnancy.

    PubMed

    Meggyes, Matyas; Lajko, Adrienn; Palkovics, Tamas; Totsimon, Anett; Illes, Zsolt; Szereday, Laszlo; Miko, Eva

    2015-10-01

    Immunoregulation implies the activation of negative pathways leading to the modulation of specific immune responses. Co-inhibitory receptors (such as PD-1 and TIM-3) represent possible tools for this purpose. PD-1 and TIM-3 have been demonstrated to be present on immune cells suggesting general involvement in immunosuppression such as fetomaternal tolerance. The aim of our study was to investigate the expression pattern of PD-1, TIM-3, and its ligand Gal-9 on different immune cell subsets in the peripheral blood and at the fetomaternal interface in pregnant mice. TIM-3 and PD-1 expression by peripheral and decidual immune cells from pregnant BALB-c mice in 2 weeks of gestational age were measures by flow cytometry. Placental galectin-9 expression was determined by immunohistochemically and RT-PCR. Gal-9 was found to be present in the spongiotrophoblast layer of the haemochorial placenta. Decidual NK, NKT and γ/δ T cells showed increased PD-1 expression and reduced cytotoxic potential when compared to the periphery. TIM-3 expression by NK cells and γ/δ T cells is similar both in the periphery and in the decidua, notably, their relative TIM-3 expression is increased locally which is associated with reduced lytic activity. Decidual NKT cells exhibit a reduced TIM-3 expression with increased relative receptor expression and a slightly increased cytotoxicity when compared to the periphery. Our data reveals a particularly complex, tissue and cell type specific immunoregulatory mechanism by the investigated co-inhibitory receptors at the fetomaternal interface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer

    PubMed Central

    2013-01-01

    Background T-cell immunoglobulin and mucin domain 3 (TIM-3) is known as a negative immune regulator and emerging data have implicated TIM-3 a pivotal role in suppressing antitumor immunity. The co-stimulatory receptor CD137 is transiently upregulated on T-cells following activation and increases their proliferation and survival when engaged. Although antagonistic anti-TIM-3 or agonistic anti-CD137 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In this study, we sought to evaluate whether combined TIM-3 blockade and CD137 activation would significantly improve the immunotherapy in the murine ID8 ovarian cancer model. Methods Mice with established ID8 tumor were intraperitoneally injected with single or combined anti-TIM-3/CD137 monoclonal antibody (mAb); mice survival was recorded, the composition and gene expression of tumor-infiltrating immune cells in these mice was analyzed by flow cytometry and quantitative RT-PCR respectively, and the function of CD8+ cells was evaluated by ELISA and cytotoxicity assay. Results Either anti-TIM-3 or CD137 mAb alone, although effective in 3 days established tumor, was unable to prevent tumor progression in mice bearing 10 days established tumor, however, combined anti-TIM-3/CD137 mAb significantly inhibited the growth of these tumors with 60% of mice tumor free 90 days after tumor inoculation. Therapeutic efficacy was associated with a systemic immune response with memory and antigen specificity, required CD4+ cells and CD8+ cells. The 2 mAb combination increased CD4+ and CD8+ cells and decreased immunosuppressive CD4+FoxP3+ regulatory T (Treg) cells and CD11b+Gr-1+ myeloid suppressor cells (MDSC) at tumor sites, giving rise to significantly elevated ratios of CD4+ and CD8+ cells to Treg and MDSC; This is consistent with biasing local immune response towards an immunostimulatory Th1 type and is further supported by quantitative RT-PCR data

  20. The relationship between polymorphisms in the promoter region of Tim-3 and unexplained recurrent spontaneous abortion in Han Chinese women.

    PubMed

    Shen, Yang; Wang, Chen; Hong, Dun; Zeng, Baojin; Fang, Congcheng; Yuan, Chiting; Fan, Lilong; Lv, Haiyan; Zhu, Min

    2013-11-11

    Recurrent spontaneous abortion (RSA) refers to 2 or more consecutive pregnancy losses, and RSA with unknown causes is called unexplained recurrent spontaneous abortion (URSA). Tim-3, a subtype of the T-cell immunoglobulin domain and mucin domain (Tim) protein family, might be an important regulatory molecule that plays a pivotal role in URSA, which might be triggered mostly by Th1/Th2 immune deviation. To understand the etiology and pathogenesis of URSA in Han Chinese women, we investigated the association between polymorphisms of rs10053538 and rs10515746 in the promoter of Tim-3 and the risk of URSA in Han Chinese women. One hundred and forty-eight women with RSA resulting in still birth were enrolled in the URSA group. We performed tests to rule out congenital reproductive system malformation, reproductive system tumor, endocrine dyscrasia, and chromosome abnormalities. One hundred and fifty-three women with normal pregnancy leading to live birth were selected at random to comprise the control group. All women included in this study were genetically unrelated Han Chinese women. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific polymerase chain reaction (AS-PCR) were used to determine polymorphisms of rs10053538 and rs10515746, respectively, in all subjects. PCR products were chosen at random for sequencing. No significant statistical difference was found between the distribution frequency of the GT + TT genotype and T allele on the rs10053538 locus in the URSA group or the control group (10.1% vs. 11.8%, Chi(2) = 0.205, P = 0.651; 5.1% vs. 6.5%, Chi(2) = 0.592, P = 0.441; respectively). Neither was there a significant difference between the distribution frequency of the GT + TT genotype and T allele on the rs10515746 locus in the groups (6.8% vs. 3.9%, Chi(2)1.201, P = 0.273; 3.4% vs. 2.0%, Chi(2) = 1.169, P = 0.280; respectively). The present study suggested that these polymorphisms of rs10053538 or rs10515746 in

  1. Association of TIM-1 5383-5397ins/del and TIM-3 -1541C>T polymorphisms with multiple sclerosis in Isfahan population.

    PubMed

    Mazrouei, F; Ganjalikhani-Hakemi, M; Salehi, R; Alesahebfosoul, F; Etemadifar, M; Pouladian, M; Meshkat, R; Nekoueian, Sh; Zarkesh-Esfahani, H; Ziyaee-Ghahnaviyeh, M

    2016-06-01

    Multiple sclerosis (MS) is an organ-specific autoimmune disease in central nervous system, affecting about 2.5 million people around the world. Probable involvement of two newly identified immunoregulator molecules, TIM-1 and TIM-3, has been reported in autoimmune diseases. In this study, for the first time, the association of TIM-1 5383-5397ins/del and TIM-3 -1541C>T polymorphisms with MS in an Iranian population was considered. The results of our study showed that there is no significant association between TIM-1 5383-5397ins/del and MS (P = 0.38); however, the frequency of CT genotype of TIM-3 -1541C>T in patient group was significantly higher than the control group, and there was a significant association between CT genotype and MS (P = 0.009, OR = 4.08).

  2. Tumor antigen-specific CD8(+) T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer.

    PubMed

    Lu, Xu; Yang, Lin; Yao, Daxing; Wu, Xuan; Li, Jingpo; Liu, Xuesong; Deng, Lijuan; Huang, Caiting; Wang, Yue; Li, Dan; Liu, Jingwei

    2017-03-01

    Cytotoxic CD8 T lymphocytes that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally important in eliciting tumor rejection. NY-ESO-1 is a major target of CD8(+) T cell recognition in gastric cancer (GC) and is among the most immunogenic tumor antigens defined to date. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T cell dysfunction may reveal effective strategies for immunotherapy. In an effort to understand in vivo tolerance mechanisms, we assessed the phenotype and function of NY-ESO-1-specific CD8(+) T cells derived from peripheral blood lymphocytes (PBLs) and tumor-associated lymphocytes (TALs) of GC patients. Here, we report that Tim-3 expression defines a subpopulation of PD-1(+) exhausted NY-ESO-1-specific CD8(+) T cell and PD-1(+)Tim-3(+) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in GC patients. Functionally, CD8(+)PD-1(+)Tim-3(+) T cells were more impaired in IFN-γ, TNF-α and IL-2 production compared with PD-1(+)Tim-3(-) or PD-1(-)Tim-3(-) subsets. Dual blockade of Tim-3 and PD-1 during T-cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1-specific CD8(+) T cells could potentially be improved by therapeutic targeting of these inhibitory receptors, indicating that antitumor function of NY-ESO-1-specific CD8(+) T cells could potentially be improved by therapeutic targeting of these inhibitory receptors.

  3. Tim-3 alters the balance of IL-12/IL-23 and drives TH17 cells: role in hepatitis B vaccine failure during hepatitis C infection

    PubMed Central

    Wang, Jia M.; Ma, Cheng J.; Li, Guang Y.; Wu, Xiao Y.; Thayer, Penny; Greer, Pamela; Smith, Ashley M.; High, Kevin P.; Moorman, Jonathan P; Yao, Zhi Q.

    2013-01-01

    Hepatitis B virus (HBV) vaccination is recommended for individuals with hepatitis C virus (HCV) infection given their shared risk factors and increased liver-related morbidity and mortality upon super-infection. Vaccine responses in this setting are often blunted, with poor response rates to HBV vaccinations in chronically HCV-infected individuals compared to healthy subjects. In this study, we investigated the role of T cell immunoglobulin mucin domain-3 (Tim-3)-mediated immune regulation in HBV vaccine responses during HCV infection. We found that Tim-3, a marker for T cell exhaustion, was over-expressed on monocytes, leading to a differential regulation of IL-12/IL-23 production with in turn TH17 cell accumulation, in HCV-infected HBV vaccine non-responders compared to HCV-infected HBV vaccine responders or healthy subjects (HS). Importantly, ex vivo blockade of Tim-3 signaling corrected the imbalance of IL-12/IL-23 as well as the IL-17 bias observed in HBV vaccine non-responders during HCV infection. These results suggest that Tim-3-mediated dysregulation of innate to adaptive immune responses is involved in HBV vaccine failure in individuals with chronic HCV infection, raising the possibility that blocking this negative signaling pathway might improve the success rate of HBV immunization in the setting of chronic viral infection. PMID:23499521

  4. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer

    SciTech Connect

    Heon, Elise K.; Wulan, Hasi; Macdonald, Loch P.; Malek, Adel O.; Braunstein, Glenn H.; Eaves, Connie G.; Schattner, Mark D.; Allen, Peter M.; Alexander, Michael O.; Hawkins, Cynthia A.; McGovern, Dermot W.; Freeman, Richard L.; Amir, Eitan P.; Huse, Jason D.; Zaltzman, Jeffrey S.; Kauff, Noah P.; Meyers, Paul G.; Gleason, Michelle H.; Overholtzer, Michael G.; Wiseman, Sam S.; and others

    2015-08-14

    IL-15 has pivotal roles in the control of CD8{sup +} memory T cells and has been investigated as a therapeutic option in cancer therapy. Although IL-15 and IL-2 share many functions together, including the stimulation of CD8 T cell proliferation and IFN-γ production, the different in vivo roles of IL-15 and IL-2 have been increasingly recognized. Here, we explored the different effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells from resected breast tumors. We found that neither IL-2 nor IL-15 induced intratumoral CD8 T cell proliferation by itself, but after CD3/CD28-stimulation, IL-15 induced significantly higher proliferation than IL-2 during early time points, at day 2, day 3 and day 6. However, the IL-15-induced proliferation leveled off at day 9 and day 12, whereas IL-2 induced lower but progressive proliferation at each time point. Furthermore, IL-15 caused an early and robust increase of IFN-γ in the supernatant of TI cell cultures, which diminished at later time points, while the IL-2-induced IFN-γ production remained constant over time. In addition, the IL-15-costimulated CD8 T cells presented higher frequencies of apoptotic cells. The diminishing IL-15-induced response was possibly due to regulatory and/or exhaustion mechanisms. We did not observe increased IL-10 or PD-1 upregulation, but we have found an increase of Tim-3 upregulation on IL-15-, but not IL-2-stimulated cells. Blocking Tim-3 function using anti-Tim-3 antibodies resulted in increased IL-15-induced proliferation and IFN-γ production for a prolonged period of time, whereas adding Tim-3 ligand galectin 9 led to reduced proliferation and IFN-γ production. Our results suggest that IL-15 in combination of Tim-3 blocking antibodies could potentially act as an IL-2 alternative in tumor CD8 T cell expansion in vitro, a crucial step in adoptive T cell therapy. - Highlights: • We explored the effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells of breast cancer. • IL-15

  5. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines

    PubMed Central

    Fourcade, Julien; Sun, Zhaojun; Pagliano, Ornella; Chauvin, Joe-Marc; Sander, Cindy; Janjic, Bratislav; Tarhini, Ahmad A.; Tawbi, Hussein A.; Kirkwood, John M.; Moschos, Stergios; Wang, Hong; Guillaume, Philippe; Luescher, Immanuel F.; Krieg, Arthur; Anderson, Ana C.; Kuchroo, Vijay K.; Zarour, Hassane M.

    2014-01-01

    Although melanoma vaccines stimulate tumor antigen (TA)-specific CD8+ T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8+ T cells with regard to the inhibitory T cell co-receptors PD-1 and Tim-3 in metastatic melanoma patients who were administered tumor vaccines. The vaccines included incomplete Freund's adjuvant (IFA), CpG oligodeoxynucleotide (CpG) and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid TA-specific CD8+ T-cell responses detected ex vivo, however, TA-specific CD8+ T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8+ T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8+ T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8+ T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T cell responses and increase the likelihood of clinical responses in advanced melanoma patients. PMID:24343228

  6. Association between +4259 T>G and -574 G>T Polymorphisms of TIM-3 with Asthma in an Iranian Population.

    PubMed

    Sadri, Maryam; Ganjalikhani-Hakemi, Mazdak; Akbari, Peyman; Salehi, Rasoul; Rastaghi, Sedighe; Ghasemi, Ramin; Meshkat, Rezvan

    2017-08-01

    T-cell immunoglobulin and mucin domain (TIM)-3 have been shown to negatively regulate Th1 cell-mediated immunity. Activation of TIM-3 by galectin-9 induces Th1 cell apoptosis, which may contribute to skewing of immune response towards Th2-dominant immunity. The aim of this study was to determine whether certain genetic variations of TIM-3 influence predisposition to asthma in a sample of Iranian population. This case-control study was conducted on 209 patients with asthma and 200 healthy controls. The +4259 T>G and -574 G>T polymorphisms were detected using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) and amplification refractory mutation system-PCR(ARMS-PCR). Total serum IgE was further measured with ELISA. Notably, +4259T > G and-574G>T polymorphisms of TIM-3 were significantly associated with the susceptibility to asthma. In addition, the present study showed a significant difference between the distribution frequency of the GT + TT genotype and T allele on the +4259 T>G and -574 G>T locus between the groups.However, no correlation between the +4259 T > G and -574G > T polymorphisms and total serum IgE levels were observed. Together these results suggest that the TIM-3 +4259 T>G and -574 G>T polymorphisms are greatly associated with the susceptibility of Iranian population to asthma, which could open up new horizons for  better understanding of the pathophysiology, diagnostic, prognostic and therapeutic approaches of asthma.

  7. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    PubMed

    Linedale, Richard; Schmidt, Campbell; King, Brigid T; Ganko, Annabelle G; Simpson, Fiona; Panizza, Benedict J; Leggatt, Graham R

    2017-01-01

    Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  8. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer.

    PubMed

    Heon, Elise K; Wulan, Hasi; Macdonald, Loch P; Malek, Adel O; Braunstein, Glenn H; Eaves, Connie G; Schattner, Mark D; Allen, Peter M; Alexander, Michael O; Hawkins, Cynthia A; McGovern, Dermot W; Freeman, Richard L; Amir, Eitan P; Huse, Jason D; Zaltzman, Jeffrey S; Kauff, Noah P; Meyers, Paul G; Gleason, Michelle H; Overholtzer, Michael G; Wiseman, Sam S; Streutker, Catherine D; Asa, Sylvia W; McAlindon, Timothy P; Newcomb, Polly O; Sorensen, Poul M; Press, Oliver A

    2015-08-14

    IL-15 has pivotal roles in the control of CD8(+) memory T cells and has been investigated as a therapeutic option in cancer therapy. Although IL-15 and IL-2 share many functions together, including the stimulation of CD8 T cell proliferation and IFN-γ production, the different in vivo roles of IL-15 and IL-2 have been increasingly recognized. Here, we explored the different effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells from resected breast tumors. We found that neither IL-2 nor IL-15 induced intratumoral CD8 T cell proliferation by itself, but after CD3/CD28-stimulation, IL-15 induced significantly higher proliferation than IL-2 during early time points, at day 2, day 3 and day 6. However, the IL-15-induced proliferation leveled off at day 9 and day 12, whereas IL-2 induced lower but progressive proliferation at each time point. Furthermore, IL-15 caused an early and robust increase of IFN-γ in the supernatant of TI cell cultures, which diminished at later time points, while the IL-2-induced IFN-γ production remained constant over time. In addition, the IL-15-costimulated CD8 T cells presented higher frequencies of apoptotic cells. The diminishing IL-15-induced response was possibly due to regulatory and/or exhaustion mechanisms. We did not observe increased IL-10 or PD-1 upregulation, but we have found an increase of Tim-3 upregulation on IL-15-, but not IL-2-stimulated cells. Blocking Tim-3 function using anti-Tim-3 antibodies resulted in increased IL-15-induced proliferation and IFN-γ production for a prolonged period of time, whereas adding Tim-3 ligand galectin 9 led to reduced proliferation and IFN-γ production. Our results suggest that IL-15 in combination of Tim-3 blocking antibodies could potentially act as an IL-2 alternative in tumor CD8 T cell expansion in vitro, a crucial step in adoptive T cell therapy.

  9. Comparison of dynamic expressions of Tim-3 and PD-1 in the brains between toxoplasmic encephalitis-resistant BALB/c and -susceptible C57BL/6 mice.

    PubMed

    Wu, Bin; Fu, Xiaoyin; Huang, Bo; Tong, Xinxin; Zheng, Huanqin; Huang, Shiguang; Lu, Fangli

    2014-04-01

    T cells and IFN-γ are essential for controlling the reactivation of toxoplasmic encephalitis (TE), regardless of whether mice are susceptible or resistant to TE. It has been demonstrated that CD8(+) T cells exhausted in chronic Toxoplasma gondii infection result in TE reactivation in C57BL/6 mice. However, this phenomenon had not been reported in genetically TE-resistant BALB/c mice. To explore the immune mechanism of TE in different backgrounds of mice, the dynamic expressions of Tim-3, programmed cell death 1 (PD-1), and their ligands (galectin-9, PD-L1, PD-L2) in brain tissues were compared between TE-resistant BALB/c and -susceptible C57BL/6 mice infected with Prugniaud (Pru, a type II strain) of T. gondii in this study. Compared with infected BALB/c mice, there were remarkable pathological changes with significantly higher histological scores in the brains of C57BL/6 mice at 14, 35, 50, and 70 days postinfection (p.i., P < 0.01); significantly increased mRNA expressions of Tim-3 at 35 (P < 0.05) and 70 (P < 0.01) days p.i.; and significantly increased PD-1 at all the times p.i. (P < 0.01) in the brains of infected C57BL/6 mice. Furthermore, there were significantly increased mRNA expressions of PD-L1 in the brain of C57BL/6 mice than that in BALB/c mice at all the times p.i. (P < 0.01). Although the mRNA expressions of galectin-9 (ligand of Tim-3) were increased in the brains of both lineages of mice at all the times p.i., it showed no differences between the two lineages of mice. Our data suggest that the differences of Tim-3 and PD-1/PD-L1 expressions may contribute to the different immune responses between TE-resistant BALB/c and -susceptible C57BL/6 mice infected with Pru strain of T. gondii.

  10. Enhanced virus-specific CD8+ T cell responses by Listeria monocytogenes-infected dendritic cells in the context of Tim-3 blockade.

    PubMed

    Ma, Cheng J; Ren, Jun P; Li, Guang Y; Wu, Xiao Y; Brockstedt, Dirk G; Lauer, Peter; Moorman, Jonathan P; Yao, Zhi Q

    2014-01-01

    In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactA/ΔinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection.

  11. Enhanced Virus-Specific CD8+ T Cell Responses by Listeria monocytogenes-Infected Dendritic Cells in the Context of Tim-3 Blockade

    PubMed Central

    Ma, Cheng J.; Ren, Jun P.; Li, Guang Y.; Wu, Xiao Y.; Brockstedt, Dirk G.; Lauer, Peter; Moorman, Jonathan P.; Yao, Zhi Q.

    2014-01-01

    In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactA/ΔinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection. PMID:24498204

  12. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface.

    PubMed

    Wang, SongCun; Zhu, XiaoYong; Xu, YuanYuan; Zhang, Di; Li, YanHong; Tao, Yu; Piao, HaiLan; Li, DaJin; Du, MeiRong

    2016-04-01

    Are the immune regulatory molecules programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) involved in regulating CD4+ T cell function during pregnancy? PD-1 and Tim-3 promote Type 2 helper T cell (Th2) bias and pregnancy maintenance by regulating CD4+ T cell function at the maternal-fetal interface. The maternal CD4+ T cell response to fetal antigens is thought to be an important component of maternal-fetal tolerance during pregnancy. PD-1 and Tim-3 are important for limiting immunopathology. The co-expression of PD-1 and Tim-3 on T cells identifies a T cell subset with impaired proliferation and cytokine production. Combined blockade of Tim-3 and PD-1 could restore T cell function to the greatest degree. The expression of PD-1 and Tim-3 on CD4+ T cells was analyzed by flow cytometry, and in vitro and in vivo analyses were used to investigate the role of PD-1/Tim-3 signal in the regulation of CD4+ T cells function and pregnancy outcome. A total of 88 normal pregnant women, 37 women with recurrent spontaneous abortion, 36 normal pregnant mice and 45 abortion-prone mice were included. We measure the expression of PD-1 and Tim-3 on CD4+ T cells and their relationship to the function of CD4+ T cells and pregnancy outcome, as well as the effects of blocking PD-1 and Tim-3 pathways on decidual CD4+ T (dCD4+ T) cells during early pregnancy. PD-1 and Tim-3, by virtue of their up-regulation on dCD4+ T cells during pregnancy, define a specific effector/memory subset of CD4+ T cells and promote Th2 bias at the maternal-fetal interface. Using in vitro and in vivo experiments, we also found that combined targeting of PD-1 and Tim-3 pathways results in decreased production of Th2-type cytokines by dCD4+ T cells and increased fetal resorption of normal pregnant murine models. Moreover, decreased PD-1 and Tim-3 on dCD4+ T cells may be associated with miscarriage. Further study is required to examine the mechanism of PD-1 and Tim-3 effects on Th2 cytokine

  13. Targeting PD-1 and Tim-3 Pathways to Reverse CD8 T-Cell Exhaustion and Enhance Ex Vivo T-Cell Responses to Autologous Dendritic/Tumor Vaccines.

    PubMed

    Liu, Jingwei; Zhang, Shurong; Hu, Yuefeng; Yang, Zhaomin; Li, Jingpo; Liu, Xuesong; Deng, Lijuan; Wang, Yue; Zhang, Xiaoyan; Jiang, Ting; Lu, Xu

    2016-05-01

    The paradoxical coexistence of spontaneous tumor antigen-specific immune response with progressive disease in cancer patients need to dissect the molecular pathways involved in tumor-induced T-cell dysfunction or exhaustion. Programmed cell death 1 (PD-1) has been identified as a marker of exhausted T cells in chronic disease states, and blockade of PD-1-PD-L1 interactions has been shown to partially restore T-cell function. We have found that T-cell immunoglobulin mucin (Tim) 3 is expressed on CD8+ tumor-infiltrating lymphocytes (TILs) isolated from patients with colorectal cancer. All T-cell immunoglobulin mucin 3 (Tim-3+) TILs coexpress PD-1, and Tim-3+ PD-1+ CD8+ TILs represent the predominant fraction of Tcells infiltrating tumors. Tim-3+PD-1+ CD8+ TILs exhibit the most severe exhausted phenotype as defined by failure to produce cytokines, such as interferon-γ, tumor necrosis factor-α, and interleukin-2. We further find that combined targeting of the Tim-3 and PD-1 pathways increased the frequencies of not only interferon-γ and tumor necrosis factor-α but also frequencies of proliferating tumor antigen-specific CD8+ T cells than targeting either pathway alone. A concomitant decrease in regulatory T cells and enhanced killing in a cytotoxicity assay was observed. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T-cell exhaustion/dysfunction in patients with colorectal cancer.

  14. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer

    PubMed Central

    Severson, Jill J.; Serracino, Hilary S.; Mateescu, Valerica; Raeburn, Christopher D.; C.McIntyre, Robert; Sams, Sharon B.; Haugen, Bryan R.; French, Jena D.

    2015-01-01

    Regional metastatic differentiated thyroid cancer (mDTC) provides a unique model in which to study the tumor-immune interface. These lymph node (LN) metastases persist for years, generally without progression to distant metastases. While the immune system likely impedes disease progression, it is unsuccessful in eliminating disease. Our previous studies revealed that programmed death-1 (PD-1)+ T cells were enriched in tumor-involved lymph nodes (TILN). Tumor-associated leukocytes and tumor cells were collected from grossly involved LNs from 12 patients to further characterize the phenotype and functional potential of mDTC-associated PD-1+ T cells. PD-1+CD4+ and PD-1+CD8+ T cells were enriched in 8/12 TILN samples. PD-1+ T cells co-expressed Tim-3 and CD69 and failed to down-regulate CD27. CD8+ T cells, but not CD4+ T cells, from these samples were variably deficient in their ability to produce effector cytokines when compared to control TILNs that lacked resident PD-1+ T cells. PD-1+CD8+ T cells were capable of exocytosis but lacked intracellular perforin. Surprisingly, T-cell proliferative capacity was largely maintained in all samples. Thus, while PD-1 expression by mDTC-associated CD8+ T cells was associated with dysfunction, exhaustion was not complete. Notably, molecular markers of exhaustion did not translate to dysfunction in all samples or in CD4+ T cells. Regulatory T (Treg) cells, PD-L1, and galectin-9 were commonly found in mDTC and likely contributed to the initiation of T-cell exhaustion and disease progression. Therapies that release the effects of PD-1 and Tim-3 and reduce the suppressive effects of Tregs may encourage tumor elimination in patients with mDTC. PMID:25701326

  15. Interleukin 10-expressing B cells inhibit tumor-infiltrating T cell function and correlate with T cell Tim-3 expression in renal cell carcinoma.

    PubMed

    Cai, Chen; Zhang, Jin; Li, Minyu; Wu, Zhen-Jie; Song, Ken H; Zhan, Tina W; Wang, Lin-Hui; Sun, Ying-Hao

    2016-06-01

    Renal cell carcinoma is among the leading causes of cancer-related death and was found to induce IL-10. We started by focusing on IL-10-secreting cells in tumor-infiltrating lymphocytes in renal cell carcinoma patients and observed that both CD3(+) T cells and CD19(+) B cells contributed to an elevated IL-10 expression. We then focused on IL-10-expressing B cells, and found that compared to non-IL-10-producing B cells, the IL-10-expressing B cells had significantly lower levels of CD19 and CD20 expression, a lack of IgM and IgD expression, while the level of CD27 was elevated. Moreover, culturing under unstimulated conditions resulted in higher antibody production by these IL-10-producing B cells than their peripheral blood counterparts, which strongly suggested that they are plasmablast-differentiating cells. Both IgA and IgG subtypes were found but IgA had a higher relative abundance in the tumor-infiltrating fraction. We then observed inverse correlations between the frequency of IL-10-producing B cells and pro-inflammatory cytokine-producing T cells and T cell proliferation. The expression of T cell exhaustion marker Tim-3, however, was upregulated in patients with high frequencies of IL-10-producing B cells. Moreover, supernatant from tumor B cells suppressed T cell inflammation. In addition, frequencies of IL-10-producing tumor-infiltrating B cells were inversely correlated with resected tumor size, and were higher in later stage tumors. Together, our data demonstrated that IL-10-producing B cells had plasmablast-differentiating phenotype, and could contribute to T cell immunosuppression in renal cell carcinoma.

  16. Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1- and/or Th17-mediated skin inflammation.

    PubMed

    Niwa, Haruna; Satoh, Takahiro; Matsushima, Yuki; Hosoya, Kazuki; Saeki, Kazumi; Niki, Toshiro; Hirashima, Mitsuomi; Yokozeki, Hiroo

    2009-08-01

    Tim-3 is a cell surface molecule preferentially expressed in Th1 and Th17 cells. Galectin-9 is a ligand for Tim-3 and the binding of galectin-9 to Tim-3 induces apoptosis. We recently developed a stable form of galectin-9 (sGal-9) by partial deletion of the linker peptide. In this study, we characterized the therapeutic effects of sGal-9 on inflammatory reactions in contact hypersensitivity and IL-23-induced psoriatic mouse models. In contact hypersensitivity in mice, the ear swelling response was suppressed by sGal-9. In vitro treatment with sGal-9 resulted in cell apoptosis of CD4, CD8, and hepatic NK cells. sGal-9-treated mice had decreased IFN-gamma- and IL-17-producing T cells. Similarly, sGal-9 reduced epidermal thickness and dermal cellular infiltrate levels in IL-23-induced psoriasis-like skin inflammation. This was accompanied by decreased skin lesion levels of IL-17 and IL-22. sGal-9 may be a unique and useful therapeutic tool for the treatment of Th1- and/or Th17-mediated skin inflammation.

  17. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation

    PubMed Central

    Connell, Bridgette Janine; Chang, Sui-Yuan; Prakash, Ekambaranellore; Yousfi, Rahima; Mohan, Viswaraman; Posch, Wilfried; Wilflingseder, Doris; Moog, Christiane; Kodama, Eiichi N.; Clayette, Pascal; Lortat-Jacob, Hugues

    2016-01-01

    Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1. PMID:27788205

  18. Nomenclature of Toso, Fas apoptosis inhibitory molecule 3, and IgM FcR.

    PubMed

    Kubagawa, Hiromi; Carroll, Michael C; Jacob, Chaim O; Lang, Karl S; Lee, Kyeong-Hee; Mak, Tak; McAndrews, Monica; Morse, Herbert C; Nolan, Garry P; Ohno, Hiroshi; Richter, Günther H; Seal, Ruth; Wang, Ji-Yang; Wiestner, Adrian; Coligan, John E

    2015-05-01

    Hiromi Kubagawa and John E. Coligan coordinated an online meeting to define an appropriate nomenclature for the cell surface glycoprotein presently designated by different names: Toso, Fas apoptosis inhibitory molecule 3 (FAIM3), and IgM FcR (FcμR). FAIM3 and Faim3 are the currently approved symbols for the human and mouse genes, respectively, in the National Center for Biotechnology Information, Ensembl, and other databases. However, recent functional results reported by several groups of investigators strongly support a recommendation for renaming FAIM3/Faim3 as FCMR/Fcmr, a name better reflecting its physiological function as the FcR for IgM. Participants included 12 investigators involved in studying Toso/FAIM3(Faim3)/FμR, representatives from the Human Genome Nomenclature Committee (Ruth Seal) and the Mouse Genome Nomenclature Committee (Monica McAndrews), and an observer from the IgM research field (Michael Carroll). In this article, we provide a brief background of the key research on the Toso/FAIM3(Faim3)/FcμR proteins, focusing on the ligand specificity and functional activity, followed by a brief summary of discussion about adopting a single name for this molecule and its gene and a resulting recommendation for genome nomenclature committees.

  19. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  20. Therapeutic Immunization with a Mixture of Herpes Simplex Virus 1 Glycoprotein D-Derived “Asymptomatic” Human CD8+ T-Cell Epitopes Decreases Spontaneous Ocular Shedding in Latently Infected HLA Transgenic Rabbits: Association with Low Frequency of Local PD-1+ TIM-3+ CD8+ Exhausted T Cells

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Chentoufi, Aziz A.; Geertsema, Roger; Thai, Nhi Thi Uyen; Dasgupta, Gargi; Osorio, Nelson; Kalantari, Mina; Nesburn, Anthony B.; Wechsler, Steven L.

    2015-01-01

    ABSTRACT Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8+ T cells from “naturally” protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8+ T-cell epitopes (gD53–61, gD70–78, and gD278–286) were linked with a promiscuous CD4+ T-cell epitope (gD287–317) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8+ T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8+ T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1+ TIM-3+ CD8+ T cells. The results underscore the potential of an ASYMP CD8+ T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. IMPORTANCE Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most

  1. Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived “asymptomatic” human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Chentoufi, Aziz A; Geertsema, Roger; Thai, Nhi Thi Uyen; Dasgupta, Gargi; Osorio, Nelson; Kalantari, Mina; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-07-01

    Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding

  2. Circulating T lymphocyte subsets, cytokines, and immune checkpoint inhibitors in patients with bipolar II or major depression: a preliminary study

    PubMed Central

    Wu, Wei; Zheng, Ya-li; Tian, Li-ping; Lai, Jian-bo; Hu, Chan-chan; Zhang, Peng; Chen, Jing-kai; Hu, Jian-bo; Huang, Man-li; Wei, Ning; Xu, Wei-juan; Zhou, Wei-hua; Lu, Shao-jia; Lu, Jing; Qi, Hong-li; Wang, Dan-dan; Zhou, Xiao-yi; Duan, Jin-feng; Xu, Yi; Hu, Shao-hua

    2017-01-01

    This study aimed to investigate the less known activation pattern of T lymphocyte populations and immune checkpoint inhibitors on immunocytes in patients with bipolar II disorder depression (BD) or major depression (MD). A total of 23 patients with BD, 22 patients with MD, and 20 healthy controls (HCs) were recruited. The blood cell count of T lymphocyte subsets and the plasma level of cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ) were selectively investigated. The expression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), programmed cell death protein 1 (PD-1) and its ligands, PD-L1 and PD-L2, on T lymphocytes and monocytes, was detected. In results, blood proportion of cytotoxic T cells significantly decreased in BD patients than in either MD patients or HCs. The plasma level of IL-6 increased in patients with BD and MD. The expression of TIM-3 on cytotoxic T cells significantly increased, whereas the expression of PD-L2 on monocytes significantly decreased in patients with BD than in HCs. These findings extended our knowledge of the immune dysfunction in patients with affective disorders. PMID:28074937

  3. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria.

    PubMed

    Zhang, Yong; Agrebi, Rym; Bellows, Lauren E; Collet, Jean-François; Kaever, Volkhard; Gründling, Angelika

    2017-01-06

    The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m(1)G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3',5'-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3′,5′-cAMP in Bacteria*

    PubMed Central

    Agrebi, Rym; Bellows, Lauren E.; Collet, Jean-François; Kaever, Volkhard

    2017-01-01

    The nucleotide signaling molecule 3′,5′-cyclic adenosine monophosphate (3′,5′-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3′,5′-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3′,5′-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3′,5′-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3′,5′-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2′,3′-cAMP but not 3′,5′-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3′,5′-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3′,5′-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3′,5′-cAMP. Altogether this further indicates that S. aureus does not produce 3′,5′-cAMP, which would otherwise competitively inhibit an essential enzyme. PMID:27881678

  5. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line

    PubMed Central

    1994-01-01

    The leukocyte differentiation antigen, CD50, has been recently identified as the intercellular adhesion molecule 3 (ICAM-3), the third counter-receptor of leukocyte function-associated antigen 1 (LFA-1). This molecule seems to be specially involved in the adhesion events of the initial phases of the immune response. To characterize the role of CD50 in leukocyte interactions, the different molecular events induced after cross-linking of CD50 on T cell-derived Jurkat cell line have been analyzed. When cells were incubated with anti-CD50 mAbs and cross- linked with polyclonal goat anti-mouse immunoglobulins, a rise in intracellular calcium concentration ([Ca2+]i) was observed. This increase in [Ca2+]i was mainly due to the uptake of extracellular Ca2+. This Ca2+ flux involved tyrosine phosphorylations and was further increased by CD3 costimulation. These data, together with those obtained by phosphotyrosine (P-Tyr) immunoprecipitation and in vitro kinase assays, suggested the involvement of protein-tyrosine kinases (PTK) in CD50 transduction pathways. By using specific antisera, the presence of p56lck and p59fyn protein tyrosine kinases (PTK) was clearly demonstrated in the CD50 immunoprecipitates. These findings suggest that the interaction of CD50 with its natural ligand (LFA-1) may result in T lymphocyte activation events, in which CD50 could play a very active role after antigen triggering. PMID:7515097

  6. Rab3 interacting molecule 3 mutations associated with autism alter regulation of voltage-dependent Ca²⁺ channels.

    PubMed

    Takada, Yoshinori; Hirano, Mitsuru; Kiyonaka, Shigeki; Ueda, Yoshifumi; Yamaguchi, Kazuma; Nakahara, Keiko; Mori, Masayuki X; Mori, Yasuo

    2015-09-01

    Autism is a neurodevelopmental psychiatric disorder characterized by impaired reciprocal social interaction, disrupted communication, and restricted and stereotyped patterns of interests. Autism is known to have a strong genetic component. Although mutations in several genes account for only a small proportion of individuals with autism, they provide insight into potential biological mechanisms that underlie autism, such as dysfunction in Ca(2+) signaling, synaptic dysfunction, and abnormal brain connectivity. In autism patients, two mutations have been reported in the Rab3 interacting molecule 3 (RIM3) gene. We have previously demonstrated that RIM3 physically and functionally interacts with voltage-dependent Ca(2+) channels (VDCCs) expressed in neurons via the β subunits, and increases neurotransmitter release. Here, by introducing corresponding autism-associated mutations that replace glutamic acid residue 176 with alanine (E176A) and methionine residue 259 with valine (M259V) into the C2B domain of mouse RIM3, we demonstrate that both mutations partly cancel the suppressive RIM3 effect on voltage-dependent inactivation of Ba(2+) currents through P/Q-type CaV2.1 recombinantly expressed in HEK293 cells. In recombinant N-type CaV2.2 VDCCs, the attenuation of the suppressive RIM3 effect on voltage-dependent inactivation is conserved for M259V but not E176A. Slowing of activation speed of P/Q-type CaV2.1 currents by RIM3 is abolished in E176A, while the physical interaction between RIM3 and β subunits is significantly attenuated in M259V. Moreover, increases by RIM3 in depolarization-induced Ca(2+) influx and acetylcholine release are significantly attenuated by E176A in rat pheochromocytoma PC12 cells. Thus, our data raise the interesting possibility that autism phenotypes are elicited by synaptic dysfunction via altered regulation of presynaptic VDCC function and neurotransmitter release. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Carbon monoxide-releasing molecule-3 suppresses Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-1β in murine macrophages.

    PubMed

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-10-05

    This study was performed to analyze the effect of carbon monoxide (CO)-releasing molecule-3 (CORM-3) in alleviating the production of proinflammatory mediators in macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen associated with periodontal disease, and its possible mechanisms of action. LPS was isolated using the hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO) and interleukin-1β (IL-1β). Gene expression was quantified by real-time PCR, and protein expression by immunoblotting. DNA-binding activities of NF-κB subunits were determined using an ELISA-based kit. CORM-3 suppressed the production of inducible NO synthase (iNOS)-derived NO and IL-1β at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. CORM-3 enhanced heme oxygenase-1 (HO-1) expression in cells stimulated with P. intermedia LPS, and inhibition of HO-1 activity by SnPP notably reversed the suppressive effect of CORM-3 on LPS-induced production of NO. LPS-induced phosphorylation of p38 and JNK was not affected by CORM-3. CORM-3 did not influence P. intermedia LPS-induced degradation of IκB-α. Instead, nuclear translocation of NF-κB p65 and p50 subunits was blocked by CORM-3 in LPS-treated cells. In addition, CORM-3 reduced LPS-induced p65 and p50 binding to DNA. Besides, CORM-3 significantly suppressed P. intermedia LPS-induced phosphorylation of STAT1. Overall, this study indicates that CORM-3 suppresses the production of NO and IL-1β in P. intermedia LPS-activated murine macrophages via HO-1 induction and inhibition of NF-κB and STAT1 pathways. The modulation of host inflammatory response by CORM-3 would be an attractive therapeutic approach to attenuate the progression of periodontal disease.

  8. Immunization with different viral antigens alters the pattern of T cell exhaustion and latency in herpes simplex virus type 1-infected mice.

