Science.gov

Sample records for muerte neuronal asociados

  1. Se evitaron casi 800 000 muertes por descenso del tabaquismo

    Cancer.gov

    Programas y estrategias de control del tabaco del siglo XX fueron responsables de la prevención de más de 795 000 muertes por cáncer de pulmón en Estados Unidos de 1975 al 2000. Si todo el tabaquismo en este país hubiera cesado después de la publicación d

  2. Vestibular Neuronitis

    MedlinePlus

    ... Prevent Painful Swimmer's Ear Additional Content Medical News Vestibular Neuronitis By Lawrence R. Lustig, MD NOTE: This ... Drugs Herpes Zoster Oticus Meniere Disease Purulent Labyrinthitis Vestibular Neuronitis Vestibular neuronitis is a disorder characterized by ...

  3. Neuronal beacon.

    PubMed

    Black, B; Mondal, A; Kim, Y; Mohanty, S K

    2013-07-01

    The controlled navigation of the axonal growth cone of a neuron toward the dendrite of its synaptic partner neuron is the fundamental process in forming neuronal circuitry. While a number of technologies have been pursued for axonal guidance over the past decades, they are either invasive or not controllable with high spatial and temporal resolution and are often limited by low guidance efficacy. Here, we report a neuronal beacon based on light for highly efficient and controlled guidance of cortical primary neurons.

  4. Neuronal polarization.

    PubMed

    Takano, Tetsuya; Xu, Chundi; Funahashi, Yasuhiro; Namba, Takashi; Kaibuchi, Kozo

    2015-06-15

    Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo.

  5. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  6. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  7. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  8. [Neuronal network].

    PubMed

    Langmeier, M; Maresová, D

    2005-01-01

    Function of the central nervous system is based on mutual relations among the nerve cells. Description of nerve cells and their processes, including their contacts was enabled by improvement of optical features of the microscope and by the development of impregnation techniques. It is associated with the name of Antoni van Leeuwenhoek (1632-1723), J. Ev. Purkyne (1787-1869), Camillo Golgi (1843-1926), and Ramón y Cajal (1852-1934). Principal units of the neuronal network are the synapses. The term synapse was introduced into neurophysiology by Charles Scott Sherrington (1857-1952). Majority of the interactions between nerve cells is mediated by neurotransmitters acting at the receptors of the postsynaptic membrane or at the autoreceptors of the presynaptic part of the synapse. Attachment of the vesicles to the presynaptic membrane and the release of the neurotransmitter into the synaptic cleft depend on the intracellular calcium concentration and on the presence of several proteins in the presynaptic element.

  9. Neuron adhesion and strengthening

    NASA Astrophysics Data System (ADS)

    Rocha, Aracely; Jian, Kuihuan; Ko, Gladys; Liang, Hong

    2010-07-01

    Understanding the neuron/material adhesion is important for neuron stimulation and growth. The current challenges remain in the lack of precision of measuring techniques and understanding the behavior of neuron. Here, we report a fluid shear method to investigate adhesion at the neuron/poly-D-lysine interface. In this study, the adhesion of 12-day-old chick embryo-retina neurons cultured on poly-D-lysine coated glass coverslips was measured via parallel disk rotational flow. The shear stress experienced by the cells increases with the disk radius. There is a critical point along the radius (Rc) where the stress experienced by the neurons equals their adhesion. The measured Rc can be used to calculate the neuron adhesion. Our results demonstrate that neurons adhered to the poly-D-lysine had a strain hardening effect. The adhesive shear stress of the neuron-material increased with applied shear (τa). When the τa reached or exceeded the value of 40 dyn/cm2, the adhesion remained constant at approximately 30 dyn/cm2. The present work allowed us not only to quantify the adhesive strength and force but also to evaluate the value of strain hardening at the neuron/poly-D-lysine interface.

  10. Motor Neurons that Multitask

    PubMed Central

    Goulding, Martyn

    2013-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion. PMID:23177952

  11. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  12. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  13. NEURON and Python.

    PubMed

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  14. Transporting mitochondria in neurons

    PubMed Central

    Course, Meredith M.; Wang, Xinnan

    2016-01-01

    Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria—which can cause oxidative stress to the neuron—must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction. PMID:27508065

  15. How microglia kill neurons.

    PubMed

    Brown, Guy C; Vilalta, Anna

    2015-12-01

    Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.

  16. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  17. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  18. Effect of artificial feeders on pollen loads of the hummingbirds of Cerro de la Muerte, Costa Rica.

    PubMed

    Avalos, Gerardo; Soto, Alejandra; Alfaro, Willy

    2012-03-01

    Although sugar-water feeders are commonly used by enthusiasts to attract hummingbirds, little is known about how they affect hummingbird behavior and flower use. We studied the highland hummingbird assemblage of Cerro de La Muerte, Costa Rica, both at a site with permanent feeders (La Georgina Restaurant) and further from it. We examined how feeder use and monopolization affected seasonal changes in pollen loads during four sampling periods, including dry and wet seasons, from 2003-2005. We expected that species monopolizing the feeders would carry little or no pollen whatsoever, and would have pollen loads characterized by low floral diversity, in contrast with species less dependent on feeders. We obtained pollen samples from 183 individuals of four hummingbird species captured around the feeders using mist nets, which were compared with a pollen reference collection of plants with a pollination syndrome by hummingbirds. The same methods were implemented at a site 3km away from the feeders. Feeder usage was quantified by counting the number of times hummingbirds drank from the feeders in periods of 4min separated by 1min. The effects of hummingbird species and season on pollen load categories were assessed using a nominal logistic regression. The alpha species at the site, the Fiery-throated Hummingbird (Panterpe insignis), dominated the feeders during the dry season. Meanwhile, in the wet season, feeder usage was more evenly distributed across species, with the exception of the Volcano Hummingbird, Selasphorus flammula, which occupies the last place in the dominance hierarchy. Pollen loads of hummingbirds captured near feeders were low in abundance (more than 50% of captured individuals had zero or low pollen loads), and low in species richness (96% of the hummingbirds with pollen from only one plant genus, Centropogon). Overall pollen loads increased during the dry season coinciding with peaks in flower availability, although the majority of captured

  19. Effect of artificial feeders on pollen loads of the hummingbirds of Cerro de la Muerte, Costa Rica.

    PubMed

    Avalos, Gerardo; Soto, Alejandra; Alfaro, Willy

    2012-03-01

    Although sugar-water feeders are commonly used by enthusiasts to attract hummingbirds, little is known about how they affect hummingbird behavior and flower use. We studied the highland hummingbird assemblage of Cerro de La Muerte, Costa Rica, both at a site with permanent feeders (La Georgina Restaurant) and further from it. We examined how feeder use and monopolization affected seasonal changes in pollen loads during four sampling periods, including dry and wet seasons, from 2003-2005. We expected that species monopolizing the feeders would carry little or no pollen whatsoever, and would have pollen loads characterized by low floral diversity, in contrast with species less dependent on feeders. We obtained pollen samples from 183 individuals of four hummingbird species captured around the feeders using mist nets, which were compared with a pollen reference collection of plants with a pollination syndrome by hummingbirds. The same methods were implemented at a site 3km away from the feeders. Feeder usage was quantified by counting the number of times hummingbirds drank from the feeders in periods of 4min separated by 1min. The effects of hummingbird species and season on pollen load categories were assessed using a nominal logistic regression. The alpha species at the site, the Fiery-throated Hummingbird (Panterpe insignis), dominated the feeders during the dry season. Meanwhile, in the wet season, feeder usage was more evenly distributed across species, with the exception of the Volcano Hummingbird, Selasphorus flammula, which occupies the last place in the dominance hierarchy. Pollen loads of hummingbirds captured near feeders were low in abundance (more than 50% of captured individuals had zero or low pollen loads), and low in species richness (96% of the hummingbirds with pollen from only one plant genus, Centropogon). Overall pollen loads increased during the dry season coinciding with peaks in flower availability, although the majority of captured

  20. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    PubMed Central

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  1. Neuronal avalanches and learning

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  2. Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures.

    PubMed

    Cullen, D Kacy; Gilroy, Meghan E; Irons, Hillary R; Laplaca, Michelle C

    2010-11-01

    Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral cortical neurons were plated in planar culture at densities ranging from 10 to 5000 neurons/mm², and synapse number and distribution were evaluated via immunocytochemistry over 21 days in vitro (DIV). High-resolution confocal microscopy revealed an elaborate three-dimensional distribution of neurites and synapses across the heights of high-density neuronal networks by 21 DIV, which were up to 18 μm thick, demonstrating the complex degree of spatial interactions even in planar high-density cultures. At 7 DIV, the mean number of synapses per neuron was less than 5, and this did not vary as a function of neuronal density. However, by 21 DIV, the number of synapses per neuron had jumped 30- to 80-fold, and the synapse-to-neuron ratio was greatest at lower neuronal densities (< 500 neurons/mm²; mean approximately 400 synapses/neuron) compared to mid and higher neuronal densities (500-4500 neurons/mm²; mean of approximately 150 synapses/neuron) (p<0.05). These results suggest a relationship between neuronal density and synapse number that may have implications in the neurobiology of developing neuronal networks as well as processes of cell death and regeneration.

  3. Neuronal migration illuminated

    PubMed Central

    Trivedi, Niraj

    2011-01-01

    During vertebrate brain development, migration of neurons from the germinal zones to their final laminar positions is essential to establish functional neural circuits.1–3 Whereas key insights into neuronal migration initially came from landmark studies identifying the genes mutated in human cortical malformations,4 cell biology has recently greatly advanced our understanding of how cytoskeletal proteins and molecular motors drive the morphogenic cell movements that build the developing brain. This Commentary & View reviews recent studies examining the role of the molecular motors during neuronal migration and critically examines current models of acto-myosin function in the two-step neuronal migration cycle. Given the apparent emerging diversity of neuronal sub-type cytoskeletal organizations, we propose that two approaches must be taken to resolve differences between the current migration models: the mechanisms of radial and tangential migration must be compared, and the loci of tension generation, migration substrates and sites of adhesion dynamics must be precisely examined in an integrated manner. PMID:20935494

  4. Kappe neurons, a novel population of olfactory sensory neurons

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  5. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  6. Exploring neuronal activity with photons

    NASA Astrophysics Data System (ADS)

    Bourdieu, Laurent; Léger, Jean-François

    2015-10-01

    The following sections are included: * Introduction * Information coding * Optical recordings of neuronal activity * Functional organization of the cortex at the level of a cortical column * Microarchitecture of a cortical column * Dynamics of neuronal populations * Outlook * Bibliography

  7. The neuron classification problem

    PubMed Central

    Bota, Mihail; Swanson, Larry W.

    2007-01-01

    A systematic account of neuron cell types is a basic prerequisite for determining the vertebrate nervous system global wiring diagram. With comprehensive lineage and phylogenetic information unavailable, a general ontology based on structure-function taxonomy is proposed and implemented in a knowledge management system, and a prototype analysis of select regions (including retina, cerebellum, and hypothalamus) presented. The supporting Brain Architecture Knowledge Management System (BAMS) Neuron ontology is online and its user interface allows queries about terms and their definitions, classification criteria based on the original literature and “Petilla Convention” guidelines, hierarchies, and relations—with annotations documenting each ontology entry. Combined with three BAMS modules for neural regions, connections between regions and neuron types, and molecules, the Neuron ontology provides a general framework for physical descriptions and computational modeling of neural systems. The knowledge management system interacts with other web resources, is accessible in both XML and RDF/OWL, is extendible to the whole body, and awaits large-scale data population requiring community participation for timely implementation. PMID:17582506

  8. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H. R.; Chen, S. T.; Chu, Y. S.; Conley, R.; Bouet, N.; Chien, C. C.; Chen, H. H.; Lin, C. H.; Tung, H. T.; Chen, Y. S.; Margaritondo, G.; Je, J. H.; Hwu, Y.

    2012-05-29

    We report recent advances in hard-x-ray optics—including record spatial resolution—and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  9. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y.

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  10. Neuronal synchrony: peculiarity and generality.

    PubMed

    Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I

    2008-09-01

    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). PMID:19045493

  11. RNA Protein Interaction in Neurons

    PubMed Central

    Darnell, Robert B.

    2013-01-01

    Neurons have their own systems for regulating RNA. Several multigene families encode RNA binding proteins (RNABPs) that are uniquely expressed in neurons, including the well-known neuron-specific markers ELAV and NeuN, and the disease antigen NOVA. New technologies have emerged in recent years to assess the function of these proteins in vivo, and the answers are yielding insights into how and why neurons may regulate RNA in special ways—to increase cellular complexity, to spatially localize mRNA, and to regulate their expression in response to synaptic stimuli. The functions of such restricted neuronal proteins is likely to be complimented by more widely expressed RNABPs that may themselves have developed specialized functions in neurons, including Argonaute/miRNAs. Here we review what is known about such RNABPs, and explore the potential biologic and neurologic significance of neuronal RNA regulatory systems. PMID:23701460

  12. Add neurons, subtract anxiety

    PubMed Central

    Kheirbek, Mazen A.; Hen, René

    2014-01-01

    IN BRIEF To keep memories from becoming jumbled, the brain must encode the distinct features of events and situations in a way that allows them to be distinguished from one another—a process called pattern separation. Pattern separation enables us to distinguish dangerous situations from similar ones that pose no risk. People with defects in this ability may be prone to anxiety disorders. The process occurs in one of the two regions of the brain that generate neurons throughout life. These fledgling cells seem to be critical to pattern separation. Interventions that specifically boost the ranks of rookie neurons could provide new ways to regulate mood and possibly treat conditions such as post-traumatic stress disorder. PMID:24974712

  13. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  14. Micropatterning neuronal networks.

    PubMed

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-01

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

  15. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    PubMed

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks. PMID:27515518

  16. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    PubMed

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks.

  17. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  18. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  19. Metabolic reprogramming during neuronal differentiation

    PubMed Central

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-01-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate–glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K–Akt–mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  20. Neocortical neurogenesis and neuronal migration

    PubMed Central

    Tan, Xin; Shi, Song-Hai

    2012-01-01

    The neocortex, the evolutionarily newest part of the cerebral cortex, controls nearly all aspects of behavior, including perception, language and decision-making. It contains an immense number of neurons that can be broadly divided into two groups, excitatory neurons and inhibitory interneurons. These neurons are predominantly produced through extensive progenitor cell divisions during the embryonic stages. Moreover, they are not randomly dispersed, but spatially organized into horizontal layers that are essential for neocortex function. The formation of this laminar structure requires exquisite control of neuronal migration from their birthplace to their final destination. Extensive research over the past decade has greatly advanced our understanding of the production and migration of both excitatory neurons and inhibitory interneurons in the developing neocortex. In this review, we aim to give an overview on the molecular and cellular processes of neocortical neurogenesis and neuronal migration. PMID:24014417

  1. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  2. Microbes' roadmap to neurons.

    PubMed

    Kristensson, Krister

    2011-06-01

    The nervous system is protected by barriers that restrict the invasion of pathogens. Nevertheless, mechanisms have evolved by which microbes can pass these barriers, enter and exit neurons and target various regions of the nervous system. In the brain, immune responses to pathogens are generally not robust, so microbes can hide and survive or, conversely, cause severe uncontrolled infections. Depending on their sites of entry and the regions that they target, microbes can cause diverse nervous system dysfunctions and even influence host behaviour to their own advantage. This Review discusses routes by which microbes can reach the nervous system and cause persistent or life-threatening infections.

  3. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. PMID:26112081

  4. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  5. The biophysics of neuronal growth

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Guck, Jochen

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  6. Assessing Neuronal Bioenergetic Status

    PubMed Central

    Zeiger, Stephanie L.H.; Stankowski, Jeannette N.; McLaughlin, BethAnn

    2013-01-01

    Drug discovery and therapeutic development for disorders of the central nervous system (CNS) represents one of the largest unmet markets in modern medicine. We have increasingly recognized that the lack of stringent assessment of mitochondrial function during the discovery process has resulted in drug recalls, black box warnings, and an urgent need to understand the metabolic liability of small molecules in neural systems. Given that the brain is the most energetically demanding organ, even modest perturbations in neuronal energetic pathways have been shown to impact growth, signaling, connectivity, and the restorative capacity of the CNS. In this work, we describe several tools to assess metabolic activity of primary neuronal cultures and neural cell lines using an acute model of injury induced by oxygen glucose deprivation. Methods include the measurement of total ATP and NADH, enzymatic assessment of lactate production by anaerobic respiration, as well as viability assays. We also present a modified screening method for assessing aerobic respiration of immortalized cell lines using galactose challenge. PMID:21815069

  7. Assessing neuronal bioenergetic status.

    PubMed

    Zeiger, Stephanie L H; Stankowski, Jeannette N; McLaughlin, BethAnn

    2011-01-01

    Drug discovery and therapeutic development for disorders of the central nervous system (CNS) represents one of the largest unmet markets in modern medicine. We have increasingly recognized that the lack of stringent assessment of mitochondrial function during the discovery process has resulted in drug recalls, black box warnings, and an urgent need to understand the metabolic liability of small molecules in neural systems. Given that the brain is the most energetically demanding organ, even modest perturbations in neuronal energetic pathways have been shown to impact growth, signaling, connectivity, and the restorative capacity of the CNS. In this work, we describe several tools to assess metabolic activity of primary neuronal cultures and neural cell lines using an acute model of injury induced by oxygen glucose deprivation. Methods include the measurement of total ATP and NADH, enzymatic assessment of lactate production by anaerobic respiration, as well as viability assays. We also present a modified screening method for assessing aerobic respiration of immortalized cell lines using galactose challenge.

  8. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  9. The Neuronal Ceroid-Lipofuscinoses

    ERIC Educational Resources Information Center

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  10. The straintronic spin-neuron

    NASA Astrophysics Data System (ADS)

    Biswas, Ayan K.; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  11. Cryopreservation of adherent neuronal networks.

    PubMed

    Ma, Wu; O'Shaughnessy, Thomas; Chang, Eddie

    2006-07-31

    Neuronal networks have been widely used for neurophysiology, drug discovery and toxicity testing. An essential prerequisite for future widespread application of neuronal networks is the development of efficient cryopreservation protocols to facilitate their storage and transportation. Here is the first report on cryopreservation of mammalian adherent neuronal networks. Dissociated spinal cord cells were attached to a poly-d-lysine/laminin surface and allowed to form neuronal networks. Adherent neuronal networks were embedded in a thin film of collagen gel and loaded with trehalose prior to transfer to a freezing medium containing DMSO, FBS and culture medium. This was followed by a slow rate of cooling to -80 degrees C for 24 h and then storage for up to 2 months in liquid nitrogen at -196 degrees C. The three components: DMSO, collagen gel entrapment and trehalose loading combined provided the highest post-thaw viability, relative to individual or two component protocols. The post-thaw cells with this protocol demonstrated similar neuronal and astrocytic markers and morphological structure as those detected in unfrozen cells. Fluorescent dye FM1-43 staining revealed active recycling of synaptic vesicles upon depolarizing stimulation in the post-thaw neuronal networks. These results suggest that a combination of DMSO, collagen gel entrapment and trehalose loading can significantly improve conventional slow-cooling methods in cryopreservation of adherent neuronal networks.

  12. More questions for mirror neurons.

    PubMed

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons.

  13. Neuron's function revealed

    SciTech Connect

    2009-01-01

    There's a new way to explore biologys secrets. With a flash of light, scientists from the U.S. Department of Energys Lawrence Berkeley National Laboratory and the University of California, Berkeley zeroed in on the type of neural cell that controls swimming in larval zebrafish. Using innovative light-activated proteins and gene expression techniques, the scientists zapped several zebrafish with a pulse of light, and initiated a swimming action in a subset of fish that was traced back to the type of neuron that drives the side-to-side motion of their tail fins. The technique behind this needle-in-haystack search for the neural roots of a specific behavior could become a powerful way to learn how any biological system works. http://newscenter.lbl.gov/press-releases/2009/09/16/light-activated-protein/

  14. [Neurons and values].

    PubMed

    Camps, Victoria

    2013-09-01

    This article examines the advances made by neuroscience in the attempt to find an answer to the question regarding the origin and foundation of moral judgements and of human behaviour in compliance with them. The conception of the brain as something dynamic and capable of adapting to the social and cultural surroundings is seen to be an important point for philosophy. At the same time, the complexity of ethical issues that cannot be reduced to observations based strictly on neurons alone also becomes quite apparent. Nevertheless, scientists and philosophers should get together and communicate with one another so as to be able to pose their questions with greater rigour and take advantage of each other's respective knowledge.

  15. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  16. Calcium, iron and neuronal function.

