Science.gov

Sample records for mucronatum ectoprocta gymnolaemata

  1. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida).

    PubMed

    Hausdorf, Bernhard; Helmkampf, Martin; Nesnidal, Maximilian P; Bruchhaus, Iris

    2010-06-01

    We produced two new EST datasets of so far uncovered clades of ectoprocts to investigate the phylogenetic relationships within the lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida. Maximum-likelihood analyses based on 78 ribosomal proteins of 62 metazoan taxa support the monophyly of Ectoprocta and a sister group relationship of Phylactolaemata living in freshwater and the mainly marine Gymnolaemata. Hypotheses suggesting that Ectoprocta is diphyletic with phylactolaemates forming a clade with phoronids or paraphyletic with respect to Entoprocta could be rejected by topology tests. The hypotheses that Stenolaemata are the sister group of all other ectoprocts, that Stenolaemata constitutes a monophyletic group with Cheilostomata, and that Phylactolaemata have been derived from Ctenostomata could also be excluded. However, the hypothesis that Phylactolaemata and Stenolaemata form a monophyletic group could not be rejected. Brachiopoda and Phoronida constitute a monophylum, Brachiozoa. The hypotheses that phoronids are the sister group of articulate or inarticulate brachiopods could be rejected by topology tests, thus confirming the monophyly of Brachiopoda.

  2. Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa

    PubMed Central

    Jang, Kuem Hee; Hwang, Ui Wook

    2009-01-01

    Background The phylogenetic position of Bryozoa is one of the most controversial issues in metazoan phylogeny. In an attempt to address this issue, the first bryozoan mitochondrial genome from Flustrellidra hispida (Gymnolaemata, Ctenostomata) was recently sequenced and characterized. Unfortunately, it has extensive gene translocation and extremely reduced size. In addition, the phylogenies obtained from the result were conflicting, so they failed to assign a reliable phylogenetic position to Bryozoa or to clarify lophophorate phylogeny. Thus, it is necessary to characterize further mitochondrial genomes from slowly-evolving bryozoans to obtain a more credible lophophorate phylogeny. Results The complete mitochondrial genome (15,433 bp) of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata), one of the most widely distributed cheliostome bryozoans, is sequenced. This second bryozoan mitochondrial genome contains the set of 37 components generally observed in other metazoans, differing from that of F. hispida (Bryozoa, Gymnolaemata, Ctenostomata), which has only 36 components with loss of tRNAser(ucn) genes. The B. neritina mitochondrial genome possesses 27 multiple noncoding regions. The gene order is more similar to those of the two remaining lophophorate phyla (Brachiopoda and Phoronida) and a chiton Katharina tunicate than to that of F. hispida. Phylogenetic analyses based on the nucleotide sequences or amino acid residues of 12 protein-coding genes showed consistently that, within the Lophotrochozoa, the monophyly of the bryozoan class Gymnolaemata (B. neritina and F. hispida) was strongly supported and the bryozoan clade was grouped with brachiopods. Echiura appeared as a subtaxon of Annelida, and Entoprocta as a sister taxon of Phoronida. The clade of Bryozoa + Brachiopoda was clustered with either the clade of Annelida-Echiura or that of Phoronida + Entoprocta. Conclusion This study presents the complete mitochondrial genome of a cheliostome bryozoan, B

  3. Podophyllotoxin and 6-methoxy podophyllotoxin Production in Hairy Root Cultures of Liunm mucronatum ssp. mucronatum

    PubMed Central

    Samadi, Afsaneh; Jafari, Morad; Nejhad, Nasim Mohammad; Hossenian, Farah

    2014-01-01

    Aim: Two bacterial strains of Agrobacterium rhizogenes, A13 and 9534 were evaluated for induction of transformed hairy roots in Linum mucronatum ssp. mucronatum, a high value medicinal plant. Materials and Methods: The hairy roots were successfully initiated, through infecting the hypocotyl and root explants and the A13 strain performed a high transformation frequency for hairy roots induction. Transgenic status of hairy roots was confirmed by polymerase chain reaction (PCR) analysis of the rol genes. Growth kinetics of transgenic roots induced by two strains indicated a similar pattern of growth, with maximum growth occurring between 42 to 56 days. The lignan contents in hairy roots were analyzed using high-performance liquid chromatography (HPLC) method. Results: Transformed cultures showed significant differences (P < 0.05) in lignan content. The highest amount of Podophyllotoxin (PTOX, 5.78 mg/g DW) and 6-methoxy podophyllotoxin (MPTOX, 49.19 mg/g DW) was found in transformed lines induced by strain A13, which was four times higher than those of non-transformed roots. The results showed that hairy root cultures of L. mucronatum are rich sources of MPTOX. Conclusion: hairy root cultures from L. mucronatum can be used as a useful system for scale-up producing MPTOX and precursors for the production of antitumor agents in substitution with PTOX by considering the appropriate optimizations in future studies. PMID:24914281

  4. The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    PubMed Central

    2011-01-01

    Background The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences. Results The complete mitochondrial genome (16,089 bp) of Flustra foliacea (Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. Flustra shares long intergenic sequences with the cheilostomate ectoproct Bugula, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of Flustra differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships. Conclusion The contradictory and usually weakly supported phylogenetic

  5. Myoanatomy and serotonergic nervous system of the ctenostome Hislopia malayensis: evolutionary trends in bodyplan patterning of ectoprocta

    PubMed Central

    2011-01-01

    Background Ectoprocta is a large lophotrochozoan clade of colonial suspension feeders comprising over 5.000 extant species. Their phylogenetic position within the Lophotrochzoa remains controversially discussed, but also the internal relationships of the major ectoproct subclades -Phylactolaemata, Stenolaemata, and Gymnolaemata - remains elusive. To gain more insight into the basic configuration of ectoproct muscle systems for phylogenetic considerations, we analysed the adult myoanatomy and the serotonergic nervous system as well as myogenesis in budding stages of the ctenostome Hislopia malayensis. Results In adults, the serotonergic nervous system is restricted to the lophophoral base with a high concentration in the cerebral ganglion and serotonergic perikarya between each pair of tentacles. Prominent smooth apertural muscles extend from the basal cystid wall to each lateral side of the vestibular wall. The musculature of the tentacle sheath consists of regular strands of smooth longitudinal muscles. Each tentacle is supplied with two bands of longitudinal muscles that show irregular striation. At the lophophoral base several muscles are present: (i) Short muscle fibres that proximally diverge from a single point from where they split distally into two separate strands. (ii) Proximally of the first group are smooth, longitudinal fibres that extend to the proximal-most side of the lophophoral base. (iii) Smooth muscle fibres, the buccal dilatators, traverse obliquely towards the pharynx, and (iv) a circular ring of smooth muscle fibres situated distally of the buccal dilatators. Retractor muscles are mainly smooth with short distal striated parts. The foregut consists mainly of striated ring musculature with only few longitudinal muscle fibres in the esophagus, while the remaining parts of the digestive tract solely exhibit smooth musculature. During budding, apertural and retractor muscles are first to appear, while the parietal muscles appear at a later stage

  6. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.

  7. [Life cycle of Gongylonema mucronatum Seurat, 1916, parasite of the African hedge-hog (author's transl)].

    PubMed

    Quentin, J C; Seguignes, M

    1979-01-01

    The Gongylonematid Nematode parasite of the Tunisian hedge-hog has been identified as Gongylonema mucronatum Seurat, 1916. The infective larva has been obtained from Locusta migratoria as intermediate host. The larval characters of this Gongylonema link it to the species G. pulchrum.

  8. Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta.

    PubMed

    Hausdorf, Bernhard; Helmkampf, Martin; Meyer, Achim; Witek, Alexander; Herlyn, Holger; Bruchhaus, Iris; Hankeln, Thomas; Struck, Torsten H; Lieb, Bernhard

    2007-12-01

    Phylogenetic analyses based on 79 ribosomal proteins of 38 metazoans, partly derived from 6 new expressed sequence tag projects for Ectoprocta, Entoprocta, Sipuncula, Annelida, and Acanthocephala, indicate the monophyly of Bryozoa comprising Ectoprocta and Entoprocta, 2 taxa that have been separated for more than a century based on seemingly profound morphological differences. Our results also show that bryozoans are more closely related to Neotrochozoa, including molluscs and annelids, than to Syndermata, the latter comprising Rotifera and Acanthocephala. Furthermore, we find evidence for the position of Sipuncula within Annelida. These findings suggest that classical developmental and morphological key characters such as cleavage pattern, coelomic cavities, gut architecture, and body segmentation are subject to greater evolutionary plasticity than traditionally assumed.