    PubMed

    Allen, Sariah J; Mott, Kevin R; Zandian, Mandana; Ghiasi, Homayon

    2010-12-01

    We have shown previously that immunization with herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) exacerbated corneal scarring (CS) in ocularly infected mice. In this study, we investigated whether higher levels of CS were correlated with higher levels of latency and T cell exhaustion in gK-immunized mice. BALB/c mice were vaccinated with baculovirus-expressed gK or gD or mock immunized. Twenty-one days after the third immunization, mice were ocularly infected with 2 × 10(4) PFU/eye of virulent HSV-1 strain McKrae. On day 5 postinfection, virus replication in the eye was measured, and on day 30 postinfection, infiltration of the trigeminal ganglia (TG) by CD4, CD8, programmed death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) was monitored by immunohistochemistry and quantitative real-time PCR (qRT-PCR). This study demonstrated that higher levels of CS were correlated with higher levels of latency, and this was associated with the presence of significantly higher numbers of CD4(+)PD-1(+) and CD8(+)PD-1(+) cells in the TG of the gK-immunized group than in both the gD- and mock-immunized groups. Levels of exhaustion associated with Tim-3 were the same among gK- and mock-vaccinated groups but higher than levels in the gD-vaccinated group. In this study, we have shown for the first time that both PD-1 and Tim-3 contribute to T cell exhaustion and an increase of latency in the TG of latently infected mice.

  9. Immune exhaustion during chronic infections in cattle

    PubMed Central

    KONNAI, Satoru; MURATA, Shiro; OHASHI, Kazuhiko

    2016-01-01

    Recently, dysfunction of antigen-specific T cells is well documented as T-cell exhaustion and has been defined by the loss of effector functions during chronic infections and cancer in human. The exhausted T cells are characterized phenotypically by the surface expression of immunoinhibitory receptors, such as programmed death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and cytotoxic T-lymphocyte antigen 4 (CTLA-4). However, there is still a fundamental lack of knowledge about the immunoinhibitory receptors in the fields of veterinary medicine. In particular, very little is known about mechanism of T cell dysfunction in chronic infection in cattle. Recent our studies have revealed that immunoinhibitory molecules including PD-1/ programmed death-ligand 1 (PD-L1) play critical roles in immune exhaustion and disease progression in case of bovine leukemia virus (BLV) infection, Johne’s disease and bovine anaplasmosis. This review includes some recent data from us. PMID:27725355

  10. Soluble T Cell Immunoglobulin Mucin Domain 3 Is Shed from CD8+ T Cells by the Sheddase ADAM10, Is Increased in Plasma during Untreated HIV Infection, and Correlates with HIV Disease Progression

    PubMed Central

    Douglas-Vail, Matthew B.; Rahman, A. K. M. Nur-ur; Medcalf, Karyn E.; Xie, Irene Y.; Chew, Glen M.; Tandon, Ravi; Lanteri, Marion C.; Norris, Philip J.; Deeks, Steven G.; Ndhlovu, Lishomwa C.

    2015-01-01

    T cell exhaustion associated coinhibitory molecule 3, sTim-3, is shed from the surface of T cells. Furthermore, sTim-3 is elevated in the plasma of treatment-naive subjects with acute or chronic HIV infection and is associated with markers of disease progression. This is the first study to characterize sTim-3 in human plasma, its source, and mechanism of production. While it is still unclear whether sTim-3 contributes to HIV pathogenesis, sTim-3 may represent a new correlate of HIV disease progression. PMID:25609823

  11. Characteristics of splenic CD8+ T cell exhaustion in patients with hepatitis C.

    PubMed

    Sumida, K; Shimoda, S; Iwasaka, S; Hisamoto, S; Kawanaka, H; Akahoshi, T; Ikegami, T; Shirabe, K; Shimono, N; Maehara, Y; Selmi, C; Gershwin, M E; Akashi, K

    2013-10-01

    There is increasing interest in the role of T cell exhaustion and it is well known that the natural history of chronic hepatitis C virus infection (HCV) is modulated by CD8(+) T cell immunobiology. There are many pathways that alter the presence of exhaustive T cells and, in particular, they are functionally impaired by inhibitory receptors, such as programmed death-1 (PD-1) and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). We obtained spleen, liver and peripheral blood (before and after splenectomy) lymphoid cells from 25 patients with HCV-related cirrhosis undergoing liver transplantation for end-stage disease or splenectomy for portal hypertension. In all samples we performed an extensive phenotypic study of exhaustion markers [PD-1, Tim-3, interferon (IFN)-γ) and their ligands (PD-L1, PD-L2, galectin-9] in CD8(+) T cell subpopulations (both total and HCV-specific) and in antigen-presenting cells (APC; monocytes and dendritic cells). In the spleen, total and HCV-specific CD8(+) T cells demonstrated enhanced markers of exhaustion, predominantly in the effector memory subpopulation. Similarly, splenic APC over-expressed inhibitory receptor ligands when compared to peripheral blood. Finally, when peripheral blood CD8(+) T cells were compared before and after splenectomy, markers of exhaustion were reduced in splenic CD8(+) T cells and APC. Our data in HCV-related cirrhosis suggest that CD8(+) T cells in the spleen manifest a significantly higher exhaustion compared to peripheral blood and may thus contribute to the failure to control HCV. Counteracting this process may contribute to inducing an effective immune response to HCV.

  12. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    PubMed

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

  13. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability.

    PubMed

    Qian, Yi-Wen; Li, Chuan; Jiang, Ai-Ping; Ge, Shengfang; Gu, Ping; Fan, Xianqun; Li, Tai-Sheng; Jin, Xia; Wang, Jian-Hua; Wang, Zhi-Liang

    2016-10-28

    Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens.

  14. Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1.

    PubMed

    Liu, Huanliang; Hwangbo, Yon; Holte, Sarah; Lee, Jean; Wang, Chunhui; Kaupp, Nicole; Zhu, Haiying; Celum, Connie; Corey, Lawrence; McElrath, M Juliana; Zhu, Tuofu

    2004-09-15

    To determine the influence of host genetics on human immunodeficiency virus (HIV) type 1 infection, we examined 94 repeatedly exposed seronegative (ES) individuals for polymorphisms in multiple genes and compared the results with those for 316 HIV-1-seropositive and 425 HIV-1-seronegative individuals. The frequency of homozygous C-C chemokine receptor (CCR) 5- Delta 32 was higher in ES (3.2%) than in HIV-1-seropositive individuals (0.0%; P=.012). However, the CCR5-59029A, CCR2-64I, stromal cell-derived factor (SDF)-1-3'A, RANTES (regulated on activation, normally T cell-expressed and -secreted)-403A, and RANTES-28G polymorphisms were not associated with resistance to HIV-1 infection. Furthermore, we identified novel variants in the DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin) repeat region and observed that heterozygous DC-SIGN reduced the risk of HIV-1 infection (3.2% in ES individuals vs. 0.0% in HIV-1-seropositive individuals; P=.011).

  15. Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Recognizes a Novel Ligand, Mac-2-binding Protein, Characteristically Expressed on Human Colorectal Carcinomas*

    PubMed Central

    Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke

    2011-01-01

    Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679

  16. Graft-infiltrating PD-L1(hi) cross-dressed dendritic cells regulate anti-donor T cell responses in mouse liver transplant tolerance.

    PubMed

    Ono, Yoshihiro; Perez-Gutierrez, Angelica; Nakao, Toshimasa; Dai, Helong; Camirand, Geoffrey; Yoshida, Osamu; Yokota, Shinichiro; Stolz, Donna Beer; Ross, Mark A; Morelli, Adrian E; Geller, David A; Thomson, Angus W

    2017-09-16

    While a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. Here, we investigated the role of intra-graft dendritic cells (DC) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. While donor interstitial DC diminished rapidly following transplantation, they were replaced in the liver by host DC that peaked on postoperative day (POD) 7 and persisted indefinitely. About 60% of these recipient DC displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0-2%) of cross-dressed DC (CD-DC) was evident in the spleen. CD-DC sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of IL-10 compared with non CD-DC (nCD-DC) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)(hi) T cell immunoglobulin and mucin domain containing-3 (TIM-3)(+) exhausted graft-infiltrating CD8(+) T cells were observed. Importantly, unlike nCD-DC, the CD-DC failed to stimulate proliferation of allogeneic T cells but markedly suppressed anti-donor host T cell proliferation. CD-DC were much less evident in allografts from DNAX-activating protein of 12kDa (DAP12)(-/-) donors that were rejected acutely. These findings suggest that graft-infiltrating PD-L1(hi) CD-DC may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  17. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

    PubMed

    Tietjen, Gregory T; Gong, Zhiliang; Chen, Chiu-Hao; Vargas, Ernesto; Crooks, James E; Cao, Kathleen D; Heffern, Charles T R; Henderson, J Michael; Meron, Mati; Lin, Binhua; Roux, Benot; Schlossman, Mark L; Steck, Theodore L; Lee, Ka Yee C; Adams, Erin J

    2014-04-15

    Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.

  18. Restoring homeostasis of CD4⁺ T cells in hepatitis-B-virus-related liver fibrosis.

    PubMed

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-10-14

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4(+) T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4(+) T-cell subsets on CHB and HBVLF. We emphasize CD4(+) T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4(+) T cells in CHB and HBVLF.

  19. Restoring homeostasis of CD4+ T cells in hepatitis-B-virus-related liver fibrosis

    PubMed Central

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-01-01

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF. PMID:26478664

  20. Tiling patterns from ABC star molecules: 3-colored foams?

    PubMed

    Kirkensgaard, Jacob J K; Pedersen, Martin C; Hyde, Stephen T

    2014-10-07

    We present coarse-grained simulations of the self-assembly of 3-armed ABC star polyphiles. In systems of star polyphiles with two arms of equal length the simulations corroborate and expand previous findings from related miktoarm star terpolymer systems on the formation of patterns containing columnar domains whose sections are 2D planar tilings. However, the systematic variation of face topologies as the length of the third (unequal) arm is varied differs from earlier findings regarding the compositional dependence. We explore 2D 3-colored foams to establish the optimal patterns based on interfacial energy alone. A generic construction algorithm is described that accounts for all observed 2D tiling patterns and suggests other patterns likely to be found beyond the range of the simulations reported here. Patterns resulting from this algorithm are relaxed using Surface Evolver calculations to form 2D foams with minimal interfacial length as a function of composition. This allows us to estimate the interfacial enthalpic contributions to the free energy of related star molecular assemblies assuming strong segregation. We compare the resulting phase sequence with a number of theoretical results from particle-based simulations and field theory, allowing us to tease out relative enthalpic and entropic contributions as a function of the chain lengths making up the star molecules. Our results indicate that a richer polymorphism is to be expected in systems not dominated by chain entropy. Further, analysis of corresponding planar tiling patterns suggests that related two-periodic columnar structures are unlikely hypothetical phases in 4-arm star polyphile melts in the absence of sufficient arm configurational freedom for minor domains to form lens-shaped di-gons, which require higher molecular weight polymeric arms. Finally, we discuss the possibility of forming a complex tiling pattern that is a quasi-crystalline approximant for 3-arm star polyphiles with unequal arm lengths.

  1. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L

    PubMed Central

    Ramello, M C; Tosello Boari, J; Canale, F P; Mena, H A; Negrotto, S; Gastman, B; Gruppi, A; Acosta Rodríguez, E V; Montes, C L

    2014-01-01

    Solid tumors are infiltrated by immune cells where macrophages and senescent T cells are highly represented. Within the tumor microenvironment, a cross-talk between the infiltrating cells may occur conditioning the characteristic of the in situ immune response. Our previous work showed that tumors induce senescence of T cells, which are powerful suppressors of lympho-proliferation. In this study, we report that Tumor-Induced Senescent (TIS)-T cells may also modulate monocyte activation. To gain insight into this interaction, CD4+ or CD8+TIS-T or control-T cells were co-incubated with autologous monocytes under inflammatory conditions. After co-culture with CD4+ or CD8+TIS-T cells, CD14+ monocytes/macrophages (Mo/Ma) exhibit a higher expression of CD16+ cells and a reduced expression of CD206. These Mo/Ma produce nitric oxide and reactive oxygen species; however, TIS-T cells do not modify phagocyte capacity of Mo/Ma. TIS-T modulated-Mo/Ma show a higher production of pro-inflammatory cytokines (TNF, IL-1β and IL-6) and angiogenic factors (MMP-9, VEGF-A and IL-8) and a lower IL-10 and IP-10 secretion than monocytes co-cultured with controls. The mediator(s) present in the supernatant of TIS-T cell/monocyte-macrophage co-cultures promote(s) tubulogenesis and tumor-cell survival. Monocyte-modulation induced by TIS-T cells requires cell-to-cell contact. Although CD4+ shows different behavior from CD8+TIS-T cells, blocking mAbs against T-cell immunoglobulin and mucin protein 3 and CD40 ligand reduce pro-inflammatory cytokines and angiogenic factors production, indicating that these molecules are involved in monocyte/macrophage modulation by TIS-T cells. Our results revealed a novel role for TIS-T cells in human monocyte/macrophage modulation, which may have deleterious consequences for tumor progression. This modulation should be considered to best tailor the immunotherapy against cancer. PMID:25375372

  2. Small-molecule 3D Structure Prediction Using Open Crystallography Data

    PubMed Central

    Sadowski, Peter; Baldi, Pierre

    2014-01-01

    Predicting the 3D structures of small molecules is a common problem in chemoinformatics. Even the best methods are inaccurate for complex molecules, and there is a large gap in accuracy between proprietary and free algorithms. Previous work presented COSMOS, a novel, data-driven algorithm that uses knowledge of known structures from the Cambridge Structural Database, and demonstrated performance that was competitive with proprietary algorithms. However, dependence on the Cambridge Structural Database prevented its widespread use. Here we present an updated version of the COSMOS structure predictor, complete with a free structure library derived from open data sources. We demonstrate that COSMOS performs better than other freely-available methods, with a mean RMSD of 1.16 Å and 1.68 Å for organic and metal-organic structures, and a mean prediction time of 60 ms per molecule. This is a 17% and 20% reduction in RMSD compared to the free predictor provided by Open Babel, and ten times faster. The ChemDB webportal provides a COSMOS prediction webserver, as well as downloadable copies of the COSMOS executable and the library of molecular substructures. PMID:24261562

  3. Small-molecule 3D structure prediction using open crystallography data.

    PubMed

    Sadowski, Peter; Baldi, Pierre

    2013-12-23

    Predicting the 3D structures of small molecules is a common problem in chemoinformatics. Even the best methods are inaccurate for complex molecules, and there is a large gap in accuracy between proprietary and free algorithms. Previous work presented COSMOS, a novel data-driven algorithm that uses knowledge of known structures from the Cambridge Structural Database and demonstrates performance that was competitive with proprietary algorithms. However, dependence on the Cambridge Structural Database prevented its widespread use. Here, we present an updated version of the COSMOS structure predictor, complete with a free structure library derived from open data sources. We demonstrate that COSMOS performs better than other freely available methods, with a mean RMSD of 1.16 and 1.68 Å for organic and metal-organic structures, respectively, and a mean prediction time of 60 ms per molecule. This is a 17% and 20% reduction, respectively, in RMSD compared to the free predictor provided by Open Babel, and it is 10 times faster. The ChemDB Web portal provides a COSMOS prediction Web server, as well as downloadable copies of the COSMOS executable and library of molecular substructures.

  4. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol.

    PubMed

    Duin, Evert C; Wagner, Tristan; Shima, Seigo; Prakash, Divya; Cronin, Bryan; Yáñez-Ruiz, David R; Duval, Stephane; Rümbeli, Robert; Stemmler, René T; Thauer, Rudolf Kurt; Kindermann, Maik

    2016-05-31

    Ruminants, such as cows, sheep, and goats, predominantly ferment in their rumen plant material to acetate, propionate, butyrate, CO2, and methane. Whereas the short fatty acids are absorbed and metabolized by the animals, the greenhouse gas methane escapes via eructation and breathing of the animals into the atmosphere. Along with the methane, up to 12% of the gross energy content of the feedstock is lost. Therefore, our recent report has raised interest in 3-nitrooxypropanol (3-NOP), which when added to the feed of ruminants in milligram amounts persistently reduces enteric methane emissions from livestock without apparent negative side effects [Hristov AN, et al. (2015) Proc Natl Acad Sci USA 112(34):10663-10668]. We now show with the aid of in silico, in vitro, and in vivo experiments that 3-NOP specifically targets methyl-coenzyme M reductase (MCR). The nickel enzyme, which is only active when its Ni ion is in the +1 oxidation state, catalyzes the methane-forming step in the rumen fermentation. Molecular docking suggested that 3-NOP preferably binds into the active site of MCR in a pose that places its reducible nitrate group in electron transfer distance to Ni(I). With purified MCR, we found that 3-NOP indeed inactivates MCR at micromolar concentrations by oxidation of its active site Ni(I). Concomitantly, the nitrate ester is reduced to nitrite, which also inactivates MCR at micromolar concentrations by oxidation of Ni(I). Using pure cultures, 3-NOP is demonstrated to inhibit growth of methanogenic archaea at concentrations that do not affect the growth of nonmethanogenic bacteria in the rumen.

  5. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol

    PubMed Central

    Duin, Evert C.; Wagner, Tristan; Shima, Seigo; Prakash, Divya; Cronin, Bryan; Yáñez-Ruiz, David R.; Duval, Stephane; Rümbeli, Robert; Stemmler, René T.; Thauer, Rudolf Kurt; Kindermann, Maik

    2016-01-01

    Ruminants, such as cows, sheep, and goats, predominantly ferment in their rumen plant material to acetate, propionate, butyrate, CO2, and methane. Whereas the short fatty acids are absorbed and metabolized by the animals, the greenhouse gas methane escapes via eructation and breathing of the animals into the atmosphere. Along with the methane, up to 12% of the gross energy content of the feedstock is lost. Therefore, our recent report has raised interest in 3-nitrooxypropanol (3-NOP), which when added to the feed of ruminants in milligram amounts persistently reduces enteric methane emissions from livestock without apparent negative side effects [Hristov AN, et al. (2015) Proc Natl Acad Sci USA 112(34):10663–10668]. We now show with the aid of in silico, in vitro, and in vivo experiments that 3-NOP specifically targets methyl-coenzyme M reductase (MCR). The nickel enzyme, which is only active when its Ni ion is in the +1 oxidation state, catalyzes the methane-forming step in the rumen fermentation. Molecular docking suggested that 3-NOP preferably binds into the active site of MCR in a pose that places its reducible nitrate group in electron transfer distance to Ni(I). With purified MCR, we found that 3-NOP indeed inactivates MCR at micromolar concentrations by oxidation of its active site Ni(I). Concomitantly, the nitrate ester is reduced to nitrite, which also inactivates MCR at micromolar concentrations by oxidation of Ni(I). Using pure cultures, 3-NOP is demonstrated to inhibit growth of methanogenic archaea at concentrations that do not affect the growth of nonmethanogenic bacteria in the rumen. PMID:27140643

  6. Expression of intercellular adhesion molecule-3 (ICAM-3/CD50) in malignant lymphoproliferative disorders and solid tumors.

    PubMed

    Terol, M J; Cid, M C; López-Guillermo, A; Juan, M; Yagüe, J; Miralles, A; Vilella, R; Vives, J; Cardesa, A; Montserrat, E; Campo, E

    1996-10-01

    ICAM-3/CD50 is a recently described LFA-1 counter receptor that seems to play an important role in the initiation of immune responses. In this study we have examined the expression of ICAM-3/CD50 in a large series of human neoplasms including 101 Non-Hodgkin's lymphomas (NHL), 26 Hodgkin's disease, and 38 solid tumors to define the distribution patterns of this molecule in malignant neoplasms and their possible correlation with clinical and pathological characteristics of the patients. In NHL, ICAM-3/CD50 was expressed in almost all the tumors with a tendency to be lost in high grade lymphomas. Reed-Sternberg cells and their variants in Hodgkin's disease were always negative independently of the histological subtype of the disease. No expression was observed in tumor epithelial cells of the 38 solid tumors examined. Strong endothelial cell staining was observed in 31% of the NHL and 31% of Hodgkin's disease. ICAM-3 expression in these cases was restricted to small tumor vessels. ICAM-3 expression in endothelial cells of NHL was significantly more frequent in high grade (40%) than in low grade lymphomas (14%) (p = 0.012). In addition, tumor vessels were also positive in 29% of solid tumors independently of the histological type. No correlation was observed between ICAM-3 expression in tumor or endothelial cells and other clinical and pathological characteristics of the patients. These findings indicate that ICAM-3 expression in human tumors is restricted to hematological neoplasms with a tendency to be lost in high grade lymphomas and Hodgkin's disease. ICAM-3 is also expressed by endothelial cells from tumor-associated neovascularization in both lymphoid and solid tumors.

  7. Immunomodulation and the quorum sensing molecule 3-oxo-C12-homoserine lactone: The importance of chemical scaffolding for probe development†

    PubMed Central

    Garner, Amanda L.; Yu, Jing; Struss, Anjali K.; Kaufmann, Gunnar F.

    2013-01-01

    As a guide for chemical probe design, focused analogue synthetic studies were undertaken upon the lactone ring of 3-oxo-C12-homoserine lactone. We have concluded that hydrolytic instability of the heterocyclic ring is pivotal for its ability to modulate immune signaling and probe preparation was aligned with these findings. PMID:23328974

  8. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    PubMed

    Appleby, Sarah L; Cockshell, Michaelia P; Pippal, Jyotsna B; Thompson, Emma J; Barrett, Jeffrey M; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F; Bonder, Claudine S

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+) population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from 'early' endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  9. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization.

    PubMed

    Serrador, J M; Alonso-Lebrero, J L; del Pozo, M A; Furthmayr, H; Schwartz-Albiez, R; Calvo, J; Lozano, F; Sánchez-Madrid, F

    1997-09-22

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, beta-actin and alpha-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which prevents lymphocyte polarization. Altogether, these data indicate that moesin interacts with ICAM-3 and CD44 adhesion molecules in uropods of polarized T cells; these data also suggest that these interactions participate in the formation of links between membrane receptors and the cytoskeleton, thereby regulating morphological changes during cell locomotion.

  10. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  11. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy

    PubMed Central

    Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa

    2017-01-01

    Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis. PMID:28436457

  12. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy.

    PubMed

    Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa

    2017-04-24

    Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis.

  13. Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton's tyrosine kinase and c-Src.

    PubMed

    Maurya, Neeraj; Gujar, Ravindra; Gupta, Mamta; Yadav, Vinod; Verma, Saurabh; Sen, Pradip

    2014-10-01

    The receptor T cell Ig and mucin protein-3 (TIM-3) has emerged as an important regulator of innate immune responses. However, whether TIM-3-induced signaling promotes or inhibits the activation and maturation of dendritic cells (DCs) still remains uncertain. In addition, the TIM-3 signaling events involved in this immunoregulatory function are yet to be established. In this article, we report that TIM-3 crosslinking by anti-TIM-3 Ab inhibited DC activation and maturation by blocking the NF-κB pathway. After Ab-mediated crosslinking, TIM-3 became tyrosine phosphorylated, which then sequentially bound and activated the nonreceptor tyrosine kinases Bruton's tyrosine kinase (Btk) and c-Src. Activation of Btk-c-Src signaling in turn triggered the secretion of some inhibitory factor (or factors) from DCs that inhibited the NF-κB pathway and subsequent activation and maturation of DCs. Silencing of Btk or c-Src abrogated the inhibitory effects of TIM-3 on DCs. These results demonstrate an essential role for Btk-c-Src signaling in TIM-3-induced DC suppression. Thus, in addition to demonstrating an inhibitory role for TIM-3 signaling in DC activation, we define the molecular mechanism by which TIM-3 mediates this effect. Copyright © 2014 by The American Association of Immunologists, Inc.

  14. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.

    PubMed

    Tinajero-Trejo, Mariana; Denby, Katie J; Sedelnikova, Svetlana E; Hassoubah, Shahira A; Mann, Brian E; Poole, Robert K

    2014-10-24

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Carbon Monoxide-releasing Molecule-3 (CORM-3; Ru(CO)3Cl(Glycinate)) as a Tool to Study the Concerted Effects of Carbon Monoxide and Nitric Oxide on Bacterial Flavohemoglobin Hmp

    PubMed Central

    Tinajero-Trejo, Mariana; Denby, Katie J.; Sedelnikova, Svetlana E.; Hassoubah, Shahira A.; Mann, Brian E.; Poole, Robert K.

    2014-01-01

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3−). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. PMID:25193663

  16. Retagging Identifies Dendritic Cell-specific Intercellular Adhesion Molecule-3 (ICAM3)-grabbing Non-integrin (DC-SIGN) Protein as a Novel Receptor for a Major Allergen from House Dust Mite*

    PubMed Central

    Emara, Mohamed; Royer, Pierre-Joseph; Mahdavi, Jafar; Shakib, Farouk; Ghaemmaghami, Amir M.

    2012-01-01

    Dendritic cells (DCs) have been shown to play a key role in the initiation and maintenance of immune responses to microbial pathogens as well as to allergens, but the exact mechanisms of their involvement in allergic responses and Th2 cell differentiation have remained elusive. Using retagging, we identified DC-SIGN as a novel receptor involved in the initial recognition and uptake of the major house dust mite and dog allergens Der p 1 and Can f 1, respectively. To confirm this, we used gene silencing to specifically inhibit DC-SIGN expression by DCs followed by allergen uptake studies. Binding and uptake of Der p 1 and Can f 1 allergens was assessed by ELISA and flow cytometry. Intriguingly, our data showed that silencing DC-SIGN on DCs promotes a Th2 phenotype in DC/T cell co-cultures. These findings should lead to better understanding of the molecular basis of allergen-induced Th2 cell polarization and in doing so paves the way for the rational design of novel intervention strategies by targeting allergen receptors on innate immune cells or their carbohydrate counterstructures on allergens. PMID:22205703

  17. On the potential involvement of CD11d in co-stimulating the production of interferon-γ by natural killer cells upon interaction with neutrophils via intercellular adhesion molecule-3

    PubMed Central

    Costantini, Claudio; Micheletti, Alessandra; Calzetti, Federica; Perbellini, Omar; Tamassia, Nicola; Albanesi, Cristina; Vermi, William; Cassatella, Marco A.

    2011-01-01

    Interaction between neutrophils and other leukocytes plays a variety of important roles in regulating innate and adaptive immune responses. Recently, we have shown that neu-trophils amplify NK cell/6-sulfo LacNAc+ dendritic cells (slanDC)-mediated cytokine production, by potentiating IL-12p70 release by slanDC via CD18/ICAM-1 and directly co-stimulating IFNγ production by NK cells via ICAM-3. Herein, we have identified additional molecules involved in the interactions among neutrophils, NK cells and slanDC. More specifically, we provide evidence that: i) the cross-talk between neutrophils and NK cells is mediated by ICAM-3 and CD11d/CD18, respectively; ii) slanDC potentiate the production of IFNγ by NK cells via CD11a/CD18. Altogether, our studies shed more light on the role that adhesion molecules play within the neutrophil/NK cell/slanDC network. Our data also have potential implications in the pathogenesis of diseases driven by hyperactivated leukocytes, such as Sweet’s syndrome, in which a neutrophil/NK cell co-localization is frequently observed. PMID:21712539

  18. Increased T cell immunoglobulin and mucin domain 3 positively correlate with systemic IL-17 and TNF-α level in the acute phase of ischemic stroke.

    PubMed

    Zhao, Di; Hou, Nan; Cui, Min; Liu, Ying; Liang, Xiaohong; Zhuang, Xuewei; Zhang, Yuanyuan; Zhang, Lining; Yin, Deling; Gao, Lifen; Zhang, Yun; Ma, Chunhong

    2011-08-01

    Tim-3 has been linked to several inflammatory diseases by regulation on both adaptive and innate immunities. Here, we assessed the augmented expression of Tim-3 in brain tissue of ischemia-reperfusion mice and PBMCs of ischemic stroke (IS) patients. The augmented expression of Tim-3 significantly correlated with abnormal lipid levels. In vitro studies showed that plasma from ischemic stroke patients induced Tim-3 expression in THP-1 cells. More importantly, our results revealed a significant correlation of Tim-3 expression on CD4(+) T cells with systemic IL-17 in patients with ischemic stroke. Consistently, we also found a positive correlation of Tim-3 expression on CD14(+) monocytes and serum TNF-α in IS patients. Collectively, augmented expression of Tim-3 may play an important role in the pathogenesis of ischemic stroke by regulation of proinflammatory cytokines. Further studies will give us new insights on the pathogenesis of ischemic stroke and potentially provide a new target at the medical therapy.

  19. Expression of immune checkpoints in T cells of esophageal cancer patients

    PubMed Central

    Xie, Jinhua; Wang, Ji; Cheng, Shouliang; Zheng, Liangfeng; Ji, Feiyue; Yang, Lin; Zhang, Yan; Ji, Haoming

    2016-01-01

    Inhibition of immune checkpoint proteins (checkpoints) has become a promising anti-esophageal cancer strategy. We here tested expressions of immune checkpoints in human esophageal cancers. Our results showed the expressions of many immune checkpoints, including CD28, CD27, CD137L, programmed death 1 (PD-1), T cell immunoglobulin mucin-3 (TIM-3), T cell Ig and ITIM domain (TIGIT), CD160, cytotoxic T lymphocyte antigen 4 (CTLA-4), CD200, CD137 and CD158, were dysregulated in peripheral T cells of esophageal cancer patients. Further, the expressions of PD-1, TIM-3 and TIGIT were upregulated in tumor infiltrating lymphocytes (TILs), which might be associated with TILs exhaustion. Meanwhile, the expressions of PD-1 and TIM-3 on CD4+ T cells were closely associated with clinic pathological features of esophageal cancer patients. These results indicate that co-inhibitory receptors PD-1, TIM-3 and TIGIT may be potential therapeutic oncotargets for esophageal cancer. PMID:27577071

  20. Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria

    PubMed Central

    Imai, Takashi; Ishida, Hidekazu; Suzue, Kazutomo; Taniguchi, Tomoyo; Okada, Hiroko; Shimokawa, Chikako; Hisaeda, Hajime

    2015-01-01

    The protective immunity afforded by CD8+ T cells against blood-stage malaria remains controversial because no MHC class I molecules are displayed on parasite-infected human erythrocytes. We recently reported that rodent malaria parasites infect erythroblasts that express major histocompatibility complex (MHC) class I antigens, which are recognized by CD8+ T cells. In this study, we demonstrate that the cytotoxic activity of CD8+ T cells contributes to the protection of mice against blood-stage malaria in a Fas ligand (FasL)-dependent manner. Erythroblasts infected with malarial parasites express the death receptor Fas. CD8+ T cells induce the externalization of phosphatidylserine (PS) on the infected erythroblasts in a cell-to-cell contact-dependent manner. PS enhances the engulfment of the infected erythroid cells by phagocytes. As a PS receptor, T-cell immunoglobulin-domain and mucin-domain-containing molecule 4 (Tim-4) contributes to the phagocytosis of malaria-parasite-infected cells. Our findings provide insight into the molecular mechanisms underlying the protective immunity exerted by CD8+ T cells in collaboration with phagocytes. DOI: http://dx.doi.org/10.7554/eLife.04232.001 PMID:25760084

  1. Tim-4 protects mice against lipopolysaccharide-induced endotoxic shock by suppressing the NF-κB signaling pathway.

    PubMed

    Xu, Liyun; Zhao, Peiqing; Xu, Yong; Gao, Lishuang; Wang, Hongxing; Jia, Xiaoxia; Ma, Hongxin; Liang, Xiaoxong; Ma, Chunxong; Gao, Lifen

    2016-11-01

    Endotoxic shock is the primary cause of morbidity and mortality in hospital patients, creating an urgent need to explore the mechanisms involved in sepsis. Our previous studies showed that T-cell immunoglobulin- and mucin-domain-containing molecule-4 (Tim-4) attenuated the inflammatory response through regulating the functions of macrophages. However, the mechanism by which Tim-4 does this has not been fully elucidated. In this study, we found that Tim-4 expression was increased in lipopolysaccharide (LPS)-induced endotoxic shock. Interestingly, the survival rate of mice in the Tim-4 overexpression group was higher than that of the control group after LPS administration. To investigate the function of Tim-4 in LPS-induced inflammation, we further demonstrated that Tim-4 attenuated LPS-induced endotoxic shock by inhibiting cytokine production by macrophages. Blocking expression of Tim-4 and nuclear factor-kappa B (NF-κB) signal inhibition showed that Tim-4 inhibited cytokine production via NF-κB signaling pathway. This study indicates that Tim-4 may exert its immune modulation by regulating inflammatory factor secretion and might act as a novel potential target for inflammatory diseases, especially endotoxic shock.

  2. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    PubMed

    Jemielity, Stephanie; Wang, Jinyize J; Chan, Ying Kai; Ahmed, Asim A; Li, Wenhui; Monahan, Sheena; Bu, Xia; Farzan, Michael; Freeman, Gordon J; Umetsu, Dale T; Dekruyff, Rosemarie H; Choe, Hyeryun

    2013-03-01

    Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  3. Expression of immune checkpoint molecules of T cell immunoglobulin and mucin protein 3/galectin-9 for NK cell suppression in human gastrointestinal stromal tumors.

    PubMed

    Komita, Hideo; Koido, Shigeo; Hayashi, Kazumi; Kan, Shin; Ito, Masaki; Kamata, Yuko; Suzuki, Masafumi; Homma, Sadamu

    2015-10-01

    Monoclonal antibody therapy for immune checkpoint blockade has achieved promising results for several types of malignant tumors. For the future treatment of gastrointestinal stromal tumors (GISTs) by immune checkpoint blockade, expression of immune checkpoint-related molecules that suppress antitumor immunity in GISTs was examined. Infiltration of immune cell types into 19 GIST tissues was analyzed by immunohistochemistry, and expression of T cell immunoglobulin and mucin protein 3 (Tim-3) and programmed cell death-1 (PD-1) in the infiltrated immune cells was examined by immunofluorescence microscopy. The expression status of galectin-9 in the GIST tumor cells was also determined by immunohistochemistry. All the GIST tissues showed CD8+ T cell infiltration and 8 showed CD56+ natural killer (NK) cell infiltration, and the numbers of infiltrated CD8+ T and NK cells were strongly correlated. However, these CD8+ T and NK cells were CD69-negative inactivated cells. Tim-3 was expressed in the infiltrated NK cells in 6/8 (75%) of the GIST tissues. Expression of galectin-9, a ligand of Tim-3, was observed in 13/19 (68.4%) GIST tissues and all of the GIST tissues with Tim-3+ NK cell infiltration showed positive galectin-9 expression. No PD-1 expression in the infiltrated NK cells and neither Tim-3 nor PD-1 expression was observed in the infiltrated CD8+ T cells. Interaction between Tim-3 in infiltrated NK cells and galectin-9 in tumor cells may be involved in an immune checkpoint mechanism for suppression of antitumor immunity in GISTs. Blockade of the Tim-3/galectin-9 pathway may become a new strategy for GIST treatment.

  4. Molecular characterization of T-cell immunoglobulin mucin domain-3 and Galectin-9 genes of swamp- and riverine-type water buffaloes.

    PubMed

    Duran, P L H; Padiernos, R B C; Abella, E A; Konnai, S; Mingala, C N

    2015-12-01

    Molecular characterization of T-cell immunoglobulin mucin domain-3 (TIM-3) and Galectin-9 (GAL-9) genes of swamp- and riverine-type water buffaloes was conducted to compare these genes with other species; determine the unique characteristic specific in water buffalo; and provide baseline information for the assessment of disease progression in buffalo species. TIM-3 and GAL-9 genes were amplified, purified, sequenced and characterized. The sequence result of TIM-3 in both types of water buffaloes contained 843 nucleotides encoding to 280 amino acids while GAL-9 of swamp-type and riverine-type water buffaloes contained 1023 and 972 nucleotides encoding to 340 and 323 amino acids, respectively. Meanwhile, the nucleotide and amino sequence of TIM-3 in water buffalo were 83-98% and 94-97% identical with other artiodactyl species, respectively. On the other hand, GAL-9 nucleotide and amino acid sequence in water buffalo were 85-98% and 76-96% identical with other artiodactyl species. The tyrosine-kinase phosphorylation motif and potential glycosylation sites were conserved within the tribe Bovinae. It is imperative to have further studies in the assessment of the role of these genes in disease progression in water buffalo during chronic infection. The study is the first report that describes the genetic characteristic of TIM-3 and GAL-9 genes in water buffalo. © 2015 John Wiley & Sons Ltd.

  5. Replacement of Oxygen by Sulfur in Small Organic Molecules. 3. Theoretical Studies on the Tautomeric Equilibria of the 2OH and 4OH-Substituted Oxazole and Thiazole and the 3OH and 4OH-Substituted Isoxazole and Isothiazole in the Isolated State and in Solution

    PubMed Central

    Nagy, Peter I.

    2016-01-01

    This follow-up paper completes the author’s investigations to explore the in-solution structural preferences and relative free energies of all OH-substituted oxazole, thiazole, isoxazole, and isothiazole systems. The polarizable continuum dielectric solvent method calculations in the integral-equation formalism (IEF-PCM) were performed at the DFT/B97D/aug-cc-pv(q+(d))z level for the stable neutral tautomers with geometries optimized in dichloromethane and aqueous solution. With the exception of the predictions for the predominant tautomers of the 3OH isoxazole and isothiazole, the results of the IEF-PCM calculations for identifying the most stable tautomer of the given species in the two selected solvents agreed with those from experimental investigations. The calculations predict that the hydroxy proton, with the exception for the 4OH isoxazole and 4OH isothiazole, moves preferentially to the ring nitrogen or to a ring carbon atom in parallel with the development of a C=O group. The remaining, low-fraction OH tautomers will not be observable in the equilibrium compositions. Relative solvation free energies obtained by the free energy perturbation method implemented in Monte Carlo simulations are in moderate accord with the IEF-PCM results, but consideration of the ΔGsolv/MC values in calculating ΔGstot maintains the tautomeric preferences. It was revealed from the Monte Carlo solution structure analyses that the S atom is not a hydrogen-bond acceptor in any OH-substituted thiazole or isothiazole, and the OH-substituted isoxazole and oxazole ring oxygens may act as a weak hydrogen-bond acceptor at most. The molecules form 1.0−3.4 solute−water hydrogen bonds in generally unexplored numbers at some specific solute sites. Nonetheless, hydrogen-bond formation is favorable with the NH, C=O and OH groups. PMID:27409605

  6. A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney Injury

    PubMed Central

    Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J.; Frank, David A.

    2014-01-01

    Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention. PMID:24158981

  7. A bioinformatics approach identifies signal transducer and activator of transcription-3 and checkpoint kinase 1 as upstream regulators of kidney injury molecule-1 after kidney injury.

    PubMed

    Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J; Frank, David A; Vaidya, Vishal S

    2014-01-01

    Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.

  8. Semaphorin4A Is Cytotoxic to Oligodendrocytes and Is Elevated in Microglia and Multiple Sclerosis

    PubMed Central

    Leitner, Dominique F.; Todorich, Bozho; Zhang, Xuesheng

    2015-01-01

    We have previously established that T cell immunoglobulin and mucin domain containing 2 (Tim2) is an H-ferritin receptor on oligodendrocytes (OLs). Tim2 also binds Semaphorin4A (Sema4A). Sema4A is expressed by lymphocytes, and its role in immune activation is known; however, its relationship to diseases that are known to have myelin damage has not been studied. In this study, we demonstrate that Sema4A is cytotoxic to OLs in culture: an effect accompanied by process collapse, membrane blebbing, and phosphatidylserine inversion. We further demonstrate that Sema4A preferentially binds to primary OLs but not astrocytes: an observation consistent with the lack of expression of Tim2 on astrocytes. We found that Sema4A protein levels are increased within multiple sclerosis plaques compared with normal-appearing white matter and that Sema4A induces lactate dehydrogenase release in a human OL cell line. The chief cellular source of Sema4A within the multiple sclerosis plaques appears to be infiltrating lymphocytes and microglia. Macrophages are known to express Sema4A, so we interrogated microglia as a potential source of Sema4A in the brain. We found that rat primary microglia express Sema4A which increased after lipopolysaccharide activation. Because activated microglia accumulate iron, we determined whether iron status influenced Sema4A and found that iron chelation decreased Sema4A and iron loading increased Sema4A in activated microglia. Overall, our data implicate Sema4A in the destruction of OLs and reveal that its expression is sensitive to iron levels. PMID:26024919

  9. Betamethasone, but Not Tacrolimus, Suppresses the Development of Th2 Cells Mediated by Langerhans Cell-Like Dendritic Cells.