    PubMed

    Hidalgo, Cecilia; Núñez, Marco T

    2007-01-01

    Calcium and iron play dual roles in neuronal function: they are both essential but when present in excess they cause neuronal damage and may even induce neuronal death. Calcium signals are required for synaptic plasticity, a neuronal process that entails gene expression and which is presumably the cellular counterpart of cognitive brain functions such as learning and memory. Neuronal activity generates cytoplasmic and nuclear calcium signals that in turn stimulate pathways that promote the transcription of genes known to participate in synaptic plasticity. In addition, evidence discussed in this article shows that iron deficiency causes learning and memory impairments that persist following iron repletion, indicating that iron is necessary for normal development of cognitive functions. Recent results from our group indicate that iron is required for long-term potentiation in hippocampal CA1 neurons and that iron stimulates ryanodine receptor-mediated calcium release through ROS produced via the Fenton reaction leading to stimulation of the ERK signaling pathway. These combined results support a coordinated action between iron and calcium in synaptic plasticity and raise the possibility that elevated iron levels may contribute to neuronal degeneration through excessive intracellular calcium increase caused by iron-induced oxidative stress. PMID:17505966

  17. Towards Automatic Classification of Neurons

    PubMed Central

    Armañanzas, Rubén; Ascoli, Giorgio A.

    2015-01-01

    The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting information growth of morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and availability of suitable data and resources, highlighting prominent challenges and opportunities. The effective solution of the neuronal classification problem will require continuous development of computational methods, high-throughput data production, and systematic metadata organization to enable cross-lab integration. PMID:25765323

  18. Single neuron dynamics and computation.

    PubMed

    Brunel, Nicolas; Hakim, Vincent; Richardson, Magnus J E

    2014-04-01

    At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.

  19. A fish on the hunt, observed neuron by neuron

    SciTech Connect

    2010-01-01

    This three-dimensional microscopy image reveals an output neuron of the optic tectum lighting up in response to visual information from the retina. The scientists used this state-of-the-art imaging technology to learn how neurons in the optic tectum take visual information and convert it into an output that drives action. More information: http://newscenter.lbl.gov/feature-stories/2010/10/29/zebrafish-vision/

  20. Modeling Neuronal Current MRI Signal with Human Neuron

    PubMed Central

    Luo, Qingfei; Jiang, Xia; Chen, Bin; Zhu, Yi; Gao, Jia-Hong

    2010-01-01

    Up to date, no consensus has been achieved regarding the possibility of detecting neuronal currents by MRI (ncMRI) in human brain. To evaluate the detectability of ncMRI, an effective way is to simulate ncMRI signal with the realistic neuronal geometry and electrophysiological processes. Unfortunately, previous realistic ncMRI models are based on rat and monkey neurons. The species difference in neuronal morphology and physiology would prevent these models from simulating the ncMRI signal accurately in human subjects. The aim of the present study is to bridge this gap by establishing a realistic ncMRI model specifically for human cerebral cortex. In this model, the ncMRI signal was simulated using anatomically reconstructed human pyramidal neurons and their biophysical properties. The modeling results showed that the amplitude of ncMRI signal significantly depends on the density of synchronously firing neurons and imaging conditions such as position of imaging voxel, direction of main magnetic field (B0) relative to the cortical surface and echo time. The results indicated that physiologically-evoked ncMRI signal is too weak to be detected (magnitude/phase change ≤ -1.4×10−6/0.02°), but the phase signal induced by spontaneous activity may reach a detectable level (up to 0.2°) in favorable conditions. PMID:21254209

  1. The neuronal and actin commitment: Why do neurons need rings?

    PubMed

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc.

  2. The neuronal and actin commitment: Why do neurons need rings?

    PubMed

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc. PMID:26784007

  3. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  4. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  5. Optical Stimulation of Neurons

    PubMed Central

    Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco

    2014-01-01

    Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269

  6. Tinbergen on mirror neurons

    PubMed Central

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology—the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible ‘best explanation’ for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of ‘survival value’, should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding—or another social cognitive function—by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  7. Polyphenolic Antioxidants and Neuronal Regeneration

    PubMed Central

    Ataie, Amin; Shadifar, Mohammad; Ataee, Ramin

    2016-01-01

    Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations’ sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases. PMID:27303602

  8. Polyphenolic Antioxidants and Neuronal Regeneration.

    PubMed

    Ataie, Amin; Shadifar, Mohammad; Ataee, Ramin

    2016-04-01

    Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations' sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases. PMID:27303602

  9. Regulation of Neuronal Gene Expression

    NASA Astrophysics Data System (ADS)

    Thiel, Gerald; Lietz, Michael; Leichter, Michael

    Humans as multicellular organisms contain a variety of different cell types where each cell population must fulfill a distinct function in the interest of the whole organism. The molecular basis for the variations in morphology, biochemistry, molecular biology, and function of the various cell types is the cell-type specific expression of genes. These genes encode proteins necessary for executing the specialized functions of each cell type within an organism. We describe here a regulatory mechanism for the expression of neuronal genes. The zinc finger protein REST binds to the regulatory region of many neuronal genes and represses neuronal gene expression in nonneuronal tissues. A negative regulatory mechanism, involving a transcriptional repressor, seems to play an important role in establishing the neuronal phenotype.

  10. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  11. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  12. Modeling neuronal vulnerability in ALS.

    PubMed

    Roselli, Francesco; Caroni, Pico

    2014-08-20

    Using computational models of motor neuron ion fluxes, firing properties, and energy requirements, Le Masson et al. (2014) reveal how local imbalances in energy homeostasis may self-amplify and contribute to neurodegeneration in ALS.

  13. Map-based neuron networks

    NASA Astrophysics Data System (ADS)

    Ibarz, Borja; Cao, Hongjun; Sanjuán, Miguel A. F.

    2007-02-01

    Ever since the pioneering work of Hodgkin and Huxley, biological neuron models have consisted of ODEs representing the evolution of the transmembrane voltage and the dynamics of ionic conductances. It is only recently that maps — or difference equations — have begun to receive attention as valid conductance neuron models. They can not only be computationally advantageous substitutes of ODE models, but, since they accommodate chaotic dynamics in a natural way, they may reproduce rich collective behaviors that we explore here.

  14. Glial control of neuronal development.

    PubMed

    Lemke, G

    2001-01-01

    Reciprocal interactions between differentiating glial cells and neurons define the course of nervous system development even before the point at which these two cell types become definitively recognizable. Glial cells control the survival of associated neurons in both Drosophila and mammals, but this control is dependent on the prior neuronal triggering of glial cell fate commitment and trophic factor expression. In mammals, the growth factor neuregulin-1 and its receptors of the ErbB family play crucial roles in both events. Similarly, early differentiating neurons and their associated glia rely on reciprocal signaling to establish the basic axon scaffolds from which neuronal connections evolve. The importance of this interactive signaling is illustrated by the action of glial transcription factors and of glial axon guidance cues such as netrin and slit, which together regulate the commissural crossing of pioneer axons at the neural midline. In these and related events, the defining principle is one of mutually reinforced and mutually dependent signaling that occurs in a network of developing neurons and glia.

  15. Neuritin 1 promotes neuronal migration.

    PubMed

    Zito, Arianna; Cartelli, Daniele; Cappelletti, Graziella; Cariboni, Anna; Andrews, William; Parnavelas, John; Poletti, Angelo; Galbiati, Mariarita

    2014-01-01

    Neuritin 1 (Nrn1 or cpg15-1) is an activity-dependent protein involved in synaptic plasticity during brain development, a process that relies upon neuronal migration. By analyzing Nrn1 expression, we found that it is highly expressed in a mouse model of migrating immortalized neurons (GN11 cells), but not in a mouse model of non-migrating neurons (GT1-7 cells). We thus hypothesized that Nrn1 might control neuronal migration. By using complementary assays, as Boyden's microchemotaxis, scratch-wounding and live cell imaging, we found that GN11 cell migration is enhanced when Nrn1 is overexpressed and decreased when Nrn1 is silenced. The effects of Nrn1 in promoting neuronal migration have been then confirmed ex vivo, on rat cortical interneurons, by Boyden chamber assays and focal electroporation of acute embryonic brain slices. Furthermore, we found that Nrn1 level modulation affects GN11 cell morphology. The process is also paralleled by Nrn1-induced α-tubulin post-translational modifications, a well-recognized marker of microtubule stability. Altogether, the data demonstrate a novel function of Nrn1 in promoting migration of neuronal cells and indicate that Nrn1 levels impact on microtubule stability. PMID:23212301

  16. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.

  17. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  18. Neuronal polarity: an evolutionary perspective

    PubMed Central

    Rolls, Melissa M.; Jegla, Timothy J.

    2015-01-01

    Polarized distribution of signaling molecules to axons and dendrites facilitates directional information flow in complex vertebrate nervous systems. The topic we address here is when the key aspects of neuronal polarity evolved. All neurons have a central cell body with thin processes that extend from it to cover long distances, and they also all rely on voltage-gated ion channels to propagate signals along their length. The most familiar neurons, those in vertebrates, have additional cellular features that allow them to send directional signals efficiently. In these neurons, dendrites typically receive signals and axons send signals. It has been suggested that many of the distinct features of axons and dendrites, including the axon initial segment, are found only in vertebrates. However, it is now becoming clear that two key cytoskeletal features that underlie polarized sorting, a specialized region at the base of the axon and polarized microtubules, are found in invertebrate neurons as well. It thus seems likely that all bilaterians generate axons and dendrites in the same way. As a next step, it will be extremely interesting to determine whether the nerve nets of cnidarians and ctenophores also contain polarized neurons with true axons and dendrites, or whether polarity evolved in concert with the more centralized nervous systems found in bilaterians. PMID:25696820

  19. Neuronal polarization in the developing cerebral cortex.

    PubMed

    Sakakibara, Akira; Hatanaka, Yumiko

    2015-01-01

    Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic interneurons, whose connections construct highly organized neuronal circuits that control higher order information processing. Recent progress in live imaging has allowed us to examine how these neurons differentiate during development in vivo or in in vivo-like conditions. These analyses have revealed how the initial steps of polarization, in which neurons establish an axon, occur. Interestingly, both excitatory and inhibitory cortical neurons establish neuronal polarity de novo by undergoing a multipolar stage reminiscent of the manner in which polarity formation occurs in hippocampal neurons in dissociated culture. In this review, we focus on polarity formation in cortical neurons and describe their typical morphology and dynamic behavior during the polarization period. We also discuss cellular and molecular mechanisms underlying polarization, with reference to polarity formation in dissociated hippocampal neurons in vitro.

  20. Fatty acids increase neuronal hypertrophy of Pten knockdown neurons

    PubMed Central

    Fricano, Catherine J.; DeSpenza, Tyrone; Frazel, Paul W.; Li, Meijie; O'Malley, A. James; Westbrook, Gary L.; Luikart, Bryan W.

    2014-01-01

    Phosphatase and tensin homolog (Pten) catalyzes the reverse reaction of PI3K by dephosphorylating PIP3 to PIP2. This negatively regulates downstream Akt/mTOR/S6 signaling resulting in decreased cellular growth and proliferation. Co-injection of a lentivirus knocking Pten down with a control lentivirus allows us to compare the effects of Pten knockdown between individual neurons within the same animal. We find that knockdown of Pten results in neuronal hypertrophy by 21 days post-injection. This neuronal hypertrophy is correlated with increased p-S6 and p-mTOR in individual neurons. We used this system to test whether an environmental factor that has been implicated in cellular hypertrophy could influence the severity of the Pten knockdown-induced hypertrophy. Implantation of mini-osmotic pumps delivering fatty acids results in increased neuronal hypertrophy and p-S6/p-mTOR staining. These hypertrophic effects were reversed in response to rapamycin treatment. However, we did not observe a similar increase in hypertrophy in response to dietary manipulations of fatty acids. Thus, we conclude that by driving growth signaling with fatty acids and knocking down a critical regulator of growth, Pten, we are able to observe an additive morphological phenotype of increased soma size mediated by the mTOR pathway. PMID:24795563

  1. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  2. Chondroitin sulfate and neuronal disorders.

    PubMed

    Miyata, Shinji; Kitagawa, Hiroshi

    2016-01-01

    The brain extracellular matrix (ECM) is involved in several aspects of neuronal development, plasticity, and pathophysiology. Chondroitin sulfate proteoglycans (CSPGs), consisting of core proteins with covalently attached chondroitin sulfate (CS) chains, are essential components of the brain ECM. During late postnatal development, CSPGs condense around parvalbumin-expressing inhibitory neurons (PV-cells) and form lattice-like ECM structures called perineuronal nets (PNNs). Enzymatic or genetic manipulation of PNNs reactivates neuronal plasticity in the adult brain, probably by resetting the excitatory/inhibitory balance in neural networks. Recent studies have indicated that PNNs control PV-cell function by enhancing the accumulation of specific proteins at the cell surface and/or acting as neuroprotective shields against oxidative stress. Since dysfunction of PV-cells and remodeling of CSPGs are commonly observed in several disorders, including schizophrenia, Costello syndrome, Alzheimer's disease, and epilepsy, modulation of PV-cell function by CSPGs may provide a novel strategy for these neuronal disorders. Here we review the potential roles of CSPGs as therapeutic targets for neuronal disorders, with particular focus on structural changes of CS chains under pathological conditions.

  3. Neuronal factors determining high intelligence.

    PubMed

    Dicke, Ursula; Roth, Gerhard

    2016-01-01

    Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner. PMID:26598734

  4. Network synchronization in hippocampal neurons

    PubMed Central

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-01-01

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron’s tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network’s activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  5. Vibrational resonance in neuron populations

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Wang, Jiang; Wei, Xile; Tsang, K. M.; Chan, W. L.

    2010-03-01

    In this paper different topologies of populations of FitzHugh-Nagumo neurons have been introduce to investigate the effect of high-frequency driving on the response of neuron populations to a subthreshold low-frequency signal. We show that optimal amplitude of high-frequency driving enhances the response of neuron populations to a subthreshold low-frequency input and the optimal amplitude dependences on the connection among the neurons. By analyzing several kinds of topology (i.e., random and small world) different behaviors have been observed. Several topologies behave in an optimal way with respect to the range of low-frequency amplitude leading to an improvement in the stimulus response coherence, while others with respect to the maximum values of the performance index. However, the best results in terms of both the suitable amplitude of high-frequency driving and high stimulus response coherence have been obtained when the neurons have been connected in a small-world topology.

  6. Stochastic phase-change neurons

    NASA Astrophysics Data System (ADS)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  7. Brain Neurons as Quantum Computers:

    NASA Astrophysics Data System (ADS)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  8. Neuronal factors determining high intelligence.

    PubMed

    Dicke, Ursula; Roth, Gerhard

    2016-01-01

    Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner.

  9. Chimera states in bursting neurons.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  10. Chimera states in bursting neurons

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  11. Dynamics of moment neuronal networks.

    PubMed

    Feng, Jianfeng; Deng, Yingchun; Rossoni, Enrico

    2006-04-01

    A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit and receive spike trains which can be described by renewal--but generally non-Poisson--processes, we first derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced: the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested on a few examples.

  12. Towards a Neuronal Gauge Theory

    PubMed Central

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K.; Douglas, Pamela K.; Friston, Karl J.

    2016-01-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics—based on approximate Bayesian inference—has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636

  13. Towards a Neuronal Gauge Theory.

    PubMed

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K; Douglas, Pamela K; Friston, Karl J

    2016-03-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics--based on approximate Bayesian inference--has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636

  14. Correlations and Neuronal Population Information.

    PubMed

    Kohn, Adam; Coen-Cagli, Ruben; Kanitscheider, Ingmar; Pouget, Alexandre

    2016-07-01

    Brain function involves the activity of neuronal populations. Much recent effort has been devoted to measuring the activity of neuronal populations in different parts of the brain under various experimental conditions. Population activity patterns contain rich structure, yet many studies have focused on measuring pairwise relationships between members of a larger population-termed noise correlations. Here we review recent progress in understanding how these correlations affect population information, how information should be quantified, and what mechanisms may give rise to correlations. As population coding theory has improved, it has made clear that some forms of correlation are more important for information than others. We argue that this is a critical lesson for those interested in neuronal population responses more generally: Descriptions of population responses should be motivated by and linked to well-specified function. Within this context, we offer suggestions of where current theoretical frameworks fall short.

  15. Towards a Neuronal Gauge Theory.

    PubMed

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K; Douglas, Pamela K; Friston, Karl J

    2016-03-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics--based on approximate Bayesian inference--has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception.

  16. Conocimientos y autoeficacia asociados a la prevención del VIH y SIDA en mujeres chilenas

    PubMed Central

    Villegas Rodríguez, Natalia; Ferrer Lagunas, Lilian Marcela; Cianelli Acosta, Rosina; Miner, Sarah; Lara Campos, Loreto; Peragallo, Nilda

    2014-01-01

    Resumen Objetivo Evaluar la relación existente entre conocimientos y autoeficacia asociados al VIH/SIDA en mujeres chilenas en desventaja social. Metodología Estudio correlacional, que utiliza la medición basal del estudio “Testeando una intervención en VIH y SIDA en mujeres chilenas”, realizada entre 2006 y 2008, que tiene una muestra de 496 mujeres entre 18 y 49 años residentes en dos comunas de Santiago de Chile. Las participantes respondieron un cuestionario estructurado aplicado por entrevistadoras entrenadas. Este cuestionario incluyó preguntas sobre datos sociodemográficos, escala de conocimientos de conductas de riesgo y autoeficacia, entre otros. Resultados Edad promedio de 32.3±9.1 años, 72.2% vive con su pareja y 42.7% poseen educación media completa. La puntuación media de los conocimientos de la infección por el VIH fue de 8.9±2.5, mientras que para las tres escalas empleadas para medir autoeficacia fueron: “Normas de los pares” =9.8±3.6, “Intención de reducir conductas de riesgo” =12.2±3.6 y “Self Efficacy Form”=20.2±4.7. Los conocimientos tuvieron una correlación positiva débil con la “intención de reducir conductas de riesgo” (r=0.19; p<0.0001) y con la escala “Self Efficacy Form” (r=0.34; p<0.0001), pero no se relacionaron con las “normas de los pares en cuanto a relaciones sexuales seguras” (r=0.13; p=0.78). Conclusión Existe una débil correlación positiva entre el nivel de conocimientos sobre el VIH/SIDA y la autoeficacia en mujeres chilenas en desventaja social. PMID:25284914

  17. Prospective Coding by Spiking Neurons.

    PubMed

    Brea, Johanni; Gaál, Alexisz Tamás; Urbanczik, Robert; Senn, Walter

    2016-06-01

    Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100

  18. Copying and Evolution of Neuronal Topology

    PubMed Central

    Fernando, Chrisantha; Karishma, K. K.; Szathmáry, Eörs

    2008-01-01

    We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed. PMID:19020662

  19. Electrodiagnosis of motor neuron disease.

    PubMed

    Duleep, Anuradha; Shefner, Jeremy

    2013-02-01

    Electrodiagnostic testing has proved useful in helping to establish the diagnosis of amyotrophic lateral sclerosis by eliminating possible disease mimics and by demonstrating abnormalities in body areas that are clinically unaffected. Electrodiagnosis begins with an understanding of the clinical features of the disease, because clinical correlation is essential. To improve the sensitivity of the electrophysiologic evaluation, the Awaji criteria have been proposed as a modification to the revised El Escorial criteria. Although techniques to evaluate corticomotor neuron abnormalities and to quantify lower motor neuron loss have been developed, they remain primarily research techniques and have not yet influenced clinical practice.

  20. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  1. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  2. Characterization of cutaneous and articular sensory neurons

    PubMed Central

    da Silva Serra, Ines; Husson, Zoé; Bartlett, Jonathan D.

    2016-01-01

    Background A wide range of stimuli can activate sensory neurons and neurons innervating specific tissues often have distinct properties. Here, we used retrograde tracing to identify sensory neurons innervating the hind paw skin (cutaneous) and ankle/knee joints (articular), and combined immunohistochemistry and electrophysiology analysis to determine the neurochemical phenotype of cutaneous and articular neurons, as well as their electrical and chemical excitability. Results Immunohistochemistry analysis using RetroBeads as a retrograde tracer confirmed previous data that cutaneous and articular neurons are a mixture of myelinated and unmyelinated neurons, and the majority of both populations are peptidergic. In whole-cell patch-clamp recordings from cultured dorsal root ganglion neurons, voltage-gated inward currents and action potential parameters were largely similar between articular and cutaneous neurons, although cutaneous neuron action potentials had a longer half-peak duration (HPD). An assessment of chemical sensitivity showed that all neurons responded to a pH 5.0 solution, but that acid-sensing ion channel (ASIC) currents, determined by inhibition with the nonselective acid-sensing ion channel antagonist benzamil, were of a greater magnitude in cutaneous compared to articular neurons. Forty to fifty percent of cutaneous and articular neurons responded to capsaicin, cinnamaldehyde, and menthol, indicating similar expression levels of transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and transient receptor potential melastatin 8 (TRPM8), respectively. By contrast, significantly more articular neurons responded to ATP than cutaneous neurons. Conclusion This work makes a detailed characterization of cutaneous and articular sensory neurons and highlights the importance of making recordings from identified neuronal populations: sensory neurons innervating different tissues have subtly different properties

  3. [What mirror neurons have revealed: revisited].