  9. Freshwater and brackish bryozoan species of Croatia (Bryozoa: Gymnolaemata, Phylactolaemata) and their genetic identification.

    PubMed

    Franjević, Damjan; Novosel, Maja; Koletić, Nikola

    2015-10-15

    Freshwater and brackish species of bryozoans belong to the Phylactolaemata and Gymnolaemata class. Twelve species of bryozoans were recorded and morphologically determined at eight locations in the Black Sea and the Adriatic basin in Croatia. Twelve species of Bryozoa have been listed in the taxonomic index for Croatia (Conopeum seurati, Lophopus crystallinus Paludicella articulata, Cristatella mucedo, Fredericella sultana, Hyalinella punctata, Plumatella casmiana, Plumatella emarginata, Plumatella fruticosa, Plumatella fungosa, Plumatella geimermassardi and Plumatella repens). For the purposes of gene identification of recorded species, molecular markers for nuclear 18S and 28S genes, ITS2 region and mitochondrial COI gene were amplified. Genetic identifications of morphologically determined bryozoan species were confirmed using highly similar sequences local alignment analysis. Proliferation of freshwater bryozoan species over long distances with the help of the vector animals was confirmed by defining haplotypes on the base of 18S, 28S and ITS2 sequences associated with the Black Sea-Mediterranean waterfowl flyway.

  10. Freshwater and brackish bryozoan species of Croatia (Bryozoa: Gymnolaemata, Phylactolaemata) and their genetic identification.

    PubMed

    Franjević, Damjan; Novosel, Maja; Koletić, Nikola

    2015-01-01

    Freshwater and brackish species of bryozoans belong to the Phylactolaemata and Gymnolaemata class. Twelve species of bryozoans were recorded and morphologically determined at eight locations in the Black Sea and the Adriatic basin in Croatia. Twelve species of Bryozoa have been listed in the taxonomic index for Croatia (Conopeum seurati, Lophopus crystallinus Paludicella articulata, Cristatella mucedo, Fredericella sultana, Hyalinella punctata, Plumatella casmiana, Plumatella emarginata, Plumatella fruticosa, Plumatella fungosa, Plumatella geimermassardi and Plumatella repens). For the purposes of gene identification of recorded species, molecular markers for nuclear 18S and 28S genes, ITS2 region and mitochondrial COI gene were amplified. Genetic identifications of morphologically determined bryozoan species were confirmed using highly similar sequences local alignment analysis. Proliferation of freshwater bryozoan species over long distances with the help of the vector animals was confirmed by defining haplotypes on the base of 18S, 28S and ITS2 sequences associated with the Black Sea-Mediterranean waterfowl flyway. PMID:26624355

  11. The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes.

    PubMed

    Fuchs, Judith; Obst, Matthias; Sundberg, Per

    2009-07-01

    Bryozoa is one of the most puzzling phyla in the animal kingdom and little is known about their evolutionary history. Its phylogenetic position among the Metazoa remains unsettled, as well as its intra-phylum relationships. Here, we present the first comprehensive molecular phylogeny of Bryozoa based on the mitochondrial gene COI and two nuclear genes 18S rDNA and 28S rDNA including 32 species from 23 families. We show that the monophyletic status is supported for the phylum as well as for previously defined bryozoan classes. The 28S rDNA supports a close relationship of Phylactolaemata and Stenolaemata, while partial COI and 18S rDNA show the freshwater Phylactolaemata as basal bryozoans. The Gymnolaemata have generally been divided into soft-bodied forms (Ctenostomata) and hard-bodied species (Cheilostomata). In our analyses all three genes conflict with this assumption and show hard body forms having evolved within Gymnolaemata several times.

  12. Myoanatomy and serotonergic nervous system of plumatellid and fredericellid Phylactolaemata (Lophotrochozoa, Ectoprocta).

    PubMed

    Schwaha, Thomas; Wanninger, Andreas

    2012-01-01

    The phylogenetic position of the Ectoprocta within the Lophotrochozoa is discussed controversially. For gaining more insight into ectoproct relationships and comparing it with other potentially related phyla, we analysed the myoanatomy and serotonergic nervous system of adult representatives of the Phylactolaemata (Plumatella emarginata, Plumatellavaihiriae, Plumatella fungosa, Fredericella sultana). The bodywall contains a mesh of circular and longitudinal muscles. On its distal end, the orifice possesses a prominent sphincter and continues into the vestibular wall, which has longitudinal and circular musculature. The tentacle sheath carries mostly longitudinal muscle fibres in Plumatella sp., whereas F. sultana also possesses regular circular muscle fibres. Three groups of muscles are associated with the lophophore: 1) Lophophoral arm muscles (missing in Fredericella), 2) epistome musculature and 3) tentacle musculature. The epistome flap is encompassed by smooth muscle fibres. A few fibres extend medially over the ganglion to its proximal floor. Abfrontal tentacle muscles have diagonally arranged muscle fibres in their proximal region, whereas the distal region is formed by a stack of muscles that resemble an inverted 'V'. Frontal tentacle muscles show more variation and either possess one or two bases. The digestive tract possesses circular musculature which is striated except at the intestine where it is composed of smooth muscle fibres. The serotonergic nervous system is concentrated in the cerebral ganglion. From the latter a serotonergic nerve extends to each tentacle base. In Plumatella the inner row of tentacles at the lophophoral concavity lacks serotonergic nerves. Bodywall musculature is a common feature in many lophotrochozoan phyla, but among other filter feeders like the Ectoprocta is only present in the 'lophophorate' Phoronida. The longitudinal tentacle musculature is reminiscent of the condition found in phoronids and brachiopods, but differs to

  13. The complete mitochondrial genome of Watersipora subtorquata (Bryozoa, Gymnolaemata, Ctenostomata) with phylogenetic consideration of Bryozoa.

    PubMed

    Sun, Ming'an; Wu, Zhigang; Shen, Xin; Ren, Jianfeng; Liu, Xixing; Liu, Huilian; Liu, Bin

    2009-06-15

    The phylogenetic position of the Bryozoa has long been controversial. In this paper, we have determined the complete mitochondrial genome of the Watersipora subtorquata (Bryozoa, Gymnolaemata, Ctenostomata). It is a circular molecule of 14,144 bp, relatively small compared with most other metazoan mitochondrial genomes, and bears some unusual features. All genes in the W. subtorquata mtDNA, unlike those in two bryozoan mtDNAs and most other metazoan mtDNAs published previously, are transcribed from the same strand. It has a unique gene order which differs radically from that of other metazoans. Drastic gene rearrangements were also found among bryozoan mtDNAs. To investigate the phylogenetic position of Bryozoa, analyses based on amino acid sequences of 11 protein-coding genes (excluding atp6 and atp8) from 25 metazoan mtDNAs were made utilizing ML and Bayesian methods. Lophotrochozoa was recovered as monophyletic with strong support in our analyses. Lophophorate was undoubted within Lophotrochozoa, but appears as polyphyletic, which indicates that the lophophores of this group may be of different origin. The existence of Phoronozoa was rejected. Our analyses indicated that Phoronida is more closely related to Annelid instead of Brachiopod. Chaetognatha appeared as the sister group of Bryozoa and they formed a clade together with strong support. More evidence is needed to clarify the relationship of these two phyla.

  14. Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.

    PubMed

    Morton-Bermea, Ofelia; Beramendi-Orosco, Laura; Martínez-Reyes, Ángeles; Hernández-Álvarez, Elizabeth; González-Hernández, Galia

    2016-02-01

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.

  15. Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.

    PubMed

    Morton-Bermea, Ofelia; Beramendi-Orosco, Laura; Martínez-Reyes, Ángeles; Hernández-Álvarez, Elizabeth; González-Hernández, Galia

    2016-02-01

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments. PMID:25903068

  16. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium 'Zhongshanshan 302' × T. mucronatum.