    PubMed

    Matsui, Katsuhiko; Tamai, Saki; Ikeda, Reiko

    2016-01-01

    It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of the immune milieu towards a T helper type 1 (Th1) or T helper type 2 (Th2) response. In this study, we investigated the effects of tacrolimus and betamethasone, each used as topical applications in atopic dermatitis (AD), on Th2 cell development mediated by LCs. LC-like dendritic cells (LDCs) were generated from mouse bone marrow cells and used as substitutes for LCs. Mice were primed with ovalbumin (OVA) peptide-pulsed LDCs, which had been treated with tacrolimus or betamethasone, via the hind footpad. After 5 d, the cytokine response in the popliteal lymph nodes was investigated by enzyme-linked immunosorbent assay. The expression of cell surface molecules on LDCs was investigated via reverse transcriptase polymerase chain reaction. Administration of OVA peptide-pulsed LDCs, which had been treated with betamethasone, inhibited Th2 cell development, as represented by the down-regulation of interleukin-4 production, and also inhibited Th1 cell development, represented by the down-regulation of interferon-γ production. However, tacrolimus-treated LDCs did not induce such inhibition of the development of Th1 and Th2 cells. The inhibition of Th1 and Th2 cell development was associated with the suppression of CD40 and T-cell immunoglobulin, and mucin domain-containing protein (TIM)-4 expression, respectively, in LDCs. These results suggest that the topical application of betamethasone to skin lesions of patients with AD acts on epidermal LCs, and may inhibit the development of Th2 cells, thus being of benefit for the control of AD.

  10. Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma.

    PubMed

    Marcq, Elly; Siozopoulou, Vasiliki; De Waele, Jorrit; van Audenaerde, Jonas; Zwaenepoel, Karen; Santermans, Eva; Hens, Niel; Pauwels, Patrick; van Meerbeeck, Jan P; Smits, Evelien L J

    2017-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive cancer with a poor prognosis and an increasing incidence, for which novel therapeutic strategies are urgently required. Since the immune system has been described to play a presumed role in the protection against MPM, characterization of its tumor immune microenvironment (TME) and immune checkpoints can identify new immunotherapeutic targets and their predictive and/or prognostic value. To characterize the TME and the immune checkpoint expression profile, we performed immunohistochemistry (IHC) on formalin-fixed paraffin embedded (FFPE) tissue sections from 54 MPM patients (40 at time of diagnosis; 14 treated with chemotherapy). We stained for PD-1, PD-L1, TIM-3, LAG-3, CD4, CD8, CD45RO, granzyme B, FoxP3 and CD68. Furthermore, we analyzed the relationship between the immunological parameters and survival, as well as response to chemotherapy. We found that TIM-3, PD-1 and PD-L1 were expressed on both immune and tumor cells. Strikingly, PD-1 and PD-L1 expression on tumor cells was only seen in unpretreated samples. No LAG-3 expression was observed. CD45RO expression in the stroma was an independent negative predictive factor for response on chemotherapy, while CD4 and TIM-3 expression in lymphoid aggregates were independent prognostic factors for better outcome. Our data propose TIM-3 as a promising new target in mesothelioma. Chemotherapy influences the expression of immune checkpoints and therefore further research on the best combination treatment schedule is required.

  11. T Cell Immunoglobulin Mucin-3 Crystal Structure Reveals a Galectin-9-Independent Ligand-Binding Surface

    SciTech Connect

    Cao,E.; Zang, X.; Ramagopal, U.; Mukhopadhaya, A.; Fedorov, A.; Fedorov, E.; Zencheck, W.; Lary, J.; Cole, J.; et al.

    2007-01-01

    The T cell immunoglobulin mucin (Tim) family of receptors regulates effector CD4+ T cell functions and is implicated in autoimmune and allergic diseases. Tim-3 induces immunological tolerance, and engagement of the Tim-3 immunoglobulin variable (IgV) domain by galectin-9 is important for appropriate termination of T helper 1-immune responses. The 2 {angstrom} crystal structure of the Tim-3 IgV domain demonstrated that four cysteines, which are invariant within the Tim family, form two noncanonical disulfide bonds, resulting in a surface not present in other immunoglobulin superfamily members. Biochemical and biophysical studies demonstrated that this unique structural feature mediates a previously unidentified galectin-9-independent binding process and suggested that this structural feature is conserved within the entire Tim family. The current work provided a graphic example of the relationship between sequence, structure, and function and suggested that the interplay between multiple Tim-3-binding activities contributes to the regulated assembly of signaling complexes required for effective Th1-mediated immunity.

  12. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints.

    PubMed

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Herter-Sprie, Grit S; Buczkowski, Kevin A; Richards, William G; Gandhi, Leena; Redig, Amanda J; Rodig, Scott J; Asahina, Hajime; Jones, Robert E; Kulkarni, Meghana M; Kuraguchi, Mari; Palakurthi, Sangeetha; Fecci, Peter E; Johnson, Bruce E; Janne, Pasi A; Engelman, Jeffrey A; Gangadharan, Sidharta P; Costa, Daniel B; Freeman, Gordon J; Bueno, Raphael; Hodi, F Stephen; Dranoff, Glenn; Wong, Kwok-Kin; Hammerman, Peter S

    2016-02-17

    Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.

  13. The Role of LAT in Increased CD8+ T Cell Exhaustion in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus 1▿

    PubMed Central

    Allen, Sariah J.; Hamrah, Pedram; Gate, David; Mott, Kevin R.; Mantopoulos, Dimosthenis; Zheng, Lixin; Town, Terrence; Jones, Clinton; von Andrian, Ulrich H.; Freeman, Gordon J.; Sharpe, Arlene H.; BenMohamed, Lbachir; Ahmed, Rafi; Wechsler, Steven L.; Ghiasi, Homayon

    2011-01-01

    Herpes simplex virus (HSV) infection is a classic example of latent viral infection in humans and experimental animal models. The HSV-1 latency-associated transcript (LAT) plays a major role in the HSV-1 latency reactivation cycle and thus in recurrent disease. Whether the presence of LAT leads to generation of dysfunctional T cell responses in the trigeminal ganglia (TG) of latently infected mice is not known. To address this issue, we used LAT-positive [LAT(+)] and LAT-deficient [LAT(−)] viruses to evaluate the effect of LAT on CD8 T cell exhaustion in TG of latently infected mice. The amount of latency as determined by quantitative reverse transcription-PCR (qRT-PCR) of viral DNA in total TG extracts was 3-fold higher with LAT(+) than with LAT(−) virus. LAT expression and increased latency correlated with increased mRNA levels of CD8, PD-1, and Tim-3. PD-1 is both a marker for exhaustion and a primary factor leading to exhaustion, and Tim-3 can also contribute to exhaustion. These results suggested that LAT(+) TG contain both more CD8+ T cells and more CD8+ T cells expressing the exhaustion markers PD-1 and Tim-3. This was confirmed by flow cytometry analyses of expression of CD3/CD8/PD-1/Tim-3, HSV-1, CD8+ T cell pentamer (specific for a peptide derived from residues 498 to 505 of glycoprotein B [gB498–505]), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α). The functional significance of PD-1 and its ligands in HSV-1 latency was demonstrated by the significantly reduced amount of HSV-1 latency in PD-1- and PD-L1-deficient mice. Together, these results may suggest that both PD-1 and Tim-3 are mediators of CD8+ T cell exhaustion and latency in HSV-1 infection. PMID:21307196

  14. The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1.

    PubMed

    Allen, Sariah J; Hamrah, Pedram; Gate, David; Mott, Kevin R; Mantopoulos, Dimosthenis; Zheng, Lixin; Town, Terrence; Jones, Clinton; von Andrian, Ulrich H; Freeman, Gordon J; Sharpe, Arlene H; BenMohamed, Lbachir; Ahmed, Rafi; Wechsler, Steven L; Ghiasi, Homayon

    2011-05-01

    Herpes simplex virus (HSV) infection is a classic example of latent viral infection in humans and experimental animal models. The HSV-1 latency-associated transcript (LAT) plays a major role in the HSV-1 latency reactivation cycle and thus in recurrent disease. Whether the presence of LAT leads to generation of dysfunctional T cell responses in the trigeminal ganglia (TG) of latently infected mice is not known. To address this issue, we used LAT-positive [LAT(+)] and LAT-deficient [LAT(-)] viruses to evaluate the effect of LAT on CD8 T cell exhaustion in TG of latently infected mice. The amount of latency as determined by quantitative reverse transcription-PCR (qRT-PCR) of viral DNA in total TG extracts was 3-fold higher with LAT(+) than with LAT(-) virus. LAT expression and increased latency correlated with increased mRNA levels of CD8, PD-1, and Tim-3. PD-1 is both a marker for exhaustion and a primary factor leading to exhaustion, and Tim-3 can also contribute to exhaustion. These results suggested that LAT(+) TG contain both more CD8(+) T cells and more CD8(+) T cells expressing the exhaustion markers PD-1 and Tim-3. This was confirmed by flow cytometry analyses of expression of CD3/CD8/PD-1/Tim-3, HSV-1, CD8(+) T cell pentamer (specific for a peptide derived from residues 498 to 505 of glycoprotein B [gB(498-505)]), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α). The functional significance of PD-1 and its ligands in HSV-1 latency was demonstrated by the significantly reduced amount of HSV-1 latency in PD-1- and PD-L1-deficient mice. Together, these results may suggest that both PD-1 and Tim-3 are mediators of CD8(+) T cell exhaustion and latency in HSV-1 infection.

  15. Study of Increasing Lead Times in Major Weapon Systems Acquisition.

    DTIC Science & Technology

    1982-07-31

    Increasing Lead Tim ........ . 3-36 3.3.5.1.1 Market Factors . . . . . . . . .... ................... 3-36 3.3.5.1.2 Industrial Factors...factors, industry factors, or market factors. (For listings of specific causes identified, see Tables 3-2, 3-5, 3-8, 3-11, 3-13, and 3-16.) Some of...technicians, and other skilled craftsmen. * Market - The significant competition of comercial demands in certain business sectors such as aerospace and

  16. Roles of T-cell Immunoglobulin and Mucin Domain Genes and Toll-like Receptors in Wheezy Children with Mycoplasma pneumoniae Pneumonia.

    PubMed

    Fan, Qing; Gu, Tingting; Li, Peijie; Yan, Ping; Chen, Dehong; Han, Bingchao

    2016-12-01

    The study aimed to explore possible factors influencing wheezing in children with Mycoplasma pneumoniae pneumonia (MPP). The study included 84 children with MPP, who were divided into two groups: wheezy group (n=40) and non-wheezy group (n=44), along with 30 age-matched healthy controls. T-cell immunoglobulin and mucin domain gene (Tim) 1, 3 and Toll-like receptor (TLR) 2, 4 were evaluated using RT-PCR. Serum IL-10, TNF-α, IFN-γ and IgE were assessed by enzyme-linked immunosorbent assay. Peripheral blood eosinophil (EOS) was measured by an automated haematology. Children with MPP had markedly increased TLR2, TLR4, Tim1, IL-10, TNF-α, IgE and EOS, and decreased IFN-γ than the healthy controls. In the presence of MPP, wheezy children had significantly elevated TLR2, Tim1, Tim3, TNF-α, IgE and EOS than non-wheezy children. In wheezy children with MPP, MP-specific antibody titre was positively correlated with TLR2 and TIM1, and negatively correlated with IFN-γ. IgE was positively correlated with TLR2, TLR4 and Tim1, while EOS was positively correlated with Tim1 and Tim3. TLR2, Tim1, Tim3, TNF-α, IgE and EOS play a role in MPP-related wheezing in children. The role of IgE might be associated with TLR2 and Tim1, and the role of EOS might be associated with Tim1 and Tim3. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  17. Effect of Transversely Low-Velocity Impact on Graphite/Epoxy Laminated Composites

    DTIC Science & Technology

    1990-09-30

    FOLLOWNG Nr0NWIOH: (A) IMPACTO (I) VELCITY AS A rJCT.N OF TIM (II) DISPLACDIT A A FUNC1ION OF TIM (3) COOSITE PLA.T (I) CTCT FYMC AS A FUCTION O TIM (II...NO ENI R 1 FOR YES 1 168 *DO YOU WNT TO CALCULATE THE DISPLACEMET OF THE IMPACTO DURING THE COTACT 2 ENTER 0 FOR NO ENTER I FOR YES I #DO YOU WT TO

  18. Epigallocatechin-3-gallate Prevents Triptolide-Induced Hepatic Injury by Restoring the Th17/Treg Balance in Mice.

    PubMed

    Yu, Shu-Jing; Jiang, Rong; Mazzu, Ying Z; Wei, Cai-Bing; Sun, Zong-Liang; Zhang, Yu-Zhen; Zhou, Lian-Di; Zhang, Qi-Hui

    2016-01-01

    Drug-induced liver injury (DILI) is the most common cause of acute liver failure. Disruption of the Th17/Treg balance can lead to hepatic inflammation, which causes the main symptoms of DILI. Here we investigate the protective mechanisms of (-)-Epigallocatechin-3-gallate (EGCG) on triptolide (TP)-induced DILI that shows the Th17/Treg imbalance. Pretreatment with EGCG (5[Formula: see text]mg/kg) for 10 days before TP (0.5[Formula: see text]mg/kg) administration in mice significantly reduced the increased alanine aminotransferase (ALT) level ([Formula: see text]) induced by TP treatment. The hepatic histology analysis further proved that EGCG protected mice from TP-induced liver injury. The imbalance of Th17/Treg was induced by TP treatment, as shown by the upregulation of TLR4 and downregulation of Tim3 expression. EGCG pretreatment can maintain the expression of TLR4 and Tim3 at normal levels to restore the Th17/Treg imbalance. In addition, EGCG can block the TP-induced expression of the downstream targets of TLR4, including MyD88, NF[Formula: see text]B, and retinoid related orphan receptor (ROR-[Formula: see text]t), while EGCG can restore the TP inhibition of forkhead/winged-helix family transcriptional repressor p3 (FoxP3) that is the downstream target of Tim3. Consequently, EGCG pretreatment can effectively inhibit the Th17-related pro-inflammatory cytokine (e.g. IL-17 and IL-6) upregulation induced by TP treatment. However, TP inhibition of Treg-related anti-inflammatory cytokine IL-10 production was restored by EGCG pretreatment. Taken together, these results suggest that EGCG possesses significant protective properties against TP-induced hepatic inflammatory injury, and that these properties are carried out via the restoration of the Th17/Treg imbalance by the inhibition of the TLR4 signaling pathway and the enhanced activation of the Tim3 signaling pathway.

  19. Plasma biomarkers of acute GVHD and nonrelapse mortality: predictive value of measurements before GVHD onset and treatment

    PubMed Central

    Tabellini, Laura; Storer, Barry E.; Lawler, Richard L.; Martin, Paul J.; Hansen, John A.

    2015-01-01

    We identified plasma biomarkers that presaged outcomes in patients with gastrointestinal graft-versus-host disease (GVHD) by measuring 23 biomarkers in samples collected before initiation of treatment. Six analytes with the greatest accuracy in predicting grade 3-4 GVHD in the first cohort (74 patients) were then tested in a second cohort (76 patients). The same 6 analytes were also tested in samples collected at day 14 ± 3 from 167 patients free of GVHD at the time. Logistic regression and calculation of an area under a receiver-operating characteristic (ROC) curve for each analyte were used to determine associations with outcome. Best models in the GVHD onset and landmark analyses were determined by forward selection. In samples from the second cohort, collected a median of 4 days before start of treatment, levels of TIM3, IL6, and sTNFR1 had utility in predicting development of peak grade 3-4 GVHD (area under ROC curve, 0.88). Plasma ST2 and sTNFR1 predicted nonrelapse mortality within 1 year after transplantation (area under ROC curve, 0.90). In the landmark analysis, plasma TIM3 predicted subsequent grade 3-4 GVHD (area under ROC curve, 0.76). We conclude that plasma levels of TIM3, sTNFR1, ST2, and IL6 are informative in predicting more severe GVHD and nonrelapse mortality. PMID:25987657

  20. The Chronic Protective Effects of Limb Remote Preconditioning and the Underlying Mechanisms Involved in Inflammatory Factors in Rat Stroke

    PubMed Central

    Chen, Xiaoyuan; Zhao, Heng

    2012-01-01

    We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine. PMID:22347410

  1. Cytotoxic T Cells in PD-L1-Positive Malignant Pleural Mesotheliomas Are Counterbalanced by Distinct Immunosuppressive Factors.

    PubMed

    Awad, Mark M; Jones, Robert E; Liu, Hongye; Lizotte, Patrick H; Ivanova, Elena V; Kulkarni, Meghana; Herter-Sprie, Grit S; Liao, Xiaoyun; Santos, Abigail A; Bittinger, Mark A; Keogh, Lauren; Koyama, Shohei; Almonte, Christina; English, Jessie M; Barlow, Julianne; Richards, William G; Barbie, David A; Bass, Adam J; Rodig, Scott J; Hodi, F Stephen; Wucherpfennig, Kai W; Jänne, Pasi A; Sholl, Lynette M; Hammerman, Peter S; Wong, Kwok-Kin; Bueno, Raphael

    2016-12-01

    PD-L1 immunohistochemical staining does not always predict whether a cancer will respond to treatment with PD-1 inhibitors. We sought to characterize immune cell infiltrates and the expression of T-cell inhibitor markers in PD-L1-positive and PD-L1-negative malignant pleural mesothelioma samples. We developed a method for immune cell phenotyping using flow cytometry on solid tumors that have been dissociated into single-cell suspensions and applied this technique to analyze 43 resected malignant pleural mesothelioma specimens. Compared with PD-L1-negative tumors, PD-L1-positive tumors had significantly more infiltrating CD45(+) immune cells, a significantly higher proportion of infiltrating CD3(+) T cells, and a significantly higher percentage of CD3(+) cells displaying the activated HLA-DR(+)/CD38(+) phenotype. PD-L1-positive tumors also had a significantly higher proportion of proliferating CD8(+) T cells, a higher fraction of FOXP3(+)/CD4(+) Tregs, and increased expression of PD-1 and TIM-3 on CD4(+) and CD8(+) T cells. Double-positive PD-1(+)/TIM-3(+) CD8(+) T cells were more commonly found on PD-L1-positive tumors. Compared with epithelioid tumors, sarcomatoid and biphasic mesothelioma samples were significantly more likely to be PD-L1 positive and showed more infiltration with CD3(+) T cells and PD-1(+)/TIM-3(+) CD8(+) T cells. Immunologic phenotypes in mesothelioma differ based on PD-L1 status and histologic subtype. Successful incorporation of comprehensive immune profiling by flow cytometry into prospective clinical trials could refine our ability to predict which patients will respond to specific immune checkpoint blockade strategies. Cancer Immunol Res; 4(12); 1038-48. ©2016 AACR.

  2. Predictive Value of Clinical Findings and Plasma Biomarkers after Fourteen Days of Prednisone Treatment for Acute Graft-versus-host Disease.

    PubMed

    McDonald, George B; Tabellini, Laura; Storer, Barry E; Martin, Paul J; Lawler, Richard L; Rosinski, Steven L; Schoch, H Gary; Hansen, John A

    2017-08-01

    We examined the hypothesis that plasma biomarkers and concomitant clinical findings after initial glucocorticoid therapy can accurately predict failure of graft-versus-host-disease (GVHD) treatment and mortality. We analyzed plasma samples and clinical data in 165 patients after 14 days of glucocorticoid therapy and used logistic regression and areas under receiver-operating characteristic curves (AUC) to evaluate associations with treatment failure and nonrelapse mortality (NRM). Initial treatment of GVHD was unsuccessful in 49 patients (30%). For predicting GVHD treatment failure, the best clinical combination (total serum bilirubin and skin GVHD stage: AUC, .70) was competitive with the best biomarker combination (T cell immunoglobulin and mucin domain 3 [TIM3] and [interleukin 1 receptor family encoded by the IL1RL1 gene, ST2]: AUC, .73). The combination of clinical features and biomarker results offered only a slight improvement (AUC, .75). For predicting NRM at 1 year, the best clinical predictor (total serum bilirubin: AUC, .81) was competitive with the best biomarker combination (TIM3 and soluble tumor necrosis factor receptor-1 [sTNFR1]: AUC, .85). The combination offered no improvement (AUC, .85). Infection was the proximate cause of death in virtually all patients. We conclude that after 14 days of glucocorticoid therapy, clinical findings (serum bilirubin, skin GVHD) and plasma biomarkers (TIM3, ST2, sTNFR1) can predict failure of GVHD treatment and NRM. These biomarkers reflect counter-regulatory mechanisms and provide insight into the pathophysiology of GVHD reactions after glucocorticoid treatment. The best predictive models, however, exhibit inadequate positive predictive values for identifying high-risk GVHD cohorts for investigational trials, as only a minority of patients with high-risk GVHD would be identified and most patients would be falsely predicted to have adverse outcomes. Copyright © 2017 The American Society for Blood and Marrow

  3. Blockage of Galectin-receptor Interactions by α-lactose Exacerbates Plasmodium berghei-induced Pulmonary Immunopathology

    PubMed Central

    Liu, Jinfeng; Huang, Shiguang; Su, Xin-zhuan; Song, Jianping; Lu, Fangli

    2016-01-01

    Malaria-associated acute lung injury (ALI) is a frequent complication of severe malaria that is often caused by “excessive” immune responses. To better understand the mechanism of ALI in malaria infection, here we investigated the roles of galectin (Gal)-1, 3, 8, 9 and the receptors of Gal-9 (Tim-3, CD44, CD137, and PDI) in malaria-induced ALI. We injected alpha (α)-lactose into mice-infected with Plasmodium berghei ANKA (PbANKA) to block galectins and found significantly elevated total proteins in bronchoalveolar lavage fluid, higher parasitemia and tissue parasite burden, and increased numbers of CD68+ alveolar macrophages as well as apoptotic cells in the lungs after blockage. Additionally, mRNA levels of Gal-9, Tim-3, CD44, CD137, and PDI were significantly increased in the lungs at day 5 after infection, and the levels of CD137, IFN-α, IFN-β, IFN-γ, IL-4, and IL-10 in the lungs were also increased after α-lactose treatment. Similarly, the levels of Gal-9, Tim-3, IFN-α, IFN-β, IFN-γ, and IL-10 were all significantly increased in murine peritoneal macrophages co-cultured with PbANKA-infected red blood cells in vitro; but only IFN-α and IFN-β were significantly increased after α-lactose treatment. Our data indicate that Gal-9 interaction with its multiple receptors play an important role in murine malaria-associated ALI. PMID:27554340

  4. Tr1-Like T Cells – An Enigmatic Regulatory T Cell Lineage

    PubMed Central

    White, Anna Malgorzata; Wraith, David C.

    2016-01-01

    The immune system evolved to respond to foreign invaders and prevent autoimmunity to self-antigens. Several types of regulatory T cells facilitate the latter process. These include a subset of Foxp3− CD4+ T cells able to secrete IL-10 in an antigen-specific manner, type 1 regulatory (Tr1) T cells. Although their suppressive function has been confirmed both in vitro and in vivo, their phenotype remains poorly defined. It has been suggested that the surface markers LAG-3 and CD49b are biomarkers for murine and human Tr1 cells. Here, we discuss these findings in the context of our data regarding the expression pattern of inhibitory receptors (IRs) CD49b, TIM-3, PD-1, TIGIT, LAG-3, and ICOS on Tr1-like human T cells generated in vitro from CD4+ memory T cells stimulated with αCD3 and αCD28 antibodies. We found that there were no differences in IR expression between IL-10+ and IL-10− T cells. However, CD4+IL-10+ T cells isolated ex vivo, following a short stimulation and cytokine secretion assay, contained significantly higher proportions of TIM-3+ and PD-1+ cells. They also expressed significantly higher TIGIT mRNA and showed a trend toward increased TIM-3 mRNA levels. These data led us to conclude that large pools of IRs may be stored intracellularly; hence, they may not represent ideal candidates as cell surface biomarkers for Tr1-like T cells. PMID:27683580

  5. Structure of full-length Toxascaris leonina galectin with two carbohydrate-recognition domains.

    PubMed

    Jeong, Mi Suk; Hwang, Hyun Gi; Yu, Hak Sun; Jang, Se Bok

    2013-02-01

    The full-length crystal structure of Toxascaris leonine galectin (Tl-gal), a galectin-9 homologue protein, was determined at a resolution of 2.0 Å. Galectin-9 exhibits a variety of biological functions, including cell aggregation, eosinophil chemoattraction, activation and apoptosis of murine thymocytes, T cells and human melanoma cells. Similar to this galectin, Tl-gal may function as a regulatory molecule in the host immune system; however, no molecular or structural information has been reported for Tl-gal. Moreover, until now, there have been no reports of a full-length galectin structure. There are two molecules of Tl-gal per asymmetric unit in space group P2(1)2(1)2(1), and the N-terminal and C-terminal carbohydrate-recognition domains (NCRD and CCRD) of Tl-gal are composed of six-stranded β-sheets and five-stranded β-sheets with a short α-helix. The NCRD of Tl-gal resembles that of human galectin-7 and its CCRD resembles human galectin-9, but the residues in the interface and loop regions of the NCRD and CCRD are flexible and are related to interaction. Engagement of the T-cell immunoglobulin mucin-3 (Tim-3) immunoglobulin variable (IgV) domain by a galectin-9 ligand is known to be important for appropriate termination of T-helper 1 immune responses. To investigate the binding site of Tl-gal, the interaction between Tl-gal and Tim-3 was modelled. Tim-3 is docked into a major groove of the Tl-gal structure, which is larger and deeper than the minor groove. The structural information presented here will provide insight into the development of novel anti-inflammatory agents or selective modulators of immune response.

  6. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals

    PubMed Central

    Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T.; Clerici, Mario; Biasin, Mara

    2017-01-01

    Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection. PMID:28243241

  7. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals.

    PubMed

    Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T; Clerici, Mario; Biasin, Mara

    2017-01-01

    Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.

  8. Development of Titanium Alloy Casting Technology

    DTIC Science & Technology

    1976-08-01

    q Opp (0~ ~V~w Het221(47) ()Ha 221(45 TIiC-loT-lC-, , P, L.q& r .- 6N.’ ( Heat 24221. ( 9497 ) (1) Heat 24224 (9493) Ti-13Cu-lCON Ti-M3u-Le.5N 1760F...N.D. Ag, Sc, Na, In, Y, V, De, B, Nb , Ge, W, Bi, Cr, Te Hlydrogen M.D. Chlorine 0.07 0.09 -- ( 0.005-Coors) Oxygen (0. 65-Oremet) Nitrogen (0. 61

  9. TIGIT predominantly regulates the immune response via regulatory T cells.

    PubMed

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J; Teng, Michele W L; Smyth, Mark J; Kuchroo, Vijay K; Anderson, Ana C

    2015-11-02

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.

  10. CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides.

    PubMed

    Barathan, Muttiah; Mohamed, Rosmawati; Vadivelu, Jamuna; Chang, Li Yen; Vignesh, Ramachandran; Krishnan, Jayalakshmi; Sigamani, Panneer; Saeidi, Alireza; Ram, M Ravishankar; Velu, Vijayakumar; Larsson, Marie; Shankar, Esaki M

    2017-03-01

    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.

  11. TIGIT predominantly regulates the immune response via regulatory T cells

    PubMed Central

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J.; Teng, Michele W.L.; Smyth, Mark J.; Kuchroo, Vijay K.; Anderson, Ana C.

    2015-01-01

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings. PMID:26413872

  12. Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection

    PubMed Central

    Folkvord, Joy M.; Levy, David N.; Rakasz, Eva G.; Connick, Elizabeth

    2016-01-01

    During chronic HIV infection, viral replication is concentrated in secondary lymphoid follicles. Cytotoxic CD8 T cells control HIV replication in extrafollicular regions, but not in the follicle. Here, we show CXCR5hiCD44hiCD8 T cells are a regulatory subset differing from conventional CD8 T cells, and constitute the majority of CD8 T cells in the follicle. This subset, CD8 follicular regulatory T cells (CD8 TFR), expand in chronic SIV infection, exhibit enhanced expression of Tim-3 and IL-10, and express less perforin compared to conventional CD8 T cells. CD8 TFR modestly limit HIV replication in follicular helper T cells (TFH), impair TFH IL-21 production via Tim-3, and inhibit IgG production by B cells during ex vivo HIV infection. CD8 TFR induce TFH apoptosis through HLA-E, but induce less apoptosis than conventional CD8 T cells. These data demonstrate that a unique regulatory CD8 population exists in follicles that impairs GC function in HIV infection. PMID:27716848

  13. TIM-family proteins inhibit HIV-1 release

    PubMed Central

    Li, Minghua; Ablan, Sherimay D.; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S.; Rennert, Paul D.; Maury, Wendy; Johnson, Marc C.; Freed, Eric O.; Liu, Shan-Lu

    2014-01-01

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors. PMID:25136083

  14. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice.

    PubMed

    Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin

    2014-04-15

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.

  15. [Therapeutic Cancer Vaccine and Immune Checkpoint Inhibitor].

    PubMed

    Mimura, Kousaku; Kono, Koji

    2017-09-01

    Therapeutic cancer vaccine enhances a specific immune response against tumor cells in vivo, resulting in exertion of antitumor effects. On the other hand, immune checkpoint inhibitors promote the induction of tumor-specific T cells and also enhance the cytotoxic abilityof these T cells in tumor microenvironment. There is a possibilitythat immune checkpoint inhibitors enhance tumor immune responses induced bytherapeutic cancer vaccine, and it is expected that additive or synergistic effects will be obtained bythe combination of them. Moreover, according to previous reports, we should use an immune checkpoint inhibitor to enhance the cytotoxic ability of tumor-specific T cells as the combination for therapeutic cancer vaccine. Furthermore, the combination of a specific antibodyagainst newlyidentified co-inhibitoryreceptors (Lag-3, Tim-3, TIGIT, etc)and a therapeutic cancer vaccine is also one of newlyexpected treatments in the future.

  16. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption.

    PubMed

    Hurst, Jacob; Hoffmann, Matthias; Pace, Matthew; Williams, James P; Thornhill, John; Hamlyn, Elizabeth; Meyerowitz, Jodi; Willberg, Chris; Koelsch, Kersten K; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David A; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Babiker, Abdel; Weber, Jonathan; Kelleher, Anthony D; Phillips, Rodney E; Frater, John

    2015-10-09

    Treatment of HIV-1 infection with antiretroviral therapy (ART) in the weeks following transmission may induce a state of 'post-treatment control' (PTC) in some patients, in whom viraemia remains undetectable when ART is stopped. Explaining PTC could help our understanding of the processes that maintain viral persistence. Here we show that immunological biomarkers can predict time to viral rebound after stopping ART by analysing data from a randomized study of primary HIV-1 infection incorporating a treatment interruption (TI) after 48 weeks of ART (the SPARTAC trial). T-cell exhaustion markers PD-1, Tim-3 and Lag-3 measured prior to ART strongly predict time to the return of viraemia. These data indicate that T-cell exhaustion markers may identify those latently infected cells with a higher proclivity to viral transcription. Our results may open new avenues for understanding the mechanisms underlying PTC, and eventually HIV-1 eradication.

  17. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption

    PubMed Central

    Hurst, Jacob; Hoffmann, Matthias; Pace, Matthew; Williams, James P.; Thornhill, John; Hamlyn, Elizabeth; Meyerowitz, Jodi; Willberg, Chris; Koelsch, Kersten K.; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David A.; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Babiker, Abdel; Weber, Jonathan; Kelleher, Anthony D.; Phillips, Rodney E.; Frater, John

    2015-01-01

    Treatment of HIV-1 infection with antiretroviral therapy (ART) in the weeks following transmission may induce a state of ‘post-treatment control' (PTC) in some patients, in whom viraemia remains undetectable when ART is stopped. Explaining PTC could help our understanding of the processes that maintain viral persistence. Here we show that immunological biomarkers can predict time to viral rebound after stopping ART by analysing data from a randomized study of primary HIV-1 infection incorporating a treatment interruption (TI) after 48 weeks of ART (the SPARTAC trial). T-cell exhaustion markers PD-1, Tim-3 and Lag-3 measured prior to ART strongly predict time to the return of viraemia. These data indicate that T-cell exhaustion markers may identify those latently infected cells with a higher proclivity to viral transcription. Our results may open new avenues for understanding the mechanisms underlying PTC, and eventually HIV-1 eradication. PMID:26449164

  18. Interferon response factor 3 is crucial to poly-I:C induced NK cell activity and control of B16 melanoma growth.

    PubMed

    Moore, Tyler C; Kumm, Phyllis M; Brown, Deborah M; Petro, Thomas M

    2014-04-28

    Interferon Response Factor 3 (IRF3) induces several NK-cell activating factors, is activated by poly-I:C, an experimental cancer therapeutic, but is suppressed during many viral infections. IRF3 Knockout (KO) mice exhibited enhanced B16 melanoma growth, impaired intratumoral NK cell infiltration, but not an impaired poly-I:C therapeutic effect due to direct suppression of B16 growth. IRF3 was responsible for poly-I:C decrease in TIM-3 expression by intratumoral dendritic cells, induction of NK-cell Granzyme B and IFN-γ, and induction of macrophage IL-12, IL-15, IL-6, and IRF3-dependent NK-activating molecule (INAM). Thus, IRF3 is a key factor controlling melanoma growth through NK-cell activities, especially during poly-I:C therapy.

  19. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers.

    PubMed

    Tandon, Ravi; Chew, Glen M; Byron, Mary M; Borrow, Persephone; Niki, Toshiro; Hirashima, Mitsuomi; Barbour, Jason D; Norris, Philip J; Lanteri, Marion C; Martin, Jeffrey N; Deeks, Steven G; Ndhlovu, Lishomwa C

    2014-07-01

    Galectin-9 (Gal-9) is a β-galactosidase-binding lectin that promotes apoptosis, tissue inflammation, and T cell immune exhaustion, and alters HIV infection in part through engagement with the T cell immunoglobulin mucin domain-3 (Tim-3) receptor and protein disulfide isomerases (PDI). Gal-9 was initially thought to be an eosinophil attractant, but is now known to mediate multiple complex signaling events that affect T cells in both an immunosuppressive and inflammatory manner. To understand the kinetics of circulating Gal-9 levels during HIV infection we measured Gal-9 in plasma during HIV acquisition, in subjects with chronic HIV infection with differing virus control, and in uninfected individuals. During acute HIV infection, circulating Gal-9 was detected as early as 5 days after quantifiable HIV RNA and tracked plasma levels of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and IL-1β. In chronic HIV infection, Gal-9 levels positively correlated with plasma HIV RNA levels (r=0.29; p=0.023), and remained significantly elevated during suppressive antiretroviral therapy (median: 225.3 pg/ml) and in elite controllers (263.3 pg/ml) compared to age-matched HIV-uninfected controls (54 pg/ml). Our findings identify Gal-9 as a novel component of the first wave of the cytokine storm in acute HIV infection that is sustained at elevated levels in virally suppressed subjects and suggest that Gal-9:Tim-3 crosstalk remains active in elite controllers and antiretroviral (ARV)-suppressed subjects, potentially contributing to ongoing inflammation and persistent T cell dysfunction.

  20. Plasma biomarkers of risk for death in a multicenter phase 3 trial with uniform transplant characteristics post–allogeneic HCT

    PubMed Central

    Abu Zaid, Mohammad; Wu, Juan; Wu, Cindy; Logan, Brent R.; Yu, Jeffrey; Cutler, Corey; Antin, Joseph H.; Paczesny, Sophie

    2017-01-01

    A phase 3 clinical trial (BMT CTN 0402) comparing tacrolimus/sirolimus (Tac/Sir) vs tacrolimus/methotrexate (Tac/Mtx) as graft-versus-host disease (GVHD) prophylaxis after matched-related allogeneic hematopoietic cell transplantation (HCT) recently showed no difference between study arms in acute GVHD-free survival. Within this setting of a prospective, multicenter study with uniform GVHD prophylaxis, conditioning regimen, and donor source, we explored the correlation of 10 previously identified biomarkers with clinical outcomes after allogeneic HCT. We measured biomarkers from plasma samples collected in 211 patients using enzyme-linked immunosorbent assay (Tac/Sir = 104, Tac/Mtx = 107). High suppression of tumorigenicity-2 (ST2) and T-cell immunoglobulin mucin-3 (TIM3) at day 28 correlated with 2-year nonrelapse mortality in multivariate analysis (P = .0050, P = .0075, respectively) and in a proportional hazards model with time-dependent covariates (adjusted hazard ratio: 2.43 [1.49–3.95], P = .0038 and 4.87 [2.53–9.34], P < .0001, respectively). High ST2 and TIM3 correlated with overall survival. Chemokine (C-X-C motif) ligand 9 (CXCL9) levels above the median were associated with chronic GVHD compared with levels below the median in a time-dependent proportional hazard analysis (P = .0069). Low L-Ficolin was associated with hepatic veno-occlusive disease (P = .0053, AUC = 0.80). We confirmed the correlation of plasma-derived proteins, previously assessed in single-center cohorts, with clinical outcomes after allogeneic HCT within this prospective, multicenter study. PMID:27827824

  1. Complementary role of HCV and HIV in T-cell activation and exhaustion in HIV/HCV coinfection.

    PubMed

    Feuth, Thijs; Arends, Joop E; Fransen, Justin H; Nanlohy, Nening M; van Erpecum, Karel J; Siersema, Peter D; Hoepelman, Andy I M; van Baarle, Debbie

    2013-01-01

    To investigate whether T-cell activation and exhaustion is linked to HCV- and HIV disease parameters in HIV/HCV infected individuals, we studied T-cell characteristics in HIV/HCV coinfected patients and controls. 14 HIV/HCV coinfected, 19 HCV monoinfected, 10 HIV monoinfected patients and 15 healthy controls were included in this cross-sectional study. Differences in expression of activation and exhaustion markers (HLA-DR, CD38, PD-1, Tim-3 and Fas) and phenotypic markers on CD4(+) and CD8(+) T-cells were analysed by flow cytometry and were related to HCV disease parameters (HCV-viremia, ALT and liver fibrosis). Frequencies of activated CD4(+) and CD8(+) T-cells were higher in HIV/HCV-coinfected compared to healthy controls and HCV or HIV mono-infected individuals. Coinfected patients also showed high expression of the exhaustion marker PD-1 and death receptor Fas. In contrast, the exhaustion marker Tim-3 was only elevated in HIV-monoinfected patients. T-cell activation and exhaustion were correlated with HCV-RNA, suggesting that viral antigen influences T-cell activation and exhaustion. Interestingly, increased percentages of effector CD8(+) T-cells were found in patients with severe (F3-F4) liver fibrosis compared to those with no to minimal fibrosis (F0-F2). HIV/HCV coinfected patients display a high level of T-cell activation and exhaustion in the peripheral blood. Our data suggest that T-cell activation and exhaustion are influenced by the level of HCV viremia. Furthermore, high percentages of cytotoxic/effector CD8(+) T-cells are associated with liver fibrosis in both HCV monoinfected and HIV/HCV coinfected patients.

  2. Impaired T cell function in malignant pleural effusion is caused by TGF-β derived predominantly from macrophages.

    PubMed

    Li, Lifeng; Yang, Li; Wang, Liping; Wang, Fei; Zhang, Zhen; Li, Jieyao; Yue, Dongli; Chen, Xinfeng; Ping, Yu; Huang, Lan; Zhang, Bin; Zhang, Yi

    2016-11-15

    Malignant pleural effusion (MPE) is an indication of advanced cancer. Immune dysfunction often occurs in MPE. We aimed to identify the reason for impaired T cell activity in MPE from lung cancer patients and to provide clues toward potential immune therapies for MPE. The surface inhibitory molecules and cytotoxic activity of T cells in MPE and peripheral blood (PB) were analyzed using flow cytometry. Levels of inflammatory cytokines in MPE and PB were tested using ELISA. TGF-β expression in tumor-associated macrophages (TAMs) was also analyzed. The effect of TAMs on T cells was verified in vitro. Lastly, changes in T cells were evaluated following treatment with anti-TGF-β antibody. We found that expression levels of Tim-3, PD-1 and CTLA-4 in T cells from MPE were upregulated compared with those from PB, but levels of IFN-γ and Granzyme B were downregulated (p < 0.05). The amount of TGF-β was significantly higher in MPE than in PB (p < 0.05). TGF-β was mainly produced by TAMs in MPE. When T cells were co-cultured with TAMs, expression levels of Tim-3, PD-1 and CTLA-4 were significantly higher than controls, whereas levels of IFN-γ and Granzyme B were significantly decreased, in a dose-dependent manner (p < 0.05). In vitro treatment with anti-TGF-β antibody restored the impaired T cell cytotoxic activity in MPE. Our results indicate that macrophage-derived TGF-β plays an important role in impaired T cell cytotoxicity. It will therefore be valuable to develop therapeutic strategies against TGF-β pathway for MPE therapy of lung cancer.