    PubMed

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  4. Which Neurons Will Be the Engram - Activated Neurons and/or More Excitable Neurons?

    PubMed Central

    Kim, Ji-il; Cho, Hye-Yeon; Han, Jin-Hee

    2016-01-01

    During past decades, the formation and storage principle of memory have received much attention in the neuroscience field. Although some studies have attempted to demonstrate the nature of the engram, elucidating the memory engram allocation mechanism was not possible because of the limitations of existing methods, which cannot specifically modulate the candidate neuronal population. Recently, the development of new techniques, which offer ways to mark and control specific populations of neurons, may accelerate solving this issue. Here, we review the recent advances, which have provided substantial evidence showing that both candidates (neuronal population that is activated by learning, and that has increased CREB level/excitability at learning) satisfy the criteria of the engram, which are necessary and sufficient for memory expression. PMID:27122991

  5. NMNATs, evolutionarily conserved neuronal maintenance factors.

    PubMed

    Ali, Yousuf O; Li-Kroeger, David; Bellen, Hugo J; Zhai, R Grace; Lu, Hui-Chen

    2013-11-01

    Proper brain function requires neuronal homeostasis over a range of environmental challenges. Neuronal activity, injury, and aging stress the nervous system, and lead to neuronal dysfunction and degeneration. Nevertheless, most organisms maintain healthy neurons throughout life, implying the existence of active maintenance mechanisms. Recent studies have revealed a key neuronal maintenance and protective function for nicotinamide mononucleotide adenylyl transferases (NMNATs). We review evidence that NMNATs protect neurons through multiple mechanisms in different contexts, and highlight functions that either require or are independent of NMNAT catalytic activity. We then summarize data supporting a role for NMNATs in neuronal maintenance and raise intriguing questions on how NMNATs preserve neuronal integrity and facilitate proper neural function throughout life. PMID:23968695

  6. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  7. Turning Heads: Development of Vertebrate Branchiomotor Neurons

    PubMed Central

    Chandrasekhar, Anand

    2007-01-01

    The cranial motor neurons innervate muscles that control eye, jaw, and facial movements of the vertebrate head and parasympathetic neurons that innervate certain glands and organs. These efferent neurons develop at characteristic locations in the brainstem, and their axons exit the neural tube in well-defined trajectories to innervate target tissues. This review is focused on a subset of cranial motor neurons called the branchiomotor neurons, which innervate muscles derived from the branchial (pharyngeal) arches. First, the organization of the branchiomotor pathways in zebrafish, chick, and mouse embryos will be compared, and the underlying axon guidance mechanisms will be addressed. Next, the molecular mechanisms that generate branchiomotor neurons and specify their identities will be discussed. Finally, the caudally directed or tangential migration of facial branchiomotor neurons will be examined. Given the advances in the characterization and analysis of vertebrate genomes, we can expect rapid progress in elucidating the cellular and molecular mechanisms underlying the development of these vital neuronal networks. PMID:14699587

  8. Regeneration: New Neurons Wire Up.

    PubMed

    Raymond, Pamela A

    2016-09-12

    Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring. PMID:27623258

  9. [Configuration generators of neuronal rhythm].

    PubMed

    Dunin-Barkovskiĭ, V L

    1984-01-01

    Neural nets that exhibit oscillations with a period n, so that n greater than N (N--number of neurons) are analysed. It is shown that the nets capable of learning can be taught to be patterned oscillators. These modes of activity may be considered as a generalization of selfwaves in topologically simple excitable tissues on more complex structures.

  10. Temporal oscillations in neuronal nets.

    PubMed

    Ermentrout, G B; Cowan, J D

    1979-04-18

    A model for the interactions of cortical neurons is derived and analyzed. It is shown that small amplitude spatially inhomogeneous standing oscillations can bifurcate from the rest state. In a periodic domain, traveling wave trains exist. Stability of these patterns is discussed in terms of biological parameters. Homoclinic and heteroclinic orbits are demonstrated for the space-clamped system.

  11. The Neuronal Infrastructure of Speaking

    ERIC Educational Resources Information Center

    Menenti, Laura; Segaert, Katrien; Hagoort, Peter

    2012-01-01

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain's integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we…

  12. Neuronal models of cognitive functions.

    PubMed

    Changeux, J P; Dehaene, S

    1989-11-01

    Understanding the neural bases of cognition has become a scientifically tractable problem, and neurally plausible models are proposed to establish a causal link between biological structure and cognitive function. To this end, levels of organization have to be defined within the functional architecture of neuronal systems. Transitions from any one of these interacting levels to the next are viewed in an evolutionary perspective. They are assumed to involve: (1) the production of multiple transient variations and (2) the selection of some of them by higher levels via the interaction with the outside world. The time-scale of these "evolutions" is expected to differ from one level to the other. In the course of development and in the adult this internal evolution is epigenetic and does not require alteration of the structure of the genome. A selective stabilization (and elimination) of synaptic connections by spontaneous and/or evoked activity in developing neuronal networks is postulated to contribute to the shaping of the adult connectivity within an envelope of genetically encoded forms. At a higher level, models of mental representations, as states of activity of defined populations of neurons, are discussed in terms of statistical physics, and their storage is viewed as a process of selection among variable and transient pre-representations. Theoretical models illustrate that cognitive functions such as short-term memory and handling of temporal sequences may be constrained by "microscopic" physical parameters. Finally, speculations are offered about plausible neuronal models and selectionist implementations of intentions. PMID:2691185

  13. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  14. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  15. Neuronal damage in brain inflammation.

    PubMed

    Aktas, Orhan; Ullrich, Oliver; Infante-Duarte, Carmen; Nitsch, Robert; Zipp, Frauke

    2007-02-01

    In contrast to traditional textbook paradigms, recent studies indicate neuronal damage in classic neuroinflammatory diseases of the brain, such as multiple sclerosis or meningitis. In these cases, immune cells invade the central nervous system compartments, accompanied by a massive breakdown of the blood-brain barrier and typical changes of the cerebrospinal fluid. On the other hand, inflammation within the central nervous system is a common phenomenon even in classic noninflammatory brain diseases that are characterized by degeneration or trauma of neuronal structures, such as Alzheimer disease, Parkinson disease, or stroke. In these cases, inflammation is a frequent occurrence but displays different, more subtle, patterns compared with, for example, multiple sclerosis. Concepts for directly protecting neurons and axons in neuroinflammatory diseases may improve the outcome of the patients. In parallel, epidemiological and animal experimental evidences, as well as first clinical trials indicate the benefit of immunomodulatory therapies for classic noninflammatory brain diseases. We review the evidence for inflammatory neuronal damage and its clinical impact in the context of these diseases. PMID:17296833

  16. Neuronal migration on laminin in vitro.

    PubMed

    Liang, S; Crutcher, K A

    1992-03-20

    Chick sympathetic (E-9) or telencephalic (E-7) neurons were cultured at low density on poly-DL-ornithine (PORN), poly-L-lysine (POLS), laminin or laminin-covered PORN or POLS and monitored with time-lapse videomicroscopy. Neurons migrated on laminin, or laminin-covered PORN or POLS, but not on PORN or POLS alone. Neuronal migration did not involve interactions with other cells indicating that neurons are capable of independent migration when exposed to a laminin substrate.

  17. Neuronal migration on laminin in vitro.

    PubMed

    Liang, S; Crutcher, K A

    1992-03-20

    Chick sympathetic (E-9) or telencephalic (E-7) neurons were cultured at low density on poly-DL-ornithine (PORN), poly-L-lysine (POLS), laminin or laminin-covered PORN or POLS and monitored with time-lapse videomicroscopy. Neurons migrated on laminin, or laminin-covered PORN or POLS, but not on PORN or POLS alone. Neuronal migration did not involve interactions with other cells indicating that neurons are capable of independent migration when exposed to a laminin substrate. PMID:1600626

  18. Neuronal imprinting of human values.

    PubMed

    Delgado, J M

    2000-03-01

    In the 21st century, psychophysiology will face the challenge of establishing ethical principles and practical means for the genetic and social influencing of the development of human beings. Neuronal imprinting of beliefs and morality within infantile minds will be necessary for the peaceful coexistence of races and cultures. This process requires study and consideration, among others, of the following psychophysiological facts: (1) Genes do not transmit moral values. (2) Material support of physiological activities is necessary for the existence and development of mental functions. (3) Imprinting of human values is based on material changes within neuronal structures. (4) Early neuronal imprinting is performed without personal awareness or consent of the individual and depends on sensory inputs, mainly from the social structure of the group. (5) Biological structures lack values. Personal and social antagonisms do not depend on genes, but on cultural indoctrination. (6) Pleasure and punishment (positive and negative reinforcement) are the two main elements, which regulate animal and human behavior. (7) Values must be chosen by adults, who decide the questions 'why'? 'when'? 'which ones'?, 'who should teach'?, 'what?' and 'how'? (8) Many biological imperatives are shared by all animals and by all people. Human beings may be considered the 'crickets of the Universe', unable to understand the mysteries of nature because of our insufficient neuronal capacity. (9) Our emotional life is mainly related to the structure of the limbic system controlled by the neocortex. (10) New theories based on the integration of physics, chemistry, biology and other specific areas of knowledge, as proposed by the General Theory of Systems, will avoid 'opposites', favoring the acceptance of complementary aspects of reality. (11) Early education will promote preferential learning which depends on both genetic endowment and neuronal development influenced by experience. It is the

  19. Prospective Coding by Spiking Neurons

    PubMed Central

    Brea, Johanni; Gaál, Alexisz Tamás; Senn, Walter

    2016-01-01

    Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100

  20. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  1. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    PubMed

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles. PMID:26036213

  2. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    PubMed

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  3. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  4. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    PubMed Central

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  5. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  6. Spontaneous Calcium Changes in Micro Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Saito, Aki; Moriguchi, Hiroyuki; Iwabuchi, Shin; Goto, Miho; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    We have developed a practical experimental method to mass-produce and maintain a variation of minimal neuronal networks (“micro neuronal networks”) consisted of a single to several neurons in culture using spray-patterning technique. In this paper, we could maintain the micro-cultures for one month or more by adding conditioned medium and carried out optical recording of spontaneous activity in micro neuronal networks and considered the interactions between them. To determine the interactions between micro neuronal networks, fluorescence changes in several small networks were simultaneously measured using calcium indicator dye fluo-4 AM, and time-series analysis was carried out using surrogate arrangements. By using the spray-patterning method, a large number of cell-adhesive micro regions were formed. Neurons extended neurites along the edge of the cell-adhesive micro regions and form micro neuronal networks. In part of micro regions, some neurite was protruded from the region, and thus micro neuronal networks were connected with synapses. In these networks, a single neuron-induced network activity was observed. On the other hand, even in morphologically non-connected micro neuronal networks, synchronous oscillations between micro neuronal networks were observed. Our micro-patterning methods and results provide the possibility that synchronous activity is occurred between morphologically non-connected neuronal networks. This suggest that the humoral factor is also a important component for network-wide dynamics.

  7. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  8. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons

    PubMed Central

    Iwamoto, Kazuya; Bundo, Miki; Ueda, Junko; Oldham, Michael C.; Ukai, Wataru; Hashimoto, Eri; Saito, Toshikazu; Geschwind, Daniel H.; Kato, Tadafumi

    2011-01-01

    Epigenome information in mammalian brain cells reflects their developmental history, neuronal activity, and environmental exposures. Studying the epigenetic modifications present in neuronal cells is critical to a more complete understanding of the role of the genome in brain functions. We performed comprehensive DNA methylation analysis in neuronal and non-neuronal nuclei obtained from the human prefrontal cortex. Neuronal nuclei manifest qualitatively and quantitatively distinctive DNA methylation patterns, including relative global hypomethylation, differential enrichment of transcription-factor binding sites, and higher methylation of genes expressed in astrocytes. Non-neuronal nuclei showed indistinguishable DNA methylation patterns from bulk cortex and higher methylation of synaptic transmission-related genes compared with neuronal nuclei. We also found higher variation in DNA methylation in neuronal nuclei, suggesting that neuronal cells have more potential ability to change their epigenetic status in response to developmental and environmental conditions compared with non-neuronal cells in the central nervous system. PMID:21467265

  9. Foxp2 regulates neuronal differentiation and neuronal subtype specification.

    PubMed

    Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei

    2014-07-01

    Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain.

  10. Morphological homogeneity of neurons: searching for outlier neuronal cells.

    PubMed

    Zawadzki, Krissia; Feenders, Christoph; Viana, Matheus P; Kaiser, Marcus; Costa, Luciano da F

    2012-10-01

    We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts. PMID:22615032

  11. Ketamine anesthesia helps preserve neuronal viability.

    PubMed

    de Oliveira, Ramatis B; Graham, Brett; Howlett, Marcus C H; Gravina, Fernanda S; Oliveira, Max W S; Imtiaz, Mohammad S; Callister, Robert J; Lim, Rebecca; Brichta, Alan M; van Helden, Dirk F

    2010-06-15

    The dissociative anesthetic ketamine that acts as an N-methyl-D-aspartate (NMDA) antagonist has been reported to improve neurological damage after experimental ischemic challenges. Here we show that deep anesthesia with ketamine before euthanasia by decapitation improves the quality of neonatal mouse neuronal brain slice preparations. Specifically we found that neurons of the locus coeruleus (LC) and hypoglossal motor neurons had significantly higher input resistances, and LC neurons that generally are difficult to voltage control, could be more reliably voltage clamped compared to control neurons. PMID:20380852

  12. What we know currently about mirror neurons.

    PubMed

    Kilner, J M; Lemon, R N

    2013-12-01

    Mirror neurons were discovered over twenty years ago in the ventral premotor region F5 of the macaque monkey. Since their discovery much has been written about these neurons, both in the scientific literature and in the popular press. They have been proposed to be the neuronal substrate underlying a vast array of different functions. Indeed so much has been written about mirror neurons that last year they were referred to, rightly or wrongly, as "The most hyped concept in neuroscience". Here we try to cut through some of this hyperbole and review what is currently known (and not known) about mirror neurons.

  13. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. PMID:22781494

  14. Stiff substrates enhance cultured neuronal network activity

    PubMed Central

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-01-01

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca2+ channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca2+ oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering. PMID:25163607

  15. Using light to probe neuronal function

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Bachor, Hans-A.

    2015-08-01

    In the last few years a multi-disciplinary approach has been launched to investigate the brain using new techniques, which are capable of probing neuronal function across the entire length scales of the brain. Here, we discuss optical tools and spatial light patterning techniques to investigate brain function from the perspective of individual neurons and neuronal circuits. We discuss both biochemical and genetic tools to stimulate neurons, as well as techniques to record neuronal activity. We discuss optical projection and imaging tricks that can be dynamically customized to a particular neuron morphology and neuronal circuit layout facilitating a systematic study of their input/output transfer functions. These optical techniques will play a major role towards understanding the operation of a brain.

  16. Neurofilament assembly and function during neuronal development.

    PubMed

    Laser-Azogui, Adi; Kornreich, Micha; Malka-Gibor, Eti; Beck, Roy

    2015-02-01

    Studies on the assembly of neuronal intermediate filaments (IFs) date back to the early work of Alzheimer. Developing neurons express a series of IF proteins, sequentially, at distinct stages of mammalian cell differentiation. This correlates with altered morphologies during the neuronal development, including axon outgrowth, guidance and conductivity. Importantly, neuronal IFs that fail to properly assemble into a filamentous network are a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. Traditional structural methodologies fail to fully describe neuronal IF assembly, interactions and resulting function due to IFs structural plasticity, particularly in their C-terminal domains. We review here current progress in the field of neuronal-specific IFs, a dominant component affecting the cytoskeletal structure and function of neurons.

  17. Observability of Neuronal Network Motifs

    PubMed Central

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2014-01-01

    We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work. PMID:25909092

  18. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  19. Neuronal regulation of tendon homoeostasis.

    PubMed

    Ackermann, Paul W

    2013-08-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders.

  20. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  1. Intradendritic recordings from hippocampal neurons.

    PubMed Central

    Wong, R K; Prince, D A; Basbaum, A I

    1979-01-01

    Dendritic activity in guinea pig hippocampal CA1 and CA3 pyramidal neurons was examined by using an in vitro preparation. Histologically confirmed intradendritic recordings showed that dendrites had an average input resistance of 47.0 M omega and average membrane time constant of 33.3 msec. Active spike responses could be evoked by intracellular injection of outward current or by the activation of synaptic inputs. The predominant activity was burst firing. A typical intracellularly recorded dendritic burst consisted o spikes on a slowly increasing depolarizing potential. The spike components of the burst were of two distinct types: low threshold, fast spikes; and high threshold, slow spikes. Tetrodotoxin (1 microgram/ml) blocked the fast spikes, but slow spikes could still be evoked with direct intracellular stimulation. In contrast to dendritic responses, direct depolarization of CA1 somata did not give rise to burst generation. Orthodromic stimuli evoked large-amplitude excitatory postsynaptic potentials, followed by inhibitory postsynaptic potentials in dendrites of CA1 and CA3 neurons. In two instances, simultaneous recordings were obtained from coupled pairs of elements that were presumed to be soma and dendrite of the same CA3 pyramidal neuron. Depolarization of either element led to burst generation at that site, and the underlying slow depolarization appeared to evoke a burst at the other site. This potential postsynaptic amplifying mecahnism was not ordinarily functional because even suprathreshold orthodromic activation did not normally evoke bursting in dendrites. Images PMID:284423

  2. Neuronal regulation of tendon homoeostasis

    PubMed Central

    Ackermann, Paul W

    2013-01-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:23718724

  3. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

    PubMed

    Costa, Marta; Manton, James D; Ostrovsky, Aaron D; Prohaska, Steffen; Jefferis, Gregory S X E

    2016-07-20

    Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT.

  4. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  5. Population Encoding With Hodgkin–Huxley Neurons

    PubMed Central

    Lazar, Aurel A.

    2013-01-01

    The recovery of (weak) stimuli encoded with a population of Hodgkin–Huxley neurons is investigated. In the absence of a stimulus, the Hodgkin–Huxley neurons are assumed to be tonically spiking. The methodology employed calls for 1) finding an input–output (I/O) equivalent description of the Hodgkin–Huxley neuron and 2) devising a recovery algorithm for stimuli encoded with the I/O equivalent neuron(s). A Hodgkin–Huxley neuron with multiplicative coupling is I/O equivalent with an Integrate-and-Fire neuron with a variable threshold sequence. For bandlimited stimuli a perfect recovery of the stimulus can be achieved provided that a Nyquist-type rate condition is satisfied. A Hodgkin–Huxley neuron with additive coupling and deterministic conductances is first-order I/O equivalent with a Project-Integrate-and-Fire neuron that integrates a projection of the stimulus on the phase response curve. The stimulus recovery is formulated as a spline interpolation problem in the space of finite length bounded energy signals. A Hodgkin–Huxley neuron with additive coupling and stochastic conductances is shown to be first-order I/O equivalent with a Project-Integrate-and-Fire neuron with random thresholds. For stimuli modeled as elements of Sobolev spaces the reconstruction algorithm minimizes a regularized quadratic optimality criterion. Finally, all previous recovery results of stimuli encoded with Hodgkin–Huxley neurons with multiplicative and additive coupling, and deterministic and stochastic conductances are extended to stimuli encoded with a population of Hodgkin–Huxley neurons. PMID:24194625

  6. Glutamate neurons within the midbrain dopamine regions.

    PubMed

    Morales, M; Root, D H

    2014-12-12

    Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular

  7. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    PubMed

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  8. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro

    PubMed Central

    Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian

    2016-01-01

    For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467

  9. A chimeric path to neuronal synchronization

    SciTech Connect

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  10. A chimeric path to neuronal synchronization

    NASA Astrophysics Data System (ADS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  11. Neuronal Networks on Nanocellulose Scaffolds.

    PubMed

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  12. Neuronal Networks on Nanocellulose Scaffolds.

    PubMed

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks. PMID:26398224

  13. Resonant neurons and bushcricket behaviour.

    PubMed

    Webb, Barbara; Wessnitzer, Jan; Bush, Sarah; Schul, Johannes; Buchli, Jonas; Ijspeert, Auke

    2007-02-01

    The resonant properties of the intrinsic dynamics of single neurons could play a direct role in behaviour. One plausible role is in the recognition of temporal patterns, such as that seen in the auditory communication systems of Orthoptera. Recent behavioural data from bushcrickets suggests that this behaviour has interesting resonance properties, but the underlying mechanism is unknown. Here we show that a very simple and general model for neural resonance could directly account for the different behavioural responses of bushcrickets to different song patterns.