    PubMed

    Wang, Ziyang; Cheng, Yanli; Yin, Yunlong; Yu, Chaoguang; Yang, Ying; Shi, Qin; Hao, Ziyuan; Li, Huogen

    2016-01-01

    Taxodium is a genus renowned for its fast growth, good form and tolerance of flooding, salt, alkalinity, disease and strong winds. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers based on an F1 population containing 148 individuals generated from a cross between T. 'Zhongshanshan 302' and T. mucronatum. The map has a total length of 976.5 cM, with a mean distance of 7.0 cM between markers, and contains 34 linkage groups with 179 markers (171 SRAPs and 8 SSRs). Quantitative trait loci (QTLs) affecting growth traits, such as seedling height, basal diameter and crown width, were detected based on the constructed linkage map. Four significant QTLs were identified, three of which, namely qtSH-1 for seedling height, qtBD-1 for basal diameter and qtCW-1 for crown width, were located at 2.659 cM of LG7 with logarithm odds values of 3.72, 3.49 and 3.93, respectively, and explained 24.9, 27.0 and 21.7 % of the total variation of the three grown traits, respectively. Another QTL for crown width (qtCW-2) was detected at 1.0 cM on LG13, with a logarithm of odds value of 3.15, and explained 31.7 % of the total variation of crown width. This is the first report on the construction of a genetic linkage map and QTL analysis in Taxodium, laying the groundwork for the construction of a high-density genetic map and QTL mapping in the genus Taxodium. PMID:27386380

  17. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium 'Zhongshanshan 302' × T. mucronatum.

    PubMed

    Wang, Ziyang; Cheng, Yanli; Yin, Yunlong; Yu, Chaoguang; Yang, Ying; Shi, Qin; Hao, Ziyuan; Li, Huogen

    2016-01-01

    Taxodium is a genus renowned for its fast growth, good form and tolerance of flooding, salt, alkalinity, disease and strong winds. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers based on an F1 population containing 148 individuals generated from a cross between T. 'Zhongshanshan 302' and T. mucronatum. The map has a total length of 976.5 cM, with a mean distance of 7.0 cM between markers, and contains 34 linkage groups with 179 markers (171 SRAPs and 8 SSRs). Quantitative trait loci (QTLs) affecting growth traits, such as seedling height, basal diameter and crown width, were detected based on the constructed linkage map. Four significant QTLs were identified, three of which, namely qtSH-1 for seedling height, qtBD-1 for basal diameter and qtCW-1 for crown width, were located at 2.659 cM of LG7 with logarithm odds values of 3.72, 3.49 and 3.93, respectively, and explained 24.9, 27.0 and 21.7 % of the total variation of the three grown traits, respectively. Another QTL for crown width (qtCW-2) was detected at 1.0 cM on LG13, with a logarithm of odds value of 3.15, and explained 31.7 % of the total variation of crown width. This is the first report on the construction of a genetic linkage map and QTL analysis in Taxodium, laying the groundwork for the construction of a high-density genetic map and QTL mapping in the genus Taxodium.

  18. The phylogenetic position of entoprocta, ectoprocta, phoronida, and brachiopoda.

    PubMed

    Nielsen, Claus

    2002-07-01

    Ectoprocts, phoronids and brachiopods are often dealt with under the heading Tentaculata or Lophophorata, sometimes with entoprocts discussed in the same chapter, for example in Ruppert and Barnes (1994). The Lophophorata is purported to be held together by the presence of a "lophophore," a mesosomal tentacle crown with an upstream-collecting ciliary band. However, the mesosomal tentacle crown of pterobranchs has upstream-collecting ciliary bands with monociliate cells, similar to those of phoronids and brachiopods, although its ontogeny is not well documented. On the contrary, the ectoproct tentacle crown carries a ciliary sieving system with multiciliate cells and the body does not show archimery, neither during ontogeny nor during budding, so the tentacles cannot be characterized as mesosomal. The entoprocts have tentacles without coelomic canals and with a downstream-collecting ciliary system like that of trochophore larvae and adult rotifers and serpulid and sabellid annelids. Planktotrophic phoronid and brachiopod larvae develop tentacles at an early stage, but their ciliary system resembles those of echinoderm and enteropneust larvae. Ectoproct larvae are generally non-feeding, but the planktotrophic cyphonautes larvae of certain gymnolaemates have a ciliary band resembling that of the adult tentacles. The entoprocts have typical trochophore larvae and many feed with downstream-collecting ciliary bands. Phoronids and brachiopods are thus morphologically on the deuterostome line, probably as the sister group of the "Neorenalia" or Deuterostomia sensu stricto. The entoprocts are clearly spiralians, although their more precise position has not been determined. The position of the ectoprocts is uncertain, but nothing in their morphology indicates deuterostome affinities. "Lophophorata" is thus a polyphyletic assemblage and the word should disappear from the zoological vocabulary, just as "Vermes" disappeared many years ago.

  19. Structure and occurrence of cyphonautes larvae (bryozoa, ectoprocta).

    PubMed

    Nielsen, Claus; Worsaae, Katrine

    2010-09-01

    We have studied larvae of the freshwater ctenostome Hislopia malayensis with scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and LM of serial sections. Some additional observations on larvae of M. membranacea using SEM and CLSM are also reported. The overall configuration of muscles, nerves, and cilia of the two larvae are identical. However, the larva of H. malayensis is much smaller than that of M. membranacea, which may explain most of the differences observed. Although all major nerves and muscle strands are present in H. malayensis, they are generally composed of fewer fibers. The H. malayensis larva lacks the anterior and posterior intervalve cilia. Its pyriform organ is unciliated with only a small central depression. The adhesive epithelium is not invaginated as an adhesive sac and lacks the large muscles interpreted as adhesive sac muscles in the M. membranacea larva. The velum carries two rows of ciliated cells, though the lower "row" consists of only one or two cells. Both rows of ciliated cells are innervated by nerves, which have not been detected in the M. membranacea larva. The ciliated ridge of H. malayensis lacks the frontal cilia. The planktotrophic cyphonautes larvae in a number of ctenostome clades and in the "basal" cheilostome clade Malacostega (and probably in the earliest cheilostomes) support the idea that the cyphonautes larva is the ancestral larval type of the Eurystomata. It may even represent the ancestral larval type of the bryozoans (= ectoprocts).

  20. The occurrence of the freshwater bryozoan Pottsiella erecta (Potts) 1884 (Gymnolaemata: Paludicellidae) in Lake Erie

    USGS Publications Warehouse

    Maciorowski, Anthony F.

    1974-01-01

    The collection of Pottsiella erecta in western Lake Erie in August 1972 represents the first reported occurrence of this species in the Great Lakes and a 110 km northward extension of its known range.

  1. Brachyuran and anomuran crabs associated with Schizoporella unicornis (Ectoprocta, Cheilostomata) from southeastern Brazil.

    PubMed

    Alves, Douglas F R; Barros-Alves, Samara P; Lima, Daniel J M; Cobo, Valter J; Negreiros-Fransozo, Maria Lucia

    2013-03-01

    The main goals of this investigation were to describe the community structure of anomuran and brachyuran crabs inhabiting reefs constituted by colonies of Schizoporella unicornis, and to provide a species importance ranking for this community. Collections were carried out on S. unicornis reefs at two-month intervals from May 2003 to May 2004, in the rocky sublittoral of the southeastern Brazilian coast. Relative abundance and occurrence were used to rank these species in the hierarchy importance. A total of 2,018 individuals were obtained, in 11 families, 22 genera and 31 species. Porcellanidae and Pilumnidae were the most abundant families, comprising respectively almost 60% and 15% of individuals sampled. The species ranking indicated four main groups A, B, C and D, with group A subdivided. Subgroup A1 contained 9 species, including the species of greatest ecological importance for community regarding abundance and occurrence. The great abundance of crabs associated with S. unicornis seems to be the result of its recognized importance during the crab developmental cycle, and as shelter and food for some Decapod species. These observations reveal the importance of conserving the areas occupied by these reef colonies, which appear to be an important environment for maintaining local biodiversity. PMID:23538959

  2. Cribrilina mutabilis n. sp., an Eelgrass-Associated Bryozoan (Gymnolaemata: Cheilostomata) with Large Variationin Zooid Morphology Related to Life History.