  3. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia.

    PubMed

    van Esch, Edith M G; van Poelgeest, Mariette I E; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Jordanova, Ekaterina S; van der Burg, Sjoerd H

    2015-02-15

    Human papilloma virus (HPV)-induced usual-type vulvar intraepithelial neoplasia (uVIN) is infiltrated by myeloid cells but the type and role of these cells is unclear. We used triple immunofluorescent confocal microscopy to locate, identify and quantify myeloid cells based on their staining pattern for CD14, CD33 and CD163 in a cohort of 43 primary and 20 recurrent uVIN lesions, 21 carcinomas and 26 normal vulvar tissues. The progressive course of uVIN is characterized by an increase in both intraepithelial and stromal mature M1 and M2 macrophages. While the M2 macrophages outnumber M1 macrophages in healthy controls and uVIN, they are matched in number by M1 macrophages in cancer. Importantly, uVIN patients with a dense intraepithelial infiltration with mature CD14+ macrophages (irrespective of M1 or M2 type) displayed approximately a six times higher risk to develop a recurrence and a high number of these cells constituted an independent prognostic factor for recurrence. In addition, a dense intraepithelial CD14+ cell infiltration was associated with high numbers of intraepithelial CD4+ Tregs and low numbers of stromal CD8+TIM3+ T cells. Patients with low numbers of intraepithelial CD14+ cells and high numbers of stromal CD8+TIM3+ cells showed the best recurrence-free survival. These data clearly show the importance of the local immune response in HPV-induced vulvar neoplasia and may be of help in predicting the prognosis of patients or their response to immunotherapy.

  4. Plasma biomarkers of risk for death in a multicenter phase 3 trial with uniform transplant characteristics post-allogeneic HCT.

    PubMed

    Abu Zaid, Mohammad; Wu, Juan; Wu, Cindy; Logan, Brent R; Yu, Jeffrey; Cutler, Corey; Antin, Joseph H; Paczesny, Sophie; Choi, Sung Won

    2017-01-12

    A phase 3 clinical trial (BMT CTN 0402) comparing tacrolimus/sirolimus (Tac/Sir) vs tacrolimus/methotrexate (Tac/Mtx) as graft-versus-host disease (GVHD) prophylaxis after matched-related allogeneic hematopoietic cell transplantation (HCT) recently showed no difference between study arms in acute GVHD-free survival. Within this setting of a prospective, multicenter study with uniform GVHD prophylaxis, conditioning regimen, and donor source, we explored the correlation of 10 previously identified biomarkers with clinical outcomes after allogeneic HCT. We measured biomarkers from plasma samples collected in 211 patients using enzyme-linked immunosorbent assay (Tac/Sir = 104, Tac/Mtx = 107). High suppression of tumorigenicity-2 (ST2) and T-cell immunoglobulin mucin-3 (TIM3) at day 28 correlated with 2-year nonrelapse mortality in multivariate analysis (P = .0050, P = .0075, respectively) and in a proportional hazards model with time-dependent covariates (adjusted hazard ratio: 2.43 [1.49-3.95], P = .0038 and 4.87 [2.53-9.34], P < .0001, respectively). High ST2 and TIM3 correlated with overall survival. Chemokine (C-X-C motif) ligand 9 (CXCL9) levels above the median were associated with chronic GVHD compared with levels below the median in a time-dependent proportional hazard analysis (P = .0069). Low L-Ficolin was associated with hepatic veno-occlusive disease (P = .0053, AUC = 0.80). We confirmed the correlation of plasma-derived proteins, previously assessed in single-center cohorts, with clinical outcomes after allogeneic HCT within this prospective, multicenter study. © 2017 by The American Society of Hematology.

  5. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.

    PubMed

    Siska, Peter J; van der Windt, Gerritje J W; Kishton, Rigel J; Cohen, Sivan; Eisner, William; MacIver, Nancie J; Kater, Arnon P; Weinberg, J Brice; Rathmell, Jeffrey C

    2016-09-15

    Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.

    PubMed

    Hoffmann, Matthias; Pantazis, Nikos; Martin, Genevieve E; Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Babiker, Abdel; Weber, Jonathan; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-07-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.

  7. Function and regulation of LAG3 on CD4(+)CD25(-) T cells in non-small cell lung cancer.

    PubMed

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-09-19

    LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4(+)CD25(-) T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4(+) T cells directly ex vivo and primarily in the CD4(+)CD25(-) fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4(+)CD25(-) cells Compared to LAG3-nonexpressing CD4(+)CD25(-) cells, LAG3-expressing CD4(+)CD25(-) cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8(+) T effector cells. LAG3-expressing CD4(+)CD25(-) cells also presented impaired proliferation compared with LAG3-nonexpressing CD4(+)CD25(-) cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8(+) T cells co-incubated with LAG3-expressing CD4(+)CD25(-) cells at equal cell numbers demonstrated significantly lower proliferation than CD8(+) T cells incubated alone. Co-culture with CD8(+) T cell and LAG3-expressing CD4(+)CD25(-) T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4(+)CD25(-) T cells. In addition, we found that LAG3-expressing CD4(+)CD25(-) T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4(+)CD25(-) T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection

    PubMed Central

    Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B.; Robinson, Nicola; Brown, Helen; Kinloch, Sabine; Babiker, Abdel; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-01-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828

  9. Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection.

    PubMed

    Teigler, Jeffrey E; Zelinskyy, Gennadiy; Eller, Michael A; Bolton, Diane L; Marovich, Mary; Gordon, Alexander D; Alrubayyi, Aljawharah; Alter, Galit; Robb, Merlin L; Martin, Jeffrey N; Deeks, Steven G; Michael, Nelson L; Dittmer, Ulf; Streeck, Hendrik

    2017-09-13

    Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 have shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with IFN-γ- and TNF-α-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially impacted cytokine production by cells in response to SEB stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, IL-2, and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cell being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important to limit damage by the immune system during acute infections. In chronic infections however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their

  10. Galectins expressed differently in genetically susceptible C57BL/6 and resistant BALB/c mice during acute ocular Toxoplasma gondii infection.

    PubMed

    Chen, S-J; Zhang, Y-X; Huang, S-G; Lu, F-L

    2017-07-01

    Ocular toxoplasmosis (OT) caused by Toxoplasma gondii is a major cause of infectious uveitis, however little is known about its immunopathological mechanism. Susceptible C57BL/6 (B6) and resistant BALB/c mice were intravitreally infected with 500 tachyzoites of the RH strain of T. gondii. B6 mice showed more severe ocular pathology and higher parasite loads in the eyes. The levels of galectin (Gal)-9 and its receptors (Tim-3 and CD137), interferon (IFN)-γ, IL-6 and IL-10 were significantly higher in the eyes of B6 mice than those of BALB/c mice; however, the levels of IFN-α and -β were significantly decreased in the eyes and CLNs of B6 mice but significantly increased in BALB/c mice after infection. After blockage of galectin-receptor interactions by α-lactose, neither ocular immunopathology nor parasite loads were different from those of infected BALB/c mice without α-lactose treatment. Although the expressions of Gal-9/receptor were significantly increased in B6 mice and Gal-1 and -3 were upregulated in both strains of mice upon ocular T. gondii infection, blockage of galectins did not change the ocular pathogenesis of genetic resistant BALB/c mice. However, IFN-α and -β were differently expressed in B6 and BALB/c mice, suggesting that type I IFNs may play a protective role in experimental OT.

  11. Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes.

    PubMed

    Barathan, Muttiah; Gopal, Kaliappan; Mohamed, Rosmawati; Ellegård, Rada; Saeidi, Alireza; Vadivelu, Jamuna; Ansari, Abdul W; Rothan, Hussin A; Ravishankar Ram, M; Zandi, Keivan; Chang, Li Y; Vignesh, Ramachandran; Che, Karlhans F; Kamarulzaman, Adeeba; Velu, Vijayakumar; Larsson, Marie; Kamarul, Tunku; Shankar, Esaki M

    2015-04-01

    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.

  12. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours

    PubMed Central

    Seo, Hyungseok; Jeon, Insu; Kim, Byung-Seok; Park, Myunghwan; Bae, Eun-Ah; Song, Boyeong; Koh, Choong-Hyun; Shin, Kwang-Soo; Kim, Il-Kyu; Choi, Kiyoung; Oh, Taegwon; Min, Jiyoun; Min, Byung Soh; Han, Yoon Dae; Kang, Suk-Jo; Shin, Sang Joon; Chung, Yeonseok; Kang, Chang-Yuil

    2017-01-01

    During cancer immunoediting, loss of major histocompatibility complex class I (MHC-I) in neoplasm contributes to the evasion of tumours from host immune system. Recent studies have demonstrated that most natural killer (NK) cells that are found in advanced cancers are defective, releasing the malignant MHC-I-deficient tumours from NK-cell-dependent immune control. Here, we show that a natural killer T (NKT)-cell-ligand-loaded tumour-antigen expressing antigen-presenting cell (APC)-based vaccine effectively eradicates these advanced tumours. During this process, we find that the co-expression of Tim-3 and PD-1 marks functionally exhausted NK cells in advanced tumours and that MHC-I downregulation in tumours is closely associated with the induction of NK-cell exhaustion in both tumour-bearing mice and cancer patients. Furthermore, the recovery of NK-cell function by IL-21 is critical for the anti-tumour effects of the vaccine against advanced tumours. These results reveal the process involved in the induction of NK-cell dysfunction in advanced cancers and provide a guidance for the development of strategies for cancer immunotherapy. PMID:28585539

  13. Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus.

    PubMed

    Taipale, Kristian; Liikanen, Ilkka; Juhila, Juuso; Turkki, Riku; Tähtinen, Siri; Kankainen, Matti; Vassilev, Lotta; Ristimäki, Ari; Koski, Anniina; Kanerva, Anna; Diaconu, Iulia; Cerullo, Vincenzo; Vähä-Koskela, Markus; Oksanen, Minna; Linder, Nina; Joensuu, Timo; Lundin, Johan; Hemminki, Akseli

    2016-02-01

    Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.

  14. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma.

    PubMed

    Quan, Hongzhi; Fang, Liangjuan; Pan, Hao; Deng, Zhiyuan; Gao, Shan; Liu, Ousheng; Wang, Yuehong; Hu, Yanjia; Fang, Xiaodan; Yao, Zhigang; Guo, Feng; Lu, Ruohuang; Xia, Kun; Tang, Zhangui

    2016-06-15

    Lymphocyte infiltrates have been observed in the microenvironment of oral cancer; however, little is known about whether the immune response of the lymphocyte infiltrate affects tumor biology. For a deeper understanding of the role of the infiltrating-lymphocytes in oral squamous cell carcinoma (OSCC), we characterized the lymphocyte infiltrate repertoires and defined their features. Immunohistochemistry revealed considerable T and B cell infiltrates and lymphoid follicles with germinal center-like structures within the tumor microenvironment. Flow cytometry demonstrated that populations of antigen-experienced CD4+ and CD8+ cells were present, as well as an enrichment of regulatory T cells; and T cells expressing programmed death-1 (PD-1) and T cell Ig and mucin protein-3 (Tim-3), indicative of exhaustion, within the tumor microenvironment. Characterization of tumor-infiltrating B cells revealed clear evidence of antigen exposure, in that the cardinal features of an antigen-driven B cell response were present, including somatic mutation, clonal expansion, intraclonal variation and isotype switching. Collectively, our results point to an adaptive immune response occurring within the OSCC microenvironment, which may be sustained by the expression of specific antigens in the tumor.

  15. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia.

    PubMed

    Knaus, Hanna A; Kanakry, Christopher G; Luznik, Leo; Gojo, Ivana

    2017-01-01

    Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body's own immune system to fight leukemic cells.

  16. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors.

    PubMed

    Thommen, Daniela S; Schreiner, Jens; Müller, Philipp; Herzig, Petra; Roller, Andreas; Belousov, Anton; Umana, Pablo; Pisa, Pavel; Klein, Christian; Bacac, Marina; Fischer, Ozana S; Moersig, Wolfgang; Savic Prince, Spasenija; Levitsky, Victor; Karanikas, Vaios; Lardinois, Didier; Zippelius, Alfred

    2015-12-01

    Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer. In spite of the large heterogeneity observed in the amount of PD-1, Tim-3, CTLA-4, LAG-3, and BTLA expressed on intratumoral CD8(+) T cells from 32 patients, a clear correlation was established between increased expression of these inhibitory coreceptors and progression of the disease. Notably, the latter was accompanied by a progressively impaired capacity of T cells to respond to polyclonal activation. Coexpression of several inhibitory receptors was gradually acquired, with early PD-1 and late LAG-3/BTLA expression. PD-1 blockade was able to restore T-cell function only in a subset of patients. A high percentage of PD-1(hi) T cells was correlated with poor restoration of T-cell function upon PD-1 blockade. Of note, PD-1(hi) expression marked a particularly dysfunctional T-cell subset characterized by coexpression of multiple inhibitory receptors and thus may assist in identifying patients likely to respond to inhibitory receptor-specific antibodies. Overall, these data may provide a framework for future personalized T-cell-based therapies aiming at restoration of tumor-infiltrating lymphocyte effector functions.

  17. Specific CD8+ T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis

    PubMed Central

    Moreno-Cubero, Elia; Larrubia, Juan-Ramón

    2016-01-01

    Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway. PMID:27605882

  18. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity

    PubMed Central

    Rovituso, Damiano M.; Scheffler, Laura; Wunsch, Marie; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1+ B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  19. Interleukin-35 Limits Anti-Tumor Immunity.

    PubMed

    Turnis, Meghan E; Sawant, Deepali V; Szymczak-Workman, Andrea L; Andrews, Lawrence P; Delgoffe, Greg M; Yano, Hiroshi; Beres, Amy J; Vogel, Peter; Workman, Creg J; Vignali, Dario A A

    2016-02-16

    Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35(+) Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment.

  20. The Role of Coinhibitory Signaling Pathways in Transplantation and Tolerance

    PubMed Central

    McGrath, Martina M.; Najafian, Nader

    2012-01-01

    Negative costimulatory molecules, acting through so-called inhibitory pathways, play a crucial role in the control of T cell responses. This negative “second signal” opposes T cell receptor activation and leads to downregulation of T cell proliferation and promotes antigen specific tolerance. Much interest has focused upon these pathways in recent years as a method to control detrimental alloresponses and promote allograft tolerance. However, recent experimental data highlights the complexity of negative costimulatory pathways in alloimmunity. Varying effects are observed from molecules expressed on donor and recipient tissues and also depending upon the activation status of immune cells involved. There appears to be significant overlap and redundancy within these systems, rendering this a challenging area to understand and exploit therapeutically. In this article, we will review the literature at the current time regarding the major negative costimulation pathways including CTLA-4:B7, PD-1:PD-L1/PD-L2 and PD-L1:B7-1, B7-H3, B7-H4, HVEM:BTLA/CD160, and TIM-3:Galectin-9. We aim to outline the role of these pathways in alloimmunity and discuss their potential applications for tolerance induction in transplantation. PMID:22566929

  1. Galectin-9 is Involved in Immunosuppression Mediated by Human Bone Marrow-derived Clonal Mesenchymal Stem Cells.

    PubMed

    Kim, Si-Na; Lee, Hyun-Joo; Jeon, Myung-Shin; Yi, TacGhee; Song, Sun U

    2015-10-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have immunomodulatory properties and can suppress exaggerated pro-inflammatory immune responses. Although the exact mechanisms remain unclear, a variety of soluble factors are known to contribute to MSC-mediated immunosuppression. However, functional redundancy in the immunosuppressive properties of MSCs indicates that other uncharacterized factors could be involved. Galectin-9, a member of the β-galactoside binding galectin family, has emerged as an important regulator of innate and adaptive immunity. We examined whether galectin-9 contributes to MSC-mediated immunosuppression. Galectin-9 was strongly induced and secreted from human MSCs upon stimulation with pro-inflammatory cytokines. An in vitro immunosuppression assay using a knockdown approach revealed that galectin-9-deficient MSCs do not exert immunosuppressive activity. We also provided evidence that galectin-9 may contribute to MSC-mediated immunosuppression by binding to its receptor, TIM-3, expressed on activated lymphocytes, leading to apoptotic cell death of activated lymphocytes. Taken together, our findings demonstrate that galectin-9 is involved in MSC-mediated immunosuppression and represents a potential therapeutic factor for the treatment of inflammatory diseases.

  2. Control of Immune Response to Allogeneic Embryonic Stem Cells by CD3 Antibody-Mediated Operational Tolerance Induction.

    PubMed

    Calderon, D; Prot, M; You, S; Marquet, C; Bellamy, V; Bruneval, P; Valette, F; de Almeida, P; Wu, J C; Pucéat, M; Menasché, P; Chatenoud, L

    2016-02-01

    Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic. In this study, we tested whether this strategy can prolong the survival of undifferentiated ESCs and their differentiated derivatives in histoincompatible hosts. Recipients of either mouse ESC-derived embryoid bodies (EBs) or cardiac progenitors received a single short tolerogenic regimen of CD3 antibody. In immunocompetent mice, allogeneic EBs and cardiac progenitors were rejected within 20-25 days. Recipients treated with CD3 antibody showed long-term survival of implanted cardiac progenitors or EBs. In due course, EBs became teratomas, the growth of which was self-limited. Regulatory CD4(+)FoxP3(+) T cells and signaling through the PD1/PDL1 pathway played key roles in the CD3 antibody therapeutic effect. Gene profiling emphasized the importance of TGF-β and the inhibitory T cell coreceptor Tim3 to the observed effect. These results demonstrate that CD3 antibody administered alone promotes prolonged survival of allogeneic ESC derivatives and thus could prove useful for enhancing cell engraftment in the absence of chronic immunosuppression. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Interleukin-35 limits anti-tumor immunity

    PubMed Central

    Turnis, Meghan E.; Sawant, Deepali V.; Szymczak-Workman, Andrea L.; Andrews, Lawrence P.; Delgoffe, Greg M.; Yano, Hiroshi; Beres, Amy J.; Vogel, Peter; Workman, Creg J.; Vignali, Dario A. A.

    2016-01-01

    Summary Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35+ Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment. PMID:26872697

  4. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia

    PubMed Central

    Knaus, Hanna A.; Kanakry, Christopher G.; Luznik, Leo; Gojo, Ivana

    2016-01-01

    Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body’s own immune system to fight leukemic cells. PMID:25981611

  5. Longitudinal ¹H MRS assessment of the thalamus in a Coriaria lactone-induced rhesus monkey status epilepticus model.

    PubMed

    Zhang, Xiao-Yun; Yang, Zhi-Yong; Li, Jin-Mei; Li, Hong-Xia; Wang, Li; Gong, Qi-Yong; Zhou, Dong

    2012-10-01

    Neurophysiological, biochemical and anatomical evidence implicates the thalamus as playing a role in epileptic seizures. Until recently, however, longitudinal characterization of in vivo thalamus dynamics had not been reported. In this study, we investigated the metabolism in the thalamus to identify the changes that occur following Coriaria lactone (CL)-induced status epilepticus (SE) and to observe whether the epileptiform discharges could present a difference between the left and right thalami. Five rhesus monkeys underwent whole-brain MRI and single-voxel MRS on a Siemens Trio Tim 3-T MR scanner with a 12-channel head coil. Spectra were processed using LCModel. Scans were performed in five animals before SE and at 1, 7, 21 and 42  days after the onset of SE. Statistical analysis of the data obtained demonstrated no significant difference in the bilateral thalamus of healthy macaques. Our MRS data showed symmetrical distributions of N-acetylaspartate in the right and left thalami after SE (p = 0.003). In addition, this longitudinal study demonstrated elevated glutamate/glutamine (p < 0.05) and reduced myo-inositol (p < 0.05) in the bilateral thalamus 1  day after SE, and all metabolites approached their baseline levels by the fifth scan. Our results demonstrate that metabolic changes occur in the thalamus during CL-induced SE in rhesus monkeys. The various metabolic changes may indicate that the left thalamus is more vulnerable to epileptic strike. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets

    PubMed Central

    Sehgal, Kartik; Das, Rituparna; Zhang, Lin; Verma, Rakesh; Deng, Yanhong; Kocoglu, Mehmet; Vasquez, Juan; Koduru, Srinivas; Ren, Yan; Wang, Maria; Couto, Suzana; Breider, Mike; Hansel, Donna; Seropian, Stuart; Cooper, Dennis; Thakurta, Anjan; Yao, Xiaopan; Dhodapkar, Kavita M.

    2015-01-01

    In preclinical studies, pomalidomide mediated both direct antitumor effects and immune activation by binding cereblon. However, the impact of drug-induced immune activation and cereblon/ikaros in antitumor effects of pomalidomide in vivo is unknown. Here we evaluated the clinical and pharmacodynamic effects of continuous or intermittent dosing strategies of pomalidomide/dexamethasone in lenalidomide-refractory myeloma in a randomized trial. Intermittent dosing led to greater tumor reduction at the cost of more frequent adverse events. Both cohorts experienced similar event-free and overall survival. Both regimens led to a distinct pattern but similar degree of mid-cycle immune activation, manifested as increased expression of cytokines and lytic genes in T and natural killer (NK) cells. Pomalidomide induced poly-functional T-cell activation, with increased proportion of coinhibitory receptor BTLA+ T cells and Tim-3+ NK cells. Baseline levels of ikaros and aiolos protein in tumor cells did not correlate with response or survival. Pomalidomide led to rapid decline in Ikaros in T and NK cells in vivo, and therapy-induced activation of CD8+ T cells correlated with clinical response. These data demonstrate that pomalidomide leads to strong and rapid immunomodulatory effects involving both innate and adaptive immunity, even in heavily pretreated multiple myeloma, which correlates with clinical antitumor effects. This trial was registered at www.clinicaltrials.gov as #NCT01319422. PMID:25869284

  7. The use of PCR to detect Neospora caninum DNA in the blood of naturally infected cows.

    PubMed

    Okeoma, C M; Williamson, N B; Pomroy, W E; Stowell, K M; Gillespie, L

    2004-08-06

    Twelve 2-year old heifers in their fifth month of gestation when pregnancy tested were used in this study. Six heifers aborted at approximately 4 months of gestation and had blood samples drawn less than 6 weeks after the abortions were identified. Blood samples were also drawn from three sero-positive pregnant and three sero-negative pregnant heifers. DNA was isolated from the samples and a 350 bp fragment of the Nc-5 gene was PCR amplified using primer pair Np21+ and Np6+. Also, the Internal Transcribed Spacer 1 (ITS1) was PCR amplified using Tim 3 and Tim 11 primer pair. The Nc-5 gene fragment was cloned, sequenced and the sequence BLAST-tested. Similarly, the ITS1 product was sequenced and BLAST-tested. The BLAST test results revealed that Neospora caninum DNA was present in these blood samples indicating that polymerase chain reaction can be used in the detection of N. caninum DNA in the blood of sero-positive cows.

  8. mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression

    PubMed Central

    Chen, Xiao; Rosbash, Michael

    2016-01-01

    Circadian rhythms in metazoan eukaryotes are controlled by an endogenous molecular clock. It functions in many locations, including subsets of brain neurons (clock neurons) within the central nervous system. Although the molecular clock relies on transcription/translation feedback loops, posttranscriptional regulation also plays an important role. Here, we show that the abundant Drosophila melanogaster microRNA mir-276a regulates molecular and behavioral rhythms by inhibiting expression of the important clock gene timeless (tim). Misregulation of mir-276a in clock neurons alters tim expression and increases arrhythmicity under standard constant darkness (DD) conditions. mir-276a expression itself appears to be light-regulated because its levels oscillate under 24-h light–dark (LD) cycles but not in DD. mir-276a is regulated by the transcription activator Chorion factor 2 in flies and in tissue-culture cells. Evidence from flies mutated using the clustered, regularly interspaced, short palindromic repeats (CRISPR) tool shows that mir-276a inhibits tim expression: Deleting the mir-276a–binding site in the tim 3′ UTR causes elevated levels of TIM and ∼50% arrhythmicity. We suggest that this pathway contributes to the more robust rhythms observed under light/dark LD conditions than under DD conditions. PMID:27162360

  9. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    PubMed

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope.

  10. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection

    PubMed Central

    Booty, Matthew G.; Barreira-Silva, Palmira; Carpenter, Stephen M.; Nunes-Alves, Cláudio; Jacques, Miye K.; Stowell, Britni L.; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M.

    2016-01-01

    IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R−/− mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R−/− T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis. PMID:27819295

  11. Resistance to immunotherapy: clouds in a bright sky.

    PubMed

    Milano, Gérard

    2017-04-12

    Two major challenges persist for an optimal management of immunotherapy: i) identifying those patients who will benefit from this type of therapy, and ii) determining the biological, cellular and molecular mechanisms that trigger disease progression while on therapy. There is a consensual view in favor of standardizing practices currently used to measure programmed death ligand 1 (PD-L1) expression that relates to innate resistance. The tumor mutation landscape has been widely explored as a potential predictor of treatment efficacy. In contrast, our knowledge is rather limited as concerns the mechanisms sustaining acquired resistance to checkpoint blockade immunotherapy in patients under treatment. Upregulation of T cell immunoglobulin mucin domain 3 (TIM-3) in CD8+ T-cells has been reported in patients developing acquired resistance to anti-PD-1 treatment. Resistance mechanisms are even more complex for combinatorial strategies linking immunotherapeutic agents and conventional therapies, an area that is expanding rapidly. However, with the arrival of advanced analytical methods such as mass cytometry, there is reason for optimism. These methods can identify cellular mechanisms governing response to therapy and resistance. The clinical use of inhibitors of tumor-microenvironment-modulated pathways, such as those targeting indoleamine 2, 3-dioxygenase (IDO), hold promise for resistance management. Graphical abstract Clouds in a bright sky - Joseph Mallord William Turner.

  12. Current status of immunotherapy for gastrointestinal stromal tumor.

    PubMed

    Tan, Y; Trent, J C; Wilky, B A; Kerr, D A; Rosenberg, A E

    2017-03-01

    Gastrointestinal stromal tumors (GIST) contain tumor-infiltrating immune cells and their presence provides an opportunity and rationale for developing effective forms of immunotherapy. The types of tumor-infiltrating inflammatory cells and relevant immune checkpoint inhibitors are the focus of active investigation. The most numerous tumor-infiltrating inflammatory cells are tumor-associated macrophages (TAMs) and CD3+ T cells. Studies have shown that patients with GISTs that harbor increased numbers of CD3+ T cells have better outcomes. However, the clinical behavior of GIST has not been shown to correlate with the number of TAMs. The biological significance of other less frequent tumor-infiltrating immune cells including tumor-infiltrating neurtrophils (TINs), natural killer cells (NKs), B cells, dendritic cells (DCs) remains unclear. The immune checkpoint inhibitors CTLA-4, PD1/PDL1 and TIM3/galectin-9 are molecules that can be targeted by synthesized antibodies. Clinical and pre-clinical trials using this approach against immune checkpoint inhibitors, anti-KIT antibody and the generation of chimeric antigen receptor (CAR) T-cells have shown promising results. The treatment of GIST with immunotherapy is complex and evolving; this article reviews its current status for patients with GISTs.

  13. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy.

    PubMed

    Burton, Bronwen R; Britton, Graham J; Fang, Hai; Verhagen, Johan; Smithers, Ben; Sabatos-Peyton, Catherine A; Carney, Laura J; Gough, Julian; Strobel, Stephan; Wraith, David C

    2014-09-03

    Antigen-specific immunotherapy combats autoimmunity or allergy by reinstating immunological tolerance to target antigens without compromising immune function. Optimization of dosing strategy is critical for effective modulation of pathogenic CD4(+) T-cell activity. Here we report that dose escalation is imperative for safe, subcutaneous delivery of the high self-antigen doses required for effective tolerance induction and elicits anergic, interleukin (IL)-10-secreting regulatory CD4(+) T cells. Analysis of the CD4(+) T-cell transcriptome, at consecutive stages of escalating dose immunotherapy, reveals progressive suppression of transcripts positively regulating inflammatory effector function and repression of cell cycle pathways. We identify transcription factors, c-Maf and NFIL3, and negative co-stimulatory molecules, LAG-3, TIGIT, PD-1 and TIM-3, which characterize this regulatory CD4(+) T-cell population and whose expression correlates with the immunoregulatory cytokine IL-10. These results provide a rationale for dose escalation in T-cell-directed immunotherapy and reveal novel immunological and transcriptional signatures as surrogate markers of successful immunotherapy.

  14. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy

    PubMed Central

    Burton, Bronwen R.; Britton, Graham J.; Fang, Hai; Verhagen, Johan; Smithers, Ben; Sabatos-Peyton, Catherine A.; Carney, Laura J.; Gough, Julian; Strobel, Stephan; Wraith, David C.

    2014-01-01

    Antigen-specific immunotherapy combats autoimmunity or allergy by reinstating immunological tolerance to target antigens without compromising immune function. Optimization of dosing strategy is critical for effective modulation of pathogenic CD4+ T-cell activity. Here we report that dose escalation is imperative for safe, subcutaneous delivery of the high self-antigen doses required for effective tolerance induction and elicits anergic, interleukin (IL)-10-secreting regulatory CD4+ T cells. Analysis of the CD4+ T-cell transcriptome, at consecutive stages of escalating dose immunotherapy, reveals progressive suppression of transcripts positively regulating inflammatory effector function and repression of cell cycle pathways. We identify transcription factors, c-Maf and NFIL3, and negative co-stimulatory molecules, LAG-3, TIGIT, PD-1 and TIM-3, which characterize this regulatory CD4+ T-cell population and whose expression correlates with the immunoregulatory cytokine IL-10. These results provide a rationale for dose escalation in T-cell-directed immunotherapy and reveal novel immunological and transcriptional signatures as surrogate markers of successful immunotherapy. PMID:25182274

  15. Galectin-9 in cancer therapy.

    PubMed

    Fujihara, Shintaro; Mori, Hirohito; Kobara, Hideki; Rafiq, Kazi; Niki, Toshiro; Hirashima, Mitsuomi; Masaki, Tsutomu

    2013-05-01

    Galectin-9 is a tandem-repeat type galectin with two carbohydrate-recognition domains, and it was first identified as an eosinophil chemoattractant and activation factor. Subsequent studies revealed that galectin-9, similar to other galectins, modulates a variety of biological functions including cell aggregation and adhesion, as well as apoptosis of tumor cells. Galectin-9 has recently been shown to have an anti-proliferative effect on cancer cells. Recent studies have uncovered additional mechanisms by which T cell immunoglobulin mucin-3 (Tim-3), a receptor for galectin-9, negatively regulates T cell responses by promoting CD8+ T cell exhaustion and inducing expansion of myeloid-derived suppressor cells. These mechanisms are involved in tumor growth and escape from immunity. In many solid cancers, the loss of galectin-9 expression is closely associated with metastatic progression, and treatment with recombinant galectin-9 prevents metastatic spread in various preclinical cancer models. Here, we review the biology and physiological role of galectin-9, and discuss the therapeutic potential of galectin-9 in cancer as well as relevant patents.

  16. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection.

    PubMed

    Beltra, Jean-Christophe; Bourbonnais, Sara; Bédard, Nathalie; Charpentier, Tania; Boulangé, Moana; Michaud, Eva; Boufaied, Ines; Bruneau, Julie; Shoukry, Naglaa H; Lamarre, Alain; Decaluwe, Hélène

    2016-09-13

    Exhaustion of CD8(+) T cells severely impedes the adaptive immune response to chronic viral infections. Despite major advances in our understanding of the molecular regulation of exhaustion, the cytokines that directly control this process during chronicity remain unknown. We demonstrate a direct impact of IL-2 and IL-15, two common gamma-chain-dependent cytokines, on CD8(+) T-cell exhaustion. Common to both cytokine receptors, the IL-2 receptor β (IL2Rβ) chain is selectively maintained on CD8(+) T cells during chronic lymphocytic choriomeningitis virus and hepatitis C virus infections. Its expression correlates with exhaustion severity and identifies terminally exhausted CD8(+) T cells both in mice and humans. Genetic ablation of the IL2Rβ chain on CD8(+) T cells restrains inhibitory receptor induction, in particular 2B4 and Tim-3; precludes terminal differentiation of highly defective PD-1(hi) effectors; and rescues memory T-cell development and responsiveness to IL-7-dependent signals. Together, we ascribe a previously unexpected role to IL-2 and IL-15 as instigators of CD8(+) T-cell exhaustion during chronic viral infection.

  17. Immune-mediated antitumor effect by type 2 diabetes drug, metformin

    PubMed Central

    Eikawa, Shingo; Nishida, Mikako; Mizukami, Shusaku; Yamazaki, Chihiro; Nakayama, Eiichi; Udono, Heiichiro

    2015-01-01

    Metformin, a prescribed drug for type 2 diabetes, has been reported to have anti-cancer effects; however, the underlying mechanism is poorly understood. Here we show that this mechanism may be immune-mediated. Metformin enabled normal but not T-cell–deficient SCID mice to reject solid tumors. In addition, it increased the number of CD8+ tumor-infiltrating lymphocytes (TILs) and protected them from apoptosis and exhaustion characterized by decreased production of IL-2, TNFα, and IFNγ. CD8+ TILs capable of producing multiple cytokines were mainly PD-1−Tim-3+, an effector memory subset responsible for tumor rejection. Combined use of metformin and cancer vaccine improved CD8+ TIL multifunctionality. The adoptive transfer of antigen-specific CD8+ T cells treated with metformin concentrations as low as 10 μM showed efficient migration into tumors while maintaining multifunctionality in a manner sensitive to the AMP-activated protein kinase (AMPK) inhibitor compound C. Therefore, a direct effect of metformin on CD8+ T cells is critical for protection against the inevitable functional exhaustion in the tumor microenvironment. PMID:25624476

  18. 2D:4D finger ratio positively correlates with total cerebral cortex in males.

    PubMed

    Darnai, Gergely; Plózer, Enikő; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Horváth, Réka; Schwarcz, Attila; Kovács, Norbert; Altbäcker, Anna; Janszky, József; Clemens, Zsófia

    2016-02-26

    Although there is evidence that the ratio of 2nd-4th digit length (2D:4D) correlates with prenatal testosterone level, psychological and health traits only two studies have assessed the relationship with brain morphological features. Here we investigated the association between the 2D:4D ratio and several brain subvolumes. Seventy-five subjects between the ages of 18 and 30 were included in the study. The length of the 2nd and 4th digits were measured with an electronic vernier caliper while MRI measurements were performed on a Siemens Magnetom Trio Tim (3T) system. Freesurfer software suite was used for volumetric segmentation. Finger ratio significantly positively correlated with total cerebral cortex, total cerebellar white matter and total cerebellar cortex in males but not in females. Our results indicate that prenatal testosterone, as estimated by the 2D:4D ratio has an effect on adult brain morphology in males. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. HTLV-1 Infection and Neuropathogenesis in the Context of Rag1(-/-)γc(-/-) (RAG1-Hu) and BLT Mice.

    PubMed

    Ginwala, Rashida; Caruso, Breanna; Khan, Zafar K; Pattekar, Ajinkya; Chew, Glen M; Corley, Michael J; Loonawat, Ronak; Jacobson, Steven; Sreedhar, Sreesha; Ndhlovu, Lishomwa C; Jain, Pooja

    2017-09-01

    To date, the lack of a suitable small animal model has hindered our understanding of Human T-cell lymphotropic virus (HTLV)-1 chronic infection and associated neuropathogenesis defined as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The host immune response plays a critical role in the outcome of HTLV-1 infection, which could be better tested in the context of humanized (hu) mice. Thus, we employ here the Balb/c-Rag1(-/-)γc(-/-) or Rag1 as well as Bone marrow-Liver-Thymic (BLT) mouse models for engraftment of human CD34(+) hematopoietic stem cells. Flow cytometry and histological analyses confirmed reconstitution of Rag1 and BLT mice with human immune cells. Following HTLV-1 infection, proviral load (PVL) was detected in the blood of Rag-1 and BLT hu-mice as early as 2 weeks post-infection (wpi) with sustained elevation in the subsequent weeks followed by Tax expression. Additionally, infection was compared between adult and neonatal Rag1 mice with both PVL and Tax expression considerably higher in the adult Rag1 mice as compared to the neonates. Establishment of peripheral infection led to lymphocytic infiltration with concomitant Tax expression and resulting myelin disruption within the central nervous system of infected mice. In addition, up-regulation in the expression of several immune checkpoint mediators such as programmed cell death-1 (PD-1), T-cell Ig and ITIM domain (TIGIT), and T cell Ig and mucin domain-3 protein (Tim-3) were observed on CD8(+) T cells in various organs including the CNS of infected hu-mice. Collectively, these studies represent the first attempt to establish HTLV-1 neuropathogenesis in the context of Rag-1 and BLT hu-mice as potential novel tools for understanding HTLV-1 neuropathogenesis and testing of novel therapies such as immune checkpoint blockade in the amelioration of chronic HTLV-1 infection.

  20. Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes

    PubMed Central

    Lizotte, Patrick H.; Ivanova, Elena V.; Awad, Mark M.; Jones, Robert E.; Keogh, Lauren; Liu, Hongye; Dries, Ruben; Herter-Sprie, Grit S.; Santos, Abigail; Feeney, Nora B.; Paweletz, Cloud P.; Kulkarni, Meghana M.; Bass, Adam J.; Rustgi, Anil K.; Yuan, Guo-Cheng; Kufe, Donald W.; Jänne, Pasi A.; Hammerman, Peter S.; Sholl, Lynette M.; Hodi, F. Stephen; Richards, William G.; Bueno, Raphael; English, Jessie M.; Bittinger, Mark A.

    2016-01-01

    BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non–small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T cells expressing high levels of PD-1 and TIM-3 and an immunologically “cold” cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation. PMID:27699239

  1. Polyfunctional Melan-A-specific tumor-reactive CD8+ T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS

    PubMed Central

    Franzese, Ornella; Palermo, Belinda; Di Donna, Cosmo; Sperduti, Isabella; Ferraresi, Virginia; Stabile, Helena; Gismondi, Angela; Santoni, Angela; Nisticò, Paola

    2016-01-01

    ABSTRACT The identification of activation pathways linked to antitumor T-cell polyfunctionality in long surviving patients is of great relevance in the new era of immunotherapy. We have recently reported that dacarbazine (DTIC) injected one day before peptide-vaccination plus IFN-α improves the antitumor lytic activity and enlarges the repertoire of Melan-A-specific T-cell clones, as compared with vaccination alone, impacting the overall survival of melanoma patients. To identify the mechanisms responsible for this improvement of the immune response, we have analyzed the endogenous and treatment-induced antigen (Ag)-specific response in a panel of Melan-A-specific CD8+ T-cell clones in terms of differentiation phenotype, inhibitory receptor profile, polyfunctionality and AKT activation. Here, we show that Melan-A-specific CD8+ T cells isolated from patients treated with chemoimmunotherapy possess a late differentiated phenotype as defined by the absence of CD28 and CD27 co-stimulatory molecules and high levels of LAG-3, TIM-3 and PD-1 inhibitory receptors. Nevertheless, they show higher proliferative potential and an improved antitumor polyfunctional effector profile in terms of co-production of TNF-α, IFNγ and Granzyme-B (GrB) compared with cells derived from patients treated with vaccination alone. Polyfunctionality is dependent on an active AKT signaling related to the engagement of the co-stimulatory molecule ICOS. We suggest that this phenotypic and functional signature is dictated by a fine-tuned balance between TCR triggering, AKT activation, co-stimulatory and inhibitory signals induced by chemoimmunotherapy and may be associated with antitumor T cells able to protect patients from tumor recurrence. PMID:27467927

  2. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    PubMed

    Fernandez-Ponce, Cecilia; Dominguez-Villar, Margarita; Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  3. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts

    PubMed Central

    Feucht, Judith; Kayser, Simone; Gorodezki, David; Hamieh, Mohamad; Döring, Michaela; Blaeschke, Franziska; Schlegel, Patrick; Bösmüller, Hans; Quintanilla-Fend, Leticia; Ebinger, Martin; Lang, Peter; Handgretinger, Rupert; Feuchtinger, Tobias

    2016-01-01

    T-cell immunotherapies are promising options in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). We investigated the effect of co-signaling molecules on T-cell attack against leukemia mediated by CD19/CD3-bispecific T-cell engager. Primary CD19+ ALL blasts (n≥10) and physiologic CD19+CD10+ bone marrow precursors were screened for 20 co-signaling molecules. PD-L1, PD-1, LAG-3, CD40, CD86, CD27, CD70 and HVEM revealed different stimulatory and inhibitory profiles of pediatric ALL compared to physiologic cells, with PD-L1 and CD86 as most prominent inhibitory and stimulatory markers. PD-L1 was increased in relapsed ALL patients (n=11) and in ALLs refractory to Blinatumomab (n=5). Exhaustion markers (PD-1, TIM-3) were significantly higher on patients' T cells compared to physiologic controls. T-cell proliferation and effector function was target-cell dependent and correlated to expression of co-signaling molecules. Blockade of inhibitory PD-1-PD-L and CTLA-4-CD80/86 pathways enhanced T-cell function whereas blockade of co-stimulatory CD28-CD80/86 interaction significantly reduced T-cell function. Combination of Blinatumomab and anti-PD-1 antibody was feasible and induced an anti-leukemic in vivo response in a 12-year-old patient with refractory ALL. In conclusion, ALL cells actively regulate T-cell function by expression of co-signaling molecules and modify efficacy of therapeutic T-cell attack against ALL. Inhibitory interactions of leukemia-induced checkpoint molecules can guide future T-cell therapies. PMID:27708227

  4. Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera).