  14. Neuron Model with Simplified Memristive Ionic Channels

    NASA Astrophysics Data System (ADS)

    Hegab, Almoatazbellah M.; Salem, Noha M.; Radwan, Ahmed G.; Chua, Leon

    2015-06-01

    A simplified neuron model is introduced to mimic the action potential generated by the famous Hodgkin-Huxley equations by using the genetic optimization algorithm. Comparison with different neuron models is investigated, and it is confirmed that the sodium and potassium channels in our simplified neuron model are made out of memristors. In addition, the channel equations in the simplified model may be adjusted to introduce a simplified memristor model that is in accordance with the theoretical conditions of the memristive systems.

  15. The genealogy of genealogy of neurons.

    PubMed

    Moroz, Leonid L

    2014-12-01

    Two scenarios of neuronal evolution (monophyly and polyphyly) are discussed in the historical timeline starting from the 19th century. The recent genomic studies on Ctenophores re-initiated a broad interest in the hypotheses of independent origins of neurons. However, even earlier work on ctenophores suggested that their nervous systems are unique in many aspects of their organization and a possibility of the independent origin of neurons and synapses was introduced well before modern advances in genomic biology. PMID:26478767

  16. The genealogy of genealogy of neurons

    PubMed Central

    Moroz, Leonid L

    2014-01-01

    Two scenarios of neuronal evolution (monophyly and polyphyly) are discussed in the historical timeline starting from the 19th century. The recent genomic studies on Ctenophores re-initiated a broad interest in the hypotheses of independent origins of neurons. However, even earlier work on ctenophores suggested that their nervous systems are unique in many aspects of their organization and a possibility of the independent origin of neurons and synapses was introduced well before modern advances in genomic biology. PMID:26478767

  17. Neuron model-free PID control

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Li; Wang, Shuqing

    2001-09-01

    Based on the neuron model and learning strategy, the neuron intelligent PID control system is set up in this paper. The neuron model-free PID control method is posed. The simulation tests with an example of a hydraulic turbine generator unit are made. The result show that god control performances are obtained. This new intelligent controller is very simple and has very strong adaptability and robustness. It can be used directly in practice.

  18. High-Degree Neurons Feed Cortical Computations

    PubMed Central

    Timme, Nicholas M.; Ito, Shinya; Shimono, Masanori; Yeh, Fang-Chin; Litke, Alan M.; Beggs, John M.

    2016-01-01

    Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron

  19. The genealogy of genealogy of neurons.

    PubMed

    Moroz, Leonid L

    2014-12-01

    Two scenarios of neuronal evolution (monophyly and polyphyly) are discussed in the historical timeline starting from the 19th century. The recent genomic studies on Ctenophores re-initiated a broad interest in the hypotheses of independent origins of neurons. However, even earlier work on ctenophores suggested that their nervous systems are unique in many aspects of their organization and a possibility of the independent origin of neurons and synapses was introduced well before modern advances in genomic biology.

  20. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.

  1. Correction: Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    PubMed

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-09-01

    Correction for 'Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics' by Robert A. Colvin et al., Metallomics, 2015, 7, 1111-1123.

  2. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. PMID:26948889

  3. Nrf2 promotes neuronal cell differentiation

    PubMed Central

    Zhao, Fei; Wu, Tongde; Lau, Alexandria; Jiang, Tao; Huang, Zheping; Wang, Xiao-Jun; Chen, Weimin; Wong, Pak Kin; Zhang, Donna D.

    2009-01-01

    The transcription factor Nrf2 has emerged as a master regulator for the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), two well-studied inducers for neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 (NQO1) in a dose- and time- dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M (NF-M) and microtubule-associated protein 2 (MAP-2). Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to that from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases. PMID:19573594

  4. HCN channels in developing neuronal networks

    PubMed Central

    Bender, Roland A.

    2008-01-01

    Developing neuronal networks evolve continuously, requiring that neurons modulate both their intrinsic properties and their responses to incoming synaptic signals. Emerging evidence supports roles for the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in this neuronal plasticity. HCN channels seem particularly suited for fine-tuning neuronal properties and responses because of their remarkably large and variable repertoire of functions, enabling integration of a wide range of cellular signals. Here, we discuss the involvement of HCN channels in cortical and hippocampal network maturation, and consider potential roles of developmental HCN channel dysregulation in brain disorders such as epilepsy. PMID:18834920

  5. Effective Stimuli for Constructing Reliable Neuron Models

    PubMed Central

    Druckmann, Shaul; Berger, Thomas K.; Schürmann, Felix; Hill, Sean; Markram, Henry; Segev, Idan

    2011-01-01

    The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose. PMID:21876663

  6. Macroscopic Description for Networks of Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Montbrió, Ernest; Pazó, Diego; Roxin, Alex

    2015-04-01

    A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.

  7. Functional connectivity in in vitro neuronal assemblies

    PubMed Central

    Poli, Daniele; Pastore, Vito P.; Massobrio, Paolo

    2015-01-01

    Complex network topologies represent the necessary substrate to support complex brain functions. In this work, we reviewed in vitro neuronal networks coupled to Micro-Electrode Arrays (MEAs) as biological substrate. Networks of dissociated neurons developing in vitro and coupled to MEAs, represent a valid experimental model for studying the mechanisms governing the formation, organization and conservation of neuronal cell assemblies. In this review, we present some examples of the use of statistical Cluster Coefficients and Small World indices to infer topological rules underlying the dynamics exhibited by homogeneous and engineered neuronal networks. PMID:26500505

  8. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  9. Physiology of neuronal-glial networking.

    PubMed

    Verkhratsky, Alexei

    2010-11-01

    Neuronal-glial networks are the substrate for the brain function. Evolution of the nervous system resulted in the appearance of highly specialized neuronal web optimized for rapid information transfer. This neuronal web is embedded into glial syncytium, thereby creating sophisticated neuronal-glial circuitry were both types of neural cells are working in concert, ensuring amplification of brain computational power. In addition neuroglial cells are fundamental for control of brain homeostasis and they represent the intrinsic brain defence system, being thus intimately involved in pathogenesis of neurological diseases.

  10. Spiking Neurons for Analysis of Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  11. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons

    PubMed Central

    Hong, Simon; Hikosaka, Okihide

    2014-01-01

    Dopamine (DA) neurons in the midbrain are crucial for motivational control of behavior. However, recent studies suggest that signals transmitted by DA neurons are heterogeneous. This may reflect a wide range of inputs to DA neurons, but which signals are provided by which brain areas is still unclear. Here we focused on the pedunculopontine tegmental nucleus (PPTg) in macaque monkeys and characterized its inputs to DA neurons. Since the PPTg projects to many brain areas, it is crucial to identify PPTg neurons that project to DA neuron areas. For this purpose we used antidromic activation technique by electrically stimulating three locations (medial, central, lateral) in the substantia nigra pars compacta (SNc). We found SNc-projecting neurons mainly in the PPTg, and some in the cuneiform nucleus (CuN). Electrical stimulation in the SNc-projecting PPTg regions induced a burst of spikes in presumed DA neurons, suggesting that the PPTg-DA(SNc) connection is excitatory. Behavioral tasks and clinical tests showed that the SNc-projecting PPTg neurons encoded reward, sensorimotor and arousal/alerting signals. Importantly, reward-related PPTg neurons tended to project to the medial and central SNc, whereas sensorimotor/arousal/alerting-related PPTg neurons tended to project to the lateral SNc. Most reward-related signals were positively biased: excitation and inhibition when a better and worse reward was expected, respectively. These PPTg neurons tended to retain the reward value signal until after a reward outcome, representing ‘value state’; this was different from DA neurons which show phasic signals representing ‘value change’. Our data, together with previous studies, suggest that PPTg neurons send positive reward-related signals mainly to the medial-central SNc where DA neurons encode motivational values and sensorimotor/arousal signals to the lateral SNc where DA neurons encode motivational salience. PMID:25058502

  12. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    SciTech Connect

    Morel, G.; Pelletier, G.

    1986-11-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system.

  13. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons.

    PubMed

    Saito, Yuki C; Tsujino, Natsuko; Hasegawa, Emi; Akashi, Kaori; Abe, Manabu; Mieda, Michihiro; Sakimura, Kenji; Sakurai, Takeshi

    2013-01-01

    Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitatory influence on arousal-related neurons. It is important to know the anatomical and functional interactions between the POA sleep-active neurons and orexin neurons, both of which play important, but opposite roles in regulation of sleep/wakefulness states. In this study, we confirmed that specific pharmacogenetic stimulation of GABAergic neurons in the POA leads to an increase in the amount of non-rapid eye movement (NREM) sleep. We next examined direct connectivity between POA GABAergic neurons and orexin neurons using channelrhodopsin 2 (ChR2) as an anterograde tracer as well as an optogenetic tool. We expressed ChR2-eYFP selectively in GABAergic neurons in the POA by AAV-mediated gene transfer, and examined the projection sites of ChR2-eYFP-expressing axons, and the effect of optogenetic stimulation of ChR2-eYFP on the activity of orexin neurons. We found that these neurons send widespread projections to wakefulness-related areas in the hypothalamus and brain stem, including the LHA where these fibers make close appositions to orexin neurons. Optogenetic stimulation of these fibers resulted in rapid inhibition of orexin neurons. These observations suggest direct connectivity between POA GABAergic neurons and orexin neurons.

  14. Neuronal Ceroid Lipofuscinosis (Batten's Disease)

    PubMed Central

    Gordon, N. S.; Marsden, H. B.; Noronha, M. J.

    1972-01-01

    Four patients are described, who on clinical, histological, and biochemical criteria are considered to be suffering from neuronal ceroid lipofuscinosis. It is suggested that this may be the commonest condition included under the term amaurotic family idiocy. A number of gangliosidoses can be classified on a biochemical basis and considerable advances have been made in identifying the enzyme deficiencies. The aetiology of neuronal ceroid lipofuscinosis is unknown, and it is possible that there is more than one cause. Visual symptoms and signs are not always present. Though generalized convulsions occur at the start of the illness, myoclonus tends increasingly to dominate the clinical picture. An abnormal sensitivity to photic stimulation at a very slow frequency is a suggestive finding. Evidence of cerebral atrophy on air-encephalography favours this diagnosis, as the brain tends to be enlarged in the gangliosidoses. A definite diagnosis can only be made in life by examination of a cortical biopsy. Biochemical analysis will show a normal ganglioside pattern, and histological examination by light and electron microscopy will reveal characteristic changes. An age dependent classification of amaurotic family idiocy is no longer justifiable, and if full investigations are carried out, an increasing number of these patients can be diagnosed as suffering from a specific type of disorder. ImagesFIG. 1FIG. 2 PMID:5023478

  15. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    PubMed Central

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2016-01-01

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. PMID:26182412

  16. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    PubMed Central

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  17. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    PubMed

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  18. BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images.

    PubMed

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A

    2015-07-15

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

  19. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

  20. Specific asparagine-linked oligosaccharides are not required for certain neuron-neuron and neuron-Schwann cell interactions

    PubMed Central

    1986-01-01

    To determine whether specific asparagine-linked (N-linked) oligosaccharides present in cell surface glycoproteins are required for cell-cell interactions within the peripheral nervous system, we have used castanospermine to inhibit maturation of N-linked sugars in cell cultures of neurons or neurons plus Schwann cells. Maximally 10-15% of the N-linked oligosaccharides on neuronal proteins have normal structure when cells are cultured in the presence of 250 micrograms/ml castanospermine; the remaining oligosaccharides are present as immature carbohydrate chains not normally found in these glycoproteins. Although cultures were treated for 2 wk with castanospermine, cells always remained viable and appeared healthy. We have analyzed several biological responses of embryonic dorsal root ganglion neurons, with or without added purified populations of Schwann cells, in the presence of castanospermine. We have observed that a normal complement of mature, N- linked sugars are not required for neurite outgrowth, neuron-Schwann cell adhesion, neuron-induced Schwann cell proliferation, or ensheathment of neurites by Schwann cells. Treatment of neuronal cultures with castanospermine increases the propensity of neurites to fasciculate. Extracellular matrix deposition by Schwann cells and myelination of neurons by Schwann cells are greatly diminished in the presence of castanospermine as assayed by electron microscopy and immunocytochemistry, suggesting that specific N-linked oligosaccharides are required for the expression of these cellular functions. PMID:3522602

  1. Glucose-sensing neurons of the hypothalamus

    PubMed Central

    Burdakov, Denis; Luckman, Simon M; Verkhratsky, Alexei

    2005-01-01

    Specialized subgroups of hypothalamic neurons exhibit specific excitatory or inhibitory electrical responses to changes in extracellular levels of glucose. Glucose-excited neurons were traditionally assumed to employ a ‘β-cell’ glucose-sensing strategy, where glucose elevates cytosolic ATP, which closes KATP channels containing Kir6.2 subunits, causing depolarization and increased excitability. Recent findings indicate that although elements of this canonical model are functional in some hypothalamic cells, this pathway is not universally essential for excitation of glucose-sensing neurons by glucose. Thus glucose-induced excitation of arcuate nucleus neurons was recently reported in mice lacking Kir6.2, and no significant increases in cytosolic ATP levels could be detected in hypothalamic neurons after changes in extracellular glucose. Possible alternative glucose-sensing strategies include electrogenic glucose entry, glucose-induced release of glial lactate, and extracellular glucose receptors. Glucose-induced electrical inhibition is much less understood than excitation, and has been proposed to involve reduction in the depolarizing activity of the Na+/K+ pump, or activation of a hyperpolarizing Cl− current. Investigations of neurotransmitter identities of glucose-sensing neurons are beginning to provide detailed information about their physiological roles. In the mouse lateral hypothalamus, orexin/hypocretin neurons (which promote wakefulness, locomotor activity and foraging) are glucose-inhibited, whereas melanin-concentrating hormone neurons (which promote sleep and energy conservation) are glucose-excited. In the hypothalamic arcuate nucleus, excitatory actions of glucose on anorexigenic POMC neurons in mice have been reported, while the appetite-promoting NPY neurons may be directly inhibited by glucose. These results stress the fundamental importance of hypothalamic glucose-sensing neurons in orchestrating sleep-wake cycles, energy expenditure and

  2. Neuron Morphology Influences Axon Initial Segment Plasticity.

    PubMed

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  3. Motor neurons and the generation of spinal motor neuron diversity

    PubMed Central

    Stifani, Nicolas

    2014-01-01

    Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies. PMID:25346659

  4. Mitochondrial retrograde signaling regulates neuronal function

    PubMed Central

    Cagin, Umut; Duncan, Olivia F.; Gatt, Ariana P.; Dionne, Marc S.; Sweeney, Sean T.; Bateman, Joseph M.

    2015-01-01

    Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson’s disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment. PMID:26489648

  5. The Mirror Neuron System and Action Recognition

    ERIC Educational Resources Information Center

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  6. Mirror neurons: functions, mechanisms and models.

    PubMed

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system.

  7. Do mirror neurons subserve action understanding?

    PubMed

    Hickok, Gregory

    2013-04-12

    Mirror neurons were once widely believed to support action understanding via motor simulation of the observed actions. Recent evidence regarding the functional properties of mirror neurons in monkeys as well as much neuropsychological evidence in humans has shown that this is not the case.

  8. Where do mirror neurons come from?

    PubMed

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction.

  9. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  10. SnapShot: Neuronal Regulation of Aging.

    PubMed

    Weir, Heather J; Mair, William B

    2016-07-28

    Aging is characterized by loss of homeostasis across multiple tissues. The nervous system governs whole-body homeostasis by communicating external and internal signals to peripheral tissues. Here, we highlight neuronal mechanisms and downstream outputs that regulate aging and longevity. Targeting these neuronal pathways may be a novel strategy to promote healthy aging. To view this SnapShot, open or download the PDF.

  11. Social neuroscience: mirror neurons recorded in humans.

    PubMed

    Keysers, Christian; Gazzola, Valeria

    2010-04-27

    New single-cell recordings show that humans do have mirror neurons, and in more brain regions than previously suspected. Some action-execution neurons were seen to be inhibited during observation, possibly preventing imitation and helping self/other discrimination.

  12. Dendritic Spine Alterations in Neocortical Pyramidal Neurons following Postnatal Neuronal Nogo-A Knockdown

    PubMed Central

    Pradhan, A.D.; Case, A.M.; Farrer, R.G.; Tsai, S.Y.; Cheatwood, J.L.; Martin, J.L.; Kartje, G.L.

    2010-01-01

    The myelin-associated protein Nogo-A is a well-known inhibitor of axonal regeneration and compensatory plasticity, yet functions of neuronal Nogo-A are not as clear. The present study examined the effects of decreased levels of neuronal Nogo-A on dendritic spines of developing neocortical neurons. Decreased Nogo-A levels in these neurons resulted in lowered spine density and an increase in filopodial type protrusions. These results suggest a role for neuronal Nogo-A in maintaining a spine phenotype in neocortical pyramidal cells. PMID:20938157

  13. Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain.

    PubMed

    Kim, Yu Shin; Anderson, Michael; Park, Kyoungsook; Zheng, Qin; Agarwal, Amit; Gong, Catherine; Saijilafu; Young, LeAnne; He, Shaoqiu; LaVinka, Pamela Colleen; Zhou, Fengquan; Bergles, Dwight; Hanani, Menachem; Guan, Yun; Spray, David C; Dong, Xinzhong

    2016-09-01

    Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions. PMID:27568517

  14. Automated Neuron Tracing Methods: An Updated Account.

    PubMed

    Acciai, Ludovica; Soda, Paolo; Iannello, Giulio

    2016-10-01

    The reconstruction of neuron morphology allows to investigate how the brain works, which is one of the foremost challenges in neuroscience. This process aims at extracting the neuronal structures from microscopic imaging data. The great advances in microscopic technologies have made a huge amount of data available at the micro-, or even lower, resolution where manual inspection is time consuming, prone to error and utterly impractical. This has motivated the development of methods to automatically trace the neuronal structures, a task also known as neuron tracing. This paper surveys the latest neuron tracing methods available in the scientific literature as well as a selection of significant older papers to better place these proposals into context. They are categorized into global processing, local processing and meta-algorithm approaches. Furthermore, we point out the algorithmic components used to design each method and we report information on the datasets and the performance metrics used. PMID:27447185

  15. [Impact of opiates on dopaminergic neurons].

    PubMed

    Kaufling, Jennifer; Freund-Mercier, Marie-José; Barrot, Michel

    2016-01-01

    Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood. PMID:27406773

  16. A hybrid bioorganic interface for neuronal photoactivation.

    PubMed

    Ghezzi, Diego; Antognazza, Maria Rosa; Dal Maschio, Marco; Lanzarini, Erica; Benfenati, Fabio; Lanzani, Guglielmo

    2011-01-25

    A key issue in the realization of retinal prosthetic devices is reliable transduction of information carried by light into specific patterns of electrical activity in visual information processing networks. Soft organic materials can be used to couple artificial sensors with neuronal tissues. Here, we interface a network of primary neurons with an organic blend. We show that primary neurons can be successfully grown onto the polymer layer without affecting the optoelectronic properties of the active material or the biological functionality of neuronal network. Moreover, action potentials can be triggered in a temporally reliable and spatially selective manner with short pulses of visible light. Our results may lead to new neuronal communication and photo manipulation techniques, thus paving way to the development of artificial retinas and other neuroprosthetic interfaces based on organic photodetectors.

  17. Programming embryonic stem cells to neuronal subtypes

    PubMed Central

    Peljto, Mirza; Wichterle, Hynek

    2010-01-01

    Richness of neural circuits and specificity of neuronal connectivity depends on the diversification of nerve cells into functionally and molecularly distinct subtypes. While efficient methods for directed differentiation of embryonic stem cells (ESCs) into multiple principal neuronal classes have been established, only a few studies systematically examined the subtype diversity of in vitro derived nerve cells. Here we review evidence based on molecular and in vivo transplantation studies that ESC-derived spinal motor neurons and cortical layer V pyramidal neurons acquire subtype specific functional properties. We discuss similarities and differences in the role of cell intrinsic transcriptional programs, extrinsic signals and cell-cell interactions during subtype diversification of the two classes of nerve cells. We conclude that the high degree of fidelity with which differentiating ESCs recapitulate normal embryonic development provides a unique opportunity to explore developmental processes underlying specification of mammalian neuronal diversity in a simplified and experimentally accessible system. PMID:20970319

  18. Operant conditioning of primate prefrontal neurons.

    PubMed

    Kobayashi, Shunsuke; Schultz, Wolfram; Sakagami, Masamichi

    2010-04-01

    An operant is a behavioral act that has an impact on the environment to produce an outcome, constituting an important component of voluntary behavior. Because the environment can be volatile, the same action may cause different consequences. Thus to obtain an optimal outcome, it is crucial to detect action-outcome relationships and adapt the behavior accordingly. Although prefrontal neurons are known to change activity depending on expected reward, it remains unknown whether prefrontal activity contributes to obtaining reward. We investigated this issue by setting variable relationships between levels of single-neuron activity and rewarding outcomes. Lateral prefrontal neurons changed their spiking activity according to the specific requirements for gaining reward, without the animals making a motor response. Thus spiking activity constituted an operant response. Data from a control task suggested that these changes were unlikely to reflect simple reward predictions. These data demonstrate a remarkable capacity of prefrontal neurons to adapt to specific operant requirements at the single-neuron level.