    PubMed

    Ito, Minako; Onishi, Takumi; Dick, Matthew H

    2015-10-01

    We describe the cribrimorph cheilostome bryozoan Cribrilina mutabilis n. sp., which we detected as an epibiont on eelgrass (Zostera marina) at Akkeshi, Hokkaido, northern Japan. This species shows three distinct zooid types during summer: the R (rib), I (intermediate), and S (shield) types. Evidence indicates that zooids commit to development as a given type, rather than transform from one type to another with age. Differences in the frontal spinocyst among the types appear to be mediated by a simple developmental mechanism, acceleration or retardation in the production of lateral costal fusions as the costae elongate during ontogeny. Colonies of all three types were identical, or nearly so, in partial nucleotide sequences of the mitochondrial COI gene (555-631 bp), suggesting that they represent a single species. Zooid types varied temporally in overall frequency in the population: colonies contained nearly exclusively R-type zooids in mid-June; predominantly I-type, or both R- and I-type, zooids in mid-July; and I-type, S-type, or both I- and S-type zooids (interspersed or in discrete bands) in mid- to late August. Reproduction occurred throughout the season, but peaked in July, with only R- and I-type zooids reproducing. Reproductive zooids bear a vestigial compound (tripartite) ooecium and brood internally; S-type zooids, first appearing in August, were non-reproductive, which suggests that they may serve as an overwintering stage. As this species is easily accessible, common, and simple in form, it is potentially useful as a model system for studying polyphenism at multiple levels (zooid, colony, and population) in the context of life-history adaptations.

  3. Cribrilina mutabilis n. sp., an Eelgrass-Associated Bryozoan (Gymnolaemata: Cheilostomata) with Large Variationin Zooid Morphology Related to Life History.

    PubMed

    Ito, Minako; Onishi, Takumi; Dick, Matthew H

    2015-10-01

    We describe the cribrimorph cheilostome bryozoan Cribrilina mutabilis n. sp., which we detected as an epibiont on eelgrass (Zostera marina) at Akkeshi, Hokkaido, northern Japan. This species shows three distinct zooid types during summer: the R (rib), I (intermediate), and S (shield) types. Evidence indicates that zooids commit to development as a given type, rather than transform from one type to another with age. Differences in the frontal spinocyst among the types appear to be mediated by a simple developmental mechanism, acceleration or retardation in the production of lateral costal fusions as the costae elongate during ontogeny. Colonies of all three types were identical, or nearly so, in partial nucleotide sequences of the mitochondrial COI gene (555-631 bp), suggesting that they represent a single species. Zooid types varied temporally in overall frequency in the population: colonies contained nearly exclusively R-type zooids in mid-June; predominantly I-type, or both R- and I-type, zooids in mid-July; and I-type, S-type, or both I- and S-type zooids (interspersed or in discrete bands) in mid- to late August. Reproduction occurred throughout the season, but peaked in July, with only R- and I-type zooids reproducing. Reproductive zooids bear a vestigial compound (tripartite) ooecium and brood internally; S-type zooids, first appearing in August, were non-reproductive, which suggests that they may serve as an overwintering stage. As this species is easily accessible, common, and simple in form, it is potentially useful as a model system for studying polyphenism at multiple levels (zooid, colony, and population) in the context of life-history adaptations. PMID:26428727

  4. Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) and the application of non-destructive imaging methods for quantitative taxonomy.

    PubMed

    Matsuyama, Kei; Titschack, Jürgen; Baum, Daniel; Freiwald, André

    2015-09-21

    Two new species of cheilostome Bryozoa are described from continental-slope habitats off Mauritania, including canyon and cold-water coral (mound) habitats. Internal structures of both species were visualised and quantified using microcomputed tomographic (micro-CT) methods. Cellaria bafouri n. sp. is characterised by the arrangement of zooids in alternating longitudinal rows, a smooth cryptocyst, and the presence of an ooecial plate with denticles. Smittina imragueni n. sp. exhibits many similarities with Smittina cervicornis (Pallas, 1766), but differs especially in the shape and orientation of the suboral avicularium. Observations on Smittina imragueni and material labelled as Smittina cervicornis suggest that the latter represents a species group, members of which have not yet been discriminated, possibly because of high intracolony variation and marked astogenetic changes in surface morphology. Both new species are known only from the habitats where they were collected, probably reflecting the paucity of bryozoan sampling from this geographic area and depth range. Both species are able to tolerate low oxygen concentration, which is assumed to be compensated by the high nutrient supply off Mauritania. The application of micro-CT for the semiautomatic quantification of zooidal skeletal characters was successfully tested. We were able to automatically distinguish individual zooidal cavities and acquire corresponding morphological datasets. Comparing the obtained results with conventional SEM measurements allowed ascertaining the reliability of this new method. The employment of micro-CT allows the observation and quantification of previously unseen characters that can be used in describing and differentiating species that were previously indistinguishable. Furthermore, this method might help elucidate processes of colony growth and the function of individual zooids during this process.

  5. Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) and the application of non-destructive imaging methods for quantitative taxonomy.

    PubMed

    Matsuyama, Kei; Titschack, Jürgen; Baum, Daniel; Freiwald, André

    2015-01-01

    Two new species of cheilostome Bryozoa are described from continental-slope habitats off Mauritania, including canyon and cold-water coral (mound) habitats. Internal structures of both species were visualised and quantified using microcomputed tomographic (micro-CT) methods. Cellaria bafouri n. sp. is characterised by the arrangement of zooids in alternating longitudinal rows, a smooth cryptocyst, and the presence of an ooecial plate with denticles. Smittina imragueni n. sp. exhibits many similarities with Smittina cervicornis (Pallas, 1766), but differs especially in the shape and orientation of the suboral avicularium. Observations on Smittina imragueni and material labelled as Smittina cervicornis suggest that the latter represents a species group, members of which have not yet been discriminated, possibly because of high intracolony variation and marked astogenetic changes in surface morphology. Both new species are known only from the habitats where they were collected, probably reflecting the paucity of bryozoan sampling from this geographic area and depth range. Both species are able to tolerate low oxygen concentration, which is assumed to be compensated by the high nutrient supply off Mauritania. The application of micro-CT for the semiautomatic quantification of zooidal skeletal characters was successfully tested. We were able to automatically distinguish individual zooidal cavities and acquire corresponding morphological datasets. Comparing the obtained results with conventional SEM measurements allowed ascertaining the reliability of this new method. The employment of micro-CT allows the observation and quantification of previously unseen characters that can be used in describing and differentiating species that were previously indistinguishable. Furthermore, this method might help elucidate processes of colony growth and the function of individual zooids during this process. PMID:26624090

  6. [Systematic value of the larval structure and details of postlarval morphogenesis in Bryozoa gymnolaemates].

    PubMed

    d'Hondt, J L

    1977-01-01

    Among the various species of Bryozoa Gymnolaemata, the larvae and their development were studied, comparing the larval structure and the evolution of their cellular categories during the post-larval morphogenesis the existence of nine well-defined larval types could be revealed. Cases of insufficiently described larvae are discussed. The present systematic of Bryozoa Gymnolaemata is compared with the classification of various larval types. For the major part of cases, each systematic family is marked by a precise type of larva; however there are some exceptions, especially in the ordre Ctenostomata. These discordances may suggest some rearrangements of the classification utilized at the present time.

  7. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept.

    PubMed

    Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2008-08-22

    Based on embryological and morphological evidence, Lophophorata was long considered to be the sister or paraphyletic stem group of Deuterostomia. By contrast, molecular data have consistently indicated that the three lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida, are more closely related to trochozoans (annelids, molluscs and related groups) than to deuterostomes. For this reason, the lophophorate groups and Trochozoa were united to Lophotrochozoa. However, the relationships of the lophophorate lineages within Lophotrochozoa are still largely unresolved. Maximum-likelihood and Bayesian analyses were performed based on a dataset comprising 11,445 amino acid positions derived from 79 ribosomal proteins of 39 metazoan taxa including new sequences obtained from a brachiopod and a phoronid. These analyses show that the three lophophorate lineages are affiliated with trochozoan rather than deuterostome phyla. All hypotheses claiming that they are more closely related to Deuterostomia than to Protostomia can be rejected by topology testing. Monophyly of lophophorates was not recovered but that of Bryozoa including Ectoprocta and Entoprocta and monophyly of Brachiozoa including Brachiopoda and Phoronida were strongly supported. Alternative hypotheses that are refuted include (i) Brachiozoa as the sister group of Mollusca, (ii) ectoprocts as sister to all other Lophotrochozoa including Platyzoa, and (iii) ectoprocts as sister or to all other protostomes except chaetognaths.