    PubMed

    Kaiser, Tobias S; Heckel, David G

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.

  5. Nimotuzumab Induces NK Cell Activation, Cytotoxicity, Dendritic Cell Maturation and Expansion of EGFR-Specific T Cells in Head and Neck Cancer Patients.

    PubMed

    Mazorra, Zaima; Lavastida, Anabel; Concha-Benavente, Fernando; Valdés, Anet; Srivastava, Raghvendra M; García-Bates, Tatiana M; Hechavarría, Esperanza; González, Zuyen; González, Amnely; Lugiollo, Martha; Cuevas, Iván; Frómeta, Carlos; Mestre, Braulio F; Barroso, Maria C; Crombet, Tania; Ferris, Robert L

    2017-01-01

    Survival benefit and long-term duration of clinical response have been seen using the epidermal growth factor receptor (EGFR)-targeted monoclonal antibody (mAb) nimotuzumab. Blocking EGFR signaling may not be the only mechanism of action underlying its efficacy. As an IgG1 isotype mAb, nimotuzumab's capacity of killing tumor cells by antibody dependent cellular cytotoxicity (ADCC) and to induce an immune response in cancer patients have not been studied. ADCC-induced by nimotuzumab was determined using a (51)Cr release assay. The in vitro effect of nimotuzumab on natural killer (NK) cell activation and dendritic cell (DC) maturation and the in vivo frequency of circulating regulatory T cells (Tregs) and NK cells were assessed by flow cytometry. Cytokine levels in supernatants were determined by ELISA. ELISpot was carried out to quantify EGFR-specific T cells in nimotuzumab-treated head and neck cancer (HNSCC) patients. Nimotuzumab was able to kill EGFR+ tumor cells by NK cell-mediated ADCC. Nimotuzumab-activated NK cells promoted DC maturation and EGFR-specific CD8+ T cell priming. Interestingly, nimotuzumab led to upregulation of some immune checkpoint molecules on NK cells (TIM-3) and DC (PD-L1), to a lower extent than another EGFR mAb, cetuximab. Furthermore, circulating EGFR-specific T cells were identified in nimotuzumab-treated HNSCC patients. Notably, nimotuzumab combined with cisplatin-based chemotherapy and radiation increased the frequency of peripheral CD4+CD39+FOXP3+Tregs which otherwise were decreased to baseline values when nimotuzumab was used as monotherapy. The frequency of circulating NK cells remained constant during treatment. Nimotuzumab-induced, NK cell-mediated DC priming led to induction of anti-EGFR specific T cells in HNSCC patients. The association between EGFR-specific T cells and patient clinical benefit with nimotuzumab treatment should be investigated.

  6. Nimotuzumab Induces NK Cell Activation, Cytotoxicity, Dendritic Cell Maturation and Expansion of EGFR-Specific T Cells in Head and Neck Cancer Patients

    PubMed Central

    Mazorra, Zaima; Lavastida, Anabel; Concha-Benavente, Fernando; Valdés, Anet; Srivastava, Raghvendra M.; García-Bates, Tatiana M.; Hechavarría, Esperanza; González, Zuyen; González, Amnely; Lugiollo, Martha; Cuevas, Iván; Frómeta, Carlos; Mestre, Braulio F.; Barroso, Maria C.; Crombet, Tania; Ferris, Robert L.

    2017-01-01

    Survival benefit and long-term duration of clinical response have been seen using the epidermal growth factor receptor (EGFR)-targeted monoclonal antibody (mAb) nimotuzumab. Blocking EGFR signaling may not be the only mechanism of action underlying its efficacy. As an IgG1 isotype mAb, nimotuzumab’s capacity of killing tumor cells by antibody dependent cellular cytotoxicity (ADCC) and to induce an immune response in cancer patients have not been studied. ADCC-induced by nimotuzumab was determined using a 51Cr release assay. The in vitro effect of nimotuzumab on natural killer (NK) cell activation and dendritic cell (DC) maturation and the in vivo frequency of circulating regulatory T cells (Tregs) and NK cells were assessed by flow cytometry. Cytokine levels in supernatants were determined by ELISA. ELISpot was carried out to quantify EGFR-specific T cells in nimotuzumab-treated head and neck cancer (HNSCC) patients. Nimotuzumab was able to kill EGFR+ tumor cells by NK cell-mediated ADCC. Nimotuzumab-activated NK cells promoted DC maturation and EGFR-specific CD8+ T cell priming. Interestingly, nimotuzumab led to upregulation of some immune checkpoint molecules on NK cells (TIM-3) and DC (PD-L1), to a lower extent than another EGFR mAb, cetuximab. Furthermore, circulating EGFR-specific T cells were identified in nimotuzumab-treated HNSCC patients. Notably, nimotuzumab combined with cisplatin-based chemotherapy and radiation increased the frequency of peripheral CD4+CD39+FOXP3+Tregs which otherwise were decreased to baseline values when nimotuzumab was used as monotherapy. The frequency of circulating NK cells remained constant during treatment. Nimotuzumab-induced, NK cell-mediated DC priming led to induction of anti-EGFR specific T cells in HNSCC patients. The association between EGFR-specific T cells and patient clinical benefit with nimotuzumab treatment should be investigated. PMID:28674498

  7. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes.

    PubMed

    Lizotte, Patrick H; Ivanova, Elena V; Awad, Mark M; Jones, Robert E; Keogh, Lauren; Liu, Hongye; Dries, Ruben; Almonte, Christina; Herter-Sprie, Grit S; Santos, Abigail; Feeney, Nora B; Paweletz, Cloud P; Kulkarni, Meghana M; Bass, Adam J; Rustgi, Anil K; Yuan, Guo-Cheng; Kufe, Donald W; Jänne, Pasi A; Hammerman, Peter S; Sholl, Lynette M; Hodi, F Stephen; Richards, William G; Bueno, Raphael; English, Jessie M; Bittinger, Mark A; Wong, Kwok-Kin

    2016-09-08

    BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non-small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically "hot" cluster with abundant CD8(+) T cells expressing high levels of PD-1 and TIM-3 and an immunologically "cold" cluster with lower relative abundance of CD8(+) T cells and expression of inhibitory markers. The "hot" cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the "hot" cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation.

  8. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation

    PubMed Central

    Shah, Nishel Mohan; Herasimtschuk, Anna A.; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R.

    2017-01-01

    During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches. PMID:28966619

  9. The PD-L1/PD-1 pathway promotes dysfunction, but not "exhaustion", in tumor-responding T cells from pleural effusions in lung cancer patients.

    PubMed

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Puerto-Aquino, Alejandra; Rumbo-Nava, Uriel

    2017-03-13

    Malignant pleural effusions are frequent in patients with advanced stages of lung cancer and are commonly infiltrated by lymphocytes and tumor cells. CD8+ T cells from these effusions have reduced effector functions. The programmed death receptor 1(PD-1)/programmed death ligand 1 (PD-L1) pathway is involved in T-cell exhaustion, and it might be responsible for T-cell dysfunction in lung cancer patients. Here, we show that PD-L1 is expressed on tumor cell samples from malignant effusions, on lung cancer cell lines, and, interestingly, on MRC-5 lung fibroblasts. PD-L1 was up-regulated in lung cancer cell lines upon treatment with IFN-gamma, but not under hypoxic conditions, as detected by RT-qPCR and flow cytometry. Blockade of PD-L1 on tumor cells restored granzyme-B expression in allogenic CD8+ T cells in vitro. Remarkably, pleural effusion CD8+ T cells that responded to the tumor antigens MAGE-3A and WT-1 (identified as CD137+ cells) were lower in frequency than CMV pp65-responding CD8+ T cells and did not have an exhausted phenotype (PD-1+ TIM-3+). Nonetheless, tumor-responding CD8+ T cells had a memory phenotype and expressed higher levels of PD-1. A PD-L1 blocking antibody increased the expression of granzyme-B and perforin on polyclonal- and tumor-stimulated CD8+ T cells. Taken together, our data show that rather than being exhausted, tumor-responding CD8+ T cells are not completely differentiated into effector cells and are prone to negative regulation by PD-L1. Hence, our study provides evidence that lung cancer patients respond to immunotherapy due to blockade of the PD-L1/PD-1 pathway.

  10. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer

    PubMed Central

    Geng, Ruixuan; Ge, Xiaoxiao; Tang, Wenbo; Chang, Jinjia; Wu, Zheng; Liu, Xinyang; Lin, Ying; Zhang, Zhe; Li, Jin

    2016-01-01

    Cytokine-induced killer (CIK) cells represent a realistic approach in cancer immunotherapy with confirmed survival benefits in the context of metastatic solid tumors. However, therapeutic effects are limited to a fraction of patients. In this study, immune-resistance elements and ideal combination therapies were explored. Initially, phenotypic analysis was performed to document CD3, CD56, NKG2D, DNAM-1, PD-L1, PD-1, CTLA-4, TIM-3, 2B4, and LAG-3 on CIK cells. Upon engagement of CIK cells with the tumor cells, expression of PD-1 on CIK cells and PD-L1 on both cells were up-regulated. Over-expression of PD-L1 levels on tumor cells via lentiviral transduction inhibited tumoricidal activity of CIK cells, and neutralizing of PD-L1/PD-1 signaling axis could enhance their tumor-killing effect. Conversely, blockade of NKG2D, a major activating receptor of CIK cells, largely caused dysfunction of CIK cells. Functional study showed an increase of NKG2D levels along with PD-L1/PD-1 blockade in the presence of other immune effector molecule secretion. Additionally, combined therapy of CIK infusion and PD-L1/PD-1 blockade caused a delay of in vivo tumor growth and exhibited a survival advantage over untreated mice. These results provide a preclinical proof-of-concept for simultaneous PD-L1/PD-1 pathways blockade along with CIK infusion as a novel immunotherapy for unresectable cancers. PMID:26871284

  11. Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer.

    PubMed

    Moon, Edmund K; Ranganathan, Raghuveer; Eruslanov, Evgeniy; Kim, Soyeon; Newick, Kheng; O'Brien, Shaun; Lo, Albert; Liu, Xiaojun; Zhao, Yangbing; Albelda, Steven M

    2016-01-15

    Tumor-infiltrating lymphocytes (TILs) become hypofunctional, although the mechanisms are not clear. Our goal was to generate a model of human tumor-induced TIL hypofunction to study mechanisms and to test anti-human therapeutics. We transduced human T cells with a published, optimized T-cell receptor (TCR) that is directed to a peptide within the cancer testis antigen, NY-ESO-1. After demonstrating antigen-specific in vitro activity, these cells were used to target a human lung cancer line that expressed NY-ESO-1 in the appropriate HLA context growing in immunodeficient mice. The ability of anti-PD1 antibody to augment efficacy was tested. Injection of transgenic T cells had some antitumor activity, but did not eliminate the tumors. The injected T cells became profoundly hypofunctional accompanied by upregulation of PD1, Tim3, and Lag3 with coexpression of multiple inhibitory receptors in a high percentage of cells. This model allowed us to test reagents targeted specifically to human T cells. We found that injections of an anti-PD1 antibody in combination with T cells led to decreased TIL hypofunction and augmented the efficacy of the adoptively transferred T cells. This model offers a platform for preclinical testing of adjuvant immunotherapeutics targeted to human T cells prior to transition to the bedside. Because the model employs engineering of human T cells with a TCR clone instead of a CAR, it allows for study of the biology of tumor-reactive TILs that signal through an endogenous TCR. The lessons learned from TCR-engineered TILs can thus be applied to tumor-reactive TILs. ©2015 American Association for Cancer Research.

  12. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors.

    PubMed

    Moon, Edmund K; Wang, Liang-Chuan; Dolfi, Douglas V; Wilson, Caleph B; Ranganathan, Raghuveer; Sun, Jing; Kapoor, Veena; Scholler, John; Puré, Ellen; Milone, Michael C; June, Carl H; Riley, James L; Wherry, E John; Albelda, Steven M

    2014-08-15

    Immunotherapy using vaccines or adoptively transferred tumor-infiltrating lymphocytes (TIL) is limited by T-cell functional inactivation within the solid tumor microenvironment. The purpose of this study was to determine whether a similar tumor-induced inhibition occurred with genetically modified cytotoxic T cells expressing chimeric antigen receptors (CAR) targeting tumor-associated antigens. Human T cells expressing CAR targeting mesothelin or fibroblast activation protein and containing CD3ζ and 4-1BB cytoplasmic domains were intravenously injected into immunodeficient mice bearing large, established human mesothelin-expressing flank tumors. CAR TILs were isolated from tumors at various time points and evaluated for effector functions and status of inhibitory pathways. CAR T cells were able to traffic into tumors with varying efficiency and proliferate. They were able to slow tumor growth, but did not cause regressions or cures. The CAR TILs underwent rapid loss of functional activity that limited their therapeutic efficacy. This hypofunction was reversible when the T cells were isolated away from the tumor. The cause of the hypofunction seemed to be multifactorial and was associated with upregulation of intrinsic T-cell inhibitory enzymes (diacylglycerol kinase and SHP-1) and the expression of surface inhibitory receptors (PD1, LAG3, TIM3, and 2B4). Advanced-generation human CAR T cells are reversibly inactivated within the solid tumor microenvironment of some tumors by multiple mechanisms. The model described here will be an important tool for testing T cell-based strategies or systemic approaches to overcome this tumor-induced inhibition. Our results suggest that PD1 pathway antagonism may augment human CAR T-cell function. ©2014 American Association for Cancer Research.

  13. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.

    PubMed

    Li, Bo; Severson, Eric; Pignon, Jean-Christophe; Zhao, Haoquan; Li, Taiwen; Novak, Jesse; Jiang, Peng; Shen, Hui; Aster, Jon C; Rodig, Scott; Signoretti, Sabina; Liu, Jun S; Liu, X Shirley

    2016-08-22

    Understanding the interactions between tumor and the host immune system is critical to finding prognostic biomarkers, reducing drug resistance, and developing new therapies. Novel computational methods are needed to estimate tumor-infiltrating immune cells and understand tumor-immune interactions in cancers. We analyze tumor-infiltrating immune cells in over 10,000 RNA-seq samples across 23 cancer types from The Cancer Genome Atlas (TCGA). Our computationally inferred immune infiltrates associate much more strongly with patient clinical features, viral infection status, and cancer genetic alterations than other computational approaches. Analysis of cancer/testis antigen expression and CD8 T-cell abundance suggests that MAGEA3 is a potential immune target in melanoma, but not in non-small cell lung cancer, and implicates SPAG5 as an alternative cancer vaccine target in multiple cancers. We find that melanomas expressing high levels of CTLA4 separate into two distinct groups with respect to CD8 T-cell infiltration, which might influence clinical responses to anti-CTLA4 agents. We observe similar dichotomy of TIM3 expression with respect to CD8 T cells in kidney cancer and validate it experimentally. The abundance of immune infiltration, together with our downstream analyses and findings, are accessible through TIMER, a public resource at http://cistrome.org/TIMER . We develop a computational approach to study tumor-infiltrating immune cells and their interactions with cancer cells. Our resource of immune-infiltrate levels, clinical associations, as well as predicted therapeutic markers may inform effective cancer vaccine and checkpoint blockade therapies.

  14. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation.

    PubMed

    Shah, Nishel Mohan; Herasimtschuk, Anna A; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R

    2017-01-01

    During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches.

  15. Graves’ Disease Is Associated with a Defective Expression of the Immune Regulatory Molecule Galectin-9 in Antigen-Presenting Dendritic Cells

    PubMed Central

    de la Fuente, Hortensia; Rodríguez-Muñoz, Ana; Ramos-Levi, Ana; Sampedro-Nuñez, Miguel; Sánchez-Madrid, Francisco; González-Amaro, Roberto; Marazuela, Mónica

    2015-01-01

    Introduction Patients with autoimmune thyroid disease (AITD) show defects in their immune-regulatory mechanisms. Herein we assessed the expression and function of galectin-1 and galectin-9 (Gal-1, Gal-9) in dendritic cells (DCs) from patients with AITD. Materials and Methods Peripheral blood samples from 25 patients with Graves’ disease (GD), 11 Hashimoto’s thyroiditis (HT), and 24 healthy subjects were studied. Thyroid tissue samples from 44 patients with AITD and 22 patients with goiter were also analyzed. Expression and function of Gal-1 and Gal-9 was assessed by quantitative RT-PCR, immunofluorescence and flow cytometry. Results A diminished expression of Gal-9, but not of Gal-1, by peripheral blood DCs was observed in GD patients, mainly in those with Graves´ ophthalmopathy, and a significant negative association between disease severity and Gal-9 expression was detected. In addition, the mRNA levels of Gal-9 and its ligand TIM-3 were increased in thyroid tissue from AITD patients and its expression was associated with the levels of Th1/Th12/Th17 cytokines. Immunofluorescence studies proved that intrathyroidal Gal-9 expression was confined to DCs and macrophages. Finally, in vitro functional assays showed that exogenous Gal-9 had a suppressive effect on the release of Th1/Th2/Th17 cytokines by DC/lymphocyte autologous co-cultures from both AITD patients and healthy controls. Conclusions The altered pattern of expression of Gal-9 in peripheral blood DCs from GD patients, its correlation with disease severity as well as its ability to suppress cytokine release suggest that Gal-9 could be involved in the pathogenesis of AITD. PMID:25880730

  16. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40.

    PubMed

    Messenheimer, David J; Jensen, Shawn M; Afentoulis, Michael E; Wegmann, Keith W; Feng, Zipei; Friedman, David J; Gough, Michael J; Urba, Walter J; Fox, Bernard A

    2017-08-28

    Purpose: Antibodies specific for inhibitory checkpoints PD-1 and CTLA-4 have shown impressive results against solid tumors. This has fueled interest in novel immunotherapy combinations to affect patients who remain refractory to checkpoint blockade monotherapy. However, how to optimally combine checkpoint blockade with agents targeting T-cell costimulatory receptors, such as OX40, remains a critical question.Experimental Design: We utilized an anti-PD-1-refractory, orthotopically transplanted MMTV-PyMT mammary cancer model to investigate the antitumor effect of an agonist anti-OX40 antibody combined with anti-PD-1. As PD-1 naturally aids in immune contraction after T-cell activation, we treated mice with concurrent combination treatment versus sequentially administering anti-OX40 followed by anti-PD-1.Results: The concurrent addition of anti-PD-1 significantly attenuated the therapeutic effect of anti-OX40 alone. Combination-treated mice had considerable increases in type I and type II serum cytokines and significantly augmented expression of inhibitory receptors or exhaustion markers CTLA-4 and TIM-3 on T cells. Combination treatment increased intratumoral CD4(+) T-cell proliferation at day 13, but at day 19, both CD4(+) and CD8(+) T-cell proliferation was significantly reduced compared with untreated mice. In two tumor models, sequential combination of anti-OX40 followed by anti-PD-1 (but not the reverse order) resulted in significant increases in therapeutic efficacy. Against MMTV-PyMT tumors, sequential combination was dependent on both CD4(+) and CD8(+) T cells and completely regressed tumors in approximately 30% of treated animals.Conclusions: These results highlight the importance of timing for optimized therapeutic effect with combination immunotherapies and suggest the testing of sequencing in combination immunotherapy clinical trials. Clin Cancer Res; 1-13. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART

    PubMed Central

    Fromentin, Rémi; Bakeman, Wendy; Lawani, Mariam B.; Khoury, Gabriela; Hartogensis, Wendy; DaFonseca, Sandrina; Killian, Marisela; Epling, Lorrie; Hoh, Rebecca; Sinclair, Elizabeth; Hecht, Frederick M.; Bacchetti, Peter; Deeks, Steven G.; Lewin, Sharon R.; Sékaly, Rafick-Pierre; Chomont, Nicolas

    2016-01-01

    HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals. PMID:27415008

  18. Multiparametric bioinformatics distinguish the CD4/CD8 ratio as a suitable laboratory predictor of combined T cell pathogenesis in HIV infection.

    PubMed

    Buggert, Marcus; Frederiksen, Juliet; Noyan, Kajsa; Svärd, Jenny; Barqasho, Babilonia; Sönnerborg, Anders; Lund, Ole; Nowak, Piotr; Karlsson, Annika C

    2014-03-01

    HIV disease progression is characterized by numerous pathological changes of the cellular immune system. Still, the CD4 cell count and viral load represent the laboratory parameters that are most commonly used in the clinic to determine the disease progression. In this study, we conducted an interdisciplinary investigation to determine which laboratory parameters (viral load, CD4 count, CD8 count, CD4 %, CD8 %, CD4/CD8) are most strongly associated with pathological changes of the immune system. Multiparametric flow cytometry was used to assess markers of CD4(+) and CD8(+) T cell activation (CD38, HLA-DR), exhaustion (PD-1, Tim-3), senescence (CD28, CD57), and memory differentiation (CD45RO, CD27) in a cohort of 47 untreated HIV-infected individuals. Using bioinformatical methods, we identified 139 unique populations, representing the "combined T cell pathogenesis," which significantly differed between the HIV-infected individuals and healthy control subjects. CD38, HLA-DR, and PD-1 were particularly expressed within these unique T cell populations. The CD4/CD8 ratio was correlated with more pathological T cell populations (n = 10) and had a significantly higher average correlation coefficient than any other laboratory parameters. We also reduced the dimensionalities of the 139-unique populations by Z-transformations and principal component analysis, which still identified the CD4/CD8 ratio as the preeminent surrogate of combined T cell pathogenesis. Importantly, the CD4/CD8 ratio at baseline was shown to be significantly associated with CD4 recovery 2 y after therapy initiation. These results indicate that the CD4/CD8 ratio would be a suitable laboratory predictor in future clinical and therapeutic settings to monitor pathological T cell events in HIV infection.

  19. Protein kinase C theta is required for efficient induction of IL-10-secreting T cells

    PubMed Central

    Burton, Bronwen R.

    2017-01-01

    Secretion of interleukin-10 (IL-10) by CD4+ T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4+ T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10+ T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10+ T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10+ T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells in vitro and in vivo. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance. PMID:28158245

  20. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation.

    PubMed

    Bengsch, Bertram; Martin, Bianca; Thimme, Robert

    2014-12-01

    The upregulation of several inhibitory signalling pathways by exhausted HBV-specific CD8+ T cells in chronic infection is thought to contribute to viral persistence. Blockade of inhibitory receptors to reinvigorate exhausted T cell function is a promising novel therapeutic approach. However, little information is available regarding the relative contribution of individual inhibitory pathways to HBV-specific CD8+ T cell failure and the impact of inhibitory receptor blockade on restoration of T cell function in chronic HBV. 98 HLA-A2+ chronically infected patients were analysed ex vivo for HBV-specific CD8+ T cell responses, the expression of multiple inhibitory receptors and T cell differentiation markers. The effects of inhibitory receptor blockade targeting PD-1, 2B4, Tim-3, CTLA-4, and BTLA were assessed in vitro. In our cohort, ex vivo HBV-specific CD8+ T cell responses were identified preferentially in HBeAg patients with low ALT and low viral load (inactive carriers). We observed a clear hierarchy of inhibitory receptor expression dominated by PD-1. The response to inhibitory receptor blockade was heterogeneous. Compared to the blockade of other inhibitory receptors, blockade of the PD-1 pathway resulted in the strongest increase in function. Of note, a positive effect of PD-1 blockade was linked to intermediate T cell differentiation. Despite the expression of multiple inhibitory receptors by HBV-specific CD8+ T cells, expression and response to blockade was dominated by PD-1. However, PD-1 expression did not predict response to blockade. Rather, response to blockade was associated with intermediate T cell differentiation. These findings have important implications for our understanding of inhibitory receptor blockade as a novel therapeutic strategy. Copyright © 2014. Published by Elsevier B.V.

  1. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells

    PubMed Central

    Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I.; Kwilas, Anna R.; Donahue, Renee N.; Lepone, Lauren M.; Grenga, Italia; Kim, Young-Seung; Brechbiel, Martin W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Hodge, James W.; Newton, Robert

    2016-01-01

    Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines. PMID:27192116

  2. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients

    PubMed Central

    Chauvin, Joe-Marc; Pagliano, Ornella; Fourcade, Julien; Sun, Zhaojun; Wang, Hong; Sander, Cindy; Kirkwood, John M.; Chen, Tseng-hui Timothy; Maurer, Mark; Korman, Alan J.; Zarour, Hassane M.

    2015-01-01

    T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen–specific (TA-specific) CD8+ T cells and CD8+ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8+ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8+ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1+TIM-3+ TA-specific CD8+ T cells. PD-1+TIGIT+, PD-1–TIGIT+, and PD-1+TIGIT– CD8+ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand–expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8+ T cells and CD8+ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8+ T cells and CD8+ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8+ T cell responses in patients with advanced melanoma. PMID:25866972

  3. MiR-15a/16 deficiency enhances anti-tumor immunity of glioma-infiltrating CD8+ T cells through targeting mTOR.

    PubMed

    Yang, Jiao; Liu, Ronghua; Deng, Yuting; Qian, Jiawen; Lu, Zhou; Wang, Yuedi; Zhang, Dan; Luo, Feifei; Chu, Yiwei

    2017-11-15

    MiR-15a/16, a miRNA cluster located at chromosome 13q14, has been reported to act as an immune regulator in inflammatory disorders besides its aberrant expression in cancers. However, little is known about its regulation in tumor-infiltrating immune cells. In our study, using an orthotropic GL261 mouse glioma model, we found that miR-15a/16 deficiency in host inhibited tumor growth and prolonged mice survival, which might be associated with the accumulation of tumor-infiltrating CD8+ T cells. More importantly, tumor-infiltrating CD8+ T cells without miR-15a/16 showed lower expression of PD-1, Tim-3 and LAG-3, and stronger secretion of IFN-γ, IL-2 and TNF-α than WT tumor-infiltrating CD8+ T cells. Also, our in vitro experiments further confirmed that miR-15a/16(-/-) CD8+ T displayed higher active phenotypes, more cytokines secretion and faster expansion, compared to WT CD8+ T cells. Mechanismly, mTOR was identified as a target gene of miR-15a/16 to negatively regulate the activation of CD8+ T cells. Taken together, these data suggest that miR-15a/16 deficiency resists the exhaustion and maintains the activation of glioma-infiltrating CD8+ T cells to alleviate glioma progression via targeting mTOR. Our findings provide evidence for the potential immunotherapy through targeting miR-15a/16 in tumor-infiltrating immune cells. © 2017 UICC.

  4. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1.

    PubMed

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M; Nyström, Sofia; Hinkula, Jorma; Larsson, Marie

    2015-08-15

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.

  5. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    PubMed Central

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  6. Identification of a novel PD-L1 positive solid tumor transplantable in HLA-A*0201/DRB1*0101 transgenic mice

    PubMed Central

    Rangan, Laurie; Galaine, Jeanne; Boidot, Romain; Hamieh, Mohamad; Dosset, Magalie; Francoual, Julie; Beziaud, Laurent; Pallandre, Jean-René; Joseph, Elodie Lauret Marie; Asgarova, Afag; Borg, Christophe; Al Saati, Talal; Godet, Yann; Latouche, Jean Baptiste; Valmary-Degano, Séverine; Adotévi, Olivier

    2017-01-01

    HLA-A*0201/DRB1*0101 transgenic mice (A2/DR1 mice) have been developed to study the immunogenicity of tumor antigen-derived T cell epitopes. To extend the use and application of this mouse model in the field of antitumor immunotherapy, we described a tumor cell line generated from a naturally occurring tumor in A2/DR1 mouse named SARC-L1. Histological and genes signature analysis supported the sarcoma origin of this cell line. While SARC-L1 tumor cells lack HLA-DRB1*0101 expression, a very low expression of HLA-A*0201 molecules was found on these cells. Furthermore they also weakly but constitutively expressed the programmed death-ligand 1 (PD-L1). Interestingly both HLA-A*0201 and PD-L1 expressions can be increased on SARC-L1 after IFN-γ exposure in vitro. We also obtained two genetically modified cell lines highly expressing either HLA-A*0201 or both HLA-A*0201/ HLA-DRB1*0101 molecules referred as SARC-A2 and SARC-A2DR1 respectively. All the SARC-L1-derived cell lines induced aggressive subcutaneous tumors in A2DR1 mice in vivo. The analysis of SARC-L1 tumor microenvironment revealed a strong infiltration by T cells expressing inhibitory receptors such as PD-1 and TIM-3. Finally, we found that SARC-L1 is sensitive to several drugs commonly used to treat sarcoma and also susceptible to anti-PD-L1 monoclonal antibody therapy in vivo. Collectively, we described a novel syngeneic tumor model A2/DR1 mice that could be used as preclinical tool for the evaluation of antitumor immunotherapies. PMID:28430664

  7. Graves' disease is associated with a defective expression of the immune regulatory molecule galectin-9 in antigen-presenting dendritic cells.

    PubMed

    Leskela, Susanna; Serrano, Ana; de la Fuente, Hortensia; Rodríguez-Muñoz, Ana; Ramos-Levi, Ana; Sampedro-Nuñez, Miguel; Sánchez-Madrid, Francisco; González-Amaro, Roberto; Marazuela, Mónica

    2015-01-01

    Patients with autoimmune thyroid disease (AITD) show defects in their immune-regulatory mechanisms. Herein we assessed the expression and function of galectin-1 and galectin-9 (Gal-1, Gal-9) in dendritic cells (DCs) from patients with AITD. Peripheral blood samples from 25 patients with Graves' disease (GD), 11 Hashimoto's thyroiditis (HT), and 24 healthy subjects were studied. Thyroid tissue samples from 44 patients with AITD and 22 patients with goiter were also analyzed. Expression and function of Gal-1 and Gal-9 was assessed by quantitative RT-PCR, immunofluorescence and flow cytometry. A diminished expression of Gal-9, but not of Gal-1, by peripheral blood DCs was observed in GD patients, mainly in those with Graves´ ophthalmopathy, and a significant negative association between disease severity and Gal-9 expression was detected. In addition, the mRNA levels of Gal-9 and its ligand TIM-3 were increased in thyroid tissue from AITD patients and its expression was associated with the levels of Th1/Th12/Th17 cytokines. Immunofluorescence studies proved that intrathyroidal Gal-9 expression was confined to DCs and macrophages. Finally, in vitro functional assays showed that exogenous Gal-9 had a suppressive effect on the release of Th1/Th2/Th17 cytokines by DC/lymphocyte autologous co-cultures from both AITD patients and healthy controls. The altered pattern of expression of Gal-9 in peripheral blood DCs from GD patients, its correlation with disease severity as well as its ability to suppress cytokine release suggest that Gal-9 could be involved in the pathogenesis of AITD.

  8. Alterations of specific biomarkers of metabolic pathways in vascular tree from patients with Type 2 diabetes

    PubMed Central

    2012-01-01

    The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis. PMID:22828168

  9. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.

    PubMed

    Gros, Alena; Robbins, Paul F; Yao, Xin; Li, Yong F; Turcotte, Simon; Tran, Eric; Wunderlich, John R; Mixon, Arnold; Farid, Shawn; Dudley, Mark E; Hanada, Ken-Ichi; Almeida, Jorge R; Darko, Sam; Douek, Daniel C; Yang, James C; Rosenberg, Steven A

    2014-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.

  10. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients.

    PubMed

    Chauvin, Joe-Marc; Pagliano, Ornella; Fourcade, Julien; Sun, Zhaojun; Wang, Hong; Sander, Cindy; Kirkwood, John M; Chen, Tseng-hui Timothy; Maurer, Mark; Korman, Alan J; Zarour, Hassane M

    2015-05-01

    T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen-specific (TA-specific) CD8⁺ T cells and CD8⁺ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8⁺ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8⁺ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1⁺TIM-3⁺ TA-specific CD8⁺ T cells. PD-1⁺TIGIT⁺, PD-1⁻TIGIT⁺, and PD-1⁺TIGIT⁻ CD8⁺ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand-expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8⁺ T cells and CD8⁺ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8⁺ T cells and CD8⁺ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8⁺ T cell responses in patients with advanced melanoma.

  11. The adaptive evolution divergence of triosephosphate isomerases between parasitic and free-living flatworms and the discovery of a potential universal target against flatworm parasites.

    PubMed

    Chen, Bing; Wen, Jian-Fan

    2011-08-01

    Triosephosphate isomerase (TIM) is an important drug target or vaccine candidate for pathogenetic organisms such as schistosomes. Parasitic and free-living flatworms shared their last common ancestor but diverged from each other for adapting to parasitic and free-living lives afterwards, respectively. Therefore, adaptive evolution divergence must have occurred between them. Here, for the first time, TIMs were identified from three free-living planarian flatworms, namely Dugesia japonica, Dugesia ryukyuensis, and Schmidtea mediterranea. When these were compared with parasitic flatworms and other organisms, the following results were obtained: (1) planarian TIM genes each contain only one intron, while parasitic flatworm genes each contain other four introns, which are usually present in common metazoans, suggesting planarian-specific intron loss must have occurred; (2) planarian TIM protein sequences are more similar to those of vertebrates rather than to their parasitic relatives or other invertebrates. This implies that relatively rapid evolution occurred in parasitic flatworm TIMs; (3) All the investigated parasitic flatworm TIMs contain a unique tripeptide insert (SXD/E), which may imply its insertion importance to the adaptation of parasitic life. Moreover, our homology modeling results showed the insert region was largely surface-exposed and predicted to be of a B cell epitope location. Finally, the insert is located within one of the three regions previously suggested to be promising immunogenic epitopes in Schistosoma mansoni TIM. Therefore, this unique insert might be significant to developing new effective vaccines or specific drugs against all parasitic flatworm diseases such as schistosomiasis and taeniosis/cysticercosis.

  12. Biology Labs That Work: The Best of How-To-Do-Its. Volume II.

    ERIC Educational Resources Information Center

    Black, Suzanne, Ed.; Moore, Randy, Ed.; Haugen, Heidi, Ed.

    This selected collection of How-To-Do-It articles published in the American Biology Teacher during the past six years presents experiments that can be conducted safely under properly trained and responsible teacher supervision. Contents include: (1) "General Biology and the Nature of Science"; (2) "Cells and Molecules"; (3) "Microbes and Fungi";…

  13. Biology Labs That Work: The Best of How-To-Do-Its. Volume II.

    ERIC Educational Resources Information Center

    Black, Suzanne, Ed.; Moore, Randy, Ed.; Haugen, Heidi, Ed.

    This selected collection of How-To-Do-It articles published in the American Biology Teacher during the past six years presents experiments that can be conducted safely under properly trained and responsible teacher supervision. Contents include: (1) "General Biology and the Nature of Science"; (2) "Cells and Molecules"; (3) "Microbes and Fungi";…

  14. Theoretical and experimental investigations on molecular structure of 7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Rajendran; Shankar, Ramasamy; Kaminsky, Werner; Kalaiselvi, Sivalingam; Padma, Viswanadha Vijaya; Rajendra Prasad, Karnam Jayarampillai

    2016-04-01

    7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one (3) is synthesized from 2-amino-5-chlorobenzophenone (1) and 1,2-cyclohexanedione (2) in the presence of catalyst InCl3. FT-IR, FT-Raman and FT-NMR spectra of molecule 3 have been recorded and the structure was confirmed by single crystal X-ray diffraction. CDCl3 and DMSO-d6 FT-NMR spectra and 1H and 13C NMR chemical shifts have been measured in molecule 3 and calculated at the B3LYP/6-311G (d,p) and MO6-2x/6-311G (d,p) levels of theory. Similarly calculated vibrational frequencies were found in good agreement with experimental findings. The optimized geometry of molecule 3 was compared with experimental XRD values. DFT calculations of the molecular electrostatic potential (MEP) and HOMO - LUMO frontier orbitals identified chemically active sites of molecule 3 responsible for its bioactivity. The title compound, 3 exhibits higher cytotoxicity in Human breast cancer cells (MCF-7) compared to human lung adenocarcinoma cells (A549).

  15. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  16. Classification of Scaffold-Hopping Approaches

    DTIC Science & Technology

    2011-11-01

    structure of the molecule [3]. Although the concept of scaffold hopping is relatively young [8,9], the strategy has been applied since the beginning of drug...design, computational ADME-TOX and database systems to capture small molecule , protein and bioactivity data. DR WALLQVIST Dr Wallqvist is the Deputy...for predicting changes in binding stabilities for small drug-like molecules bound to proteins; and biomolecular network modeling and simulation

  17. Synthesis of a Precursor to Sacubitril Using Enabling Technologies.

    PubMed

    Lau, Shing-Hing; Bourne, Samuel L; Martin, Benjamin; Schenkel, Berthold; Penn, Gerhard; Ley, Steven V

    2015-11-06

    An efficient preparation of a precursor to the neprilysin inhibitor sacubitril is described. The convergent synthesis features a diastereoselective Reformatsky-type carbethoxyallylation and a rhodium-catalyzed stereoselective hydrogenation for installation of the two key stereocenters. Moreover, by integrating machine-assisted methods with batch processes, this procedure allows a safe and rapid production of the key intermediates which are promptly transformed to the target molecule (3·HCl) over 7 steps in 54% overall yield.

  18. Blue-green variable light-emitting diode based on organic-molecule-doped polymer

    NASA Astrophysics Data System (ADS)

    Xu, Chunxiang; Cui, Yiping; Shen, Yingzhong; Gu, Hongwei; Pan, Yi; Li, Yinkui

    1999-09-01

    Monolayer organic light-emitting diodes based on the organic molecule [(3,4-dimethoxybenzyldehycle-2'-hydroxy naphthylimine)dimethyl gallium]-doped [poly(2-mehtyoxy-5-ethyloxy)-4-di-(2-methyoxy-5'-octaoxy)phenylene vinylene] have been fabricated by a spin-coating method. Color variation from green to blue has been observed. The results have been attributed to the variation of the recombination zone and the charge transfer between the materials.