  19. Characterization of mitochondrial transport in neurons.

    PubMed

    Zhou, Bing; Lin, Mei-Yao; Sun, Tao; Knight, Adam L; Sheng, Zu-Hang

    2014-01-01

    Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to extremely varied morphological features, neurons face exceptional challenges to maintain energy homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal synapses where energy is in high demand. Axons and synapses undergo activity-dependent remodeling, thereby altering mitochondrial distribution. The uniform microtubule polarity has made axons particularly useful for exploring mechanisms regulating mitochondrial transport. Mitochondria alter their motility under stress conditions or when their integrity is impaired. Therefore, research into the mechanisms regulating mitochondrial motility in healthy and diseased neurons is an important emerging frontier in neurobiology. In this chapter, we discuss the current protocols in the characterization of axonal mitochondrial transport in primary neuron cultures isolated from embryonic rats and adult mice. We also briefly discuss new procedures developed in our lab in analyzing mitochondrial motility patterns at presynaptic terminals and evaluate their impact on synaptic vesicle release. PMID:25416353

  20. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh-Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos. 11272065 and 11472061).

  1. From the neuron doctrine to neural networks.

    PubMed

    Yuste, Rafael

    2015-08-01

    For over a century, the neuron doctrine--which states that the neuron is the structural and functional unit of the nervous system--has provided a conceptual foundation for neuroscience. This viewpoint reflects its origins in a time when the use of single-neuron anatomical and physiological techniques was prominent. However, newer multineuronal recording methods have revealed that ensembles of neurons, rather than individual cells, can form physiological units and generate emergent functional properties and states. As a new paradigm for neuroscience, neural network models have the potential to incorporate knowledge acquired with single-neuron approaches to help us understand how emergent functional states generate behaviour, cognition and mental disease. PMID:26152865

  2. Effects of surface asymmetry on neuronal growth

    NASA Astrophysics Data System (ADS)

    Staii, Cristian

    Understanding the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. A growing body of evidence shows that physical stimuli (stiffness of the growth substrate, gradients of various molecular species, geometry of the surrounding environment, traction forces etc.) play a key role in the wiring up of the nervous system. I will present a systematic experimental and theoretical investigation of neuronal growth on substrates with asymmetric geometries and textures. The experimental results show unidirectional axonal growth on these substrates. We demonstrate that the unidirectional bias is imparted by the surface ratchet geometry and quantify the geometrical guidance cues that control neuronal growth. Our results provide new insight into the role played by physical cues in neuronal growth, and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue. We acknowledge support from NSF through CBET 1067093.

  3. Mirror neurons through the lens of epigenetics.

    PubMed

    Ferrari, Pier F; Tramacere, Antonella; Simpson, Elizabeth A; Iriki, Atsushi

    2013-09-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this opinion article, we argue that, in light of recent evidence, this is at best an incomplete and oversimplified view of mirror neurons, where activity is actually variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although associative and genetic accounts fail to consider the complexity of genetic and nongenetic interactions, we propose a new evolutionary developmental biology (evo-devo) perspective, which predicts that environmental differences early in development should produce variations in mirror neuron response patterns, tuning them to the social environment.

  4. Reflections on mirror neurons and speech perception.

    PubMed

    Lotto, Andrew J; Hickok, Gregory S; Holt, Lori L

    2009-03-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT.

  5. Mirror neurons: their implications for group psychotherapy.

    PubMed

    Schermer, Victor L

    2010-10-01

    Recently discovered mirror neurons in the motor cortex of the brain register the actions and intentions of both the organism and others in the environment. As such, they may play a significant role in social behavior and groups. This paper considers the potential implications of mirror neurons and related neural networks for group therapists, proposing that mirror neurons and mirror systems provide "hard-wired" support for the group therapist's belief in the centrality of relationships in the treatment process and exploring their value in accounting for group-as-a-whole phenomena. Mirror neurons further confirm the holistic, social nature of perception, action, and intention as distinct from a stimulus-response behaviorism. The implications of mirror neurons and mirroring processes for the group therapist role, interventions, and training are also discussed.

  6. Central auditory neurons have composite receptive fields

    PubMed Central

    Kozlov, Andrei S.; Gentner, Timothy Q.

    2016-01-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  7. Automated Neuron Tracing Methods: An Updated Account.

    PubMed

    Acciai, Ludovica; Soda, Paolo; Iannello, Giulio

    2016-10-01

    The reconstruction of neuron morphology allows to investigate how the brain works, which is one of the foremost challenges in neuroscience. This process aims at extracting the neuronal structures from microscopic imaging data. The great advances in microscopic technologies have made a huge amount of data available at the micro-, or even lower, resolution where manual inspection is time consuming, prone to error and utterly impractical. This has motivated the development of methods to automatically trace the neuronal structures, a task also known as neuron tracing. This paper surveys the latest neuron tracing methods available in the scientific literature as well as a selection of significant older papers to better place these proposals into context. They are categorized into global processing, local processing and meta-algorithm approaches. Furthermore, we point out the algorithmic components used to design each method and we report information on the datasets and the performance metrics used.

  8. Neuronal lipofuscin in centrophenoxine treated rats.

    PubMed

    Tani, F; Miyoshi, K

    1977-01-01

    The diminution of neuronal lipofuscin was studied in centrophenoxine adminstered animals. In fluorescent studies, as well as in ordinary histological methods, a marked decrease of the lipofuscin was observed in the cerebral cortex, hippocampus, thalamus, basal ganglia, midbrain, medulla oblongata and spinal cord. The lipofuscin in the cenntrophenoxine animals showed fine granular structures in the perikarua of the neurones when compared to that of control rats. Electronmicroscopically, electron density of the lipofusin structures was observed. Enlargement of the vacuolar portions of the lipofuscin was seen in the neurones of the dorsal ganglia in the centrophenoxine animals. In the present studies, the diminution of the lipofuscin in the neurones was well demonstrated with fluorecent and histological methods. The characteristic ultrastructural changes of the neuronal lipofuscin are reported.

  9. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  10. Attractor dynamics in local neuronal networks

    PubMed Central

    Thivierge, Jean-Philippe; Comas, Rosa; Longtin, André

    2014-01-01

    Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons) can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus. PMID:24688457

  11. An overview of the neuron ring model

    NASA Technical Reports Server (NTRS)

    Taber, Rod

    1991-01-01

    The Neuron Ring model employs an avalanche structure with two important distinctions at the neuron level. Each neuron has two memory latches; one traps maximum neuronal activation during pattern presentation, and the other records the time of latch content change. The latches filter short term memory. In the process, they preserve length 1 snapshots of activation theory history. The model finds utility in pattern classification. Its synaptic weights are first conditioned with sample spectra. The model then receives a test or unknown signal. The objective is to identify the sample closest to the test signal. Class decision follows complete presentation of the test data. The decision maker relies exclusively on the latch contents. Presented here is an overview of the Neuron Ring at the seminar level.

  12. A computational model of motor neuron degeneration.

    PubMed

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L F

    2014-08-20

    To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations.

  13. Vestibular efferent neurons project to the flocculus

    NASA Technical Reports Server (NTRS)

    Shinder, M. E.; Purcell, I. M.; Kaufman, G. D.; Perachio, A. A.

    2001-01-01

    A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.

  14. Timing control by redundant inhibitory neuronal circuits

    SciTech Connect

    Tristan, I. Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  15. Mirror Neurons through the Lens of Epigenetics

    PubMed Central

    Ferrari, Pier F.; Tramacere, Antonella; Simpson, Elizabeth A.; Iriki, Atsushi

    2013-01-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this article, we argue that, in light of recent evidence, this is, at best, an incomplete and oversimplified view of mirror neurons, whose activity is actually quite variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although extant associative and genetic accounts fail to consider the complexity of genetic and non-genetic interactions, we propose a new Evo-Devo perspective, which predicts that environmental differences early in development, or through sensorimotor training, should produce variations in mirror neuron response patterns, tuning them to the social environment. PMID:23953747

  16. Dissecting the diversity of midbrain dopamine neurons.

    PubMed

    Roeper, Jochen

    2013-06-01

    Midbrain dopamine (DA) neurons are essential for controlling key functions of the brain, such as voluntary movement, reward processing, and working memory. The largest populations of midbrain DA neurons are localized in two neighboring nuclei, the substantia nigra (SN) and the ventral tegmental area (VTA). Regardless of their different axonal projections to subcortical and cortical targets, midbrain DA neurons have traditionally been regarded as a relatively homogeneous group of neurons, with a stereotypical set of intrinsic electrophysiological properties and in vivo pattern of activity. In this review, I highlight recent data supporting an unexpected degree of diversity among these midbrain DA neurons in the mammalian brain, ranging from their developmental lineages and different synaptic connectivity to their electrophysiological properties and behavioral functions.

  17. Pacemaking Property of RVLM Presympathetic Neurons

    PubMed Central

    Accorsi-Mendonça, Daniela; da Silva, Melina P.; Souza, George M. P. R.; Lima-Silveira, Ludmila; Karlen-Amarante, Marlusa; Amorim, Mateus R.; Almado, Carlos E. L.; Moraes, Davi J. A.; Machado, Benedito H.

    2016-01-01

    Despite several studies describing the electrophysiological properties of RVLM presympathetic neurons, there is no consensus in the literature about their pacemaking property, mainly due to different experimental approaches used for recordings of neuronal intrinsic properties. In this review we are presenting a historical retrospective about the pioneering studies and their controversies on the intrinsic electrophysiological property of auto-depolarization of these cells in conjunction with recent studies from our laboratory documenting that RVLM presympathetic neurons present pacemaking capacity. We also discuss whether increased sympathetic activity observed in animal models of neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic electrophysiological properties of these cells or due to changes in modulatory inputs from neurons of the respiratory network. We also highlight the key role of INaP as the major current contributing to the pacemaking property of RVLM presympathetic neurons. PMID:27713705

  18. Optogenetic stimulation of MCH neurons increases sleep.

    PubMed

    Konadhode, Roda Rani; Pelluru, Dheeraj; Blanco-Centurion, Carlos; Zayachkivsky, Andrew; Liu, Meng; Uhde, Thomas; Glen, W Bailey; van den Pol, Anthony N; Mulholland, Patrick J; Shiromani, Priyattam J

    2013-06-19

    Melanin concentrating hormone (MCH) is a cyclic neuropeptide present in the hypothalamus of all vertebrates. MCH is implicated in a number of behaviors but direct evidence is lacking. To selectively stimulate the MCH neurons the gene for the light-sensitive cation channel, channelrhodopsin-2, was inserted into the MCH neurons of wild-type mice. Three weeks later MCH neurons were stimulated for 1 min every 5 min for 24 h. A 10 Hz stimulation at the start of the night hastened sleep onset, reduced length of wake bouts by 50%, increased total time in non-REM and REM sleep at night, and increased sleep intensity during the day cycle. Sleep induction at a circadian time when all of the arousal neurons are active indicates that MCH stimulation can powerfully counteract the combined wake-promoting signal of the arousal neurons. This could be potentially useful in treatment of insomnia.

  19. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos.  11272065 and 11472061).

  20. Timing control by redundant inhibitory neuronal circuits

    NASA Astrophysics Data System (ADS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  1. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    PubMed

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  2. Parallel network simulations with NEURON.

    PubMed

    Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L

    2006-10-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.

  3. Quo vadis motor neuron disease?

    PubMed Central

    Balendra, Rubika; Patani, Rickie

    2016-01-01

    Motor neuron disease (MND), also known as amyotrophic lateral sclerosis, is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The aetio-pathogenesis of MND remains unresolved and no effective treatments exist. The only Food and Drug Administration approved disease modifying therapy is riluzole, a glutamate antagonist, which prolongs survival by up to 3 mo. Current management is largely symptomatic/supportive. There is therefore a desperate and unmet clinical need for discovery of disease mechanisms to guide novel therapeutic strategy. In this review, we start by introducing the organizational anatomy of the motor system, before providing a clinical overview of its dysfunction specifically in MND. We then summarize insights gained from pathological, genetic and animal models and conclude by speculating on optimal strategies to drive the step change in discovery, which is so desperately needed in this arena. PMID:27019797

  4. Pathological Changes of von Economo Neuron and Fork Neuron in Neuropsychiatric Diseases.

    PubMed

    Liu, Jia; Wang, Lu-ning; Arzberger, Thomas; Zhu, Ming-wei

    2016-02-01

    von Economo neuron (VEN) is a bipolar neuron characterized by a large spindle-shaped soma. VEN is generally distributed in the layer V of anterior insular lobe and anterior cingulate cortex. Fork neuron is another featured bipolar neuron. In recent years,many studies have illustrated that VEN and fork neurons are correlated with complicated cognition such as self-consciousness and social emotion. Studies in the development and morpholigies of these two neurons as well as their pathological changes in various neurological and psychiatric disorders have found that the abnormal number and functions of VEN can cause corresponding dysfunctions in social recognition and emotions both during the neuro-developmental stages of childhood and during the nerve degeneration in old age stage. Therefore, more attentions should be paid on the research of VEN and fork neurons in neuropsychiatric diseases.

  5. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation. PMID:24775147

  6. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  7. Responses of neurons to extreme osmomechanical stress.

    PubMed

    Wan, X; Harris, J A; Morris, C E

    1995-05-01

    Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane

  8. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin.

    PubMed

    Fontes, Joseph D; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V; Belousov, Andrei B

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  9. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin

    PubMed Central

    Fontes, Joseph D.; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V.; Belousov, Andrei B.

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  10. Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia.

    PubMed

    Kostović, Ivica; Judaš, Miloš; Sedmak, Goran

    2011-05-01

    The subplate zone is a transient cytoarchitectonic compartment of the fetal telencephalic wall and contains a population of subplate neurons which are the main neurons of the fetal neocortex and play a key role in normal development of cerebral cortical structure and connectivity. While the subplate zone disappears during the perinatal and early postnatal period, numerous subplate neurons survive and remain embedded in the superficial (gyral) white matter of adolescent and adult brain as so-called interstitial neurons. In both fetal and adult brain, subplate/interstitial neurons belong to two major classes of cortical cells: (a) projection (glutamatergic) neurons and (b) local circuit (GABAergic) interneurons. As interstitial neurons remain strategically positioned at the cortical/white matter interface through which various cortical afferent systems enter the deep cortical layers, they probably serve as auxiliary interneurons involved in differential "gating" of cortical input systems. It is widely accepted that prenatal lesions which alter the number of surviving subplate neurons (i.e., the number of interstitial neurons) and/or the nature of their involvement in cortical circuitry represent an important causal factor in pathogenesis of at least some types of schizophrenia--e.g., in the subgroup of patients with cognitive impairment and deficits of frontal lobe functions. The abnormal functioning of cortical circuitry in schizophrenia becomes manifest during the adolescence, when there is an increased demand for proper functioning of the prefrontal cortex. In this review, we describe developmental history of subplate zone, subplate neurons and surviving interstitial neurons, as well as presumed consequences of the increased number of GABAergic interstitial neurons in the prefrontal cortex. We propose that the increased number of GABAergic interstitial neurons leads to the increased inhibition of prefrontal cortical neurons. This inhibitory action of GABAergic

  11. Cobertura de los sistemas de pensiones y factores asociados al acceso a una pensión de jubilación en México

    PubMed Central

    Murillo-López, Sandra; Venegas-Martínez, Francisco

    2016-01-01

    Resumen Objetivos: obtener estimaciones de indicadores de cobertura de las pensiones por jubilación o retiro para la población mexicana de 65 y más años, y evaluar el impacto que tienen los sistemas de pensiones en las transiciones al retiro de los adultos en edades medias y avanzadas en México. Para ello se utilizan datos microeconómicos provenientes de la Encuesta Nacional de Salud y Envejecimiento. Mediante análisis econométrico se identifican los factores sociodemográficos, económicos, laborales e institucionales que están asociados al acceso a una pensión de jubilación, o bien, a la dependencia de otras fuentes de ingresos. Se encontró que, en México, las transiciones al retiro del mercado de trabajo en las etapas avanzadas del ciclo de vida son limitadas debido a las características eminentemente contributivas de los esquemas de pensiones, los cuales favorecen a la población con trayectorias laborales formales y más estables asociadas a: características de género, oportunidades educativas y posibilidades de inserción en el mercado laboral. PMID:27524936

  12. Firing dynamics of an autaptic neuron

    NASA Astrophysics Data System (ADS)

    Wang, Heng-Tong; Chen, Yong

    2015-12-01

    Autapses are synapses that connect a neuron to itself in the nervous system. Previously, both experimental and theoretical studies have demonstrated that autaptic connections in the nervous system have a significant physiological function. Autapses in nature provide self-delayed feedback, thus introducing an additional timescale to neuronal activities and causing many dynamic behaviors in neurons. Recently, theoretical studies have revealed that an autapse provides a control option for adjusting the response of a neuron: e.g., an autaptic connection can cause the electrical activities of the Hindmarsh-Rose neuron to switch between quiescent, periodic, and chaotic firing patterns; an autapse can enhance or suppress the mode-locking status of a neuron injected with sinusoidal current; and the firing frequency and interspike interval distributions of the response spike train can also be modified by the autapse. In this paper, we review recent studies that showed how an autapse affects the response of a single neuron. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275084 and 11447027) and the Fundamental Research Funds for the Central Universities, China (Grant No. GK201503025).

  13. AgRP Neurons Regulate Bone Mass.

    PubMed

    Kim, Jae Geun; Sun, Ben-Hua; Dietrich, Marcelo O; Koch, Marco; Yao, Gang-Qing; Diano, Sabrina; Insogna, Karl; Horvath, Tamas L

    2015-10-01

    The hypothalamus has been implicated in skeletal metabolism. Whether hunger-promoting neurons of the arcuate nucleus impact the bone is not known. We generated multiple lines of mice to affect AgRP neuronal circuit integrity. We found that mice with Ucp2 gene deletion, in which AgRP neuronal function was impaired, were osteopenic. This phenotype was rescued by cell-selective reactivation of Ucp2 in AgRP neurons. When the AgRP circuitry was impaired by early postnatal deletion of AgRP neurons or by cell autonomous deletion of Sirt1 (AgRP-Sirt1(-/-)), mice also developed reduced bone mass. No impact of leptin receptor deletion in AgRP neurons was found on bone homeostasis. Suppression of sympathetic tone in AgRP-Sirt1(-/-) mice reversed osteopenia in transgenic animals. Taken together, these observations establish a significant regulatory role for AgRP neurons in skeletal bone metabolism independent of leptin action. PMID:26411686

  14. Tuning supramolecular mechanics to guide neuron development

    PubMed Central

    Sur, Shantanu; Newcomb, Christina J.; Webber, Matthew J.; Stupp, Samuel I.

    2013-01-01

    The mechanical properties of the extracellular matrix (ECM) are known to influence neuronal differentiation and maturation, though the mechanism by which neuronal cells respond to these biophysical cues is not completely understood. Here we design ECM mimics using self-assembled peptide nanofibers, in which fiber rigidity is tailored by supramolecular interactions, in order to investigate the relationship between matrix stiffness and morphological development of hippocampal neurons. We observe that development of neuronal polarity is accelerated on soft nanofiber substrates, and results from the dynamics of neuronal processes. While the total neurite outgrowth of non-polar neurons remains conserved, weaker adhesion of neurites to soft PA substrate facilitates easier retraction, thus enhancing the frequency of “extension-retraction” events. We hypothesize that higher neurite motility enhances the probability of one neurite to reach a critical length relative to others, thereby initiating the developmental sequence of axon differentiation. Our results suggest that substrate stiffness can influence neuronal development by regulating its dynamics, thus providing useful information on scaffold design for applications in neural regeneration. PMID:23562052

  15. [Multiple system atrophy - synuclein and neuronal degeneration].