  8. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept

    PubMed Central

    Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2008-01-01

    Based on embryological and morphological evidence, Lophophorata was long considered to be the sister or paraphyletic stem group of Deuterostomia. By contrast, molecular data have consistently indicated that the three lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida, are more closely related to trochozoans (annelids, molluscs and related groups) than to deuterostomes. For this reason, the lophophorate groups and Trochozoa were united to Lophotrochozoa. However, the relationships of the lophophorate lineages within Lophotrochozoa are still largely unresolved. Maximum-likelihood and Bayesian analyses were performed based on a dataset comprising 11 445 amino acid positions derived from 79 ribosomal proteins of 39 metazoan taxa including new sequences obtained from a brachiopod and a phoronid. These analyses show that the three lophophorate lineages are affiliated with trochozoan rather than deuterostome phyla. All hypotheses claiming that they are more closely related to Deuterostomia than to Protostomia can be rejected by topology testing. Monophyly of lophophorates was not recovered but that of Bryozoa including Ectoprocta and Entoprocta and monophyly of Brachiozoa including Brachiopoda and Phoronida were strongly supported. Alternative hypotheses that are refuted include (i) Brachiozoa as the sister group of Mollusca, (ii) ectoprocts as sister to all other Lophotrochozoa including Platyzoa, and (iii) ectoprocts as sister or to all other protostomes except chaetognaths. PMID:18495619

  9. Spiral cleavage and early embryology of a loxosomatid entoproct and the usefulness of spiralian apical cross patterns for phylogenetic inferences

    PubMed Central

    2012-01-01

    Background Among the four major bilaterian clades, Deuterostomia, Acoelomorpha, Ecdysozoa, and Lophotrochozoa, the latter shows an astonishing diversity of bodyplans. While the largest lophotrochozoan assemblage, the Spiralia, which at least comprises Annelida, Mollusca, Entoprocta, Platyhelminthes, and Nemertea, show a spiral cleavage pattern, Ectoprocta, Brachiopoda and Phoronida (the Lophophorata) cleave radially. Despite a vast amount of recent molecular phylogenetic analyses, the interrelationships of lophotrochozoan phyla remain largely unresolved. Thereby, Entoprocta play a key role, because they have frequently been assigned to the Ectoprocta, despite their differently cleaving embryos. However, developmental data on entoprocts employing modern methods are virtually non-existent and the data available rely exclusively on sketch drawings, thus calling for thorough re-investigation. Results By applying fluorescence staining in combination with confocal microscopy and 3D-imaging techniques, we analyzed early embryonic development of a basal loxosomatid entoproct. We found that cleavage is asynchronous, equal, and spiral. An apical rosette, typical for most spiralian embryos, is formed. We also identified two cross-like cellular arrangements that bear similarities to both, a "molluscan-like" as well as an "annelid-like" cross, respectively. Conclusions A broad comparison of cleavage types and apical cross patterns across Lophotrochozoa shows high plasticity of these character sets and we therefore argue that these developmental traits should be treated and interpreted carefully when used for phylogenetic inferences. PMID:22458754

  10. Species and tissue distribution of cholecystokinin/gastrin-like substances in some invertebrates.

    PubMed

    Larson, B A; Vigna, S R

    1983-06-01

    Twenty-six species of invertebrates representing eight phyla were surveyed for the presence of cholecystokinin/gastrin-like (CCK/gastrin-like) peptides by radioimmunoassay of various tissue extracts. This is the first report of the presence of CCK/gastrin-like peptides in representatives of the phylum Ectoprocta, the arthropodan classes Crustacea and Merostomata, and in the nervous systems of the gastropod mollusc Aplysia californica and the oligochaete annelid Lumbricus terrestris. It has been proposed that CCK/gastrin evolved in the invertebrates as a neural peptide and was subsequently exploited by the vertebrates as a regulatory peptide in both the nervous system and the gastrointestinal endocrine system. The present results indicate that some gastropod molluscs, a merostomatan arthropod, and an annelid have detectable CCK/gastrin in both nervous and gut tissue. However, extractable CCK/gastrin was found only in gut tissue and not in the central nervous system of a crustacean arthropod. The tissue origin of the extracted CCK/gastrin in Bugula (phylum Ectoprocta) was not determined. Final resolution of the question of the nervous versus gut endocrine cellular origin of CCK/gastrin in invertebrates awaits further investigation. CCK/gastrin-like peptides are widely distributed among the invertebrates, which thus provide a rich source of comparative material for study of these regulatory substances.

  11. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships

    PubMed Central

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals. PMID:25691955

  12. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    PubMed

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals. PMID:25691955

  13. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    PubMed

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.

  14. New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias

    PubMed Central

    2013-01-01

    Background Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity. Results The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida. Our results contrast previous findings based on rDNA sequences and phylogenomic datasets which supported monophyletic Polyzoa (= Bryozoa sensu lato) including Ectoprocta, Entoprocta and Cycliophora, Brachiozoa including Brachiopoda and Phoronida as well as Kryptrochozoa including Brachiopoda, Phoronida and Nemertea, thus rendering Lophophorata polyphyletic. Our attempts to identify the causes for the conflicting results revealed that Polyzoa, Brachiozoa and Kryptrochozoa are supported by character subsets with deviating amino acid compositions, whereas there is no indication for compositional heterogeneity in the character subsets supporting the monophyly of Lophophorata. Conclusion Our results indicate that the support for Polyzoa, Brachiozoa and Kryptrochozoa gathered so far is likely an artifact caused by compositional bias. The monophyly of Lophophorata implies that the horseshoe-shaped mesosomal lophophore, the tentacular feeding apparatus of ectoprocts, phoronids and brachiopods is, indeed, a synapomorphy of the lophophorate lineages. The same may apply to radial cleavage. However, among phoronids also spiral cleavage is known. This suggests that the cleavage pattern is highly plastic and has changed several times within lophophorates. The sister group relationship of ectoprocts and phoronids is in accordance with the interpretation of the eversion of a ventral invagination at the beginning of metamorphosis as a common derived feature of these taxa. PMID:24238092

  15. Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds.

    PubMed

    Negishi, O; Ozawa, T

    2000-06-01

    In a reaction between (-)-epicatechin (EC) and 2-mercaptoethanol (2ME), catalyzed by partially purified polyphenol oxidase (PPO) extracted from the style of Rhododendron mucronatum, 2'-(2-hydroxyethylthio)-(-)-epicatechin (2'-HETEC), 5'-(2-hydroxyethylthio)-(-)-epicatechin (5'-HETEC), and 2',5'-bis(2-hydroxyethylthio)-(-)-epicatechin (2',5'-HETEC) were formed. The rate of formation of 2',5'-HETEC from 5'-HETEC was faster than that from 2'-HETEC. In the absence of 2ME, the concentration of EC decreased rapidly and the reaction mixture turned brown; 2'-, 5'-, and 2',5'-HETEC, especially 2'-substituted HETECs. reacted more slowly. These data indicate that 2ME acts both as an inhibitor of the polymerization of O-quinone, presumably by binding to it and as a reductant involved in the conversion of O-quinone to O-dihydroxyphenol, Inhibition of enzymatic browning by other thiol compounds such as cysteine and dithiothreitol was also investigated.

  16. Major Mesoamerican droughts of the past millennium

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Diaz, J. Villanueva; Burnette, D. J.; Paredes, J. Cerano; Heim, R. R., Jr.; Fye, F. K.; Acuna Soto, R.; Therrell, M. D.; Cleaveland, M. K.; Stahle, D. K.

    2011-03-01

    Ancient Montezuma baldcypress (Taxodium mucronatum) trees found in Barranca de Amealco, Queretaro, have been used to develop a 1,238-year tree-ring chronology that is correlated with precipitation, temperature, drought indices, and crop yields in central Mexico. This chronology has been used to reconstruct the spring-early summer soil moisture balance over the heartland of the Mesoamerican cultural province, and is the first exactly dated, annually resolved paleoclimatic record for Mesoamerica spanning the Late Classic, Post Classic, Colonial, and modern eras. The reconstruction indicates that the Terminal Classic drought extended into central Mexico, supporting other sedimentary and speleothem evidence for this early 10th century drought in Mesoamerica. The reconstruction also documents severe and sustained drought during the decline of the Toltec state (1149-1167) and during the Spanish conquest of the Aztec state (1514-1539), providing a new precisely dated climate framework for Mesoamerican cultural change.