  19. A Hybrid Computational-Experimental Framework for Microbial Chemical Synthesis via Enzyme Channeling

    DTIC Science & Technology

    2007-12-05

    its natural ligand, the freely diffusible quorum signaling molecule 3-oxooctanyl-l-homoserine lactone (OHHL), the TraR protein is a monomer that is...conformational switch for sensing molecules other than OHHL. We expect that a bevy of small molecule switches can created using the GFP-TraR backbone...AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT

  20. Programmed Pathogen Sense and Destroy Circuits

    DTIC Science & Technology

    2009-02-18

    evolve the Pseudomonas aeruginosa quorum sensing transcription factor LasR to respond to the signal molecule 3OC12HSL with higher sensitivity and...sentinel circuits in recombinant E. coli cells with components of canonical quorum sensing (QS) signaling pathways. These pathways are normally used by...Pathogen Detection Expanded Accomplishments a) Accomplishments In the canonical gram-negative Quorum Sensing system, an I-protein synthase produces

  1. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    PubMed Central

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  2. Direct Simulation Monte Carlo for Atmospheric Entry. 1. Theoretical Basis and Physical Models

    DTIC Science & Technology

    2009-09-01

    rotational degrees of freedom (=2 for a diatomic molecule; =3 for a polyatomic molecule), k is Boltzmann’s constant, and T is the temperature. When...in [42] and [43]. 3.5 Charged Species Ions and electrons are formed in sufficiently energetic hypersonic flows first through associative ionization...would be required otherwise. However, electrostatic attraction means that electrons and ions interact with one another such that electron diffusion is

  3. Magnetic Trapping of Atomic Nitrogen (14N) and Cotrapping of NH (X3sigma)

    DTIC Science & Technology

    2008-11-12

    model using cold molecules 3. Recently, several interacting systems have been studied: a Bose - Einstein condensate with dipolar inter- actions 4...coefficient with 3He of kin1.8 10−14 cm3 s−1 due to the electronic interaction anisotropy induced by spin - orbit coupling 44. The small inelastic rate... spin is weakly coupled to the internuclear axis. NH, a molecule studied by many groups 26–28, is of this type. Second, the atomic partner should have

  4. HCV coinfection contributes to HIV pathogenesis by increasing immune exhaustion in CD8 T-cells

    PubMed Central

    Rallón, Norma; García, Marcial; García-Samaniego, Javier; Rodríguez, Noelia; Cabello, Alfonso; Restrepo, Clara; Álvarez, Beatriz; García, Rosa; Górgolas, Miguel; Benito, José M.

    2017-01-01

    Background There are several contributors to HIV-pathogenesis or insufficient control of the infection. However, whether HIV/HCV-coinfected population exhibits worst evolution of HIV-pathogenesis remains unclear. Recently, some markers of immune exhaustion have been proposed as preferentially upregulated on T-cells during HIV-infection. Herein, we have analyzed T-cell exhaustion together with several other contributors to HIV-pathogenesis that could be affected by HCV-coinfection. Patients and methods Ninety-six patients with chronic HIV-infection (60 HIV-monoinfected and 36 HIV/HCV-coinfected), and 20 healthy controls were included in the study. All patients were untreated for both infections. Several CD4 and CD8 T-cell subsets involved in HIV-pathogenesis were investigated. Non-parametric tests were used to establish differences between groups and associations between variables. Multivariate linear regression was used to ascertain the variables independently associated with CD4 counts. Results HIV-patients presented significant differences compared to healthy controls in most of the parameters analyzed. Both HIV and HIV/HCV groups were comparable in terms of age, CD4 counts and HIV-viremia. Compared to HIV group, HIV/HCV group presented significantly higher levels of exhaustion (Tim3+PD1- subset) in total CD8+ T-cells (p = 0.003), and higher levels of exhaustion in CD8+HLADR+CD38+ (p = 0.04), CD8+HLADR-CD38+ (p = 0.009) and CD8+HLADR-CD38- (p = 0.006) subsets of CD8+ T-cells. Interestingly these differences were maintained after adjusting by CD4 counts and HIV-viremia. Conclusions We show a significant impact of HCV-coinfection on CD8 T-cells exhaustion, an important parameter associated with CD8 T-cell dysfunction in the setting of chronic HIV-infection. The relevance of this phenomenon on immunological and/or clinical HIV progression prompts HCV treatment to improve management of coinfected patients. PMID:28323897

  5. Overexpression of herpes simplex virus glycoprotein K (gK) alters expression of HSV receptors in ocularly-infected mice.

    PubMed

    Allen, Sariah J; Mott, Kevin R; Ghiasi, Homayon

    2014-04-15

    We have shown previously that HSV-1 glycoprotein K (gK) exacerbates corneal scarring (CS) in mice and rabbits. Here, we investigated the relative impact of gK overexpression on host responses during primary corneal infection and latency in trigeminal ganglia (TG) of infected mice. Mice were infected ocularly with HSV-gK(3) (expressing two extra copies of gK replacing latency associated transcript [LAT]), HSV-gK(3) revertant (HSV-gK(3)R), or wild-type HSV-1 strain McKrae. Individual corneas on day 5 post infection (PI) and TG on day 28 PI were isolated and used for detection of gB DNA in the TG, HSV-1 receptors in the cornea and TG, and inflammatory infiltrates in TG. During primary HSV-1 infection, gK overexpression resulted in altered expression of herpesvirus entry mediator (HVEM), 3-O-sulfated heparin sulfate (3-OS-HS), paired immunoglobulin-like type 2 receptor-α (PILR-α), nectin-1, and nectin-2 in cornea of BALB/c, but not C57BL/6 mice. However, gK overexpression did have an effect on 3-OS-HS, PILR-α, nectin-1, and nectin-2 expression (but not HVEM expression) in TG of C57BL/6 mice during latency. These differences did not affect the level of latency, but instead were correlated with the presence of CS. The presence of LAT increased HVEM expression and this effect was enhanced further by the presence of CS in latently-infected mice. Finally, the presence of LAT, but not overexpression of gK, affected CD4, CD8, TNF-α, Tim-3, PD-1, IL-21, IL-2, and IFN-γ expression in TG. We demonstrate a novel link between gK exacerbation of CS and HSV-1 receptors, suggesting a gK-induced molecular route for the pathogenesis as well as selective advantage of these entry routes for the pathogen during latency-reactivation cycle.

  6. Overexpression of Herpes Simplex Virus Glycoprotein K (gK) Alters Expression of HSV Receptors in Ocularly-Infected Mice

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Purpose. We have shown previously that HSV-1 glycoprotein K (gK) exacerbates corneal scarring (CS) in mice and rabbits. Here, we investigated the relative impact of gK overexpression on host responses during primary corneal infection and latency in trigeminal ganglia (TG) of infected mice. Methods. Mice were infected ocularly with HSV-gK3 (expressing two extra copies of gK replacing latency associated transcript [LAT]), HSV-gK3 revertant (HSV-gK3R), or wild-type HSV-1 strain McKrae. Individual corneas on day 5 post infection (PI) and TG on day 28 PI were isolated and used for detection of gB DNA in the TG, HSV-1 receptors in the cornea and TG, and inflammatory infiltrates in TG. Results. During primary HSV-1 infection, gK overexpression resulted in altered expression of herpesvirus entry mediator (HVEM), 3-O-sulfated heparin sulfate (3-OS-HS), paired immunoglobulin-like type 2 receptor-α (PILR-α), nectin-1, and nectin-2 in cornea of BALB/c, but not C57BL/6 mice. However, gK overexpression did have an effect on 3-OS-HS, PILR-α, nectin-1, and nectin-2 expression (but not HVEM expression) in TG of C57BL/6 mice during latency. These differences did not affect the level of latency, but instead were correlated with the presence of CS. The presence of LAT increased HVEM expression and this effect was enhanced further by the presence of CS in latently-infected mice. Finally, the presence of LAT, but not overexpression of gK, affected CD4, CD8, TNF-α, Tim-3, PD-1, IL-21, IL-2, and IFN-γ expression in TG. Conclusions. We demonstrate a novel link between gK exacerbation of CS and HSV-1 receptors, suggesting a gK-induced molecular route for the pathogenesis as well as selective advantage of these entry routes for the pathogen during latency-reactivation cycle. PMID:24667863

  7. CD127 Expression, Exhaustion Status and Antigen Specific Proliferation Predict Sustained Virologic Response to IFN in HCV/HIV Co-Infected Individuals

    PubMed Central

    Kared, Hassen; Saeed, Sahar; Klein, Marina B.; Shoukry, Naglaa H.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in the HIV co-infected population. Interferon-alpha (IFN-α) remains a major component of anti-HCV therapy despite its deleterious effects on the immune system. Furthermore, IFN-α was recently shown to diminish the size of the latent HIV reservoir. The objectives of this study were to monitor the impact of IFN-α on T cell phenotype and proliferation of HIV and HCV-specific T cells during IFN therapy, and to identify immune markers that can predict the response to IFN in HICV/HIV co-infected patients. We performed longitudinal analyses of T cell numbers, phenotype and function in co-infected patients undergoing IFN-α therapy with different outcomes including IFN-α non-responders (NR) (n = 9) and patients who achieved sustained virologic response (SVR) (n = 19). We examined the expression of activation (CD38, HLA-DR), functional (CD127) and exhaustion markers (PD1, Tim-3, CD160 and CD244) on total CD4 and CD8 T cells before, during and after therapy. In addition, we examined the HIV- and HCV-specific proliferative responses against HIV-p24 and HCV-NS3 proteins. Frequencies of CD127+ CD4 T cells were higher in SVR than in NR patients at baseline. An increase in CD127 expression on CD8 T cells was observed after IFN-α therapy in all patients. In addition, CD8 T cells from NR patients expressed a higher exhaustion status at baseline. Finally, SVR patients exhibited higher proliferative response against both HIV and HCV antigens at baseline. Altogether, SVR correlated with higher expression of CD127, lower T cell exhaustion status and better HIV and HCV proliferative responses at baseline. Such factors might be used as non-invasive methods to predict the success of IFN–based therapies in co-infected individuals. PMID:25007250

  8. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    PubMed

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-06

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8(+) T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8(+) T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  9. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits

    PubMed Central

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently

  10. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial.

    PubMed

    Romano, Emanuela; Michielin, Olivier; Voelter, Verena; Laurent, Julien; Bichat, Hélène; Stravodimou, Athina; Romero, Pedro; Speiser, Daniel E; Triebel, Frédéric; Leyvraz, Serge; Harari, Alexandre

    2014-04-12

    Immunotherapy offers a promising novel approach for the treatment of cancer and both adoptive T-cell transfer and immune modulation lead to regression of advanced melanoma. However, the potential synergy between these two strategies remains unclear. We investigated in 12 patients with advanced stage IV melanoma the effect of multiple MART-1 analog peptide vaccinations with (n = 6) or without (n = 6) IMP321 (LAG-3Ig fusion protein) as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs at day (D) 0 (Trial registration No: NCT00324623). All patients were selected on the basis of ex vivo detectable MART-1-specific CD8 T-cell responses and immunized at D0, 8, 15, 22, 28, 52, and 74 post-reinfusion. After immunization, a significant expansion of MART-1-specific CD8 T cells was measured in 83% (n = 5/6) and 17% (n = 1/6) of patients from the IMP321 and control groups, respectively (P < 0.02). Compared to the control group, the mean fold increase of MART-1-specific CD8 T cells in the IMP321 group was respectively >2-, >4- and >6-fold higher at D15, D30 and D60 (P < 0.02). Long-lasting MART-1-specific CD8 T-cell responses were significantly associated with IMP321 (P < 0.02). At the peak of the response, MART-1-specific CD8 T cells contained higher proportions of effector (CCR7⁻ CD45RA⁺/⁻) cells in the IMP321 group (P < 0.02) and showed no sign of exhaustion (i.e. were mostly PD1⁻CD160⁻TIM3⁻LAG3⁻2B4⁺/⁻). Moreover, IMP321 was associated with a significantly reduced expansion of regulatory T cells (P < 0.04); consistently, we observed a negative correlation between the relative expansion of MART-1-specific CD8 T cells and of regulatory T cells. Finally, although there were no confirmed responses as per RECIST criteria, a transient, 30-day partial response was observed in a patient from the IMP321 group. Vaccination with IMP321 as an adjuvant in combination with

  11. Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation than “Exhaustion” of Human CD8 T Cells

    PubMed Central

    Legat, Amandine; Speiser, Daniel E.; Pircher, Hanspeter; Zehn, Dietmar; Fuertes Marraco, Silvia A.

    2013-01-01

    Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed “exhaustion.” Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of “exhaustion.” Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (“chronic”) antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells. PMID:24391639

  12. Second- and third-generation drugs for immuno-oncology treatment-The more the better?

    PubMed

    Dempke, Wolfram C M; Fenchel, Klaus; Uciechowski, Peter; Dale, Stephen P

    2017-03-01

    Recent success in cancer immunotherapy (anti-CTLA-4, anti-PD1/PD-L1) has confirmed the hypothesis that the immune system can control many cancers across various histologies, in some cases producing durable responses in a way not seen with many small-molecule drugs. However, only less than 25% of all patients do respond to immuno-oncology drugs and several resistance mechanisms have been identified (e.g. T-cell exhaustion, overexpression of caspase-8 and β-catenin, PD-1/PD-L1 gene amplification, MHC-I/II mutations). To improve response rates and to overcome resistance, novel second- and third-generation immuno-oncology drugs are currently evaluated in ongoing phase I/II trials (either alone or in combination) including novel inhibitory compounds (e.g. TIM-3, VISTA, LAG-3, IDO, KIR) and newly developed co-stimulatory antibodies (e.g. CD40, GITR, OX40, CD137, ICOS). It is important to note that co-stimulatory agents strikingly differ in their proposed mechanism of action compared with monoclonal antibodies that accomplish immune activation by blocking negative checkpoint molecules such as CTLA-4 or PD-1/PD-1 or others. Indeed, the prospect of combining agonistic with antagonistic agents is enticing and represents a real immunologic opportunity to 'step on the gas' while 'cutting the brakes', although this strategy as a novel cancer therapy has not been universally endorsed so far. Concerns include the prospect of triggering cytokine-release syndromes, autoimmune reactions and hyper immune stimulation leading to activation-induced cell death or tolerance, however, toxicity has not been a major issue in the clinical trials reported so far. Although initial phase I/II clinical trials of agonistic and novel antagonistic drugs have shown highly promising results in the absence of disabling toxicity, both in single-agent studies and in combination with chemotherapy or other immune system targeting drugs; however, numerous questions remain about dose, schedule, route of

  13. Mean Upper-Ocean Circulation of the Southern Hemisphere Oceans Based on Goce Data

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bingham, R. J.; Vianna, M. L.; Phillips, H. E.

    2012-12-01

    One of the main goals of the Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission launched in 2009 is to improve the previous estimates of the global ocean circulation structures determined from Mean Dynamic Topographies (MDTs). Recently published studies suggest that the GOCE-based MDTs and their respective mean geostrophic circulation fields (MGCs) are superior to those obtained from GRACE (Gravity Recovery and Climate Experiment)-only data. These studies focus mostly on the circulation of the North Atlantic and North Pacific oceans with emphasis on the strong western boundary current systems. In contrast, no detailed assessment has yet been made to determine the impact of the GOCE models in the southern hemisphere (SH) upper-ocean circulation especially in the subtropical region. It is generally recognized that the SH circulation is still not well established even at large scales, and the new GOCE and GRACE products can contribute to increase our understanding of the dominant currents in these regions, which may have even greater impact on the global climate than the NH counterparts. In the present work, we compute five global GOCE-derived MDTs with a 0.25 x 0.25 degree spatial grid based on three GOCE geoid models (TIM3, GOCO02S, GOCO3S) and three mean sea surfaces (CLS01, CLS11, DTU10) using the standard spectral approach (MSS minus Geoid). These MDTs do not have the well-known large-amplitude striation-type noise that plagued all of the GRACE-only MDTs with he same resolution, but still present commission errors which are filptered out with Singular Spectrum Analysis methods. Additionally, the MGCs were calculated by use of a Anderssen-Hegland averaging scheme for estimation of derivatives, which is able to filter out the well-known high amplitude noise caused by standard finite-difference methods. Comparisons with previous GRACE-only MGCs show that GOCE permits retrieval of currents with much higher intensities (e.g. the Agulhas

  14. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits.

    PubMed

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A; Chentoufi, Aziz A; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N; Afifi, Rasha E; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2016-04-01

    Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8(+)T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT(-)TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8(+)T cells in LAT(+)TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8(+)T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT(+)versus LAT(-)virus. Compared to CD8(+)T cells from LAT(-)TG, CD8(+)T cells from LAT(+)TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8(+)T cells in latently infected TG, thus allowing for increased viral reactivation. A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8(+)T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) than in a more restricted repertoire of functional HSV-specific CD8(+)T cells in the TG of HLA transgenic rabbits latently infected

  15. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma

    PubMed Central

    Dannenmann, Stefanie Regine; Thielicke, Julia; Stöckli, Martina; Matter, Claudia; von Boehmer, Lotta; Cecconi, Virginia; Hermanns, Thomas; Hefermehl, Lukas; Schraml, Peter; Moch, Holger; Knuth, Alexander; van den Broek, Maries

    2013-01-01

    Although malignant cells can be recognized and controlled by the immune system, in patients with clinically apparent cancer immunosurveillance has failed. To better understand local immunoregulatory processes that impact on cancer progression, we correlated intratumoral immunological profiles with the survival of patients affected by primary clear cell renal cell carcinoma (ccRCC). A retrospective analysis of 54 primary ccRCC samples for 31 different immune response-related transcripts, revealed a negative correlation of CD68 (a marker of tumor-associated macrophages, TAMs) and FOXP3 (a marker of regulatory T cells, Tregs) with survival. The subsequent analysis of 12 TAM-related transcripts revealed an association between the genes coding for CD163, interferon regulatory factor 4 (IRF4) and fibronectin 1 (FN1), all of which have been linked to the M2 TAM phenotype, with reduced survival and increased tumor stage, whereas the opposite was the case for the M1-associated gene coding for inducible nitric oxide synthetase (iNOS). The M2 signature of (CD68+) TAMs was found to correlate with CD163 expression, as determined in prospectively collected fresh ccRCC tissue samples. Upon co-culture with autologous tumor cells, CD11b+ cells isolated from paired blood samples expressed CD163 and other M2-associated proteins, suggesting that the malignant cells promote the accumulation of M2 TAMs. Furthermore, the tumor-associated milieu as well as isolated TAMs induced the skewing of autologous, blood-derived CD4+ T cells toward a more immunosuppressive phenotype, as shown by decreased production of effector cytokines, increased production of interleukin-10 (IL-10) and enhanced expression of the co-inhibitory molecules programmed death 1 (PD-1) and T-cell immunoglobulin mucin 3 (TIM-3). Taken together, our data suggest that ccRCC progressively attracts macrophages and induces their skewing into M2 TAMs, in turn subverting tumor-infiltrating T cells such that immunoregulatory

  16. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma.

    PubMed

    Dannenmann, Stefanie Regine; Thielicke, Julia; Stöckli, Martina; Matter, Claudia; von Boehmer, Lotta; Cecconi, Virginia; Hermanns, Thomas; Hefermehl, Lukas; Schraml, Peter; Moch, Holger; Knuth, Alexander; van den Broek, Maries

    2013-03-01

    Although malignant cells can be recognized and controlled by the immune system, in patients with clinically apparent cancer immunosurveillance has failed. To better understand local immunoregulatory processes that impact on cancer progression, we correlated intratumoral immunological profiles with the survival of patients affected by primary clear cell renal cell carcinoma (ccRCC). A retrospective analysis of 54 primary ccRCC samples for 31 different immune response-related transcripts, revealed a negative correlation of CD68 (a marker of tumor-associated macrophages, TAMs) and FOXP3 (a marker of regulatory T cells, Tregs) with survival. The subsequent analysis of 12 TAM-related transcripts revealed an association between the genes coding for CD163, interferon regulatory factor 4 (IRF4) and fibronectin 1 (FN1), all of which have been linked to the M2 TAM phenotype, with reduced survival and increased tumor stage, whereas the opposite was the case for the M1-associated gene coding for inducible nitric oxide synthetase (iNOS). The M2 signature of (CD68(+)) TAMs was found to correlate with CD163 expression, as determined in prospectively collected fresh ccRCC tissue samples. Upon co-culture with autologous tumor cells, CD11b(+) cells isolated from paired blood samples expressed CD163 and other M2-associated proteins, suggesting that the malignant cells promote the accumulation of M2 TAMs. Furthermore, the tumor-associated milieu as well as isolated TAMs induced the skewing of autologous, blood-derived CD4(+) T cells toward a more immunosuppressive phenotype, as shown by decreased production of effector cytokines, increased production of interleukin-10 (IL-10) and enhanced expression of the co-inhibitory molecules programmed death 1 (PD-1) and T-cell immunoglobulin mucin 3 (TIM-3). Taken together, our data suggest that ccRCC progressively attracts macrophages and induces their skewing into M2 TAMs, in turn subverting tumor-infiltrating T cells such that

  17. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial

    PubMed Central

    2014-01-01

    Background Immunotherapy offers a promising novel approach for the treatment of cancer and both adoptive T-cell transfer and immune modulation lead to regression of advanced melanoma. However, the potential synergy between these two strategies remains unclear. Methods We investigated in 12 patients with advanced stage IV melanoma the effect of multiple MART-1 analog peptide vaccinations with (n = 6) or without (n = 6) IMP321 (LAG-3Ig fusion protein) as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs at day (D) 0 (Trial registration No: NCT00324623). All patients were selected on the basis of ex vivo detectable MART-1-specific CD8 T-cell responses and immunized at D0, 8, 15, 22, 28, 52, and 74 post-reinfusion. Results After immunization, a significant expansion of MART-1-specific CD8 T cells was measured in 83% (n = 5/6) and 17% (n = 1/6) of patients from the IMP321 and control groups, respectively (P < 0.02). Compared to the control group, the mean fold increase of MART-1-specific CD8 T cells in the IMP321 group was respectively >2-, >4- and >6-fold higher at D15, D30 and D60 (P < 0.02). Long-lasting MART-1-specific CD8 T-cell responses were significantly associated with IMP321 (P < 0.02). At the peak of the response, MART-1-specific CD8 T cells contained higher proportions of effector (CCR7− CD45RA+/−) cells in the IMP321 group (P < 0.02) and showed no sign of exhaustion (i.e. were mostly PD1−CD160−TIM3−LAG3−2B4+/−). Moreover, IMP321 was associated with a significantly reduced expansion of regulatory T cells (P < 0.04); consistently, we observed a negative correlation between the relative expansion of MART-1-specific CD8 T cells and of regulatory T cells. Finally, although there were no confirmed responses as per RECIST criteria, a transient, 30-day partial response was observed in a patient from the IMP321 group. Conclusions Vaccination with IMP321 as an

  18. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    PubMed Central

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  19. Synthesis and DNA-binding study of imidazole linked thiazolidinone derivatives.

    PubMed

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    A novel series of imidazole-linked thiazolidinone hybrid molecules were designed and synthesized through a feasible synthetic protocol. The molecules were characterized with Fourier transform infrared (FT-IR), (1) H nuclear magnetic resonance (NMR), (13) C NMR and high-resolution mass spectrometry (HRMS) techniques. In vitro susceptibility tests against Gram-positive (S. aureus and B. subtilis) and Gram-negative bacteria (E. coli and P. aeruginosa) gave highly promising results. The most active molecule (3e) gave a minimal inhibitory concentration (MIC) value of 3.125 μg/mL which is on par with the reference drug streptomycin. Structure-activity relationships revealed activity enhancement by nitro and chloro groups when they occupied meta position of the arylidene ring in 2-((3-(imidazol-1-yl)propyl)amino)-5-benzylidenethiazolidin-4-ones. DNA-binding study of the most potent molecule 3e with salmon milt DNA (sm-DNA) under simulated physiological pH was probed with UV-visible absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that compound 3e has a strong affinity towards DNA and binds at DNA minor groove with a binding constant (Kb ) 0.18 × 10(2)  L mol(-1) . Molecular docking simulations predicted strong affinity of 3e towards DNA with a binding affinity (ΔG) -8.5 kcal/mol. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction. The molecule 3e exhibited specific affinity towards adenine-thiamine base pairs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Life Sciences Issues for a Mission to Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP5 includes short reports on: (1) Cardiovascular Concerns for a Mars Mission: Autonomic and Biomechanical Effects; (2) Reducing the Risk of Space Radiation Induced Bioeffects: Vehicle Design and Protectant Molecules; (3) Musculoskeletal Issues for Long Duration Mission: Muscle Mass Preservation, Renal Stone Risk Factors, Countermeasures, and Contingency Treatment Planning; (4) Psychological Issues and Crew Selection for a Mars Mission: Maximizing the Mix for the Long Haul; and (5) Issues in Crew Health, Medical Selection and Medical Officer (CMO) Training for a Mission to Mars.

  1. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  2. A Ferrocene-Quinoxaline Derivative as a Highly Selective Probe for Colorimetric and Redox Sensing of Toxic Mercury(II) Cations

    PubMed Central

    Zapata, Fabiola; Caballero, Antonio; Molina, Pedro; Tarraga, Alberto

    2010-01-01

    A new chemosensor molecule 3 based on a ferrocene-quinoxaline dyad recognizes mercury (II) cations in acetonitrile solution. Upon recognition, an anodic shift of the ferrocene/ferrocenium oxidation peaks and a progressive red-shift (Δλ = 140 nm) of the low-energy band, are observed in its absorption spectrum. This change in the absorption spectrum is accompanied by a colour change from orange to deep green, which can be used for a “naked-eye” detection of this metal cation. PMID:22163528

  3. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  4. Singlet oxygen detection in water by means of digital holography and digital holographic tomography

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Petrov, N. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2016-04-01

    The paper presents results on singlet oxygen detection in aqueous solutions of a photosensitizer based on the reconstruction of 3D temperature gradients resulting from nonradiative deactivation of excited oxygen molecules. 3D temperature distributions were reconstructed by means of the inverse Abel transformation from a single digital hologram in the case of cylindrically symmetric distribution of the temperature gradient and using holographic tomography algorithm with filtered back projection in the case of nonsymmetrical distribution. Major features of the applied techniques are discussed and results obtained by the two methods are compared.

  5. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  6. Skeletal hybridization and PfRIO-2 kinase modeling for synthesis of α-pyrone analogs as anti-malarial agent.

    PubMed

    Parveen, Afsana; Chakraborty, Arnish; Konreddy, Ananda Kumar; Chakravarty, Harapriya; Sharon, Ashoke; Trivedi, Vishal; Bal, Chandralata

    2013-01-01

    The pharmacophoric hybridization and computational design approach were applied to generate a novel series of α-pyrone analogs as plausible anti-malarial lead candidate. A putative active site in flexible loop close to wing-helix domain of PfRIO2 kinase was explored computationally to understand the molecular basis of ligand binding. All the synthesized molecules (3a-g) exhibited in vitro antimalarial activity. Oxidative stress induced by 3a-d were calculated and found to be significantly higher in case of 3b. Therefore, 3b, which shown most significant result was identified as promising lead for further SAR study to develop potent anti-malarials.

  7. Free Radical-Surface Interactions Using Multiphoton Ionization of Free Radicals

    DTIC Science & Technology

    1989-01-01

    Atoms, Rgf4PI 9 t Free Radl!cals)aj"i Atoms, Cross Section -’ r RE)*I of Free Radicals arid Atonn. 𔄃 43S’RACT (Conti n reverse if necessary Ind identi...Phy’s 71,2682f 19’q molecules,3 whereas the etch probability on a fluorinated ’M. T . Duignan, J. W. Hudgens, and J. R Wyatt, 1. Phys. Chem 86, 4156 (1982...80. (15) Kerr, J. A.; Wright. J. P. J Chem. Soc., Faraday Trans. 1 1915. 81. (17) Adams. T . E.; Morrtson. R J S.; Grant, E R Rev Sci Instrum 1471. 1980

  8. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection.

    PubMed

    Swadling, Leo; Halliday, John; Kelly, Christabel; Brown, Anthony; Capone, Stefania; Ansari, M Azim; Bonsall, David; Richardson, Rachel; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Del Sorbo, Mariarosaria; Von Delft, Annette; Traboni, Cinzia; Hill, Adrian V S; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Klenerman, Paul; Folgori, Antonella; Barnes, Eleanor

    2016-08-02

    An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were

  9. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    PubMed Central

    Swadling, Leo; Halliday, John; Kelly, Christabel; Brown, Anthony; Capone, Stefania; Ansari, M. Azim; Bonsall, David; Richardson, Rachel; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Del Sorbo, Mariarosaria; Von Delft, Annette; Traboni, Cinzia; Hill, Adrian V. S.; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Klenerman, Paul; Folgori, Antonella; Barnes, Eleanor

    2016-01-01

    An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were

  10. Transition-moment directions of selected carbocyanines from emission anisotropy and linear dichroism measurements in uniaxially stretched polymer films

    NASA Astrophysics Data System (ADS)

    Synak, Anna; Bojarski, Piotr

    2005-12-01

    Based on the Kawski-Gryczyński method the values of angle between absorption and fluorescence transition moments of carbocyanines are given. This method is applied to the linear molecules: 3,3'-diethylthiacyanine iodide (DTTHCI), diethyloxacarbocyanine iodide (DOCI), 3,3'-diethyl-9-methylthiacarbocyanine iodide (MDTCI), diethylthiacarbocyanine iodide (DTCI) and 3,3'-diethyloxadicarbocyanine iodide (DODCI). Similarly located transition moments polarized approximately along the long axis of DTTHCI, DOCI, MDTCI, DTCI and DODCI are responsible for absorption and fluorescence ( β ⩽ 10°), when exciting in the long wavelength absorption band. The results are compared with relevant data obtained from linear dichroism measurements, energy migration data in partly ordered films and general Perrin formula.

  11. The physiological role of DC-SIGN: a tale of mice and men.

    PubMed

    Garcia-Vallejo, Juan J; van Kooyk, Yvette

    2013-10-01

    The innate immune receptor DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin) was discovered over a decade ago and was initially identified as a pattern recognition receptor. In addition to its ability to recognize a broad range of pathogen-derived ligands and self-glycoproteins, DC-SIGN also mediates intercellular adhesion, as well as antigen uptake and signaling, which is a functional hallmark of dendritic cells (DCs). Most research on DC-SIGN has relied on in vitro studies. The in vivo function of DC-SIGN is difficult to address, in part because there are eight genetic homologs in mice with no clear DC-SIGN ortholog. Here, we summarize the functions attributed to DC-SIGN based on in vitro data and discuss the limitations of available mouse models to uncover the physiological role of this receptor in vivo.

  12. Synthesis and characterization of novel benzohydrazide as potential antibacterial agents from natural product vanillin and wintergreen oil

    NASA Astrophysics Data System (ADS)

    Setyawati, Amri; Wahyuningsih, Tutik Dwi; Purwono, Bambang

    2017-03-01

    A chalcone-like benzohydrazide derivatives (3) has been synthesis from natural resources vanillin (1a) and wintergreen oil (1b). This compound was synthesis as modified natural resource antibacterial agent. Some modification was done to increase the biological activity. Bromide was introduced to the vanillin structure to increase the activity (2a), whereas Hydrazine monohydrate was reacted with wintergreen oil to make new nucleophile (2b). Furthermore, chalcone like benzohydrazide compound was synthesized by stirring 5-bromovanillin (2a) with salicyl hydrazine (2b) at room temperature for 2-3 hours. The product was analyzed by FTIR, GCMS, 1H- and 13C-NMR to confirm its structure. The result showed that 5-bromovanillin, salicyl hydrazine, and benzohydrazide were successfully synthesized with 98, 78, and 33% of yield respectively. The target molecule 3 achieved with yellowish color with m.p. 106-111 °C, 97% purity.

  13. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry.

    PubMed

    Shimojima, Masayuki; Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz; Kawaoka, Yoshihiro

    2012-02-01

    Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry.

  14. Choosing the appropriate section thickness in the melamine embedding technique.

    PubMed

    Frösch, D; Westphal, C

    1985-02-01

    When biological materials are infiltrated by a water-soluble melamine resin and hardened, they become as hard as glass. This is a prerequisite for extreme thin-sectioning. In this paper, the structural information from unsupported transparent thin sections of beef liver catalase, calf thymus DNA, horse spleen ferritin, insect muscle and rat microtubules is compared to that of normal thin sections. While ferritin molecules (12 nm diameter), microtubule subunits (8 nm long axis) and catalase crystals (8 nm subunit diameter) appear to become mechanically damaged in a 10 nm section (as measured by resectioning), DNA-molecules (3 nm diameter) are satisfactorily preserved during sectioning. Remarkably, for electron phase contrast imaging of unstained cross-sectioned insect muscle, a minimum section thickness of about 30-40 nm is required.

  15. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  16. A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples.

    PubMed

    Wen, Ke Yan; Cameron, Loren; Chappell, James; Jensen, Kirsten; Bell, David J; Kelwick, Richard; Kopniczky, Margarita; Davies, Jane C; Filloux, Alain; Freemont, Paul S

    2017-10-05

    Synthetic biology designed cell-free biosensors are a promising new tool for the detection of clinically relevant biomarkers in infectious diseases. Here, we report that a modular DNA-encoded biosensor in cell-free protein expression systems can be used to measure a bacterial biomarker of Pseudomonas aeruginosa infection from human sputum samples. By optimizing the cell-free system and sample extraction, we demonstrate that the quorum sensing molecule 3-oxo-C12-HSL in sputum samples from cystic fibrosis lungs can be quantitatively measured at nanomolar levels using our cell-free biosensor system, and is comparable to LC-MS measurements of the same samples. This study further illustrates the potential of modular cell-free biosensors as rapid, low-cost detection assays that can inform clinical practice.

  17. Novel Effector Molecules in Type 2 Inflammation: Lessons Drawn from Helminth Infection and Allergy1

    PubMed Central

    Nair, Meera G.; Guild, Katherine J.; Artis, David

    2007-01-01

    Type 2 cytokine-induced inflammatory responses are critical components of the mucosal immune response required for host defense against helminth infection and are also responsible for the pathogenesis of many debilitating diseases including asthma, allergy, and forms of inflammatory bowel disease. Given the global prevalence of helminth infections, with an estimated two billion individuals infected worldwide, and the pandemic levels of asthma and allergy, with 30% of the population affected in North America, it is essential to define the molecules and pathways that underlie the protective or pathologic consequences of type 2 inflammation. In this review, we will focus on four families of proteins that are highly induced in helminth infection and allergy: 1) the arginases; 2) the resistin-like molecules; 3) the chitinase-like mammalian proteins; and 4) the intelectins. Here, we summarize what is known about their regulation and potential function in protecting against infection and/or exacerbating inflammation. PMID:16849442

  18. P. aeruginosa quorum-sensing systems and virulence.

    PubMed

    Smith, Roger S; Iglewski, Barbara H

    2003-02-01

    Quorum sensing is an important mechanism for the regulation of genes in many Gram-negative and Gram-positive bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, the absence of one or more components of the quorum-sensing system results in a significant reduction in virulence. Recent advances in the past year have demonstrated that the quorum-sensing signal molecule 3O-C(12)-HSL is also a potent stimulator of multiple eukaryotic cells and thus may alter the host response during P. aeruginosa infections. Therefore, via the regulation of multiple factors and the production of 3O-C(12)-HSL, quorum-sensing systems have a significant effect on the virulence of the bacteria and also on how the host responds to P. aeruginosa infections.

  19. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  20. In Silico Molecular Docking and In Vitro Antidiabetic Studies of Dihydropyrimido[4,5-a]acridin-2-amines

    PubMed Central

    Bharathi, A.; Roopan, Selvaraj Mohana; Vasavi, C. S.; Munusami, Punnagai; Gayathri, G. A.; Gayathri, M.

    2014-01-01

    An in vitro antidiabetic activity on α-amylase and α–glucosidase activity of novel 10-chloro-4-(2-chlorophenyl)-12-phenyl-5,6-dihydropyrimido[4,5-a]acridin-2-amines (3a–3f) were evaluated. Structures of the synthesized molecules were studied by FT-IR, 1H NMR, 13C NMR, EI-MS, and single crystal X-ray structural analysis data. An in silico molecular docking was performed on synthesized molecules (3a–3f). Overall studies indicate that compound 3e is a promising compound leading to the development of selective inhibition of α-amylase and α-glucosidase. PMID:24991576

  1. Simulation of Initial Stages of the Methanol to Gasoline Process in Acidic Zeolites

    NASA Astrophysics Data System (ADS)

    Stich, I.; Hytha, M.; Gale, J. D.; Terakura, K.; Payne, M. C.

    2000-03-01

    Methanol to gasoline process is one of the most studied applications of zeolites in current commercial production. This complex process involves: (1) initial adsorption of methanol in the zeolite, (2) activation of the adsorbed methanol molecules, (3) formation of the first intermediates (dimethyl ether (DME)), (4) formation of the first -C-C- bonds. Extensive studies of the stages (1)-(3) have been performed using the method of ab initio molecular dynamics (within DFT in the GGA approximation) and the method of thermodynamic integration to compute the free energy profile for formation of the first intermediate. We find that the initial adsorption (physisorption vs. chemisorption) depends on the adsorption conditions such as zeolite framework and methanol loading. Under certain combination of these conditions the chemisorbed species undergo activation. The activated species are very susceptible to nucleophilic attack to form DME. The computed free energy profile shows that this reaction is entropically controlled with significant differences between the total and free energy profiles.

  2. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  3. A new alligator-clip compound for molecular electronics

    NASA Astrophysics Data System (ADS)

    Jacob, Timo; Blanco, Mario; Goddard, William A.

    2004-06-01

    We used the B3LYP flavor of density functional calculations to study new alligator-clip compounds for molecular electronics with platinum electrodes. First, with commonly used S-based linkage molecule 3-methyl-1,2-dithiolane (MDTL) we find that after chemisorption on Pt(1 1 1) the most stable structure is ring-opened with a binding energy of 32.44 kcal/mol. Among several alternative alligator-clip compounds we find that P-based molecules lead to much higher binding energies. For the ring-closed structure of 3-methyl-1,2-diphospholane (MDPL) a binding energy of 47.72 kcal/mol was calculated and even 54.88 kcal/mol for the ring-opened molecule. Thus, MDPL provides a more stable link to the metal surface and might increase the conductance.

  4. Geometries and energy separations of low-lying states of YNH and NYH

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1990-11-01

    Complete active-space multiconfiguration self-consistent field followed by multireference configuration-interaction calculations are carried out on low-lying electronic states of YNH and NYH. We find the X 2Σ+ linear state of Y-N-H to be 55 kcal/mol more stable than the bent NYH and 59 kcal/mol more stable than the linear N-Y-H. Our calculations confirm the recent assignment of the first observed spectra generated by laser vaporization of Y metal + He/NH3. The theoretical dipole moment of the Y-N-H molecule (3.06 D) is in excellent agreement with an experimental value of 3.06 D obtained by Simard et al. The theoretical Y-N and N-H bond lengths are also in good agreement with the experimental results.

  5. Geometries and energy separations of low-lying states of YNH and NYH

    SciTech Connect

    Das, K.K.; Balasubramanian, K. )

    1990-11-01

    Complete active-space multiconfiguration self--consistent field followed by multireference configuration-interaction calculations are carried out on low-lying electronic states of YNH and NYH. We find the {ital X} {sup 2}{Sigma}{sup +} linear state of Y--N--H to be 55 kcal/mol more stable than the bent NYH and 59 kcal/mol more stable than the linear N--Y--H. Our calculations confirm the recent assignment of the first observed spectra generated by laser vaporization of Y metal + He/NH{sub 3}. The theoretical dipole moment of the Y--N--H molecule (3.06 D) is in excellent agreement with an experimental value of 3.06 D obtained by Simard {ital et} {ital al}. The theoretical Y--N and N--H bond lengths are also in good agreement with the experimental results.

  6. Spin control in ladderlike hexanuclear copper(II) complexes with metallacyclophane cores.

    PubMed

    Pardo, Emilio; Bernot, Kevin; Julve, Miguel; Lloret, Francesc; Cano, Joan; Ruiz-García, Rafael; Delgado, Fernando S; Ruiz-Pérez, Catalina; Ottenwaelder, Xavier; Journaux, Yves

    2004-05-03

    Two new hexanuclear oxamatocopper(II) complexes 3 and 4 have been synthesized from the binuclear copper(II) complexes of the meta- and para-phenylenebis(oxamate) ligands, respectively. Complexes 3 and 4 possess an overall ladderlike structure made up of two oxamate-bridged linear trinuclear units ("rails") connected through two phenylenediamidate bridges ("rungs") between the central copper atoms to give metallacyclic cores of the meta- and para-cyclophane type, respectively. They show different ground spin states, S = 1 (3) or S = 0 (4), depending on the substitution pattern in the aromatic spacers. The triplet state molecule 3 containing two spin doublet Cu(II)3 units connected by two m-phenylenediamidate bridges represents a successful extension of the concept of "ferromagnetic coupling units" to metal complexes, which is a well-known approach toward high spin organic radicals.