    PubMed

    Yoshida, Mari

    2011-11-01

    Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that encompasses olivopontocerebellar atrophy (OPCA), striatonigral degeneration (SND) and Shy-Drager syndrome (SDS). The histopathological hallmarks are α-synuclein (AS) positive glial cytoplasmic inclusions (GCIs) in oligodendroglias. AS aggregation is also found in glial nuclear inclusions (GNIs), neuronal cytoplasmic inclusions (NCIs), neuronal nuclear inclusions (NNIs) and dystrophic neurties. Reviewing the pathological features of 102 MSA cases, OPCA-type was relatively more frequent and SND-type was less frequent in Japanese MSA cases, which suggested different phenotypic pattern of MSA might exist between races, compared to the relatively high frequency of SND-type in western countries. In early stage of MSA, NNIs, NCIs and diffuse homogenous stain of AS in neuronal nuclei and cytoplasm were observed in various vulnerable lesions including the pontine nuclei, putamen, substantia nigra, locus ceruleus, inferior olivary nucleus, intermediolateral column of thoracic cord, lower motor neurons and cortical pyramidal neurons, in additions to GCIs. These findings indicated that the primary nonfibrillar and fibrillar AS aggregation also occurred in neurons. Therefore both the direct involvement of neurons themselves and the oligodendroglia-myelin-axon mechanism may synergistically accelerate the degenerative process of MSA. PMID:22277386

  16. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  17. A vascular perspective on neuronal migration.

    PubMed

    Segarra, Marta; Kirchmaier, Bettina C; Acker-Palmer, Amparo

    2015-11-01

    During CNS development and adult neurogenesis, immature neurons travel from the germinal zones towards their final destination using cellular substrates for their migration. Classically, radial glia and neuronal axons have been shown to act as physical scaffolds to support neuroblast locomotion in processes known as gliophilic and neurophilic migration, respectively (Hatten, 1999; Marin and Rubenstein, 2003; Rakic, 2003). In adulthood, long distance neuronal migration occurs in a glial-independent manner since radial glia cells differentiate into astrocytes after birth. A series of studies highlight a novel mode of neuronal migration that uses blood vessels as scaffolds, the so-called vasophilic migration. This migration mode allows neuroblast navigation in physiological and also pathological conditions, such as neuronal precursor migration after ischemic stroke or cerebral invasion of glioma tumor cells. Here we review the current knowledge about how vessels pave the path for migrating neurons and how trophic factors derived by glio-vascular structures guide neuronal migration both during physiological as well as pathological processes.

  18. Neurophysiological characterization of mammalian osmosensitive neurones

    PubMed Central

    Bourque, Charles W.; Ciura, Sorana; Trudel, Eric; Stachniak, Tevye J. E.; Sharif-Naeini, Reza

    2016-01-01

    In mammals, the osmolality of the extracellular fluid is maintained near a predetermined set-point through a negative feedback regulation of thirst, diuresis, salt appetite and natriuresis. This homeostatic control is believed to be mediated by osmosensory neurones which synaptically regulate the electrical activity of command neurones that mediate each of these osmoregulatory effector responses. Our present understanding of the molecular, cellular and network basis that underlies the central control of osmoregulation is largely derived from studies on primary osmosensory neurones in the organum vasculosum lamina terminalis (OVLT) and effector neurones in the supraoptic nucleus (SON), which release hormones that regulate diuresis and natriuresis. Primary osmosensory neurones in the OVLT exhibit changes in action potential firing rate that vary in proportion with ECF osmolality. This effect results from the intrinsic depolarizing receptor potential which these cells generate via a molecular transduction complex that may comprise various members of the transient receptor potential vanilloid (TRPV) family of cation channel proteins, notably TRPV1 and TRPV4. Osmotically evoked changes in the firing rate of OVLT neurones then regulate the electrical activity of downstream neurones in the SON through graded changes in glutamate release. PMID:17350993

  19. Staufen2 regulates neuronal target RNAs.

    PubMed

    Heraud-Farlow, Jacki E; Sharangdhar, Tejaswini; Li, Xiao; Pfeifer, Philipp; Tauber, Stefanie; Orozco, Denise; Hörmann, Alexandra; Thomas, Sabine; Bakosova, Anetta; Farlow, Ashley R; Edbauer, Dieter; Lipshitz, Howard D; Morris, Quaid D; Bilban, Martin; Doyle, Michael; Kiebler, Michael A

    2013-12-26

    RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2) has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons. The majority of Stau2-copurifying mRNAs expressed in the hippocampus are present in neuronal processes, further implicating Stau2 in dendritic mRNA regulation. Stau2 targets are enriched for secondary structures similar to those identified in the 3' UTRs of Drosophila Staufen targets. Next, we show that Stau2 regulates steady-state levels of many neuronal RNAs and that its targets are predominantly downregulated in Stau2-deficient neurons. Detailed analysis confirms that Stau2 stabilizes the expression of one synaptic signaling component, the regulator of G protein signaling 4 (Rgs4) mRNA, via its 3' UTR. This study defines the global impact of Stau2 on mRNAs in neurons, revealing a role in stabilization of the levels of synaptic targets.

  20. Neuronal growth and differentiation on biodegradable membranes.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Messina, Antonietta; Salerno, Simona; Al-Fageeh, Mohamed B; Drioli, Enrico; De Bartolo, Loredana

    2015-02-01

    Semipermeable polymeric membranes with appropriate morphological, physicochemical and transport properties are relevant to inducing neural regeneration. We developed novel biodegradable membranes to support neuronal differentiation. In particular, we developed chitosan, polycaprolactone and polyurethane flat membranes and a biosynthetic blend between polycaprolactone and polyurethane by phase-inversion techniques. The biodegradable membranes were characterized in order to evaluate their morphological, physicochemical, mechanical and degradation properties. We investigated the efficacy of these different membranes to promote the adhesion and differentiation of neuronal cells. We employed as model cell system the human neuroblastoma cell line SHSY5Y, which is a well-established system for studying neuronal differentiation. The investigation of viability and specific neuronal marker expression allowed assessment that the correct neuronal differentiation and the formation of neuronal network had taken place in vitro in the cells seeded on different biodegradable membranes. Overall, this study provides evidence that neural cell responses depend on the nature of the biodegradable polymer used to form the membranes, as well as on the dissolution, hydrophilic and, above all, mechanical membrane properties. PCL-PU membranes exhibit mechanical properties that improve neurite outgrowth and the expression of specific neuronal markers.

  1. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  2. Sloppiness in spontaneously active neuronal networks.

    PubMed

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca; Hennig, Matthias H

    2015-06-01

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function.

  3. From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity

    PubMed Central

    Russ, Jeffrey B.; Kaltschmidt, Julia A.

    2014-01-01

    Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neuronal connectivity, such as dendritic morphology, axonal targeting or synaptic specificity, ultimately priming the neuron for incorporation into emerging circuitry. As the neuron's early connectivity is established, extrinsic signals from its pre- and postsynaptic partners feedback on the neuron to further refine its unique characteristics. As a result, disruption of one component of the circuitry during development can have vital consequences for the proper identity specification of its synaptic partners. Recent studies have begun to harness the power of various transcription factors that control neuronal cell fate, including those that specify a neuron's subtype-specific identity, seeking insight for future therapeutic strategies that aim to reconstitute damaged circuitry through neuronal reprogramming. PMID:25297387

  4. Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy

    PubMed Central

    Liu, Zanhua; Liu, Jinjie; Wang, Suping; Liu, Sibo; Zhao, Yongbo

    2016-01-01

    It is well established that brain blood barrier dysfunction following the onset of seizures may lead to serum albumin extravasation into the brain. However, the effect of albumin extravasation on the development of epilepsy is yet to be fully elucidated. Previous studies have predominantly focused on the effect of albumin absorption by astrocytes; however, the present study investigated the effects of neuronal uptake of albumin in vitro and in kainic acid-induced Sprague-Dawley rat models of temporal lobe epilepsy. In the present study, electroencephalogram recordings were conducted to record seizure onset, Nissl and Evans blue staining were used to detect neuronal damage and albumin extravasation, respectively, and double immunofluorescence was used to explore neuronal absorption of albumin. Cell counting was also conducted in vitro to determine whether albumin contributes to neuronal death. The results of the present study indicated that extravasated serum albumin was absorbed by neurons, and the neurons that had absorbed albumin died and were dissolved 28 days after seizure onset in vivo. Furthermore, significant neuronal death was detected after albumin absorption in vitro in a dose- and time-dependent manner. These results suggested that albumin may be absorbed by neurons following the onset of seizures. Furthermore, the results indicated that neuronal albumin uptake may be associated with neuronal damage and death in epileptic seizures. Therefore, attenuating albumin extravasation following epileptic seizures may reduce brain damage and slow the development of epilepsy. PMID:27446263

  5. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  6. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    PubMed

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  7. Neurons controlling jumping in froghopper insects.

    PubMed

    Bräunig, Peter; Burrows, Malcolm

    2008-03-01

    The neurons innervating muscles that deliver the enormous power enabling froghopper insects to excel at jumping were revealed by backfilling the nerves from those muscles. The huge trochanteral depressor muscle (M133) of a hind leg consists of four parts. The two largest parts (M133b,c) occupy most of the metathorax and are innervated by the same two motor neurons that have small, laterally placed somata in the metathoracic ganglion and axons in nerve N3C(2). They are also supplied by three dorsal unpaired median (DUM) neurons with the largest diameter somata in the central nervous system. A small metathoracic part of the muscle (M133d) is supplied by two motor neurons with lateral somata and by common inhibitory motor neuron CI(1), all with axons in nerve N3C(3) The motor neuron with the larger soma has a thick primary neurite that projects across the midline of the ganglion so that its branches overlap those of its symmetrical counterpart,innervating the same muscle of the other hind leg. The fourth coxal part of the muscle (M133a) is innervated by two motor neurons (one with a ventral and the other with a dorsal and lateral soma), by CI(1), and by a DUM neuron with a small soma. All have axons in nerve N5A. The two trochanteral levator muscles of a hind leg are contained within the coxa and are separately innervated by nerves N3B and N4, respectively. The properties of the different motor neurons are discussed in the context of the neural patterns that generate jumping. PMID:18095320

  8. Context-aware modeling of neuronal morphologies

    PubMed Central

    Torben-Nielsen, Benjamin; De Schutter, Erik

    2014-01-01

    Neuronal morphologies are pivotal for brain functioning: physical overlap between dendrites and axons constrain the circuit topology, and the precise shape and composition of dendrites determine the integration of inputs to produce an output signal. At the same time, morphologies are highly diverse and variant. The variance, presumably, originates from neurons developing in a densely packed brain substrate where they interact (e.g., repulsion or attraction) with other actors in this substrate. However, when studying neurons their context is never part of the analysis and they are treated as if they existed in isolation. Here we argue that to fully understand neuronal morphology and its variance it is important to consider neurons in relation to each other and to other actors in the surrounding brain substrate, i.e., their context. We propose a context-aware computational framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously according to growth rules expressed in terms of interactions between the developing neuron and the surrounding brain substrate. As a proof of principle, we demonstrate that by using NeuroMaC we can generate accurate virtual morphologies of distinct classes both in isolation and as part of neuronal forests. Accuracy is validated against population statistics of experimentally reconstructed morphologies. We show that context-aware generation of neurons can explain characteristics of variation. Indeed, plausible variation is an inherent property of the morphologies generated by context-aware rules. We speculate about the applicability of this framework to investigate morphologies and circuits, to classify healthy and pathological morphologies, and to generate large quantities of morphologies for large-scale modeling. PMID:25249944

  9. Neuronal loss in human medial vestibular nucleus.

    PubMed

    Alvarez, J C; Díaz, C; Suárez, C; Fernández, J A; González del Rey, C; Navarro, A; Tolivia, J

    1998-08-01

    The data concerning the effects of age on the brainstem are inconsistent, and few works are devoted to the human vestibular nuclear complex. The medial vestibular nucleus (MVN) is the largest nucleus of the vestibular nuclear complex, and it seems to be related mainly to vestibular compensation and vestibulo-ocular reflexes. Eight human brainstems have been used in this work. The specimens were embedded in paraffin, sectioned, and stained by the formaldehyde-thionin technique. Neuron profiles were drawn with a camera lucida at x330. Abercrombie's method was used to estimate the total number of neurons. We used the test of Kolmogorov-Smirnov with the correction of Lilliefors to evaluate the fit of our data to a normal distribution, and a regression analysis was performed to determine if the variation of our data with age was statistically significant. The present study clearly shows that neuronal loss occurs with aging. The total number of neurons decreases with age, from 122,241 +/- 651 cells in a 35-year-old individual to 75,915 +/- 453 cells in an 89-year-old individual. Neuron loss was significant in the caudal and intermediate thirds of the nucleus, whereas the changes in the rostral third were not significant. The nuclear diameter of surviving neurons decreased significantly with age. There is a neuron loss in the MVN that seems to be age-related. It could help explain why elderly people find it hard to compensate for unilateral vestibular deficits. The preservation of neurons in the rostral third could be related to the fact that this area primarily innervates the oculolmotor nuclei; these latter neurons do not decrease in number in other species studied.

  10. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  11. Stochastic resonance in mammalian neuronal networks

    SciTech Connect

    Gluckman, B.J.; So, P.; Netoff, T.I.; Spano, M.L.; Schiff, S.J. |

    1998-09-01

    We present stochastic resonance observed in the dynamics of neuronal networks from mammalian brain. Both sinusoidal signals and random noise were superimposed into an applied electric field. As the amplitude of the noise component was increased, an optimization (increase then decrease) in the signal-to-noise ratio of the network response to the sinusoidal signal was observed. The relationship between the measures used to characterize the dynamics is discussed. Finally, a computational model of these neuronal networks that includes the neuronal interactions with the electric field is presented to illustrate the physics behind the essential features of the experiment. {copyright} {ital 1998 American Institute of Physics.}

  12. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  13. Reaction-diffusion in the NEURON simulator.

    PubMed

    McDougal, Robert A; Hines, Michael L; Lytton, William W

    2013-01-01

    In order to support research on the role of cell biological principles (genomics, proteomics, signaling cascades and reaction dynamics) on the dynamics of neuronal response in health and disease, NEURON's Reaction-Diffusion (rxd) module in Python provides specification and simulation for these dynamics, coupled with the electrophysiological dynamics of the cell membrane. Arithmetic operations on species and parameters are overloaded, allowing arbitrary reaction formulas to be specified using Python syntax. These expressions are then transparently compiled into bytecode that uses NumPy for fast vectorized calculations. At each time step, rxd combines NEURON's integrators with SciPy's sparse linear algebra library. PMID:24298253

  14. Map-based models in neuronal dynamics

    NASA Astrophysics Data System (ADS)

    Ibarz, B.; Casado, J. M.; Sanjuán, M. A. F.

    2011-04-01

    Ever since the pioneering work of Hodgkin and Huxley, biological neuron models have consisted of ODEs representing the evolution of the transmembrane voltage and the dynamics of ionic conductances. It is only recently that discrete dynamical systems-also known as maps-have begun to receive attention as valid phenomenological neuron models. The present review tries to provide a coherent perspective of map-based biological neuron models, describing their dynamical properties; stressing the similarities and differences, both among them and in relation to continuous-time models; exploring their behavior in networks; and examining their wide-ranging possibilities of application in computational neuroscience.

  15. Associative memory - An optimum binary neuron representation

    NASA Technical Reports Server (NTRS)

    Awwal, A. A.; Karim, M. A.; Liu, H. K.

    1989-01-01

    Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.

  16. [Escape Behaviors and Its Underlying Neuronal Circuits].

    PubMed

    Oda, Yoichi

    2015-10-01

    Escape behaviors are crucial to survive predator encounters or aversive stimuli. The neural circuits mediating escape behaviors of different animal species have a common framework to trigger extremely fast and robust movement with minimum delay. Thus, the neuronal escape circuits possibly represent functional architectures that perform the most efficient sensory-motor processing in the brain. Here, I review the escape behaviors and underlying neuronal circuits of several invertebrates and fish by focusing on the Mauthner cells, a pair of giant reticulospinal neurons in the hindbrain, that trigger fast escape behavior in goldfish and zebrafish. PMID:26450070

  17. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans

    PubMed Central

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-01-01

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions. DOI: http://dx.doi.org/10.7554/eLife.19510.001 PMID:27767956

  18. The ontogenetic origins of mirror neurons: evidence from 'tool-use' and 'audiovisual' mirror neurons.

    PubMed

    Cook, Richard

    2012-10-23

    Since their discovery, mirror neurons--units in the macaque brain that discharge both during action observation and execution--have attracted considerable interest. Whether mirror neurons are an innate endowment or acquire their sensorimotor matching properties ontogenetically has been the subject of intense debate. It is widely believed that these units are an innate trait; that we are born with a set of mature mirror neurons because their matching properties conveyed upon our ancestors an evolutionary advantage. However, an alternative view is that mirror neurons acquire their matching properties during ontogeny, through correlated experience of observing and performing actions. The present article re-examines frequently overlooked neurophysiological reports of 'tool-use' and 'audiovisual' mirror neurons within the context of this debate. It is argued that these findings represent compelling evidence that mirror neurons are a product of sensorimotor experience, and not an innate endowment.

  19. Sensory Neuron-Derived Eph Regulates Glomerular Arbors and Modulatory Function of a Central Serotonergic Neuron

    PubMed Central

    Aggarwal, Aman; Diegelmann, Soeren; Evers, Jan Felix; Karandikar, Hrishikesh; Landgraf, Matthias; VijayRaghavan, K.

    2013-01-01

    Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts. PMID:23637622

  20. Epibranchial placode-derived neurons produce BDNF required for early sensory neuron development.

    PubMed

    Harlow, Danielle E; Yang, Hui; Williams, Trevor; Barlow, Linda A

    2011-02-01

    In mice, BDNF provided by the developing taste epithelium is required for gustatory neuron survival following target innervation. However, we find that expression of BDNF, as detected by BDNF-driven β-galactosidase, begins in the cranial ganglia before its expression in the central (hindbrain) or peripheral (taste papillae) targets of these sensory neurons, and before gustatory ganglion cells innervate either target. To test early BDNF function, we examined the ganglia of bdnf null mice before target innervation, and found that while initial neuron survival is unaltered, early neuron development is disrupted. In addition, fate mapping analysis in mice demonstrates that murine cranial ganglia arise from two embryonic populations, i.e., epibranchial placodes and neural crest, as has been described for these ganglia in non-mammalian vertebrates. Only placodal neurons produce BDNF, however, which indicates that prior to innervation, early ganglionic BDNF produced by placode-derived cells promotes gustatory neuron development.

  1. [Cognitive processes and neuronal networks].

    PubMed

    Ohayon, M

    1990-10-01

    It is clear that computers are but a poor brain models: the nervous system has many "processors" (neurons) in parallel, whereas von Neuman's machines work sequentially on a single processor. In complex systems, emergent properties cannot be inferred from the behaviour of single elements. Anthills display collective "meaningful" moves, while each ant seems to obey local interactions only. Likewise, large parallel networks of processing elements elicit emergent properties. Like brains, some of them are self-organizing systems. In large parallel processing networks, each unit performs an elementary computation: adding inputs from other units. Large nets display surprising spontaneous computational abilities: associative memories, classes, generalizations may be seen as emergent properties of the network. Symbols are dynamical entities, whose handing is driven by local interactions of activation/inhibition of related representations. In such models, representations (memories) are distributed in the whole network, as stable configurations. Indeed, the basic properties of representation in connectionist models seem closer to human mental objects than the classic Artificial Intelligence concepts. Connectionist models have been used in many fields, namely simulations of real neural networks, pattern recognition and artificial vision, speech recognition, language understanding and knowledge representation, problem solving... Connectionist models have been thus used in neurobiology as well as cognition. One basic structure seems indeed able to account for a range of cognitive functions, from perception to problem solving and high level cognitive tasks. Nevertheless studies about "pathological" networks are yet rare, still an open field... We explore some of these fields. PMID:1965482

  2. [Cognitive processes and neuronal networks].

    PubMed

    Ohayon, M

    1990-10-01

    It is clear that computers are but a poor brain models: the nervous system has many "processors" (neurons) in parallel, whereas von Neuman's machines work sequentially on a single processor. In complex systems, emergent properties cannot be inferred from the behaviour of single elements. Anthills display collective "meaningful" moves, while each ant seems to obey local interactions only. Likewise, large parallel networks of processing elements elicit emergent properties. Like brains, some of them are self-organizing systems. In large parallel processing networks, each unit performs an elementary computation: adding inputs from other units. Large nets display surprising spontaneous computational abilities: associative memories, classes, generalizations may be seen as emergent properties of the network. Symbols are dynamical entities, whose handing is driven by local interactions of activation/inhibition of related representations. In such models, representations (memories) are distributed in the whole network, as stable configurations. Indeed, the basic properties of representation in connectionist models seem closer to human mental objects than the classic Artificial Intelligence concepts. Connectionist models have been used in many fields, namely simulations of real neural networks, pattern recognition and artificial vision, speech recognition, language understanding and knowledge representation, problem solving... Connectionist models have been thus used in neurobiology as well as cognition. One basic structure seems indeed able to account for a range of cognitive functions, from perception to problem solving and high level cognitive tasks. Nevertheless studies about "pathological" networks are yet rare, still an open field... We explore some of these fields.