  17. Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa

    PubMed Central

    Altenburger, Andreas; Wanninger, Andreas

    2009-01-01

    species. Conclusion Our data indicate that larvae of rhynchonelliform brachiopods share a common muscular bodyplan and are thus derived from a common ancestral larval type. Comparison of the muscular phenotype of rhynchonelliform larvae to that of the other two lophophorate phyla, Phoronida and Ectoprocta, does not indicate homology of individual larval muscles. This may be due to an early evolutionary split of the ontogenetic pathways of Brachiopoda, Phoronida, and Ectoprocta that gave rise to the morphological diversity of these phyla. PMID:19192287

  18. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development

    PubMed Central

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids. PMID:25300304

  19. Assessing the root of bilaterian animals with scalable phylogenomic methods.

    PubMed

    Hejnol, Andreas; Obst, Matthias; Stamatakis, Alexandros; Ott, Michael; Rouse, Greg W; Edgecombe, Gregory D; Martinez, Pedro; Baguñà, Jaume; Bailly, Xavier; Jondelius, Ulf; Wiens, Matthias; Müller, Werner E G; Seaver, Elaine; Wheeler, Ward C; Martindale, Mark Q; Giribet, Gonzalo; Dunn, Casey W

    2009-12-22

    A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from organisms targeted for their instability or lack of representation in prior analyses, and are analysed in combination with other publicly available data. We also designed new automated explicit methods for identifying and selecting common genes across different species, and developed highly optimized supercomputing tools to reconstruct relationships from gene sequences. The results of the work corroborate several recently established findings about animal relationships and provide new support for the placement of other groups. These new data and methods strongly uphold previous suggestions that Acoelomorpha is sister clade to all other bilaterian animals, find diminishing evidence for the placement of the enigmatic Xenoturbella within Deuterostomia, and place Cycliophora with Entoprocta and Ectoprocta. The work highlights the implications that these arrangements have for metazoan evolution and permits a clearer picture of ancestral morphologies and life histories in the deep past.

  20. Comparative lophotrochozoan neurogenesis and larval neuroanatomy: recent advances from previously neglected taxa.

    PubMed

    Wanninger, A

    2008-01-01

    Recently, a number of neurodevelopmental studies of hitherto neglected taxa have become available, contributing to questions relating to the evolution of the nervous system of Lophotrochozoa (Spiralia + Lophophorata). As an example, neurogenesis of echiurans showed that these worm-shaped spiralians, which as adults do not exhibit any signs of segmentation, do show such traits during ontogeny, e.g. by segmentally arranged perikarya and commissures. Similarly, sipunculan worms, which have a single ventral nerve cord in the adult stage, develop this nerve cord by gradual fusion of a paired larval nerve during metamorphosis, and show transitional stages of segmentation. These findings indicate that echiurans, annelids and sipunculans stem from a segmented ancestor. By contrast, no traces of body segmentation are present during neurogenesis of basal molluscs. However, a tetraneurous condition (i.e. one pair of ventral and one pair of lateral nerve cords), as is typical for Mollusca, and a serotonergic larval apical organ that matches the complexity of polyplacophoran apical organs, were found in larval entoprocts, thus strongly supporting a mollusc-entoproct clade. Within the Lophophorata (Ectoprocta + Phoronida + Brachiopoda), data on nervous system development for any of the 3 lophophorate phyla are as of yet too scarce for profound phylogenetic inferences. Taking into account the most recent advances in molecular phylogenetics and developmental neurobiology, a scenario emerges that proposes a clade comprising Sipuncula + Annelida (including Echiura) on the one hand and a monophyletic assemblage of Entoprocta + Mollusca on the other.

  1. Assessing the root of bilaterian animals with scalable phylogenomic methods

    PubMed Central

    Hejnol, Andreas; Obst, Matthias; Stamatakis, Alexandros; Ott, Michael; Rouse, Greg W.; Edgecombe, Gregory D.; Martinez, Pedro; Baguñà, Jaume; Bailly, Xavier; Jondelius, Ulf; Wiens, Matthias; Müller, Werner E. G.; Seaver, Elaine; Wheeler, Ward C.; Martindale, Mark Q.; Giribet, Gonzalo; Dunn, Casey W.

    2009-01-01

    A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from organisms targeted for their instability or lack of representation in prior analyses, and are analysed in combination with other publicly available data. We also designed new automated explicit methods for identifying and selecting common genes across different species, and developed highly optimized supercomputing tools to reconstruct relationships from gene sequences. The results of the work corroborate several recently established findings about animal relationships and provide new support for the placement of other groups. These new data and methods strongly uphold previous suggestions that Acoelomorpha is sister clade to all other bilaterian animals, find diminishing evidence for the placement of the enigmatic Xenoturbella within Deuterostomia, and place Cycliophora with Entoprocta and Ectoprocta. The work highlights the implications that these arrangements have for metazoan evolution and permits a clearer picture of ancestral morphologies and life histories in the deep past. PMID:19759036

  2. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development.

    PubMed

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-10-10

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.

  3. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development.

    PubMed

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids. PMID:25300304

  4. Using a five-gene phylogeny to test morphology-based hypotheses of Smittium and allies, endosymbiotic gut fungi (Harpellales) associated with arthropods.

    PubMed

    Wang, Yan; Tretter, Eric D; Johnson, Eric M; Kandel, Prasanna; Lichtwardt, Robert W; Novak, Stephen J; Smith, James F; White, Merlin M

    2014-10-01

    Smittium, one of the first described genera of gut fungi, is part of a larger group of endosymbiotic microorganisms (Harpellales) that live predominantly in the digestive tracts of aquatic insects. As a diverse and species-rich taxon, Smittium has helped to advance our understanding of the gut fungi, in part due to the relative success of attempts to culture species of Smittium as compared to other members of Harpellales. Approximately 40% of the 81 known species of Smittium have been cultured. This is the first Smittium multigene dataset and phylogenetic analysis, using the 18S and 28S rRNA genes, as well as RPB1, RPB2, and MCM7 translated protein sequences. Several well-supported clades were recovered within Smittium. One includes the epitype S. mucronatum (the "True Smittium" clade), and another contains many species including S. simulii and S. orthocladii (the "Parasmittium" clade). Ancestral states were reconstructed for holdfast shape, thallus branching type, as well as asexual (trichospore) and sexual (zygospore) spore morphology. Two of these characters, holdfast shape and trichospore morphology, supported the split of the two main clades revealed by the molecular phylogeny, suggesting these are natural clades and these traits may have evolutionary and perhaps ecological significance.

  5. Warm season tree growth and precipitation over Mexico

    NASA Astrophysics Data System (ADS)

    Therrell, Matthew D.; Stahle, David W.; Cleaveland, Malcolm K.; Villanueva-Diaz, Jose

    2002-07-01

    We have developed a network of 18 new tree ring chronologies to examine the history of warm season tree growth over Mexico from 1780 to 1992. The chronologies include Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and Montezuma pine (Pinus montezumae Lamb.) latewood width, and Montezuma bald cypress (Taxodium mucronatum Ten.) total ring width. They are located in southwestern Texas, the Sierra Madre Oriental, Sierra Madre Occidental, and southern Mexico as far south as Oaxaca. Seven of these chronologies are among the first precipitation sensitive tree ring records from the American tropics. Principal component analysis of the chronologies indicates that the primary modes of tree growth variability are divided north and south by the Tropic of Cancer. The tree ring data in northern Mexico (PC1) are most sensitive to June-August rainfall, while the data from southern Mexico (PC2) are sensitive to rainfall in April-June. We find that the mode of tree growth variability over southern Mexico is significantly correlated with the onset of the North American Monsoon. Anomalies in monsoon onset, spring precipitation, and tree growth in southern Mexico all tend to be followed by precipitation anomalies of opposite sign later in the summer over most of central Mexico.