  7. Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces.

    PubMed

    Stadtmüller, Benjamin; Lüftner, Daniel; Willenbockel, Martin; Reinisch, Eva M; Sueyoshi, Tomoki; Koller, Georg; Soubatch, Serguei; Ramsey, Michael G; Puschnig, Peter; Tautz, F Stefan; Kumpf, Christian

    2014-04-16

    Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal-organic interfaces.

  8. Ionic model for highly compressed solid hydrogen

    NASA Astrophysics Data System (ADS)

    Yakub, E. S.

    2013-05-01

    We propose a simple ionic model for high-pressure conducting phase IV of solid hydrogen observed recently at room temperature. It is based on an assumption of dissociative ionization of hydrogen molecules 3H2=2H2(+)+2H(-) induced by high compression. The proposed model predicts the first order transition of molecular hydrogen solid into partly ionic conducting phase at megabar pressures and describes the temperature dependence of resistivity at room temperature. Its predictions are consistent with high temperature shock-compression experiments which exhibit conductivity of multiply shocked hydrogen. The location of phase transition line, the volume change, and the ionization degree in solid phase IV are estimated.

  9. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.

    PubMed

    Ascierto, Paolo A; Agarwala, Sanjiv; Botti, Gerardo; Cesano, Alessandra; Ciliberto, Gennaro; Davies, Michael A; Demaria, Sandra; Dummer, Reinhard; Eggermont, Alexander M; Ferrone, Soldano; Fu, Yang Xin; Gajewski, Thomas F; Garbe, Claus; Huber, Veronica; Khleif, Samir; Krauthammer, Michael; Lo, Roger S; Masucci, Giuseppe; Palmieri, Giuseppe; Postow, Michael; Puzanov, Igor; Silk, Ann; Spranger, Stefani; Stroncek, David F; Tarhini, Ahmad; Taube, Janis M; Testori, Alessandro; Wang, Ena; Wargo, Jennifer A; Yee, Cassian; Zarour, Hassane; Zitvogel, Laurence; Fox, Bernard A; Mozzillo, Nicola; Marincola, Francesco M; Thurin, Magdalena

    2016-11-15

    T cell receptor (TCR) modified T cells; (ii) tumor heterogeneity including changes in antigenic profiles over time and location in individual patient; and (iii) a variety of immune-suppressive mechanisms in the tumor microenvironment (TME) including T regulatory cells (Treg), myeloid derived suppressor cells (MDSC) and immunosuppressive cytokines. In addition, complex interaction of tumor-immune system further increases the level of difficulties in the process of biomarkers development and their validation for clinical use. Recent clinical trial results have highlighted the potential for combination therapies that include immunomodulating agents such as anti-PD-1 and anti-CTLA-4. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors on T cells and other approaches such as adoptive cell transfer are tested for clinical efficacy in melanoma as well. These agents are also being tested in combination with targeted therapies to improve upon shorter-term responses thus far seen with targeted therapy. Various locoregional interventions that demonstrate promising results in treatment of advanced melanoma are also integrated with immunotherapy agents and the combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for melanoma patients' population. This meeting's specific focus was on advances in immunotherapy and combination therapy for melanoma. The importance of understanding of melanoma genomic background for development of novel therapies and biomarkers for clinical application to predict the treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into personalized-medicine approach for treatment of patients with melanoma across the entire spectrum of disease stage

  10. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  11. Size dependent transition to solid hydrogen and argon clusters probed via spectroscopy of PTCDA embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Dvorak, Matthieu; Müller, Markus; Bünermann, Oliver; Stienkemeier, Frank

    2014-04-01

    Complexes made of either ArN or (H2)N clusters (N = 1-170) and a single PTCDA molecule (3,4,9,10-perylene-tetracarboxylic-dianhydride) are assembled inside helium droplets and spectroscopically studied via laser-induced fluorescence spectroscopy. The frequency shift and line-broadening are analyzed as a function of N and of the pick-up order of the PTCDA and cluster material in order to track liquid or solid properties of the clusters. For argon, the solid phase is observed for N > 10 above which the pick-up order dramatically influences the localization of the chromophore with respect to the Ar cluster. If the droplets are doped first with Ar, the chromophore remains on the surface of a solid cluster whereas for the reversed pick-up order the molecule is surrounded by an argon shell. At N < 10 wetting and the formation of the first solvation shell are observed. For para-hydrogen, a transition to the solid is observed at N ˜ 20-25, confirming previous theoretical predictions on the existence of a liquid-like phase at such small sizes, even below the bulk hydrogen freezing temperature.

  12. Theoretical and UV spectral study of isomeric 1-(quinolinyl)-beta-carbolines conformations.

    PubMed

    Eshimbetov, A G; Tulyaganov, T S

    2007-07-01

    On the basis of beta-carboline (1) and 1-(quinolin-2'-yl)-beta-carboline (3) alpha- and t-band energies differences (Delta(alpha,t)) a equilibrium conformations of 1-(quinolin-4'(5'-8')-yl)-beta-carbolines (4-8) in solution have been estimated. Furthermore, as an example of model compounds 1-(alpha'-naphtyl)-beta-carboline (MC1) and 1-(beta'-naphtyl)-beta-carboline (MC2) and also 5 and 6 by molecular mechanics (mm+), semi-empirical (AM1) and none empirical (RHF/6-31G(d)) methods a computations of internal rotation of quinoline fragment around single bond have been performed. It was found that the greater bathochromic shift of the long-wavelength band maxima of 1, in the case of 3 (Deltalambda(max)=39 nm) relatively to 6, 7 (Deltalambda(max)=17+/-2 nm) and 4, 5, 8 (Deltalambda(max)=9+/-1 nm) caused by coplanarity of the molecule 3. Also, from experimental and theoretical investigations a less dihedral angle between beta-carboline and quinoline nucleous for 6, and 7 than 4, 5 and 8 owing to steric and electronic interactions have been found.

  13. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as non-invasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate

    PubMed Central

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H. Douglas; Munasinghe, Jeeva P.; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P.; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation, and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate (3-BP) blocks glycolysis pathway by inhibiting hypoxia inducible enzymes, and enhanced cytotoxicity of 3-BP under hypoxic conditions has been reported in vitro. However, the efficacy of 3-BP was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 (MCT1) is the major transporter for pyruvate and the analog 3-BP in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of MCT1 in vivo. Expression of MCT1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions, but down regulated in severely hypoxic (< 5 mmHg) tumor regions. These results emphasize the importance of non-invasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  14. Beyond attachment: Roles of DC-SIGN in dengue virus infection.

    PubMed

    Liu, Ping; Ridilla, Marc; Patel, Pratik; Betts, Laurie; Gallichotte, Emily; Shahidi, Lidea; Thompson, Nancy L; Jacobson, Ken

    2017-04-01

    Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), a C-type lectin expressed on the plasma membrane by human immature dendritic cells, is a receptor for numerous viruses including Ebola, SARS and dengue. A controversial question has been whether DC-SIGN functions as a complete receptor for both binding and internalization of dengue virus (DENV) or whether it is solely a cell surface attachment factor, requiring either hand-off to another receptor or a co-receptor for internalization. To examine this question, we used 4 cell types: human immature dendritic cells and NIH3T3 cells expressing either wild-type DC-SIGN or 2 internalization-deficient DC-SIGN mutants, in which either the 3 cytoplasmic internalization motifs are silenced by alanine substitutions or the cytoplasmic region is truncated. Using confocal and super-resolution imaging and high content single particle tracking, we investigated DENV binding, DC-SIGN surface transport, endocytosis, as well as cell infectivity. DC-SIGN was found colocalized with DENV inside cells suggesting hand-off at the plasma membrane to another receptor did not occur. Moreover, all 3 DC-SIGN molecules on NIH3T3 cells supported cell infection. These results imply the involvement of a co-receptor because cells expressing the internalization-deficient mutants could still be infected.

  15. Distinct usage of three C-type lectins by Japanese encephalitis virus: DC-SIGN, DC-SIGNR, and LSECtin.

    PubMed

    Shimojima, Masayuki; Takenouchi, Atsushi; Shimoda, Hiroshi; Kimura, Naho; Maeda, Ken

    2014-08-01

    Infection with West Nile virus and dengue virus, two mosquito-borne flaviviruses, is enhanced by two calcium-dependent lectins: dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and its related molecule (DC-SIGNR). The present study examined the relationship between Japanese encephalitis virus (JEV) infection and three lectins: DC-SIGN, DC-SIGNR, and liver sinusoidal endothelial cell lectin (LSECtin). Expression of DC-SIGNR resulted in robust JEV proliferation in a lymphoid cell line, Daudi cells, which was otherwise non-permissive to infection. DC-SIGN expression caused moderate JEV proliferation, with effects that varied according to the cells in which JEV was prepared. LSECtin expression had comparatively minor, but consistent, effects, in all cell types used in JEV preparation. While DC-SIGN/DC-SIGNR-mediated JEV infection was inhibited by yeast mannan, LSECtin-mediated infection was inhibited by N-acetylglucosamine β1-2 mannose. Although involvement of DC-SIGN/DC-SIGNR in infection seems to be a common characteristic, this is the first report on usage of LSECtin in mosquito-borne flavivirus infection.

  16. Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers.

    PubMed

    Markov, Aleksandr; Wolf, Nikolaus; Yuan, Xiaobo; Mayer, Dirk; Maybeck, Vanessa; Offenhäusser, Andreas; Wördenweber, Roger

    2017-08-30

    Modifying the surfaces of oxides using self-assembled monolayers offers an exciting possibility to tailor their surface properties for various applications ranging from organic electronics to bioelectronics applications. The simultaneous use of different molecules in particular can extend this approach because the surface properties can be tuned via the ratio of the chosen molecules. This requires the composition and quality of the monolayers to be controlled on an organic level, that is, on the nanoscale. In this paper, we present a method of modifying the surface and surface properties of silicon oxide by growing self-assembled monolayers comprising various compositions of two different molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane, by means of in situ controlled gas-phase deposition. The properties of the resulting mixed molecular monolayers (e.g., effective thickness, hydrophobicity, and surface potential) exhibit a perfect linear dependence on the composition of the molecular layer. Finally, coating the mixed layer with poly(l-lysine) proves that the density of proteins can be controlled by the composition as well. This indicates that the method might be an ideal way to optimize inorganic surfaces for bioelectronics applications.

  17. Near-Field CARS with Micro- and Nano-Particle

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond

    2010-08-01

    Spatial dependence of coherent anti-Stokes Raman scattering (CARS) intensity and spectra for a spherical particle are studied for different sizes, ranging from micrometers to nanometers. Effects of near field on the spectra are analyzed, showing potential application as nano-sensor in microscopy and imaging. The results can be extended to an array of nanospheres. The CARS process has been developed into a versatile real-time detection technique in spectroscopy and microscopy [1]. In particularly, backscattered ultra-violet CARS implemented on LIDAR system [2] is promising for remote detection of molecular species present in hazardous biological aerosols with microscale dimension. In practice, the aerosols could be in any dimension. Thus, we need to know study a modified the setup of the CARS technique for reliable detection of chemicals in micro- and nano-particles using near-field effects. We have developed a nonlinear semiclassical microscopic theory to describe the CARS spectra for a particle composed of a collection of arbitrarily complex molecules [3] as well as simple few levels quantum systems [2]. The theory provides useful results on the CARS spectra for any observation angle and for any form of laser pulses [3]. Here, we focus on the spectra in the near field. We wish to study how the spectra vary with the near field distance with focused laser pulses. We also analyze to what extend the dimension of the particle and the focusing laser affect the lensing effect which could enhance the backscattered light.

  18. Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes.

    PubMed

    Christian, Frank; Szaszák, Márta; Friedl, Sabine; Drewianka, Stephan; Lorenz, Dorothea; Goncalves, Andrey; Furkert, Jens; Vargas, Carolyn; Schmieder, Peter; Götz, Frank; Zühlke, Kerstin; Moutty, Marie; Göttert, Hendrikje; Joshi, Mangesh; Reif, Bernd; Haase, Hannelore; Morano, Ingo; Grossmann, Solveig; Klukovits, Anna; Verli, Judit; Gáspár, Róbert; Noack, Claudia; Bergmann, Martin; Kass, Robert; Hampel, Kornelia; Kashin, Dmitry; Genieser, Hans-Gottfried; Herberg, Friedrich W; Willoughby, Debbie; Cooper, Dermot M F; Baillie, George S; Houslay, Miles D; von Kries, Jens Peter; Zimmermann, Bastian; Rosenthal, Walter; Klussmann, Enno

    2011-03-18

    A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.

  19. Comprehensive Map of Molecules Implicated in Obesity.

    PubMed

    Jagannadham, Jaisri; Jaiswal, Hitesh Kumar; Agrawal, Stuti; Rawal, Kamal

    2016-01-01

    Obesity is a global epidemic affecting over 1.5 billion people and is one of the risk factors for several diseases such as type 2 diabetes mellitus and hypertension. We have constructed a comprehensive map of the molecules reported to be implicated in obesity. A deep curation strategy was complemented by a novel semi-automated text mining system in order to screen 1,000 full-length research articles and over 90,000 abstracts that are relevant to obesity. We obtain a scale free network of 804 nodes and 971 edges, composed of 510 proteins, 115 genes, 62 complexes, 23 RNA molecules, 83 simple molecules, 3 phenotype and 3 drugs in "bow-tie" architecture. We classify this network into 5 modules and identify new links between the recently discovered fat mass and obesity associated FTO gene with well studied examples such as insulin and leptin. We further built an automated docking pipeline to dock orlistat as well as other drugs against the 24,000 proteins in the human structural proteome to explain the therapeutics and side effects at a network level. Based upon our experiments, we propose that therapeutic effect comes through the binding of one drug with several molecules in target network, and the binding propensity is both statistically significant and different in comparison with any other part of human structural proteome.

  20. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    PubMed Central

    Yang, Kun; Park, Chae G; Cheong, Cheolho; Bulgheresi, Silvia; Zhang, Shusheng; Zhang, Pei; He, Yingxia; Jiang, Lingyu; Huang, Hongping; Ding, Honghui; Wu, Yiping; Wang, Shaogang; Zhang, Lin; Li, Anyi; Xia, Lianxu; Bartra, Sara S; Plano, Gregory V; Skurnik, Mikael; Klena, John D; Chen, Tie

    2015-01-01

    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection. PMID:25829141

  1. On-tissue chemical derivatization of 3-methoxysalicylamine for MALDI-imaging mass spectrometry

    PubMed Central

    Chacon, Almary; Zagol-Ikapitte, Irene; Amarnath, Venkataraman; Reyzer, Michelle L.; Oates, John A.; Caprioli, Richard M.; Boutaud, Olivier

    2011-01-01

    MALDI-imaging mass spectrometry (IMS) has been shown to be a powerful tool to study drug distributions in organ tissue as well as whole animal bodies. Nevertheless, not all drugs are amenable to MALDI while others may be limited by poor sensitivity poor sensitivity. The use of chemical derivatization to improve detection of small molecules by mass spectrometry techniques is well documented. To our knowledge, however, this approach has not been applied to direct tissue analysis of small organic molecules. In this manuscript, we demonstrate the use of on-tissue chemical derivatization of a small organic molecule, 3-methoxysalicylamine (3-MoSA) a scavenger of γ -ketoaldehydes. Derivatization of 3-MoSA with 1,1′-thiocarbonyldiimidazole (TCDI) results in an oxothiazolidine derivative which is detected with much greater sensitivity by MALDI than 3-MoSA itself. TCDI treatment of tissue from mice dosed with 3-MoSA allowed images to be obtained showing its spatial distribution as well as its pharmacokinetic profile in different organs. These images correlated well with results obtained from HPLC-MS/MS analyses of the same tissues. These results provide proof-of-concept that on-tissue chemical derivatization can be used to improve detection of a small organic molecule by MALDI-IMS. PMID:21834023

  2. Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2016-05-01

    We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.

  3. Synthesis, spectral analysis and quantum chemical studies on molecular geometry, chemical reactivity of 7-chloro-9-(2‧-chlorophenyl)-2,3-dihydroacridin-4(1H)-one and 7-chloro-9-(2‧-fluorophenyl)-2,3-dihydroacridin-4(1H)-one

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Rajendran; Sayin, Koray; Kaminsky, Werner; Rajendra Prasad, Karnam Jayarampillai

    2017-01-01

    7-Chloro-9-(2'-chlorophenyl)-2,3-dihydroacridin-4(1H)-one (3a) and 7-chloro-9-(2'-fluorophenyl)-2,3-dihydroacridin-4-(1H)-one (3b) were synthesized from 2-amino-2‧,5-dichlorobenzophenone (1a) and 2-amino-5-chloro-2'-fluorobenzophenone (1b) respectively with 1,2-cyclohexanedione (2) in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate and InCl3 condition. The synthesized compounds have been recorded of FT-IR, NMR spectra and the structure was further confirmed by using single crystal X-ray diffraction. The synthesized compounds have been further checked the photo physical properties like UV, emission and fluorescent quantum yields were calculated. FT-NMR spectra and 1H and 13C NMR chemical shifts have been measured and computational calculations of compounds 3 are done by using B3LYP method with 6-311G basis set in gas phase. Similarly calculated vibrational frequencies were found in good agreement with experimental findings. The optimized geometry of molecules 3 was compared with experimental XRD values. DFT calculations of the molecular electrostatic potential (MEP) and HOMO - LUMO frontier orbitals identified chemically active sites of compounds 3 responsible for its chemical reactivity.

  4. Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response

    PubMed Central

    Chen, Jung-Tsu; Chen, Chein-Hung; Ku, Ko-Li; Hsiao, Michael; Chiang, Chun-Pin; Hsu, Tsui-Ling; Chen, Min-Huey; Wong, Chi-Huey

    2015-01-01

    The incidence and mortality rate of oral cancer continue to rise, partly due to the lack of effective early diagnosis and increasing environmental exposure to cancer-causing agents. To identify new markers for oral cancer, we used a sialylation probe to investigate the glycoproteins differentially expressed on oral cancer cells. Of the glycoproteins identified, B7 Homolog 3 (B7-H3) was significantly overexpressed in oral squamous cell carcinoma (OSCC), and its overexpression correlated with larger tumor size, advanced clinical stage, and low survival rate in OSCC patients. In addition, knockdown of B7-H3 suppressed tumor cell proliferation, and restoration of B7-H3 expression enhanced tumor growth. It was also found that the N-glycans of B7-H3 from Ca9-22 oral cancer cells contain the terminal α-galactose and are more diverse with higher fucosylation and better interaction with DC-SIGN [DC-specific intercellular adhesion molecule-3 (ICAM-3)–grabbing nonintegrin] and Langerin on immune cells than that from normal cells, suggesting that the glycans on B7-H3 may also play an important role in the disease. PMID:26438868

  5. Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes*

    PubMed Central

    Christian, Frank; Szaszák, Márta; Friedl, Sabine; Drewianka, Stephan; Lorenz, Dorothea; Goncalves, Andrey; Furkert, Jens; Vargas, Carolyn; Schmieder, Peter; Götz, Frank; Zühlke, Kerstin; Moutty, Marie; Göttert, Hendrikje; Joshi, Mangesh; Reif, Bernd; Haase, Hannelore; Morano, Ingo; Grossmann, Solveig; Klukovits, Anna; Verli, Judit; Gáspár, Róbert; Noack, Claudia; Bergmann, Martin; Kass, Robert; Hampel, Kornelia; Kashin, Dmitry; Genieser, Hans-Gottfried; Herberg, Friedrich W.; Willoughby, Debbie; Cooper, Dermot M. F.; Baillie, George S.; Houslay, Miles D.; von Kries, Jens Peter; Zimmermann, Bastian; Rosenthal, Walter; Klussmann, Enno

    2011-01-01

    A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3′-diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure. PMID:21177871

  6. Femtosecond study on the isomerization dynamics of NK88. II. Excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Vogt, Gerhard; Nuernberger, Patrick; Gerber, Gustav; Improta, Roberto; Santoro, Fabrizio

    2006-07-01

    The molecule 3,3'-diethyl-2,2'-thiacyanine isomerizes after irradiation with light of the proper wavelength. After excitation, it undergoes a transition, in which one or more conical intersections are involved, back to the ground state to form different product photoisomers. The dynamics before and directly after the transition back to the ground state is investigated by transient absorption spectroscopy in a wavelength region of 360-950nm, as well as by fluorescence upconversion. It is shown that the excited-state dynamics are governed by two time scales: a short one with a decay time of less than 2ps and a long one with about 9ps. A thorough comparison of the experimental results with those of configuration interaction singles and time-dependent density functional theory calculations suggests that these dynamics are related to two competing pathways differing in the molecular twisting on the excited surface after photoexcitation. From the experimental point of view this picture arises taking into account the time scales for ground-state bleach, excited-state absorption, stimulated emission, fluorescence, and assumed hot ground-state absorption both in the solvent methanol and ethylene glycol.

  7. The mechanism of hydrogen uptake in [NiFe] hydrogenase: first-principles molecular dynamics investigation of a model compound.

    PubMed

    Furlan, Sara; La Penna, Giovanni

    2012-01-01

    The recent discovery of a model compounds of [NiFe] hydrogenase that catalyzes the heterolytic cleavage of the H(2) molecule into a proton and a stable hydride in water solution under room conditions opened up the possibility to understand the mechanism of H(2) uptake by this peculiar class of enzymes. The simplest model compound belongs to the class of NiRu bimetallic cationic complexes mimicking, in water solution and at room conditions, the hydrogenase active site. By using first-principles molecular dynamics computer simulations, in the Car-Parrinello scheme, we investigated models including the water solvent and nitrate counterions. Several simulations, starting from different initial configurations, provided information on the first step of the H(2) cleavage: (1) the pathway of H(2) approach towards the active site; (2) the role of the ruthenium-bonded water molecule in providing a base that extracts the proton from the activated H(2) molecule; (3) the minor role of Ni in activating the H(2) molecule and its role in stabilizing the hydride produced. © SBIC 2011

  8. 3-O-Hydroxytyrosol glucuronide and 4-O-hydroxytyrosol glucuronide reduce endoplasmic reticulum stress in vitro.

    PubMed

    Giordano, Elena; Dangles, Olivier; Rakotomanomana, Njara; Baracchini, Silvia; Visioli, Francesco

    2015-10-01

    Endoplasmic reticulum (ER) stress is important for atherosclerosis development and is mediated by the unfolded protein response (UPR). In this work, we synthesized two among the most physiologically-prominent hydroxytyrosol HT hepatic metabolites, i.e. 3-O-HT glucuronide and 4-O-HT glucuronide and we tested their activities on ER stress (in human hepatocarcinoma HepG2 cells), to gain further insight into the cardiopreventive properties of HT, extra virgin olive oil, and the Mediterranean diet. We report that 3-O-HT glucuronide and 4-O-HT glucuronide inhibit tunicamycin-induced ER stress. As compared with the effects of the parent molecule, 3-O-HT glucuronide and 4-O-HT glucuronide at 10 μM and 25 μM alone induced a milder change in mRNA expression levels of both CCAAT-enhancer-binding protein homologous protein (CHOP) and glucose regulated protein GRP78 immunoglobulin heavy chain binding protein (BiP). In conclusion, we add further evidence to the hypothesis that the HT intake might be atheroprotective and reiterate the usefulness to preferably use high-quality, high-(poly)phenol extra virgin olive oil as a prominent condiment.

  9. Supramolecular Nanocomposites Under Confinement: Chiral Optically Active Nanoparticle Assemblies and Beyond

    NASA Astrophysics Data System (ADS)

    Bai, Peter; Yang, Sui; Bao, Wei; Salmeron, Miquel; Zhang, Xiang; Xu, Ting

    2015-03-01

    Block copolymer-based supramolecules provide a versatile platform to direct the self-assembly of nanoparticles (NPs) into precisely controlled nanostructures in bulk and thin film geometries. A supramolecule, PS-b-P4VP(PDP), composed of the small molecule 3-pentadecylphenol (PDP) hydrogen bonded to a diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), was subjected to 2-D volume confinement in cylindrical anodic aluminum oxide (AAO) membrane pores. TEM and 3-D TEM tomography reveal that the morphologies accessible by the supramolecule and supramolecule/NP composites, such as NP clusters, arrays, stacked rings, and single and double helical ribbons, are significantly different from those in the bulk or thin film. Furthermore, single molecule dark field scattering measurements demonstrate strong chiral optical response of single helical Au NP ribbon nanostructures in the near infrared wavelength regime. These studies demonstrate 2-D confinement to be an effective means to tailor self-assembled NP structure within supramolecule nanocomposites and pave the way for this assembly approach to be applied towards next generation chiral metamaterials and optoelectronic devices.

  10. Two types of photoluminescence blinking revealed by single quantum dot spectroelectrochemistry

    PubMed Central

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Sykora, Milan; Hollingsworth, Jennifer A.; Klimov, Victor I.; Htoon, Han

    2012-01-01

    Photoluminescence (PL) intermittency (blinking), or random switching between states of high- (ON) and low (OFF) emissivities, is a universal property of molecular emitters exhibited by dyes1, polymers2, biological molecules3 and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes, and nanowires4,5,6. For the past fifteen years, colloidal nanocrystals have been used as a model system for studies of this phenomenon.5,6 The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge7, which leads to PL quenching by nonradiative Auger recombination.8 However, the “charging” model was recently challenged in several reports.9,10 Here, to clarify the role of charging in PL intermittency, we perform time-resolved PL studies of individual nanocrystals while controlling electrochemically the degree of their charging. We find that two distinct mechanisms can lead to PL intermittency. We identify conventional blinking (A-type) due to charging/discharging of the nanocrystal core when lower PL intensities correlate with shorter PL lifetimes. Importantly, we observe a different blinking (B-type), when large changes in the PL intensity are not accompanied by significant changes in PL dynamics. We attribute this blinking behavior to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept hot electrons before they relax into emitting core states. Both blinking mechanisms can be controlled electrochemically and under appropriate potential blinking can be completely suppressed. PMID:22071764

  11. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria.

    PubMed

    Romero, María Mercedes; Basile, Juan Ignacio; Corra Feo, Laura; López, Beatriz; Ritacco, Viviana; Alemán, Mercedes

    2016-06-01

    Tuberculosis remains the single largest infectious disease with 10 million new cases and two million deaths that are estimated to occur yearly, more than any time in history. The intracellular replication of Mycobacterium tuberculosis (Mtb) and its spread from the lungs to other sites occur before the development of adaptive immune responses. Dendritic cells (DC) are professional antigen-presenting cells whose maturation is critical for the onset of the protective immune response against tuberculosis disease and may vary depending on the nature of the cell wall of Mtb strain. Here, we describe the role of the endogenous production of reactive oxygen species (ROS) on DC maturation and expansion of Mtb-specific lymphocytes. Here, we show that Mtb induces DC maturation through TLR2/dectin-1 by generating of ROS and through Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) in a ROS independently manner. Based on the differences observed in the ability to induce DC maturation, ROS production and lymphocyte proliferation by those Mtb families widespread in South America, i.e., Haarlem and Latin American Mediterranean and the reference strain H37Rv, we propose that variance in ROS production might contribute to immune evasion affecting DC maturation and antigen presentation.

  12. Fragment-based strategy for structural optimization in combination with 3D-QSAR.

    PubMed

    Yuan, Haoliang; Tai, Wenting; Hu, Shihe; Liu, Haichun; Zhang, Yanmin; Yao, Sihui; Ran, Ting; Lu, Shuai; Ke, Zhipeng; Xiong, Xiao; Xu, Jinxing; Chen, Yadong; Lu, Tao

    2013-10-01

    Fragment-based drug design has emerged as an important methodology for lead discovery and drug design. Different with other studies focused on fragment library design and active fragment identification, a fragment-based strategy was developed in combination with three-dimensional quantitative structure-activity relationship (3D-QSAR) for structural optimization in this study. Based on a validated scaffold or fragment hit, a series of structural optimization was conducted to convert it to lead compounds, including 3D-QSAR modelling, active site analysis, fragment-based structural optimization and evaluation of new molecules. 3D-QSAR models and active site analysis provided sufficient information for confirming the SAR and pharmacophoric features for fragments. This strategy was evaluated through the structural optimization on a c-Met inhibitor scaffold 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one, which resulted in an c-Met inhibitor with high inhibitory activity. Our study suggested the effectiveness of this fragment-based strategy and the druggability of our newly explored active region. The reliability of this strategy indicated it could also be applied to facilitate lead optimization of other targets.

  13. Combination of an aromatic core and aromatic side chains which constitutes discotic liquid crystal and organogel supramolecular assemblies.

    PubMed

    Ishi-i, Tsutomu; Hirayama, Tomoyuki; Murakami, Ko-ichi; Tashiro, Hiroshi; Thiemann, Thies; Kubo, Kanji; Mori, Akira; Yamasaki, Sumio; Akao, Tetsuyuki; Tsuboyama, Akira; Mukaide, Taihei; Ueno, Kazunori; Mataka, Shuntaro

    2005-02-15

    This paper reports unique and unusual formations of columnar liquid crystals and organogels by self-assembling discotic molecules, which are composed of an aromatic hexaazatriphenylene (HAT) core and six flexible aromatic side chains. In HAT derivatives 3a, with 4'-(N,N-diphenylamino)biphenyl-4-yl chains, 3b, with 4'-[N-(2-naphthyl)-N-phenylamino]biphenyl-4-yl chains, and 3c, with 4'-phenoxybiphenyl-4-yl chains, the two-dimensional hexagonal packings can be created by their self-assembling in the liquid crystalline phase, which were characterized by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction analysis. In certain solvents, HAT molecules 3a-c can form the viscoelastic fluid organogels, in which one-dimensional aggregates composed of the HAT molecules are self-assembled and entangled into three-dimensional network structures. The organogel structures were analyzed by scanning electron microscopy observation, (1)H NMR, UV-vis, and circular dichroism spectroscopy. In contrast to 3a-c, none of the liquid crystalline and organogel phases could be formed from 3d and 3e with short aromatic side chains including a phenylene spacer, and 3f (except a few specific solutions) and 3g without terminal diarylamino and phenoxy groups. In 3a-c, the aromatic side chains with terminal flexible groups make up soft regions that cooperatively stabilize the liquid crystalline and organogel supramolecular structures together with the hard regions of the hexaazatriphenylene core.

  14. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination.

    PubMed

    Yang, Kun; Park, Chae G; Cheong, Cheolho; Bulgheresi, Silvia; Zhang, Shusheng; Zhang, Pei; He, Yingxia; Jiang, Lingyu; Huang, Hongping; Ding, Honghui; Wu, Yiping; Wang, Shaogang; Zhang, Lin; Li, Anyi; Xia, Lianxu; Bartra, Sara S; Plano, Gregory V; Skurnik, Mikael; Klena, John D; Chen, Tie

    2015-10-01

    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.

  15. Application of polymer based stationary phases in high performance liquid chromatography and capillary high performance liquid chromatography hyphenated to microcoil 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Grynbaum, Marc David; Meyer, Christoph; Putzbach, Karsten; Rehbein, Jens; Albert, Klaus

    2007-07-13

    The increased demand for chromatographic materials that are able to achieve a fast separation of large quantities of structure analogues is a great challenge. It is known that polymer based chromatographic materials have a higher loadability, compared to silica based sorbents. Unfortunately these polymer materials cannot be used under high pressure which is necessary in order to obtain high flow rates, and hence long times are needed to perform a separation. However, by immobilizing a polymer on a mechanically stable porous silica core, this problem can be circumvented and higher flows become feasible on these materials. Especially for capillary liquid chromatography hyphenated with nuclear magnetic resonance a high loadability is of great importance in order to obtain sharp, resolved, and concentrated peaks thus resulting in a good signal to noise ratio in the NMR experiment. Therefore, a highly shape selective chromatographic sorbent was developed by covalently immobilizing a poly(ethylene-co-acrylic) acid copolymer (-CH(2)CH(2)-)(x)[CH(2)CH(CO(2)H)-](y) (x=119, y=2.4) with a mass fraction of acrylic acid of 5% as stationary phase on silica via a spacer molecule (3-glycidoxypropyltrimethoxysilane). First, the loadability of this sorbent compared to C(30) is demonstrated by the HPLC separation of two xanthophyll isomers. Subsequently, it has been successfully employed in the hyphenation of capillary HPLC with microcoil (1)H NMR spectroscopy by separating and identifying a highly concentrated solution of the tocopherol homologues.

  16. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Riera, Joan; Drobnic, Franchek; Tur, Josep Antoni; Pons, Antoni

    2016-10-09

    n-3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs). Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα) levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs), soluble Intercellular adhesion molecule 3 (sICAM3) and soluble L-selectin (sL-Selectin), and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group.

  17. Structure and energetic characteristics of methane hydrates. From single cage to triple cage: A DFT-D study

    NASA Astrophysics Data System (ADS)

    Giricheva, N. I.; Ischenko, A. A.; Yusupov, V. I.; Bagratashvili, V. N.; Girichev, G. V.

    2017-03-01

    Electronic, geometrical, vibrational and energetic characteristics of the ice I TDT fragment consisted of dodecahedron H2O[512] (D) fused with two tetrakaidecahedrons H2O[51262] (T) and of the TDT cluster with three encapsulated CH4 molecules (3CH4·TDT) were calculated using a DFT/B97-D/6-311++G(2d,2p) approach. Binding energies, hydrogen bonding energies, energies of encapsulation of methane molecules into small D- and large T-cages of the TDT fragment, energies of frontier orbitals, the translational and librational frequencies, as well as the intramolecular vibrations of methane within the cages of different sizes were studied. Similar characteristics of isolated D- and T-cages and clathrates CH4·D and CH4·T were studied as function of compression/expansion of their oxygen skeletons using DFT/B97-D, LC-B3LYP, B3LYP-D2 methods.

  18. Modulation of CD14 and TLR4.MD-2 activities by a synthetic lipid A mimetic

    PubMed Central

    Cighetti, Roberto; Ciaramelli, Carlotta; Sestito, Stefania Enza; Zanoni, Ivan; Kubik, Łukasz; Ardá-Freire, Ana; Calabrese, Valentina; Granucci, Francesca; Jerala, Roman; Martín-Santamaría, Sonsoles; Jiménez-Barbero, Jesus

    2014-01-01

    Monosaccharide lipid A mimetics composed by a glucosamine core linked to two fatty acid chains and bearing one or two phosphates have been synthesized. While compounds 1 and 2, with one phosphate group, were practically inactive in inhibiting LPS-induced TLR4 signaling and cytokine production in HEK-blue™ cells and murine macrophages, compound 3 with two phosphates was found to be active in efficiently inhibiting TLR4 signal in both cell types. The direct interaction of molecule 3 with MD-2 co-receptor has been investigated by means of NMR and molecular modeling/docking analysis. This compound also interacts directly with CD14 receptor, stimulating its internalization by endocytosis. Experiments on macrophages show that the effect on CD14 reinforces the activity on MD-2.TLR4, because compound 3 activity is higher when CD14 is important for TLR4 signaling i,e, at low LPS concentration. The dual MD-2 and CD14 targeting, accompanied by good solubility in water and lack of toxicity, suggests the use of monosaccharide 3 as a lead compound to develop drugs directed against TLR4-related syndromes. PMID:24339336

  19. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2014-11-01

    Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.

  20. Synthesis, photophysical and electrochemical properties of two novel carbazole-based dye molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhu, Weiju; Fang, Min; Yin, Fangfang; Li, Cun

    2015-01-01

    Two carbazole-based dye molecules: 3-(6-benzothiazol-2-yl-9H-hexylcarbazole-3-yl)-2-cyano-acylic acid (D3) and 3-[5-(6-benzothiazol-2-yl-9H-hexylcarbazole-3-yl)-thiophen-2-yl]-2-cyan-acylic acid (D4) were synthesized by an approach from carbazole derivate using Vilsmeier-Haack, Suzuki cross-coupling and Knoevenagel reactions. Their physical and electrochemical properties were investigated. D3 and D4 exhibit different optical properties, such as UV absorption, photoluminescence, fluorescence quantum yield and fluorescence lifetime in different solvents. Compared with D3 without a thiophene unit, the maximum absorption wavelength of D4 red-shift obviously and its fluorescence intensity is also enhanced. A shift of the EHOMO and ELUMO is observed for D3 (EHOMO = 2.06 V, ELUMO = -1.39 V vs. NHE) and D4 (EHOMO = 1.73 V, ELUMO = -1.33 V vs. NHE). D3 and D4 can be used as dyes for dye-sensitized solar cells (DSSCs) with TiO2 nanomaterial because their EHOMO are lower than the conduction band edge of TiO2 [-0.5 V (vs. NHE)] and their ELUMO are higher than the I3-/I- redox potential [0.42 V (vs. NHE)].

  1. The Expression of the Hepatocyte SLAMF3 (CD229) Receptor Enhances the Hepatitis C Virus Infection

    PubMed Central

    Cartier, Flora; Marcq, Ingrid; Douam, Florian; Ossart, Christèle; Regnier, Aline; Debuysscher, Véronique; Lavillette, Dimitri; Bouhlal, Hicham

    2014-01-01

    Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3) in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes. PMID:24927415

  2. Understanding the movements of metal whiskers

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.

    2015-06-01

    Metal whiskers often grow across leads of electric equipment causing short circuits and raising significant reliability issues. Their nature remains a mystery after several decades of research. It was observed that metal whiskers exhibit large amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that movements would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze possible mechanisms of the observed movements: (1) minute air currents; (2) Brownian motion due to random bombardments with the air molecules; (3) mechanically caused movements, such as (a) transmitted external vibrations, and (b) torque exerted due to material propagation along curved whiskers (the garden hose instability); (4) time dependent electric fields due to diffusion of ions; and (5) non-equilibrium electric fields making it possible for some whiskers to move. For all these mechanisms, we provide numerical estimates. Our conclusion is that the observed movements are likely due to the air currents or electric recharging caused by external light or similar factors.

  3. Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional

    SciTech Connect

    Refaely-Abramson, Sivan; Sharifzadeh, Sahar; Govind, Niranjan; Autschbach, Jochen; Neaton, Jeffrey B.; Baer, Roi; Kronik, Leeor

    2012-11-28

    We present a method for obtaining quasiparticle excitation energies from a DFT-based calculation, but with accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters - the range separation and the short-range Fock fraction. Both are determined non-empirically, per system, based on satisfaction of exact physical constraints for the ionization potential and many-electron self-interaction, respectively. The accuracy of the method is demonstrated on the important benchmark molecule, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), where it is shown to be the only non-empirical DFT-based method comparable to GW calculations. For any finite system, we envision that the approach could be useful directly as an inexpensive alternative to GW that offers good accuracy for both frontier and non-frontier quasiparticle excitation energies, opening the door to the studyof presently out of reach large-scale systems.

  4. A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study.

    PubMed

    Meroni, Daniela; Lo Presti, Leonardo; Di Liberto, Giovanni; Ceotto, Michele; Acres, Robert G; Prince, Kevin C; Bellani, Roberto; Soliveri, Guido; Ardizzone, Silvia

    2017-01-12

    The surface functionalization of TiO2-based materials with alkylsilanes is attractive in several cutting-edge applications, such as photovoltaics, sensors, and nanocarriers for the controlled release of bioactive molecules. (3-Aminopropyl)triethoxysilane (APTES) is able to self-assemble to form monolayers on TiO2 surfaces, but its adsorption geometry and solar-induced photodegradation pathways are not well understood. We here employ advanced experimental (XPS, NEXAFS, AFM, HR-TEM, and FT-IR) and theoretical (plane-wave DFT) tools to investigate the preferential interaction mode of APTES on anatase TiO2. We demonstrate that monomeric APTES chemisorption should proceed through covalent Si-O-Ti bonds. Although dimerization of the silane through Si-O-Si bonds is possible, further polymerization on the surface is scarcely probable. Terminal amino groups are expected to be partially involved in strong charge-assisted hydrogen bonds with surface hydroxyl groups of TiO2, resulting in a reduced propensity to react with other species. Solar-induced mineralization proceeds through preferential cleavage of the alkyl groups, leading to the rapid loss of the terminal NH2 moieties, whereas the Si-bearing head of APTES undergoes slower oxidation and remains bound to the surface. The suitability of employing the silane as a linker with other chemical species is discussed in the context of controlled degradation of APTES monolayers for drug release and surface patterning.