  3. Spontaneous Activity in Crustacean Neurons

    PubMed Central

    Preston, James B.; Kennedy, Donald

    1962-01-01

    Single units which discharged with regular spontaneous rhythms without intentional stimulation were observed in the ventral nerve cord by intracellular recording close to the sixth abdominal ganglion. These units were divided into two groups: group A units in which interspike intervals varied less than 10 msec.; group B units in which interspike intervals varied within a range of 10 to 30 msec. Group A units maintained "constant" interspike intervals and could not be discharged by sensory inputs, while the majority of group B units could be discharged by appropriate sensory nerve stimulation. Both group A and B units discharged to direct stimulation when the stimulating and recording electrodes were placed in the same ganglionic intersegment, and directly evoked single spikes reset the spontaneous rhythm. In group B units, presynaptic volleys reset the spontaneous rhythm of some units; but in others, synaptically evoked spikes were interpolated within the spontaneous rhythm without resetting. The phenomenon of enhancement could also be demonstrated in spontaneously active units as a result of repetitive stimulation. It is concluded that endogenous pacemaker activity is responsible for much of the regular spontaneous firing observed in crayfish central neurons, and that interaction of evoked responses with such pacemaker sites can produce a variety of effects dependent upon the anatomical relationships between pacemaker and synaptic regions. PMID:14488667

  4. Cannabinoids excite circadian clock neurons.

    PubMed

    Acuna-Goycolea, Claudio; Obrietan, Karl; van den Pol, Anthony N

    2010-07-28

    Cannabinoids, the primary active agent in drugs of abuse such as marijuana and hashish, tend to generate a distorted sense of time. Here we study the effect of cannabinoids on the brain's circadian clock, the suprachiasmatic nucleus (SCN), using patch clamp and cell-attached electrophysiological recordings, RT-PCR, immunocytochemistry, and behavioral analysis. The SCN showed strong expression of the cannabinoid receptor CB1R, as detected with RT-PCR. SCN neurons, including those using GABA as a transmitter, and axons within the SCN, expressed CB1R immunoreactivity. Behaviorally, cannabinoids did not alter the endogenous free-running circadian rhythm in the mouse brain, but did attenuate the ability of the circadian clock to entrain to light zeitgebers. In the absence of light, infusion of the CB1R antagonist AM251 caused a modest phase shift, suggesting endocannabinoid modulation of clock timing. Interestingly, cannabinoids had no effect on glutamate release from the retinohypothalamic projection, suggesting a direct action of cannabinoids on the retinohypothalamic tract was unlikely to explain the inhibition of the phase shift. Within the SCN, cannabinoids were excitatory by a mechanism based on presynaptic CB1R attenuation of axonal GABA release. These data raise the possibility that the time dissociation described by cannabinoid users may result in part from altered circadian clock function and/or entrainment to environmental time cues. PMID:20668190

  5. Sugar Glues for Broken Neurons

    PubMed Central

    Swarup, Vimal P.; Mencio, Caitlin P.; Hlady, Vladimir; Kuberan, Balagurunathan

    2014-01-01

    Proteoglycans regulate diverse functions in the CNS by interacting with a number of growth factors, matrix proteins and cell surface molecules. Heparan sulfate and chondroitin sulfate are two major glycosaminoglycans present in the PGs of CNS. Functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their GAG chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes such as neuronal growth, regeneration, plasticity and pathfinding. However, defining the relationship between distinct sulfation patterns of the GAGs and their functionality has so far been difficult. With the emergence of novel tools for synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure—function relationship of GAGs in the context of their sulfation patterns. In this review, we discuss the importance GAGs on CNS development, injury and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders. PMID:25285176

  6. Endocannabinoid signalling in neuronal migration.

    PubMed

    Zhou, Ya; Falenta, Katarzyna; Lalli, Giovanna

    2014-02-01

    The endocannabinoid (eCB) system consists of several endogenous lipids, their target CB1 and CB2 receptors and enzymes responsible for their synthesis and degradation. The most abundant eCB in the central nervous system (CNS), 2-arachidonoyl glycerol (2-AG), triggers a broad range of signalling events by acting on CB1, the most abundant G protein-coupled receptor in the CNS. The eCB system regulates many physiological processes including neurogenesis, axon guidance and synaptic plasticity. Recent studies have highlighted an additional important role for eCB signalling in neuronal migration, which is crucial to achieve the complex architecture and efficient wiring of the CNS. Indeed, eCB signalling controls migration both pre- and post-natally, regulating interneuron positioning in the developing cortex and hippocampus and the polarised motility of stem cell-derived neuroblasts. While these effects may contribute to cognitive deficits associated with cannabis consumption, they also provide potential opportunities for endogenous stem cell-based neuroregenerative strategies.

  7. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    PubMed

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  8. The smallest insects evolve anucleate neurons.

    PubMed

    Polilov, Alexey A

    2012-01-01

    The smallest insects are comparable in size to unicellular organisms. Thus, their size affects their structure not only at the organ level, but also at the cellular level. Here we report the first finding of animals with an almost entirely anucleate nervous system. Adults of the smallest flying insects of the parasitic wasp genus Megaphragma (Hymenoptera: Trichogrammatidae) have only 339-372 nuclei in the central nervous system, i.e., their ganglia, including the brain, consist almost exclusively of processes of neurons. In contrast, their pupae have ganglia more typical of other insects, with about 7400 nuclei in the central nervous system. During the final phases of pupal development, most neuronal cell bodies lyse. As adults, these insects have many fewer nucleated neurons, a small number of cell bodies in different stages of lysis, and about 7000 anucleate cells. Although most neurons lack nuclei, these insects exhibit many important behaviors, including flight and searching for hosts.

  9. Glia as drivers of abnormal neuronal activity

    PubMed Central

    Robel, Stefanie; Sontheimer, Harald

    2016-01-01

    Reactive astrocytes have been proposed to become incompetent bystanders in epilepsy as a result of cellular changes rendering them unable to perform important housekeeping functions. Indeed, successful surgical treatment of mesiotemporal lobe epilepsy hinges on the removal of the glial scar. New research now extends the role of astrocytes, suggesting that they may drive the disease process by impairing the inhibitory action of neuronal GABA receptors. Here we discuss studies that include hyperexcitability resulting from impaired supply of astrocytic glutamine for neuronal GABA synthesis, and epilepsy resulting from genetically induced astrogliosis or malignant transformation, both of which render the inhibitory neurotransmitter GABA excitatory. In these examples, glial cells alter the expression or function of neuronal proteins involved in excitability. Although epilepsy has traditionally been thought of as a disease caused by changes in neuronal properties exclusively, these new findings challenge us to consider the contribution of glial cells as drivers of epileptogenesis in acquired epilepsies. PMID:26713746

  10. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.

  11. Olfactory receptor neuron profiling using sandalwood odorants.

    PubMed

    Bieri, Stephan; Monastyrskaia, Katherine; Schilling, Boris

    2004-07-01

    The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.

  12. Fitting Neuron Models to Spike Trains

    PubMed Central

    Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925

  13. The Age of Human Cerebral Cortex Neurons

    SciTech Connect

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  14. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival. PMID:11529497

  15. Control of arousal by the orexin neurons

    PubMed Central

    Alexandre, Chloe; Andermann, Mark L; Scammell, Thomas E

    2013-01-01

    The orexin-producing neurons in the lateral hypothalamus play an essential role in promoting arousal and maintaining wakefulness. These neurons receive a broad variety of signals related to environmental, physiological and emotional stimuli; they project to almost every brain region involved in the regulation of wakefulness; and they fire most strongly during active wakefulness, high motor activation, and sustained attention. This review focuses on the specific neuronal pathways through which the orexin neurons promote wakefulness and maintain high level of arousal, and how recent studies using optogenetic and pharmacogenetic methods have demonstrated that the locus coeruleus, the tuberomammillary nucleus, and the basal forebrain are some of the key sites mediating the arousing actions of orexins. PMID:23683477

  16. Genetics Home Reference: infantile neuronal ceroid lipofuscinosis

    MedlinePlus

    ... Batten Disease Foundation CLIMB: Children Living with Inherited Metabolic Diseases ... Sources for This Page Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell ...

  17. Towards functional classification of neuronal types

    PubMed Central

    Sharpee, Tatyana O.

    2014-01-01

    How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here I outline theoretical arguments for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. PMID:25233315

  18. Fitting neuron models to spike trains.

    PubMed

    Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925

  19. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  20. Authors’ response: mirror neurons: tests and testability.

    PubMed

    Catmur, Caroline; Press, Clare; Cook, Richard; Bird, Geoffrey; Heyes, Cecilia

    2014-04-01

    Commentators have tended to focus on the conceptual framework of our article, the contrast between genetic and associative accounts of mirror neurons, and to challenge it with additional possibilities rather than empirical data. This makes the empirically focused comments especially valuable. The mirror neuron debate is replete with ideas; what it needs now are system-level theories and careful experiments – tests and testability.

  1. Neural network with dynamically adaptable neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.

  2. SnapShot: Neuronal Regulation of Aging.

    PubMed

    Weir, Heather J; Mair, William B

    2016-07-28

    Aging is characterized by loss of homeostasis across multiple tissues. The nervous system governs whole-body homeostasis by communicating external and internal signals to peripheral tissues. Here, we highlight neuronal mechanisms and downstream outputs that regulate aging and longevity. Targeting these neuronal pathways may be a novel strategy to promote healthy aging. To view this SnapShot, open or download the PDF. PMID:27471972

  3. Releasing the peri-neuronal net to patch-clamp neurons in adult CNS.

    PubMed

    Morales, Ezequiel; Fernandez, Fernando R; Sinclair, Suzanne; Molineux, Michael L; Mehaffey, W Hamish; Turner, Ray W

    2004-05-01

    The extracellular matrix of adult neural tissue contains chondroitin sulphated proteogylcans that form a dense peri-neuronal net surrounding the cell body and proximal dendrites of many neuronal classes. Development of the peri-neuronal net beyond approximately postnatal day 17 obscures visualization and often access by patch electrodes to neuronal membranes with the result that patch clamp recordings are most readily obtained from early postnatal animals. We describe a technique in which the surface tension of a sucrose-based medium promotes partial dissociation of thin tissue slices from adult tissue. Surface tension spreads the tissue and loosens the peri-neuronal net from neuronal membranes within minutes and in the absence of proteolytic enzymes. Furthermore, the extent of dissociation can be controlled so as to maintain the overall slice structure and allow identification of specific cell classes. Excellent structural preservation of neurons and dendrites can be obtained and full access by patch electrodes made possible for current- or voltage-clamp recordings in tissue well beyond the development of peri-neuronal nets. We demonstrate the feasibility of using this approach through patch recordings from neurons in the brainstem and cerebellum of adult gymnotiform fish and in deep cerebellar nuclei of rats as old as 6 months.

  4. Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons

    PubMed Central

    Brechbühl, Julien; Moine, Fabian; Broillet, Marie-Christine

    2013-01-01

    The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties. PMID:24367309

  5. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I.

    2014-05-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  6. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.

    PubMed Central

    Schwartz, M L; Rakic, P; Goldman-Rakic, P S

    1991-01-01

    The use of [3H]thymidine labeling in combination with various axonal transport tracers has revealed that a subset of migrating neurons in the fetal monkey cerebrum issue axons to the opposite cerebral hemisphere while still migrating to their final positions in the cortical plate. Other cortical neurons with the same "birthdate" (i.e., that underwent their last round of DNA synthesis on the same day) are not retrogradely labeled by tracer injections of the opposite hemisphere. These findings suggest that the cardinal distinction between projection and local circuit neurons may be specified in postmitotic neurons before they acquire their final positions in the cortex. Images PMID:1705036

  7. Early phenotype expression of cortical neurons: Evidence that a subclass of migrating neurons have callosal axons

    SciTech Connect

    Schwartz, M.L.; Rakic, P.; Goldman-Rakic, P.S. )

    1991-02-15

    The use of ({sup 3}H)thymidine labeling in combination with various axonal transport tracers has revealed that a subset of migrating neurons in the fetal monkey cerebrum issue axons to the opposite cerebral hemisphere while still migrating to their final positions in the cortical plate. Other cortical neurons with the same birthdate (i.e., that underwent their last round of DNA synthesis on the same day) are not retrogradely labeled by tracer injections of the opposite hemisphere. These findings suggest that the cardinal distinction between projection and local circuit neurons may be specified in postmitotic neurons before they acquire their final positions in the cortex.

  8. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    PubMed

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology.

  9. Effect of the heterogeneous neuron and information transmission delay on stochastic resonance of neuronal networks.

    PubMed

    Wang, Qingyun; Zhang, Honghui; Chen, Guanrong

    2012-12-01

    We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate α(h), which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as α(h) increases, which implies that the heterogeneity can improve stochastic resonance. However, as α(h) is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.

  10. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia.

    PubMed

    Zhang, X; Chen, Y; Wang, C; Huang, L-Y M

    2007-06-01

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca(2+) entry is required for the release. FM1-43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca(2+) channels completely eliminates the neuron-glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-alpha (TNFalpha) from satellite cells. TNFalpha in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell-cell signaling.

  11. Optimal Stimulus Shapes for Neuronal Excitation

    PubMed Central

    Forger, Daniel B.; Paydarfar, David; Clay, John R.

    2011-01-01

    An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1) spike generation in a neuron can be highly discriminatory for stimulus shape and 2) the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks. PMID:21760759

  12. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  13. Dynamics of strongly-coupled spiking neurons.

    PubMed

    Bressloff, P C; Coombes, S

    2000-01-01

    We present a dynamical theory of integrate-and-fire neurons with strong synaptic coupling. We show how phase-locked states that are stable in the weak coupling regime can destabilize as the coupling is increased, leading to states characterized by spatiotemporal variations in the interspike intervals (ISIs). The dynamics is compared with that of a corresponding network of analog neurons in which the outputs of the neurons are taken to be mean firing rates. A fundamental result is that for slow interactions, there is good agreement between the two models (on an appropriately defined timescale). Various examples of desynchronization in the strong coupling regime are presented. First, a globally coupled network of identical neurons with strong inhibitory coupling is shown to exhibit oscillator death in which some of the neurons suppress the activity of others. However, the stability of the synchronous state persists for very large networks and fast synapses. Second, an asymmetric network with a mixture of excitation and inhibition is shown to exhibit periodic bursting patterns. Finally, a one-dimensional network of neurons with long-range interactions is shown to desynchronize to a state with a spatially periodic pattern of mean firing rates across the network. This is modulated by deterministic fluctuations of the instantaneous firing rate whose size is an increasing function of the speed of synaptic response. PMID:10636934

  14. Calcium dynamics and compartmentalization in leech neurons.

    PubMed

    Andjelic, Sofija; Torre, Vincent

    2005-12-01

    Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (DeltaF/F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. DeltaF/F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, DeltaF/F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.

  15. Effects of cerebral ischemia on neuronal hemoglobin

    PubMed Central

    He, Yangdong; Hua, Ya; Liu, Wenquan; Hu, Haitao; Keep, Richard F.; Xi, Guohua

    2009-01-01

    Summary The present study examined whether or not neuronal hemoglobin (Hb) is present in rats. It then examined whether cerebral ischemia or ischemic preconditioning (IPC) affects neuronal Hb levels in vivo and in vitro. In vivo, male Sprague-Dawley rats were subjected to either 15 minutes of transient middle cerebral artery occlusion with 24 hours of reperfusion, an IPC stimulus, or 24 hours of permanent middle cerebral artery occlusion (pMCAO), or IPC followed three days later by 24 hours of pMCAO. In vitro, primary cultured neurons were exposed to 2 hours of oxygen-glucose deprivation with 22 hours of reoxygenation. Results showed that Hb is widely expressed in rat cerebral neurons but not astrocytes. Hb expression was significantly upregulated in the ipsilateral caudate and the cortical core of the middle cerebral artery territory after IPC. Hb levels also increased in more penumbral cortex and the contralateral hemisphere 24 hours after pMCAO, but expression in the ipsilateral caudate and cortical core area were decreased. Ischemic preconditioning modified pMCAO-induced brain Hb changes. Neuronal Hb levels in vitro were increased by 2 hours of oxygen-glucose deprivation and 22 hours of reoxygenation. These results indicate that Hb is synthesized in neurons and can be upregulated by ischemia. PMID:19066615

  16. Farnesol-Detecting Olfactory Neurons in Drosophila

    PubMed Central

    Ronderos, David S.; Lin, Chun-Chieh; Potter, Christopher J.

    2014-01-01

    We set out to deorphanize a subset of putative Drosophila odorant receptors expressed in trichoid sensilla using a transgenic in vivo misexpression approach. We identified farnesol as a potent and specific activator for the orphan odorant receptor Or83c. Farnesol is an intermediate in juvenile hormone biosynthesis, but is also produced by ripe citrus fruit peels. Here, we show that farnesol stimulates robust activation of Or83c-expressing olfactory neurons, even at high dilutions. The CD36 homolog Snmp1 is required for normal farnesol response kinetics. The neurons expressing Or83c are found in a subset of poorly characterized intermediate sensilla. We show that these neurons mediate attraction behavior to low concentrations of farnesol and that Or83c receptor mutants are defective for this behavior. Or83c neurons innervate the DC3 glomerulus in the antennal lobe and projection neurons relaying information from this glomerulus to higher brain centers target a region of the lateral horn previously implicated in pheromone perception. Our findings identify a sensitive, narrowly tuned receptor that mediates attraction behavior to farnesol and demonstrates an effective approach to deorphanizing odorant receptors expressed in neurons located in intermediate and trichoid sensilla that may not function in the classical “empty basiconic neuron” system. PMID:24623773

  17. Synaptogenesis in purified cortical subplate neurons.

    PubMed

    McKellar, Claire E; Shatz, Carla J

    2009-08-01

    An ideal preparation for investigating events during synaptogenesis would be one in which synapses are sparse, but can be induced at will using a rapid, exogenous trigger. We describe a culture system of immunopurified subplate neurons in which synaptogenesis can be triggered, providing the first homogeneous culture of neocortical neurons for the investigation of synapse development. Synapses in immunopurified rat subplate neurons are sparse, and can be induced by a 48-h exposure to feeder layers of neurons and glia, an induction more rapid than any previously reported. Induced synapses are electrophysiologically functional and ultrastructurally normal. Microarray and real-time PCR experiments reveal a new program of gene expression accompanying synaptogenesis. Surprisingly few known synaptic genes are upregulated during the first 24 h of synaptogenesis; Gene Ontology annotation reveals a preferential upregulation of synaptic genes only at a later time. In situ hybridization confirms that some of the genes regulated in cultures are also expressed in the developing cortex. This culture system provides both a means of studying synapse formation in a homogeneous population of cortical neurons, and better synchronization of synaptogenesis, permitting the investigation of neuron-wide events following the triggering of synapse formation.

  18. Oscillatorylike behavior in feedforward neuronal networks

    NASA Astrophysics Data System (ADS)

    Payeur, Alexandre; Maler, Leonard; Longtin, André

    2015-07-01

    We demonstrate how rhythmic activity can arise in neural networks from feedforward rather than recurrent circuitry and, in so doing, we provide a mechanism capable of explaining the temporal decorrelation of γ -band oscillations. We compare the spiking activity of a delayed recurrent network of inhibitory neurons with that of a feedforward network with the same neural properties and axonal delays. Paradoxically, these very different connectivities can yield very similar spike-train statistics in response to correlated input. This happens when neurons are noisy and axonal delays are short. A Taylor expansion of the feedback network's susceptibility—or frequency-dependent gain function—can then be stopped at first order to a good approximation, thus matching the feedforward net's susceptibility. The feedback network is known to display oscillations; these oscillations imply that the spiking activity of the population is felt by all neurons within the network, leading to direct spike correlations in a given neuron. On the other hand, in the output layer of the feedforward net, the interaction between the external drive and the delayed feedforward projection of this drive by the input layer causes indirect spike correlations: spikes fired by a given output layer neuron are correlated only through the activity of the input layer neurons. High noise and short delays partially bridge the gap between these two types of correlation, yielding similar spike-train statistics for both networks. This similarity is even stronger when the delay is distributed, as confirmed by linear response theory.