  6. An introduction to loricifera, cycliophora, and micrognathozoa.

    PubMed

    Kristensen, Reinhardt Møbjerg

    2002-07-01

    Loriciferans, cycliophorans and micrognathozoans are amongst the latest groups of animals to be discovered. Other than all being microscopic, they have very different body plans and are not closely related. Loriciferans were originally assigned to the Aschelminthes. However, both new molecular and ultrastructural researches have shown that Aschelminthes consist of two unrelated groups, Cycloneuralia and Gnathifera. Cycloneuralia may be included in the Ecdysozoa, including all molting invertebrates, and Gnathifera are more closely related to Platyhelminthes. The phylum Loricifera shares many apomorphic characters (e.g., scalids on the introvert) with both Priapulida and Kinorhyncha, and can be included in the taxon Scalidophora, a subgroup of Cycloneuralia. Cycliophora was originally allied to the Entoprocta and Ectoprocta (Bryozoa) based on ultrastructual research. Subsequent molecular data show they may be related to Rotifera and Acanthocephala, within the taxon Gnathifera. The phylogenetic position of Cycliophora is therefore not settled, and more ultrastructural and molecular data are needed. Micrognathozoa is the most recent major group of animals to be described. They show strong affinities with both Rotifera and Gnathostomulida (within the taxon Gnathifera), especially in the fine structure of the pharyngeal apparatus, where the jaw elements have cuticular rods with osmiophilic cores. Furthermore the micrognathozoans have two rows of multiciliated cells that form a locomotory organ, similar to that seen in some gastrotrichs and interstitial annelids. This character is never seen in Rotifera or in the monociliated Gnathostomulida. Rotifera and Acanthocephala always have a syncytial epidermis (Syndermata). Micrognathozoa lack this characteristic feature. Therefore, they are postulated to be placed basally in the Gnathifera, either as a sister-group to Gnathostomulida or as a sister-group to Rotifera + Acanthocephala. PMID:21708760

  7. An introduction to loricifera, cycliophora, and micrognathozoa.

    PubMed

    Kristensen, Reinhardt Møbjerg

    2002-07-01

    Loriciferans, cycliophorans and micrognathozoans are amongst the latest groups of animals to be discovered. Other than all being microscopic, they have very different body plans and are not closely related. Loriciferans were originally assigned to the Aschelminthes. However, both new molecular and ultrastructural researches have shown that Aschelminthes consist of two unrelated groups, Cycloneuralia and Gnathifera. Cycloneuralia may be included in the Ecdysozoa, including all molting invertebrates, and Gnathifera are more closely related to Platyhelminthes. The phylum Loricifera shares many apomorphic characters (e.g., scalids on the introvert) with both Priapulida and Kinorhyncha, and can be included in the taxon Scalidophora, a subgroup of Cycloneuralia. Cycliophora was originally allied to the Entoprocta and Ectoprocta (Bryozoa) based on ultrastructual research. Subsequent molecular data show they may be related to Rotifera and Acanthocephala, within the taxon Gnathifera. The phylogenetic position of Cycliophora is therefore not settled, and more ultrastructural and molecular data are needed. Micrognathozoa is the most recent major group of animals to be described. They show strong affinities with both Rotifera and Gnathostomulida (within the taxon Gnathifera), especially in the fine structure of the pharyngeal apparatus, where the jaw elements have cuticular rods with osmiophilic cores. Furthermore the micrognathozoans have two rows of multiciliated cells that form a locomotory organ, similar to that seen in some gastrotrichs and interstitial annelids. This character is never seen in Rotifera or in the monociliated Gnathostomulida. Rotifera and Acanthocephala always have a syncytial epidermis (Syndermata). Micrognathozoa lack this characteristic feature. Therefore, they are postulated to be placed basally in the Gnathifera, either as a sister-group to Gnathostomulida or as a sister-group to Rotifera + Acanthocephala.

  8. Insights into the organization of plumatellid larvae (lophotrochozoa, Bryozoa) by means of 3D-imaging and confocal microscopy.

    PubMed

    Schwaha, Thomas F; Handschuh, Stephan; Redl, Emanuel; Wanninger, Andreas

    2015-01-01

    Within the Lophotrochozoa, the Bryozoa or Ectoprocta remain one of the phyla whose phylogenetic relation to other lophotrochozoans is still controversely discussed. To complement existing data and to gain more insight into bryozoan character evolution, we analyzed the morphology of the larva of the phylactolaemate Plumatella sp. The larva of Plumatella spp. consists of an outer ciliated mantle that covers two differentiated polypides. The muscular and serotonergic nervous system of the polypides correspond to previous studies. The two polypides and their corresponding buds differ in size, which, together with a comparison among bryozoans, indicates that a single polypide is the basal condition. The whole larval mantle and mantle fold are supplied with circular and longitudinal muscles, the former being more pronounced in the mantle fold. The apical plate on the anterior side contains a diffuse mesh of crossing fibers and thus differs from previous descriptions, which recognized a regular muscular grid. The serotonergic nervous system in the mantle and mantle fold consists of a diffuse basiepidermal nerve net with its highest concentration at the apical plate. Serotonin immunoreactivity so far has not been detected in the mantle fold. However, the presence of other neurotransmitters in the mantle fold shown by previous studies indicates that this nerve net is a common feature of phylactolaemate larvae. The main difference between currently analyzed phylactolaemate larvae seems to be the complexity of the larval mantle musculature, which most likely plays an important role during metamorphosis. This study confirms previous interpretations that the apical plate pole does not correspond to the apical pole of gymnolaemate larvae but to their oral side. Accelerated asexual development on the aboral pole leads to the suggestion that an apical organ is never formed and the apical plate compensates for its absence in the free-swimming period.

  9. Modern Data on the Innervation of the Lophophore in Lingula anatina (Brachiopoda) Support the Monophyly of the Lophophorates

    PubMed Central

    Temereva, Elena N.; Tsitrin, Eugeni B.

    2015-01-01

    Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the

  10. Modern Data on the Innervation of the Lophophore in Lingula anatina (Brachiopoda) Support the Monophyly of the Lophophorates.

    PubMed

    Temereva, Elena N; Tsitrin, Eugeni B

    2015-01-01

    Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the

  11. Modern Data on the Innervation of the Lophophore in Lingula anatina (Brachiopoda) Support the Monophyly of the Lophophorates.

    PubMed

    Temereva, Elena N; Tsitrin, Eugeni B

    2015-01-01

    Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the

  12. Insights into the organization of plumatellid larvae (lophotrochozoa, Bryozoa) by means of 3D-imaging and confocal microscopy.

    PubMed

    Schwaha, Thomas F; Handschuh, Stephan; Redl, Emanuel; Wanninger, Andreas

    2015-01-01

    Within the Lophotrochozoa, the Bryozoa or Ectoprocta remain one of the phyla whose phylogenetic relation to other lophotrochozoans is still controversely discussed. To complement existing data and to gain more insight into bryozoan character evolution, we analyzed the morphology of the larva of the phylactolaemate Plumatella sp. The larva of Plumatella spp. consists of an outer ciliated mantle that covers two differentiated polypides. The muscular and serotonergic nervous system of the polypides correspond to previous studies. The two polypides and their corresponding buds differ in size, which, together with a comparison among bryozoans, indicates that a single polypide is the basal condition. The whole larval mantle and mantle fold are supplied with circular and longitudinal muscles, the former being more pronounced in the mantle fold. The apical plate on the anterior side contains a diffuse mesh of crossing fibers and thus differs from previous descriptions, which recognized a regular muscular grid. The serotonergic nervous system in the mantle and mantle fold consists of a diffuse basiepidermal nerve net with its highest concentration at the apical plate. Serotonin immunoreactivity so far has not been detected in the mantle fold. However, the presence of other neurotransmitters in the mantle fold shown by previous studies indicates that this nerve net is a common feature of phylactolaemate larvae. The main difference between currently analyzed phylactolaemate larvae seems to be the complexity of the larval mantle musculature, which most likely plays an important role during metamorphosis. This study confirms previous interpretations that the apical plate pole does not correspond to the apical pole of gymnolaemate larvae but to their oral side. Accelerated asexual development on the aboral pole leads to the suggestion that an apical organ is never formed and the apical plate compensates for its absence in the free-swimming period. PMID:25278218

  13. Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy.

    PubMed

    Ong, Cheng Yi; Ling, Sui Kiong; Ali, Rasadah Mat; Chee, Chin Fei; Samah, Zainon Abu; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2009-09-01

    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures

  14. Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy.

    PubMed

    Ong, Cheng Yi; Ling, Sui Kiong; Ali, Rasadah Mat; Chee, Chin Fei; Samah, Zainon Abu; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2009-09-01

    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures

  15. Seasonal phenology of the cerambycid beetles of east-central Illinois

    PubMed Central

    Hanks, Lawrence M.; Reagel, Peter F.; Mitchell, Robert F.; Wong, Joseph C. H.; Meier, Linnea R.; Silliman, Christina A.; Graham, Elizabeth E.; Striman, Becca L.; Robinson, Kenneth P.; Mongold-Diers, Judith A.; Millar, Jocelyn G.