  5. High-Performance Silver Window Electrodes for Top-Illuminated Organic Photovoltaics Using an Organo-molybdenum Oxide Bronze Interlayer.

    PubMed

    Tyler, Martin S; Walker, Marc; Hatton, Ross A

    2016-05-18

    We report an organo-molybdenumn oxide bronze that enables the fabrication of high-performance silver window electrodes for top-illuminated solution processed organic photovoltaics without complicating the process of device fabrication. This hybrid material combines the function of wide-band-gap interlayer for efficient hole extraction with the role of metal electrode seed layer, enabling the fabrication of highly transparent, low-sheet-resistance silver window electrodes. Additionally it is also processed from ethanol, which ensures orthogonality with a large range of solution processed organic semiconductors. The key organic component is the low cost small molecule 3-mercaptopropionic acid, which (i) promotes metal film formation and imparts robustness at low metal thickness, (ii) reduces the contact resistance at the Ag/molybdenumn oxide bronze interface, (iii) and greatly improves the film forming properties. Silver electrodes with a thickness of 8 nm deposited by simple vacuum evaporation onto this hybrid interlayer have a sheet resistance as low as 9.7 Ohms per square and mean transparency ∼80% over the wavelength range 400-900 nm without the aid of an antireflecting layer, which makes them well-matched to the needs of organic photovoltaics and applicable to perovskite photovoltaics. The application of this hybrid material is demonstrated in two types of top-illuminated organic photovoltaic devices.

  6. Genetically programmable pathogen sense and destroy.

    PubMed

    Gupta, Saurabh; Bram, Eran E; Weiss, Ron

    2013-12-20

    Pseudomonas aeruginosa (P. aeruginosa) is a major cause of urinary tract and nosocomial infections. Here, we propose and demonstrate proof-of-principle for a potential cell therapy approach against P. aeruginosa. Using principles of synthetic biology, we genetically modified E. coli to specifically detect wild type P. aeruginosa (PAO1) via its quorum sensing (QS) molecule, 3OC 12 HSL. Engineered E. coli sentinels respond to the presence of 3OC 12 HSL by secreting CoPy, a novel pathogen-specific engineered chimeric bacteriocin, into the extracellular medium using the flagellar secretion tag FlgM. Extracellular FlgM-CoPy is designed to kill PAO1 specifically. CoPy was constructed by replacing the receptor and translocase domain of Colicin E3 with that of Pyocin S3. We show that CoPy toxicity is PAO1 specific, not affecting sentinel E. coli or the other bacterial strains tested. In order to define the system's basic requirements and PAO1-killing capabilities, we further determined the growth rates of PAO1 under different conditions and concentrations of purified and secreted FlgM-CoPy. The integrated system was tested by co-culturing PAO1 cells, on semisolid agar plates, together with engineered sentinel E. coli, capable of secreting FlgM-CoPy when induced by 3OC 12 HSL. Optical microscopy results show that the engineered E. coli sentinels successfully inhibit PAO1 growth.

  7. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp.

    PubMed

    Bowden, Steven D; Eyres, Alison; Chung, Jade C S; Monson, Rita E; Thompson, Arthur; Salmond, George P C; Spring, David R; Welch, Martin

    2013-11-01

    Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.

  8. A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study

    PubMed Central

    2016-01-01

    The surface functionalization of TiO2-based materials with alkylsilanes is attractive in several cutting-edge applications, such as photovoltaics, sensors, and nanocarriers for the controlled release of bioactive molecules. (3-Aminopropyl)triethoxysilane (APTES) is able to self-assemble to form monolayers on TiO2 surfaces, but its adsorption geometry and solar-induced photodegradation pathways are not well understood. We here employ advanced experimental (XPS, NEXAFS, AFM, HR-TEM, and FT-IR) and theoretical (plane-wave DFT) tools to investigate the preferential interaction mode of APTES on anatase TiO2. We demonstrate that monomeric APTES chemisorption should proceed through covalent Si–O–Ti bonds. Although dimerization of the silane through Si–O–Si bonds is possible, further polymerization on the surface is scarcely probable. Terminal amino groups are expected to be partially involved in strong charge-assisted hydrogen bonds with surface hydroxyl groups of TiO2, resulting in a reduced propensity to react with other species. Solar-induced mineralization proceeds through preferential cleavage of the alkyl groups, leading to the rapid loss of the terminal NH2 moieties, whereas the Si-bearing head of APTES undergoes slower oxidation and remains bound to the surface. The suitability of employing the silane as a linker with other chemical species is discussed in the context of controlled degradation of APTES monolayers for drug release and surface patterning. PMID:28191270

  9. Hydroxy Cinnamic Acid Derivatives as Partial PPARγ agonists: In Silico Studies, Synthesis and Biological Characterization Against Chronic Myeloid Leukemia Cell Line (K562).

    PubMed

    Joshi, Hardik; Marulkar, Kavita; Gota, Vikram; Ramaa, C S

    2016-06-06

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that regulates the expression of many genes relevant to carcinogenesis. By analogy to selective estrogen receptor modulator for treatment of cancer, selective or partial PPARγ agonists are considered clinically important for chemotherapy of cancer. A series of p-coumaric (3a-3y) and ferulic acid (4a-4y) derivatives were designed and docked and virtually studied for their molecular properties. Synthesized derivatives were assessed to check their effect on non-transformed hepatocytes and further evaluated for their anti-proliferative potential on K562. Molecules 3c, 3m, 4c and 4m were found to have GI50 value less than 50μM. These molecules were found to block G0/G1 phase of cell cycle in dose dependent manner. Western blot analysis revealed that these molecules inhibit proliferating cell nuclear antigen (PCNA) and cyclin D1 expression. Collectively, these results suggest that these molecules could play a role as a novel therapeutic strategy for chronic myeloid leukemia.

  10. Monovalent mannose-based DC-SIGN antagonists: targeting the hydrophobic groove of the receptor.

    PubMed

    Tomašić, Tihomir; Hajšek, David; Švajger, Urban; Luzar, Jernej; Obermajer, Nataša; Petit-Haertlein, Isabelle; Fieschi, Franck; Anderluh, Marko

    2014-03-21

    Dendritic cell-specific, intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a C-type lectin expressed specifically on dendritic cells. It is a primary site for recognition and binding of various pathogens and thus a promising therapeutic target for inhibition of pathogen entry and subsequent prevention of immune defense cell infection. We report the design and synthesis of d-mannose-based DC-SIGN antagonists bearing diaryl substituted 1,3-diaminopropanol or glycerol moieties incorporated to target the hydrophobic groove of the receptor. The designed glycomimetics were evaluated by in vitro assay of the isolated DC-SIGN extracellular domain for their ability to compete with HIV-1 gp120 for binding to the DC-SIGN carbohydrate recognition domain. Compounds 14d and 14e, that display IC50 values of 40 μM and 50 μM, are among the most potent monovalent DC-SIGN antagonists reported. The antagonistic effect of all the synthesized compounds was further evaluated by a one-point in vitro assay that measures DC adhesion. Compounds 14d, 14e, 18d and 18e were shown to act as functional antagonists of DC-SIGN-mediated DC adhesion. The binding mode of 14d was also studied by molecular docking and molecular dynamics simulation, which revealed flexibility of 14d in the binding site and provides a basis for further optimization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN.

    PubMed

    Chao, Pin-Zhir; Hsieh, Ming-Shium; Cheng, Chao-Wen; Hsu, Tin-Jui; Lin, Yun-Tien; Lai, Chang-Hao; Liao, Chen-Chung; Chen, Wei-Yu; Leung, Ting-Kai; Lee, Fei-Peng; Lin, Yung-Feng; Chen, Chien-Ho

    2015-01-01

    Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor.

  12. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN.

    PubMed

    Yu, Lei; Shang, Shiqiang; Tao, Ran; Wang, Caiyun; Zhang, Li; Peng, Hao; Chen, Yinghu

    2017-07-01

    The pandemic influenza A (H1N1)pdm09 virus continues to be a threat to human health. Low doses of mannan-binding lectin (MBL) (<1 μg/mL) were shown not to protect against influenza A(H1N1)pdm09 infection. However, the effect of high doses of MBL has not been investigated. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) has been proposed as an alternative receptor for influenza A(H1N1)pdm09 virus. In this study, we examined the expression of DC-SIGN on DCs as well as on acute monocytic leukemia cell line, THP-1. High doses of recombinant or human MBL inhibited binding of influenza A(H1N1)pdm09 to both these cell types in the presence of complement derived from bovine serum. Further, anti-DC-SIGN monoclonal antibody inhibited binding of influenza A(H1N1)pdm09 to both DC-SIGN-expressing DCs and THP-1 cells. This study demonstrates that high doses of MBL can inhibit binding of influenza A(H1N1)pdm09 virus to DC-SIGN-expressing cells in the presence of complement. Our results suggest that DC-SIGN may be an alternative receptor for influenza A(H1N1)pdm09 virus. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. DC-SIGN promotes Japanese encephalitis virus transmission from dendritic cells to T cells via virological synapses.

    PubMed

    Wang, Ping; Li, Mei; Lu, Wei; Zhang, Di; Hu, Qinxue; Liu, Yalan

    2017-08-31

    Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host.

  14. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN

    PubMed Central

    Cheng, Chao-Wen; Hsu, Tin-Jui; Lin, Yun-Tien; Lai, Chang-Hao; Liao, Chen-Chung; Chen, Wei-Yu; Leung, Ting-Kai; Lee, Fei-Peng; Lin, Yung-Feng; Chen, Chien-Ho

    2015-01-01

    Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor. PMID:25402728

  15. Fundamental frequency from classical molecular dynamics.

    PubMed

    Yamada, Tomonori; Aida, Misako

    2015-02-07

    We give a theoretical validation for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the following questions: (1) What is the appropriate initial condition of classical MD to calculate the fundamental frequency? (2) From that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit of using ab initio MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories. As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ: one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio MD to frequency calculations of C-H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower for large molecules.

  16. Structure-property relationship of 3-(N-phthalimidomethyl)-4-amino-1,2,4-triazole-5-thione: A structural, spectroscopic and DFT study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Bhatti, Moazzam H.; Yunus, Uzma; Nadeem, Muhammad; Avcı, Davut; Atalay, Yusuf; Yaqub, Azra; Quershi, Rumana

    2017-04-01

    The title molecule, 3-(N-phthalimidomethyl)-4-amino-1,2,4-triazole-5-thione (C11H9N5O2S), was synthesized by the fusion of N-Phthaloylglycine and thiocarbohydrazide at 145 °C. In this study, we have investigated the crystal structure, photophysical properties as well as the relation between the molecular structure and nonlinear optical properties of 2-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmethyl)isoindoline-1,3-dione. For this purpose, the molecular structure, vibration spectrum, electronic absorption spectrum, 1H and 13C NMR spectra have been evaluated by both of the experimental techniques and density functional theory method. A detailed assignment of vibrational bands has been performed on the basis of potential energy distribution analysis. Additionally, UV-Vis spectrum was recorded in different solvents in order to examine the solvent effect on the electronic absorption spectrum. NBO analysis has been carried out to investigate intra-molecular charge transfer interactions. Finally, nonlinear optical properties of the title compound have been investigated by using M062X level of density functional theory.

  17. Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin.

    PubMed

    Song, Min-Jung; Kim, Sangsig; Ki Min, Nam; Jin, Joon-Hyung

    2014-02-15

    A 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TPyP)-modified self-assembled functional layer was prepared on a fluorine-doped tin oxide (FTO) substrate. We employed a bifunctional molecule, 3-iodopropionate (3IP), to covalently bind TPyP to the FTO substrate. The 3IP-monolayered FTO and the TPyP-3IP-bilayered FTO electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier transform-infrared spectroscopy. Compared to conventional electropolymerized poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate) (PEDOT:PSS) film on bare FTO, the PEDOT:PSS film on the TPyP-3IP-bilayered FTO showed better sensitivity and selectivity in monitoring serotonin in the presence of high concentrations of interfering agents such as ascorbic acid, urea, D-(+)-glucose, epinephrine, and L-3,4-dihydroxyphenylalanine. Both PEDOT:PSS films on the bare FTO and the TPyP-3IP-bilayered FTO showed electrocatalytic effects in serotonin detection, and only the TPyP-3IP-based PEDOT:PSS film acted as a pH resistant buffer layer in the selective detection of serotonin.

  18. Host-guest interaction of 3-hydroxyflavone and 7-hydroxyflavone with cucurbit [7]uril: A spectroscopic and calorimetric approach.

    PubMed

    Ahmed, Sayeed Ashique; Maity, Banibrata; Duley, Soma Seth; Seth, Debabrata

    2017-03-01

    The modulation of photophysical behaviour of small organic molecules in the presence of macrocycles is one of the most interesting areas of research. In this work we reported the interaction of two biologically active molecules 3-hydroxyflavone and 7-hydroxyflavone with macrocyclic host cucurbit [7]uril in aqueous medium. To investigate the change of photophysical properties of these two flavones, we have used steady state absorption, fluorescence, time resolved fluorescence emission spectroscopy and isothermal titration calorimetric technique. It is observed that on complexation with cucurbit [7]uril, the excited state proton transfer processes in both flavones have been facilitated. Isothermal titration calorimetric method was used in order to investigate the involvement of thermodynamic parameters in complexation between flavone with cucurbit [7]uril. The changes in thermodynamic properties due to the complexation of the flavones molecules with cucurbit [7]urils help to understand about the governing parameters involved in this complexation. The inclusion of flavone molecules inside the cavity of cucurbit [7]uril molecules was studied theoretically to decipher the molecular orientation of flavones in the presence of cucurbit [7]uril. The structure of HOMO and LUMO of the complexes between cucurbit [7]uril with flavones was reported. This study will be helpful to get the knowledge about the modulation of photophysical properties of the flavones molecules on addition of macrocyclic host cucurbit [7]uril. This study will be helpful for the use of cucurbit [7]uril as a potential drug delivery system.

  19. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  20. Quantitative analysis of 3-OH oxylipins in fermentation yeast.

    PubMed

    Potter, Greg; Xia, Wei; Budge, Suzanne M; Speers, R Alex

    2017-02-01

    Despite the ubiquitous distribution of oxylipins in plants, animals, and microbes, and the application of numerous analytical techniques to study these molecules, 3-OH oxylipins have never been quantitatively assayed in yeasts. The formation of heptafluorobutyrate methyl ester derivatives and subsequent analysis with gas chromatography - negative chemical ionization - mass spectrometry allowed for the first determination of yeast 3-OH oxylipins. The concentration of 3-OH 10:0 (0.68-4.82 ng/mg dry cell mass) in the SMA strain of Saccharomyces pastorianus grown in laboratory-scale beverage fermentations was elevated relative to oxylipin concentrations in plant tissues and macroalgae. In fermenting yeasts, the onset of 3-OH oxylipin formation has been related to fermentation progression and flocculation initiation. When the SMA strain was grown in laboratory-scale fermentations, the maximal sugar consumption rate preceded the lowest concentration of 3-OH 10:0 by ∼4.5 h and a distinct increase in 3-OH 10:0 concentration by ∼16.5 h.

  1. Zero-Mode Waveguide detection of biomolecules transport through artificial nanopores and nuclear pore complexes

    NASA Astrophysics Data System (ADS)

    Auger, Thomas; Auvray, Loic; Montel, Fabien

    We have developed a novel single molecule optical observation method using a custom Zero-Mode Waveguide setup to study the translocation of biopolymers through artificial and biological nanopores. Our work focuses on two aspects. First we monitored the flow driven injection of DNA molecules through solid state nanopores and showed that DNA starts translocating over a flow threshold independent of the pore radius, the DNA concentration and length. We demonstrate that the translocation is controlled by an energy barrier as proposed by the de Gennes - Brochard suction model. The height of the energy barrier can be modulated by functionalizing the nanopores with PEG-Thiols. More recently we adapted our setup to the study of transport through the nuclear pore complex (NPC) using extracted nuclear membranes from Xenopus Laevis oocytes. We aim at probing the conformation of unstructured proteins - the FG-Nucleoporins - crowding the central channel of the NPC by monitoring the free diffusion of small Dextran molecules (3kDa). We have been able to estimate the radius of the central pore of the NPC. We want to study the effects of transporter molecules, which have a high affinity for the FG-Nups, on the central pore size and correlate it to the conformation of FG-Nups.

  2. Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods

    NASA Astrophysics Data System (ADS)

    He, Fu-An; Fan, Jin-Tu; Song, Fei; Zhang, Li-Ming; Lai-Wa Chan, Helen

    2011-03-01

    In this work, we developed two novel strategies to attach metal nanoparticles (Au and Ag) to the surface of graphene nanosheets, in which graphene oxide was first modified by the linking molecule (3-mercaptopropyl)triethoxysilane and then subjected to different treatments including in situ and self-assembled techniques. The synthesis processes and the resulting hybrids were investigated by ultraviolet-visible measurements, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that both approaches could effectively immobilize metal nanoparticles onto a graphene surface, and that better distribution and size control of metal nanoparticles were obtained by the self-assembled method. Moreover, we prepared poly(vinylidene fluoride)/graphene-Ag nanocomposites by a solution blending method. The AC conductivity of the resulting nanocomposites could be increased significantly when the loading amount of graphene-Ag was only 2 wt%. We expect that such graphene-metal nanoparticle hybrids may be potentially useful in composite reinforcement, sensors, and electronic devices.

  3. Metal Ion Enhanced Charge Transfer in a Terpyridine-bis-Pyrene System

    PubMed Central

    D'Aléo, Anthony; Cecchetto, Elio; De Cola, Luisa; Williams, René M.

    2009-01-01

    The synthesis, electrochemical and photophysical properties of a branched molecule 3,5-bis(pyrene-1-yl)-4′-phenyl-2,2′:6′,2″-terpyridine are reported. Spectroscopy in different solvents reveals that an optical electron transfer from the pyrene donor to the terpyridyl electron acceptor can occur in polar media, as the system displays both charge transfer (CT) absorption and CT emission. Furthermore, the study of the zinc complex as well as the bis-protonated form shows an enhancement of the electron transfer character of the system, by an increase of the acceptor strength. This is accompanied by a large increase of the non-radiative processes. With sub-nanosecond transient absorption spectroscopy, the CT state, consisting of the pyrene radical cation and the terpyridine radical anion, has been detected. At room temperature, the study of the nanosecond transient absorption spectra reveals the formation of a low-lying triplet excited state that we attribute to the pyrene moiety through which the CT state decays. At 77K, the absence of the terpyridine triplet emission also suggests the population of a low-lying triplet state of the pyrene unit. PMID:22412328

  4. Dual impact of chronic liver disease and amaebiasis on immunopathogenesis of primary osteoarthritis in Egyptians.

    PubMed

    El-Dardiry, Samia A; Shafik, Sherine R; Wagih, Ayman; Amir, El-Amir M; El-Yamany, Sahar; Selim, Sahar; Amr, Yaser; Hawas, Samir El-Sayed

    2007-08-01

    Sixty cases with primary knee OA were equally categorized into six groups with EHI (Gs 1, 2, 3) or without (Gs 4, 5, 6). GI included cases with HCV, GII cases with RHS & HCV and GIII cases with a history of non-active schistosomiasis whereas Gs 4, 5 & 6 included cases without EHI. Clinical examination with inclusion criteria of pathological manifestations w\\as associated with biochemical evaluation of adhesion molecules (E-selectin, P-selectin, intracellular adhesion molecule-3 "ICAM-3") in plasma and synovial fluid. Synovial fluid indices (IgG, IgA, IgM, & C3) were evaluated as well as indices of inflammation and oxidative stress (Beta 2 microglobulin, Haptaglobulin, fibronectin, total thiol, superoxide dismutase, thiobarbituric acid reactive substance & hyaluronan) in synovial fluid and indices activating fibrogenesis in serum and plasma (procollagen III, plasma prolidase, Interleukin-1 beta, Interleukin-6 & TNF alpha). The results showed a positive relationship between indices activating vascular damage, fibrogenesis and immuno-inflammatory response with higher change magnitude in EHI cases particularly with combined HCV & RHS. This implement the dual role of hepatic insult and intestinal amoebiasis on immune mediated mechanisms activating inflammatory response in OA cases reflecting common signaling pathways associated with pathogenesis of multifaceted origin.

  5. E-cadherin interactions are required for Langerhans cell differentiation

    PubMed Central

    Mayumi, Nobuko; Watanabe, Eri; Norose, Yoshihiko; Watari, Eiji; Kawana, Seiji; Geijtenbeek, Teunis B H; Takahashi, Hidemi

    2013-01-01

    Human skin contains the following two distinct DC subsets: (i) Langerhans cells (LCs), expressing Langerin but not DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), are predominantly localized in the epidermis; and (ii) dermal DCs, expressing DC-SIGN but not Langerin, are observed mainly in the dermis. It is not known whether localization in the epidermis provides cues for LC differentiation. Here, we show that E-cadherin expressed by epidermal keratinocytes (KCs) is crucial for differentiation of LCs. Monocytes differentiated into LC-like cells in presence of IL-4, GM-CSF, and TGF-β1. However, these LC-like cells expressed not only Langerin but also DC-SIGN. Notably, co-culturing of these LC-like cells with KCs expressing E-cadherin or recombinant E-cadherin strongly decreased expression of DC-SIGN and further induced a phenotype similar to purified epidermal LCs. Moreover, pretreatment of LC-like cells with anti-E-cadherin-specific antibody completely abolished their Langerin expression, indicating the requirement of E-cadherin–E-cadherin interactions for the differentiation into Langerin+ cells. These findings suggest that E-cadherin expressed by KCs provide environmental cues that induce differentiation of LCs in the epidermis. PMID:23135957

  6. Glycolipid-based TLR4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties.

    PubMed

    Ciaramelli, Carlotta; Calabrese, Valentina; Sestito, Stefania E; Pérez-Regidor, Lucia; Klett, Javier; Oblak, Alja; Jerala, Roman; Piazza, Matteo; Martín-Santamaría, Sonsoles; Peri, Francesco

    2016-08-01

    The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has been used as scaffold to design new potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex (membrane TLR4.MD-2 dimer and CD14). The primary amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 receptors, has been exploited to covalently attach a fluorescein (molecules 1 and 2) or to link two molecules of IAXO-102 through diamine and diammonium spacers, obtaining 'dimeric' molecules 3 and 4. The structure-based rational design of compounds 1-4 was guided by the optimization of MD-2 and CD14 binding. Compounds 1 and 2 inhibited TLR4 activation, in a concentration-dependent manner, and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages by molecule 1 was inhibited by LPS and was also abrogated when cell surface proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 1 with membrane proteins of the TLR4 receptor system.

  7. Histology-directed and imaging mass spectrometry: an emerging technology in ectopic calcification

    PubMed Central

    De Santis, Giorgio; Caprioli, Richard M; Quaglino, Daniela

    2015-01-01

    The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets. PMID:25595835

  8. The expression of the hepatocyte SLAMF3 (CD229) receptor enhances the hepatitis C virus infection.

    PubMed

    Cartier, Flora; Marcq, Ingrid; Douam, Florian; Ossart, Christèle; Regnier, Aline; Debuysscher, Véronique; Lavillette, Dimitri; Bouhlal, Hicham

    2014-01-01

    Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3) in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes.

  9. Proton and orientational mobility in ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Devlin, J. Paul; Buch, Victoria

    2001-03-01

    At temperatures below 150 K, molecular-level motion within pure ice is reduced to proton and orientational (Bjerrum) defect activity. The nature of point-defect activities within micron-thick films of cubic ice is known from FTIR observations of isotopic exchange induced by such motion (i.e., for crystalline H2O ice containing intact isolated D2O molecules [1,2]). Isotopic exchange can be similarly monitored for large ice clusters ranging from 6 to 40 nm in diameter (3400 to a million molecules) [3]. By adsorbing HCl on the cluster surface, or by including HCl within each cluster, irreversible isotopic exchange is induced at and above 110 K. Details of this exchange provide answers to two interesting questions: 1) how is the orientational activity influenced by the nearby cluster surfaces and 2) are protons confined to the ice surface region? Not surprisingly, the orientational activity increases significantly with decreasing particle size. Although subject to shallow trapping [2], protons released at the surface are observed to move effectively throughout the clusters. 1. W. B. Collier, G. Ritzhaupt and J. P. Devlin, J. Phys. Chem. 88, 363 (1984). 2. P. J. Wooldridge and J. P. Devlin, J. Chem. Phys. 88, 3086 (1988). 3. J. P. Devlin, C. Joyce and V. Buch, J. Phys. Chem. A 104, 1974 (2000).

  10. Nitric oxide and carbon monoxide antagonize TGF-β through ligand-independent internalization of TβR1/ALK5.

    PubMed

    Hovater, Michael B; Ying, Wei-Zhong; Agarwal, Anupam; Sanders, Paul W

    2014-09-15

    Transforming growth factor (TGF)-β plays a central role in vascular homeostasis and in the pathology of vascular disease. There is a growing appreciation for the role of nitric oxide (NO) and carbon monoxide (CO) as highly diffusible, bioactive signaling molecules in the vasculature. We hypothesized that both NO and CO increase endocytosis of TGF-β receptor type 1 (TβR1) in vascular smooth muscle cells (VSMCs) through activation of dynamin-2, shielding cells from the effects of circulating TGF-β. In this study, primary cultures of VSMCs from Sprague-Dawley rats were treated with NO-releasing molecule 3 (a NO chemical donor), CO-releasing molecule 2 (a CO chemical donor), or control. NO and CO stimulated dynamin-2 activation in VSMCs. NO and CO promoted time- and dose-dependent endocytosis of TβR1. By decreasing TβR1 surface expression through this dynamin-2-dependent process, NO and CO diminished the effects of TGF-β on VSMCs. These findings help explain an important mechanism by which NO and CO signal in the vasculature by decreasing surface expression of TβR1 and the cellular response to TGF-β.

  11. Neutron Diffraction Studies of Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Zhao, Yusheng; Xu, Hongwu; Daemen, Luc L.

    2008-10-01

    Gas sorption measurements show that a highly stable porous lanthanide metal-organic framework can take up hydrogen of about 2.1 wt. % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 å, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2-loadings (5.5 H2 molecules (3.7 wt. %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic frameworks (RMOFs) materials for practical hydrogen storage applications.

  12. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs.

  13. Noninvasive detection of weapons of mass destruction using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Campbell, Matthew B.; Heilweil, Edwin J.

    2003-08-01

    The growing and immediate threat of biological and chemical weapons has placed urgency on the development of chemical and biological warfare agent (CWA/BWA) screening devices. Specifically, the ability to detect CWA/BWA prior to deployment is paramount to mitigating the threat without exposing individuals to its effects. SPARTA, Inc. and NIST are currently investigating the feasibility of using far-infrared radiation, or terahertz (THz, 1 THz = 1012 Hz) radiation, to non-invasively detect biological and chemical agents, explosives and drugs/narcotics inside sealed containers. Small-to-medium sized molecules (3-100 atoms) in gas, liquid and solid phases consistently exhibit identifiable spectral features in the far-IR portion of the spectrum. Many compounds associated with weapons of mass destruction are made up of molecules of this size. The THz portion of the spectrum lies between visible light and radio waves, allowing for partial transmission of 0.3-10.0 THz (30-1000 μm, 10-330 cm-1) light through most common materials. Therefore, transmission measurements of THz light can potentially be used to non-invasively detect the presence of CWA/BWA, explosives and drugs in the pathway of a THz radiation beam.

  14. Synthesis of aluminum hydrazides by hydroalumination of 2,3-diazabutadienes--formation of an Al4(N2)3 cage compound and an Al3(N2)3 macrocyclic ligand.

    PubMed

    Uhl, W; Molter, J; Neumüller, B

    2001-04-01

    Treatment of 1,1,4,4-tetramethyl-2,3-diazabutadiene with the alane adduct [AlH3(NMe2Et)] yielded the hydrazine derivative (AlH2)2-(AlH)2(N2iPr2)3 (1) by the hydroalumination of both C N double bonds. Compound 1 has a complicated cage structure formed by three hydrazido groups and four aluminium atoms. As a particularly interesting structural motif it contains a N-N group side-on-coordinated to one aluminium atom through its lone pairs of electrons. Sublimation of 1 gave a heterocubane-type compound (HAlNiPr)4 (2) by the complete cleavage of all N-N bonds, one face of which is bridged by weakly coordinated diisopropyldiazene with a N-N double bond. Repeated sublimation gave the pure, unsupported heterocubane molecule 3. Heating of the rough product of the reaction of alane and diazabutadiene to 90 degrees C in a closed vessel yielded another product Al(AlH2)3(N2iPr2)3 (4), which contains a cyclic chelating ligand formed by three hydrazido groups and three aluminium atoms. This heterocycle coordinates a fourth aluminum atom in the molecular center by close contacts to all six nitrogen atoms. A strongly flattened, distorted octahedral coordination sphere results for the inner metal atom.

  15. An Investigation of the Dipole Forbidden Transition Effects in Bromofluorocarbons as it Pertains to 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE Using Cp-Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marshall, Frank E.; Moon, Nicole; Persinger, Thomas D.; Gillcrist, David Joseph; Shreve, N. E.; Bailey, William C.; Grubbs, G. S., II

    2017-06-01

    As part of a series of bromofluorocarbon species and analogues, the microwave spectrum of the molecule 3-bromo-1,1,1,2,2-pentafluoropropane has been measured on a CP-FTMW spectrometer located at Missouri S&T. The resultant spectrum is dense with transitions occurring at a rate of ≈1 transition/MHz! Within the spectrum, ^{79}Br and ^{81}Br isotopologues of multiple conformers of 3-bromo-1,1,1,2,2-pentafluoropropane have been identified. Rotational constants, centrifugal distortion parameters, nuclear quadrupole coupling constants and how each compare with theory for each conformer will be discussed. Due to the large quadrupolar moment of bromine, heavy, brominated molecules are good candidates for dipole-forbidden transitions. Previous studies with bromoperfluoroacetone provided a rich spectrum full of dipole forbidden transitions that 3-bromo-1,1,1,2,2-pentafluoropropane does not share. This difference will be explained using structural considerations along with the matrix elements needed to enact these transitions. F. E. Marshall, D. J. Gillcrist, T. D. Persinger, S. Jaeger, C. C. Hurley, N. E. Shreve, N. Moon, and G. S. Grubbs II, J. Mol. Spectrosc. 328 (2016) 59.

  16. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    PubMed

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. Entangled states decoherence in coupled molecular spin clusters

    NASA Astrophysics Data System (ADS)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  18. MXene: a new family of promising hydrogen storage medium.

    PubMed

    Hu, Qianku; Sun, Dandan; Wu, Qinghua; Wang, Haiyan; Wang, Libo; Liu, Baozhong; Zhou, Aiguo; He, Julong

    2013-12-27

    Searching for reversible hydrogen storage materials operated under ambient conditions is a big challenge for material scientists and chemists. In this work, using density functional calculations, we systematically investigated the hydrogen storage properties of the two-dimensional (2D) Ti2C phase, which is a representative of the recently synthesized MXene materials ( ACS Nano 2012 , 6 , 1322 ). As a constituent element of 2D Ti2C phase, the Ti atoms are fastened tightly by the strong Ti-C covalent bonds, and thus the long-standing clustering problem of transition metal does not exist. Combining with the calculated binding energy of 0.272 eV, ab initio molecular dynamic simulations confirmed the hydrogen molecules (3.4 wt % hydrogen storage capacity) bound by Kubas-type interaction can be adsorbed and released reversibly under ambient conditions. Meanwhile, the hydrogen storage properties of the other two MXene phases (Sc2C and V2C) were also evaluated, and the results were similar to those of Ti2C. Therefore, the MXene family including more than 20 members was expected to be a good candidate for reversible hydrogen storage materials under ambient conditions.

  19. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  20. The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa.

    PubMed

    Lou, Z; Wang, H; Tang, Y; Chen, X

    2017-03-01

    This study aimed to evaluate the effect of a fraction of burdock (Arctium lappa L.) leaf on the initial adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. Antibiofilm activity of the burdock leaf fraction was studied by the method of crystal violet staining. When the concentration of the burdock leaf fraction was 2·0 mg ml(-1) , the inhibition rates on biofilm formation of P. aeruginosa were 100%. The burdock leaf fraction was found to inhibit the formation of biofilm by reducing bacterial surface hydrophobicity, decreasing bacterial aggregation ability and inhibiting swarming motility. Interestingly, the burdock leaf fraction inhibited the secretion of quorum-sensing (QS) signalling molecule 3-oxo-C12-HSL and interfered quorum sensing. Moreover, the QS-regulated pyocyanin and elastase were also inhibited. Chemical composition analysis by UPLC-MS showed 11 active compounds in the burdock leaf fraction. The burdock leaf fraction significantly inhibited the formation of biofilm and quorum sensing, as well as significantly decreased the content of virulence factors. This study introduces a natural and effective bacterial biofilm inhibitor, which could also significantly decrease the content of virulence factors and the drug resistance of P. aeruginosa. © 2016 The Society for Applied Microbiology.

  1. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans.

    PubMed

    Brzezicka, Katarzyna; Echeverria, Begoña; Serna, Sonia; van Diepen, Angela; Hokke, Cornelis H; Reichardt, Niels-Christian

    2015-05-15

    The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.

  2. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age

    PubMed Central

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Riera, Joan; Drobnic, Franchek; Tur, Josep Antoni; Pons, Antoni

    2016-01-01

    n-3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs). Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα) levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs), soluble Intercellular adhesion molecule 3 (sICAM3) and soluble L-selectin (sL-Selectin), and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group. PMID:27735833

  3. Bile Acids and Bicarbonate Inversely Regulate Intracellular Cyclic di-GMP in Vibrio cholerae

    PubMed Central

    Koestler, Benjamin J.

    2014-01-01

    Vibrio cholerae is a Gram-negative bacterium that persists in aquatic reservoirs and causes the diarrheal disease cholera upon entry into a human host. V. cholerae employs the second messenger molecule 3′,5′-cyclic diguanylic acid (c-di-GMP) to transition between these two distinct lifestyles. c-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and hydrolyzed by phosphodiesterase (PDE) enzymes. Bacteria typically encode many different DGCs and PDEs within their genomes. Presumably, each enzyme senses and responds to cognate environmental cues by alteration of enzymatic activity. c-di-GMP represses the expression of virulence factors in V. cholerae, and it is predicted that the intracellular concentration of c-di-GMP is low during infection. Contrary to this model, we found that bile acids, a prevalent constituent of the human proximal small intestine, increase intracellular c-di-GMP in V. cholerae. We identified four c-di-GMP turnover enzymes that contribute to increased intracellular c-di-GMP in the presence of bile acids, and deletion of these enzymes eliminates the bile induction of c-di-GMP and biofilm formation. Furthermore, this bile-mediated increase in c-di-GMP is quenched by bicarbonate, the intestinal pH buffer secreted by intestinal epithelial cells. Our results lead us to propose that V. cholerae senses distinct microenvironments within the small intestine using bile and bicarbonate as chemical cues and responds by modulating the intracellular concentration of c-di-GMP. PMID:24799624

  4. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics.

    PubMed

    Peleg, Anton Y; Jara, Sebastian; Monga, Divya; Eliopoulos, George M; Moellering, Robert C; Mylonakis, Eleftherios

    2009-06-01

    Nonmammalian model systems of infection such as Galleria mellonella (caterpillars of the greater wax moth) have significant logistical and ethical advantages over mammalian models. In this study, we utilize G. mellonella caterpillars to study host-pathogen interactions with the gram-negative organism Acinetobacter baumannii and determine the utility of this infection model to study antibacterial efficacy. After infecting G. mellonella caterpillars with a reference A. baumannii strain, we observed that the rate of G. mellonella killing was dependent on the infection inoculum and the incubation temperature postinfection, with greater killing at 37 degrees C than at 30 degrees C (P = 0.01). A. baumannii strains caused greater killing than the less-pathogenic species Acinetobacter baylyi and Acinetobacter lwoffii (P < 0.001). Community-acquired A. baumannii caused greater killing than a reference hospital-acquired strain (P < 0.01). Reduced levels of production of the quorum-sensing molecule 3-hydroxy-C(12)-homoserine lactone caused no change in A. baumannii virulence against G. mellonella. Treatment of a lethal A. baumannii infection with antibiotics that had in vitro activity against the infecting A. baumannii strain significantly prolonged the survival of G. mellonella caterpillars compared with treatment with antibiotics to which the bacteria were resistant. G. mellonella is a relatively simple, nonmammalian model system that can be used to facilitate the in vivo study of host-pathogen interactions in A. baumannii and the efficacy of antibacterial agents.

  5. Extraction of trivalent lanthanides and actinides by a synergistic mixture of thenoyltrifluoroacetone and a linear polymer

    SciTech Connect

    Ensor, D.D.; Shah, A.H.

    1984-01-01

    Mixtures of a linear polyether, K-5, and thenoyltrifluoroacetone, HTTA, have been shown to exhibit synergistic character in the extraction of trivalent lanthanides and actinides. The effect of the addition of K-5 to the organic phase on the extractions of Ce(III), Eu(III), Tm(III), Am(III), Cm(III), Bk(III), and Cf(III) by HTTA in chloroform from 0.5M NaNO/sub 3/ at 25/sup 0/C has been measured. These results indicate the extraction is enhanced by the formation of an adduct containing one metal molecule, 3 TTA molecules, and one K-5 molecule in the organic phase. The organic phase stability constants for the formation of these synergistic species have been calculated for all the metals studied. The magnitude of these organic phase stability constants for K-5 are similar to other common neutral donors. The order of stability does not follow the normal trend based on charge-to-radius ratio, but follows a pattern based on size, with Am(III) being the most stable.

  6. Epoxidation of plasmalogens: source for long-chain alpha-hydroxyaldehydes in subcellular fractions of bovine liver.

    PubMed Central

    Loidl-Stahlhofen, A; Hannemann, K; Felde, R; Spiteller, G

    1995-01-01

    1. Masked long-chain alpha-hydroxyaldehydes were trapped in all subcellular fractions of bovine liver by application of pentafluorbenzyloxime derivatization [van Kuijk, Thomas, Stephens and Dratz (1986) Biochem. Biophys. Res. Commun. 139, 144-149] and quantified via GLC/MS using characteristic ion traces. 2. The chain-length profile of long-chain 2-hydroxyalkanales clearly indicates their relationship to plasmalogens as precursor molecules. 3. The previously postulated existence of alpha-acyloxyplasmalogens as precursor molecules of masked long-chain alpha-hydroxyaldehydes in bovine tissue lipids [Lutz and Spiteller (1991) Liebigs Ann. Chem. 1991, 563-567] was excluded. 4. The constant oxidation rate of plasmalogens in all subcellular fractions provides conclusive evidence for a non-enzymic plasmalogen epoxidation process (probably via hydroperoxy radicals). 5. The high reactivity of alpha-hydroxyaldehydes sheds some doubt on the postulation that plasmalogens protect mammalian cells against oxidative stress as postulated previously [Morand, Zoeller and Raetz (1988) J. Biol. Chem. 263, 11590-11596; Morand, Zoeller and Raetz (1988) J. Biol. Chem. 263, 11597-11606]. Images Figure 4 PMID:7639697

  7. Interaction of L-SIGN with hepatitis C virus envelope protein E2 up-regulates Raf-MEK-ERK pathway.

    PubMed

    Zhao, Lan-Juan; Wang, Wen; Ren, Hao; Qi, Zhong-Tian

    2013-07-01

    Liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN) facilitates hepatitis C virus (HCV) infection through interaction with HCV envelope protein E2. Signaling events triggered by the E2 via L-SIGN are poorly understood. Here, kinase cascades of Raf-MEK-ERK pathway were defined upon the E2 treatment in NIH3T3 cells with stable expression of L-SIGN. The E2 bound to the cells through interaction with L-SIGN and such binding subsequently resulted in phosphorylation and activation of Raf, MEK, and ERK. Blockage of L-SIGN with antibody against L-SIGN reduced the E2-induced phosphorylation of Raf, MEK, and ERK. In the cells infected with cell culture-derived HCV, phosphorylation of these kinases was enhanced by the E2. Up-regulation of Raf-MEK-ERK pathway by HCV E2 via L-SIGN provides new insights into signaling cascade of L-SIGN, and might be a potential target for control and prevention of HCV infection.