    2014-01-01

    We summarize field data on the species composition and seasonal phenology of the community of cerambycid beetles of east-central Illinois. Data were drawn from field bioassays conducted during 2009 – 2012 that tested attraction of adult beetles of diverse species to a variety of synthetic pheromones and host plant volatiles. A total of 34,086 beetles of 114 species were captured, including 48 species in the subfamily Cerambycinae, 41 species in the Lamiinae, 19 species in the Lepturinae, two species in the Spondylidinae, and one species each in the Necydalinae, Parandrinae, Prioninae, and the Disteniidae. Most of the best-represented species were attracted to pheromones that were included in field experiments, particularly species that use (R)-3-hydroxyhexan-2-one as a pheromone component. The species captured, and their patterns of abundance and seasonal phenology were similar to those in an earlier study conducted in Pennsylvania. The most abundant species identified in both studies included the cerambycines Elaphidion mucronatum (Say), Neoclytus a. acuminatus (F.), Neoclytus m. mucronatus (F.), and Xylotrechus colonus (F.). Cerambycine species became active in an orderly progression from early spring through late fall, whereas most lamiine species were active in summer and fall, and lepturine species were limited to summer. Potential cross attraction between some cerambycine species that shared pheromone components may have been averted by differences in seasonal activity period, and by minor pheromone components that acted as synergists for conspecifics and/or antagonists for heterospecifics. These results provide quantitative data on the abundance and seasonal phenology of a large number of species. PMID:24683267

  16. Compositional heterogeneity and phylogenomic inference of metazoan relationships.

    PubMed

    Nesnidal, Maximilian P; Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2010-09-01

    in combination with methods that assume a stationary amino acid composition remains an option for controlling systematic errors in tree reconstruction that result from compositional bias. Our analyses indicated that the paraphyly of Deuterostomia in some analyses is the result of systematic errors that also affected the relationships of Entoprocta and Ectoprocta.

  17. Atlantic and Pacific Influences on Mesoamerican Climate Over the Past Millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Burnette, D. J.; Villanueva, J.; Cleaveland, M. K.

    2010-12-01

    Montezuma baldcypress (Taxodium mucronatum) trees in Queretaro have been used to develop the first exactly dated millennium-long tree-ring chronology in central Mexico. The chronology is sensitive to both precipitation and temperature, and has been used to reconstruct the Palmer Drought Severity Index (PDSI) for June from AD 771-2008 for a large sector of Mesoamerica (most of central and southern Mexico). Fourier-transform spectral analyses of the 1,238-year long reconstruction indicate strong concentrations of variance at frequencies associated with the El Nino/Southern Oscillation (ENSO; representing over 14% of the total reconstructed variance between periods of 4.5 and 5.5 years), and at multi-decadal frequencies potentially associated with the Atlantic Multidecadal Oscillation (AMO; representing over 10% of the total variance between periods of 50 and 75 years). Weaker but statistically significant concentrations of variance are also detected with the Multi-Taper Method of spectral analysis at subdecadal timescales potentially linked with the North Atlantic Oscillation (NAO; 7.5 years) and at timescales possibly associated with the Pacific Decadal Oscillation (~33 years). The reconstruction is significantly correlated with sea surface temperatures (SST) in the ENSO cold tongue region from 1871-2008 (during the boreal cool season, DJFM), and this SST correlation strengthens in the 20th Century (1931-2008). Summer drought tends to develop over central Mexico during El Nino events, and the record warm events observed in 1983 and 1998 were associated with the two most extremely dry June PDSI conditions in the past 1,238 years (reconstructed ranks 1 and 2 for 1983 and 1998, respectively). The reconstruction is also significantly correlated with SSTs over the tropical North Atlantic, and is coherent with long instrument-based indices of the NAO at periods near 7.5 years, but only during the 20th century. The June PDSI reconstruction is coherent (P<0.05) with a 600

  18. Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis.

    PubMed

    Mallatt, Jon; Craig, Catherine Waggoner; Yoder, Matthew J

    2012-09-01

    divergent cephalopod and urochordate sequences out of those clades. Unlikely to be correct, these refutations show for the first time that rRNA phylogeny can support some 'wrong' clades. Along with its weaknesses, the rRNA tree has strengths: It recovers many clades that are supported by independent evidence (e.g., Metazoa, Bilateria, Hexapoda, Nonoculata, Ambulacraria, Syndermata, and Thecostraca with Malacostraca) and shows good resolution within certain groups (e.g., in Platyhelminthes, Insecta, Cnidaria). As another strength, the newly added rRNA sequences yielded the first rRNA-based support for Carnivora and Cetartiodactyla (dolphin+llama) in Mammalia, for basic subdivisions of Bryozoa ('Gymnolaemata+Stenolaemata' versus Phylactolaemata), and for Oligostraca (ostracods+branchiurans+pentastomids+mystacocarids). Future improvement could come from better sequence-evolution models that account for base-compositional heterogeneity, and from combining rRNA with protein-coding genes in phylogenetic reconstruction.

  19. PREFACE: XIV Mexican Workshop on Particles and Fields

    NASA Astrophysics Data System (ADS)

    Delepine, D.; Napsuciale, M.; Ibarguen, H. S.

    2015-11-01

    María del Tule. Mitla is a pre-Hispanic site, located 25 miles to the south of the city of Oaxaca, founded around 100 years a.c. by the native Zapotecos. Mitla had its golden age between 950-1500 a.c., after the dawn of the city of Monte Albán. It was the main city and center of the Zapotecos society in the Oaxaca central valley. Santa Mará del Tule is a nice town located 7 miles to the south of Oaxaca, famous for the so called ''Árbol del Tule''. This is an ancient tree belonging to the family commonly known as Ahuehuete or Sabino and whose scientific name is Taxodium mucronatum. It is more than 2000 years old and has a trunk with a circumference bigger than 45 meters. The workshop and these Proceedings would have not been possible without the efforts of many institutions: Consejo Nacional de Ciencia y Tecnología (CONACyT) through the Red Nacional de Física de Altas Energías and individual research projects, Universidad de Guanajuato, Universidad Nacional Autónoma de México, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Universidad Michoacana de San Nicolás de Hidalgo and Benemérita Universidad Autónoma de Puebla. We thank all these institutions for their support. Especially, we we wish to thank Universidad de Guanajuato for the financial support via PIFI for the publication of these proceedings. We thank all the speakers for making this a timely and informative workshop. Thanks are due to all who encourage the discussions and stimulate the flow of information during the question and the discussion sessions.

  20. The groundwater regime of the Valley of Mexico from historic evidence and field observations

    NASA Astrophysics Data System (ADS)

    Durazo, Jaime; Farvolden, R. N.

    1989-12-01

    Groundwater is a matter of major importance in the Valley of Mexico because some 20 million people depend on it for most of their water supply. In Mexico, historical accounts, documents and native legends provide additional information of past conditions which relates to hydrogeological conditions. In any analysis of groundwater resources it is important to know the original conditions. The Valley of Mexico is a graben structure, closed hydrologically and covered by a series of lakes at the time of the Conquest. Groundwater recharge occurs in the mountains of volcanic rocks that surround the Valley to form the Basin of Mexico. Where the rocks are visibly permeable, the water-table is deep, for the most part, and runoff is low. Thick lacustrine clays cover the Valley floor and artesian conditions once prevailed. Large springs of potable water were numerous at the edge of the Valley, and where permeable aquifers pinch-out. Thermal mineral springs occur along lineaments thought to be fractures in the rocks below the alluvial fill. The entire Valley floor and the lowest slopes of the mountains were zones of groundwater discharge. All water discharge from the Valley was by evaporation and transpiration, and salts accumulated in the lake-water and in the clays. The main lakes were nonpotable and the Aztecs and later the Spanish colonials depended on groundwater from the springs. Salt production from brines was an important industry in the Aztec society as it is today. The ahuehuete tree, ( taxodium mucronatum), which commonly lives to be many hundreds of years old, is a phreatophyte and an indicator of fresh groundwater discharge in the Valley. It used to be much more abundant. Its occurence where earthquake damage is worst suggests upward migration of fresh groundwater through fractures in the clay tht have been opened by seismic response. The water table and the capillary fringe are near ground surface over a wide zone of lowlands around the edge of the ancient lakes