  19. Vibrational resonance in excitable neuronal systems.

    PubMed

    Yu, Haitao; Wang, Jiang; Liu, Chen; Deng, Bin; Wei, Xile

    2011-12-01

    In this paper, we investigate the effect of a high-frequency driving on the dynamical response of excitable neuronal systems to a subthreshold low-frequency signal by numerical simulation. We demonstrate the occurrence of vibrational resonance in spatially extended neuronal networks. Different network topologies from single small-world networks to modular networks of small-world subnetworks are considered. It is shown that an optimal amplitude of high-frequency driving enhances the response of neuron populations to a low-frequency signal. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, such as the coupling strength between neurons, network size, and rewiring probability of single small-world networks, as well as the number of links between different subnetworks and the number of subnetworks in the modular networks. All these parameters play a key role in determining the ability of the network to enhance the outreach of the localized subthreshold low-frequency signal. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for the weak signal detection and information propagation across neuronal systems. PMID:22225338

  20. Effects of Surface Asymmetry on Neuronal Growth

    PubMed Central

    Spedden, Elise; Wiens, Matthew R.; Demirel, Melik C.; Staii, Cristian

    2014-01-01

    Detailed knowledge of how the surface physical properties, such as mechanics, topography and texture influence axonal outgrowth and guidance is essential for understanding the processes that control neuron development, the formation of functional neuronal connections and nerve regeneration. Here we synthesize asymmetric surfaces with well-controlled topography and texture and perform a systematic experimental and theoretical investigation of axonal outgrowth on these substrates. We demonstrate unidirectional axonal bias imparted by the surface ratchet-based topography and quantify the topographical guidance cues that control neuronal growth. We describe the growth cone dynamics using a general stochastic model (Fokker-Planck formalism) and use this model to extract two key dynamical parameters: diffusion (cell motility) coefficient and asymmetric drift coefficient. The drift coefficient is identified with the torque caused by the asymmetric ratchet topography. We relate the observed directional bias in axonal outgrowth to cellular contact guidance behavior, which results in an increase in the cell-surface coupling with increased surface anisotropy. We also demonstrate that the disruption of cytoskeletal dynamics through application of Taxol (stabilizer of microtubules) and Blebbistatin (inhibitor of myosin II activity) greatly reduces the directional bias imparted by these asymmetric surfaces. These results provide new insight into the role played by topographical cues in neuronal growth and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue. PMID:25184796

  1. Pleiotrophin antagonizes Brd2 during neuronal differentiation.

    PubMed

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J; Garcia-Dominguez, Mario

    2014-06-01

    Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system.

  2. Mechanical Dissociation of Retinal Neurons with Vibration

    NASA Astrophysics Data System (ADS)

    Motomura, Tamami; Hayashida, Yuki; Murayama, Nobuki

    The neuromorphic device, which implements the functions of biological neural circuits by means of VLSI technology, has been collecting much attention in the engineering fields in the last decade. Concurrently, progress in neuroscience research has revealed the nonlinear computation in single neuron levels, suggesting that individual neurons are not merely the circuit elements but computational units. Thus, elucidating the properties of neuronal signal processing is thought to be an essential step for developing the next generation of neuromorphic devices. In the present study, we developed a method for dissociating single neurons from specific sublayers of mammalian retinas with using no proteolytic enzymes but rather combining tissue incubation in a low-Ca2+ medium and the vibro-dissociation technique developed for the slices of brains and spinal cords previously. Our method took shorter time of the procedure, and required less elaborated skill, than the conventional enzymatic method did; nevertheless it yielded enough number of the cells available for acute electrophysiological experiments. The isolated retinal neurons were useful for measuring the nonlinear membrane conductances as well as the spike firing properties under the perforated-patch whole-cell configuration. These neurons also enabled us to examine the effects of proteolytic enzymes on the membrane excitability in those cells.

  3. Selective attention in an insect auditory neuron.

    PubMed

    Pollack, G S

    1988-07-01

    Previous work (Pollack, 1986) showed that an identified auditory neuron of crickets, the omega neuron, selectively encodes the temporal structure of an ipsilateral sound stimulus when a contralateral stimulus is presented simultaneously, even though the contralateral stimulus is clearly encoded when it is presented alone. The present paper investigates the physiological basis for this selective response. The selectivity for the ipsilateral stimulus is a result of the apparent intensity difference of ipsi- and contralateral stimuli, which is imposed by auditory directionality; when simultaneous presentation of stimuli from the 2 sides is mimicked by presenting low- and high-intensity stimuli simultaneously from the ipsilateral side, the neuron responds selectively to the high-intensity stimulus, even though the low-intensity stimulus is effective when it is presented alone. The selective encoding of the more intense (= ipsilateral) stimulus is due to intensity-dependent inhibition, which is superimposed on the cell's excitatory response to sound. Because of the inhibition, the stimulus with lower intensity (i.e., the contralateral stimulus) is rendered subthreshold, while the stimulus with higher intensity (the ipsilateral stimulus) remains above threshold. Consequently, the temporal structure of the low-intensity stimulus is filtered out of the neuron's spike train. The source of the inhibition is not known. It is not a consequence of activation of the omega neuron. Its characteristics are not consistent with those of known inhibitory inputs to the omega neuron.

  4. Cultured neuronal networks as environmental biosensors.

    PubMed

    O'Shaughnessy, Thomas J; Gray, Samuel A; Pancrazio, Joseph J

    2004-01-01

    Contamination of water by toxins, either intentionally or unintentionally, is a growing concern for both military and civilian agencies and thus there is a need for systems capable of monitoring a wide range of natural and industrial toxicants. The EILATox-Oregon Workshop held in September 2002 provided an opportunity to test the capabilities of a prototype neuronal network-based biosensor with unknown contaminants in water samples. The biosensor is a portable device capable of recording the action potential activity from a network of mammalian neurons grown on glass microelectrode arrays. Changes in the action potential fi ring rate across the network are monitored to determine exposure to toxicants. A series of three neuronal networks derived from mice was used to test seven unknown samples. Two of these unknowns later were revealed to be blanks, to which the neuronal networks did not respond. Of the five remaining unknowns, a significant change in network activity was detected for four of the compounds at concentrations below a lethal level for humans: mercuric chloride, sodium arsenite, phosdrin and chlordimeform. These compounds--two heavy metals, an organophosphate and an insecticide--demonstrate the breadth of detection possible with neuronal networks. The results generated at the workshop show the promise of the neuronal network biosensor as an environmental detector but there is still considerable effort needed to produce a device suitable for routine environmental threat monitoring. PMID:15478174

  5. Synaptogenesis in Purified Cortical Subplate Neurons

    PubMed Central

    Shatz, Carla J.

    2009-01-01

    An ideal preparation for investigating events during synaptogenesis would be one in which synapses are sparse, but can be induced at will using a rapid, exogenous trigger. We describe a culture system of immunopurified subplate neurons in which synaptogenesis can be triggered, providing the first homogeneous culture of neocortical neurons for the investigation of synapse development. Synapses in immunopurified rat subplate neurons are sparse, and can be induced by a 48-h exposure to feeder layers of neurons and glia, an induction more rapid than any previously reported. Induced synapses are electrophysiologically functional and ultrastructurally normal. Microarray and real-time PCR experiments reveal a new program of gene expression accompanying synaptogenesis. Surprisingly few known synaptic genes are upregulated during the first 24 h of synaptogenesis; Gene Ontology annotation reveals a preferential upregulation of synaptic genes only at a later time. In situ hybridization confirms that some of the genes regulated in cultures are also expressed in the developing cortex. This culture system provides both a means of studying synapse formation in a homogeneous population of cortical neurons, and better synchronization of synaptogenesis, permitting the investigation of neuron-wide events following the triggering of synapse formation. PMID:19029062

  6. Effects of surface asymmetry on neuronal growth.

    PubMed

    Spedden, Elise; Wiens, Matthew R; Demirel, Melik C; Staii, Cristian

    2014-01-01

    Detailed knowledge of how the surface physical properties, such as mechanics, topography and texture influence axonal outgrowth and guidance is essential for understanding the processes that control neuron development, the formation of functional neuronal connections and nerve regeneration. Here we synthesize asymmetric surfaces with well-controlled topography and texture and perform a systematic experimental and theoretical investigation of axonal outgrowth on these substrates. We demonstrate unidirectional axonal bias imparted by the surface ratchet-based topography and quantify the topographical guidance cues that control neuronal growth. We describe the growth cone dynamics using a general stochastic model (Fokker-Planck formalism) and use this model to extract two key dynamical parameters: diffusion (cell motility) coefficient and asymmetric drift coefficient. The drift coefficient is identified with the torque caused by the asymmetric ratchet topography. We relate the observed directional bias in axonal outgrowth to cellular contact guidance behavior, which results in an increase in the cell-surface coupling with increased surface anisotropy. We also demonstrate that the disruption of cytoskeletal dynamics through application of Taxol (stabilizer of microtubules) and Blebbistatin (inhibitor of myosin II activity) greatly reduces the directional bias imparted by these asymmetric surfaces. These results provide new insight into the role played by topographical cues in neuronal growth and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue. PMID:25184796

  7. How to make a midbrain dopaminergic neuron.

    PubMed

    Arenas, Ernest; Denham, Mark; Villaescusa, J Carlos

    2015-06-01

    Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.

  8. Physiological, Morphological and Neurochemical Characterization of Neurons Modulated by Movement

    PubMed Central

    Dessem, Dean

    2011-01-01

    The role of individual neurons and their function in neuronal circuits is fundamental to understanding the neuronal mechanisms of sensory and motor functions. Most investigations of sensorimotor mechanisms rely on either examination of neurons while an animal is static1,2 or record extracellular neuronal activity during a movement.3,4 While these studies have provided the fundamental background for sensorimotor function, they either do not evaluate functional information which occurs during a movement or are limited in their ability to fully characterize the anatomy, physiology and neurochemical phenotype of the neuron. A technique is shown here which allows extensive characterization of individual neurons during an in vivo movement. This technique can be used not only to study primary afferent neurons but also to characterize motoneurons and sensorimotor interneurons. Initially the response of a single neuron is recorded using electrophysiological methods during various movements of the mandible followed by determination of the receptive field for the neuron. A neuronal tracer is then intracellularly injected into the neuron and the brain is processed so that the neuron can be visualized with light, electron or confocal microscopy (Fig. 1). The detailed morphology of the characterized neuron is then reconstructed so that neuronal morphology can be correlated with the physiological response of the neuron (Figs. 2,3). In this communication important key details and tips for successful implementation of this technique are provided. Valuable additional information can be determined for the neuron under study by combining this method with other techniques. Retrograde neuronal labeling can be used to determine neurons with which the labeled neuron synapses; thus allowing detailed determination of neuronal circuitry. Immunocytochemistry can be combined with this method to examine neurotransmitters within the labeled neuron and to determine the chemical phenotypes of

  9. Searching for optimal stimuli: ascending a neuron's response function.

    PubMed

    Koelling, Melinda Evrithiki; Nykamp, Duane Q

    2012-12-01

    Many methods used to analyze neuronal response assume that neuronal activity has a fundamentally linear relationship to the stimulus. However, some neurons are strongly sensitive to multiple directions in stimulus space and have a highly nonlinear response. It can be difficult to find optimal stimuli for these neurons. We demonstrate how successive linear approximations of neuronal response can effectively carry out gradient ascent and move through stimulus space towards local maxima of the response. We demonstrate search results for a simple model neuron and two models of a highly selective neuron. PMID:22580579

  10. Remote Control of Neuronal Signaling

    PubMed Central

    Rogan, Sarah C.

    2011-01-01

    A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127

  11. An introduction to neuronal cholecystokinin.

    PubMed

    Beinfeld, M C

    2001-08-01

    This issue of Peptides was inspired by a gathering of CCK researchers at the first Neuronal Cholecsytokinin Gordon Conference. The papers in this issue reflect the diversity of CCK research and demonstrate how the field has matured. Reviews describe the regulation of CCK gene expression and CCK release, the nature of the hormone binding site of the CCK A receptor, interaction of CCK, dopamine and GABA, the role of CCK in thermoregulation, sexual behavior and satiety in rodents and humans. The research articles document features of cardiovascular regulation, reduced cocaine sensitization and decreased satiety in rats that lack the CCK A receptor. Pro CCK processing in neuroblastoma cells and the elevation of CCK levels in CSF in a model of chronic pain are detailed in other articles. Three articles using different behavioral paradigms in rat and sheep examine CCK in learning and memory. Two articles that examine CCK in different behaviors that have a dopaminergic component are included. Other articles describe the interaction between a 5HT(3) antagonist and CCK-induced satiety and c-fos activation and document secretion of oxytocin and vasopressin in female patients and controls in response to CCK 4 administration. There is good reason to believe that the future is bright for research on CCK. With the organization of national and international meetings, CCK researchers have a forum for communication. Opportunities for cooperation and collaboration have never been better. The easy integration of academic basic and clinical science with industrial science bodes very well for the advancement of our understanding of the multiple roles that CCK plays in the brain and for the future development of CCK-based therapies. PMID:11457511

  12. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    PubMed

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-01

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  13. Predictive reward signal of dopamine neurons.

    PubMed

    Schultz, W

    1998-07-01

    The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli. They show biphasic, activation-depression responses after stimuli that resemble reward-predicting stimuli or are novel or particularly salient. However, only few phasic activations follow aversive stimuli. Thus dopamine neurons label environmental stimuli with appetitive value, predict and detect rewards and signal alerting and motivating events. By failing to discriminate between different rewards, dopamine neurons appear to emit an alerting message about the surprising presence or absence of rewards. All responses to rewards and reward-predicting stimuli depend on event predictability. Dopamine neurons are activated by rewarding events that are better than predicted, remain uninfluenced by events that are as good as predicted, and are depressed by events that are worse than predicted. By signaling rewards according to a prediction error, dopamine responses have the formal characteristics of a teaching signal postulated by reinforcement learning theories. Dopamine responses transfer during learning from primary rewards to reward-predicting stimuli. This may contribute to neuronal mechanisms underlying the retrograde action of rewards, one of the main puzzles in reinforcement learning. The impulse response releases a short pulse of dopamine onto many dendrites, thus broadcasting a rather global reinforcement signal to postsynaptic neurons. This signal may improve approach behavior by providing advance reward information before the behavior occurs, and may contribute to learning by modifying synaptic transmission. The dopamine reward signal is supplemented by activity in neurons in striatum, frontal cortex, and

  14. A novel rotate-and-fire digital spiking neuron and its neuron-like bifurcations and responses.

    PubMed

    Hishiki, Tetsuya; Torikai, Hiroyuki

    2011-05-01

    A novel rotate-and-fire digital spiking neuron is presented. The digital neuron is a wired system of shift registers and thus it is suited to on-chip learning unlike many other analog spiking neuron models. By adjusting the wiring pattern among the registers, the digital neuron can generate spike trains with various spike patterns and can exhibit related bifurcations. A discrete-continuous hybrid map, which describes the neuron dynamics without any approximation, is derived analytically. Using the hybrid map, it is shown that the digital spiking neuron can mimic typical bifurcation phenomena and various nonlinear responses of biological neurons.

  15. Reliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study

    PubMed Central

    Lim, Hyungkwang; Kornijcuk, Vladimir; Seok, Jun Yeong; Kim, Seong Keun; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2015-01-01

    We conducted simulations on the neuronal behavior of neuristor-based leaky integrate-and-fire (NLIF) neurons. The phase-plane analysis on the NLIF neuron highlights its spiking dynamics – determined by two nullclines conditional on the variables on the plane. Particular emphasis was placed on the operational noise arising from the variability of the threshold switching behavior in the neuron on each switching event. As a consequence, we found that the NLIF neuron exhibits a Poisson-like noise in spiking, delimiting the reliability of the information conveyed by individual NLIF neurons. To highlight neuronal information coding at a higher level, a population of noisy NLIF neurons was analyzed in regard to probability of successful information decoding given the Poisson-like noise of each neuron. The result demonstrates highly probable success in decoding in spite of large variability – due to the variability of the threshold switching behavior – of individual neurons. PMID:25966658

  16. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    PubMed

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  17. Gustatory neuron types in rat geniculate ganglion.

    PubMed

    Lundy, R F; Contreras, R J

    1999-12-01

    We used extracellular single-cell recording procedures to characterize the chemical and thermal sensitivity of the rat geniculate ganglion to lingual stimulation, and to examine the effects of specific ion transport antagonists on salt transduction mechanisms. Hierarchical cluster analysis of the responses from 73 single neurons to 3 salts (0.075 and 0.3 M NaCl, KCl, and NH(4) Cl), 0.5 M sucrose, 0.01 M HCl, and 0.02 M quinine HCl (QHCl) indicated 3 main groups that responded best to either sucrose, HCl, or NaCl. Eight narrowly tuned neurons were deemed sucrose-specialists and 33 broadly tuned neurons as HCl-generalists. The NaCl group contained three identifiable subclusters: 18 NaCl-specialists, 11 NaCl-generalists, and 3 QHCl-generalists. Sucrose- and NaCl-specialists responded specifically to sucrose and NaCl, respectively. All generalist neurons responded to salt, acid, and alkaloid stimuli to varying degree and order depending on neuron type. Response order was NaCl > HCl = QHCl > sucrose in NaCl-generalists, HCl > NaCl > QHCl > sucrose in HCl-generalists, and QHCl = NaCl = HCl > sucrose in QHCl-generalists. NaCl-specialists responded robustly to low and high NaCl concentrations, but weakly, if at all, to high KCl and NH(4) Cl concentrations after prolonged stimulation. HCl-generalist neurons responded to all three salts, but at twice the rate to NH(4) Cl than to NaCl and KCl. NaCl- and QHCl-generalists responded equally to the three salts. Amiloride and 5-(N,N-dimethyl)-amiloride (DMA), antagonists of Na(+) channels and Na(+)/H(+) exchangers, respectively, inhibited the responses to 0.075 M NaCl only in NaCl-specialist neurons. The K(+) channel antagonist, 4-aminopyridine (4-AP), was without a suppressive effect on salt responses, but, when applied alone in solution, it evoked a response in many HCl-generalists and one QHCl-generalist neuron so tested. Of the 39 neurons tested for their sensitivity to temperature, 23 responded to cooling and chemical

  18. Response variability of marmoset parvocellular neurons.

    PubMed

    Victor, J D; Blessing, E M; Forte, J D; Buzás, P; Martin, P R

    2007-02-15

    This study concerns the properties of neurons carrying signals for colour vision in primates. We investigated the variability of responses of individual parvocellular lateral geniculate neurons of dichromatic and trichromatic marmosets to drifting sinusoidal luminance and chromatic gratings. Response variability was quantified by the cycle-to-cycle variation in Fourier components of the response. Averaged across the population, the variability at low contrasts was greater than predicted by a Poisson process, and at high contrasts the responses were approximately 40% more variable than responses at low contrasts. The contrast-dependent increase in variability was nevertheless below that expected from the increase in firing rate. Variability falls below the Poisson prediction at high contrast, and intrinsic variability of the spike train decreases as contrast increases. Thus, while deeply modulated responses in parvocellular cells have a larger absolute variability than weakly modulated ones, they have a more favourable signal: noise ratio than predicted by a Poisson process. Similar results were obtained from a small sample of magnocellular and koniocellular ('blue-on') neurons. For parvocellular neurons with pronounced colour opponency, chromatic responses were, on average, less variable (10-15%, p<0.01) than luminance responses of equal magnitude. Conversely, non-opponent parvocellular neurons showed the opposite tendency. This is consistent with a supra-additive noise source prior to combination of cone signals. In summary, though variability of parvocellular neurons is largely independent of the way in which they combine cone signals, the noise characteristics of retinal circuitry may augment specialization of parvocellular neurons to signal luminance or chromatic contrast. PMID:17124265

  19. Activity-Dependent Model for Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    Networks of living neurons represent one of the most fascinating systems of modern biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behavior of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behavior is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. This fundamental problem in neurobiology has recently shown a number of features in common to other complex systems. These features mainly concern the morphology of the network, namely the spatial organization of the established connections, and a novel kind of neuronal activity. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. Both features have been found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behavior. In this contribution, we apply a statistical mechanical model to describe the complex activity in a neuronal network. The network is chosen to have a number of connections in long range, as found for neurons in vitro. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. The numerical power spectra for electrical activity reproduces also the power law behavior measured in an EEG of man resting with the eyes closed.

  20. Modeling schizophrenia using hiPSC neurons

    PubMed Central

    Brennand, Kristen; Simone, Anthony; Jou, Jessica; Gelboin-Burkhart, Chelsea; Tran, Ngoc; Sangar, Sarah; Li, Yan; Mu, Yangling; Chen, Gong; Yu, Diana; McCarthy, Shane; Sebat, Jonathan; Gage, Fred H.

    2012-01-01

    SUMMARY Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%1. Though postmortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue2 and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD3, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (SI Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic Loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood4–6. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder (SI Table 1). PMID:21490598

  1. NEUROM: a ROM based RNS digital neuron.

    PubMed

    Alia, Giuseppe; Martinelli, Enrico

    2005-03-01

    In this work, a fast digital device is defined, which is customized to implement an artificial neuron. Its high computational speed is obtained by mapping data from floating point to integer residue representation, and by computing neuron functions through residue arithmetic operations, with the use of table look-up techniques. Specifically, the logic design of a residue neuron is described and complexity figures of area occupancy and time consumption of the proposed device are derived. The approach was applied to the logic design of a residue neuron with 12 inputs and with a Residue Number System defined in such a way as to attain an accuracy better than or equal to the accuracy of a 20-bit floating point system. The proposed design (NEUROM) exploits the RNS carry independence property to speed up computations, in addition it is very suitable for using look-up tables. The response time of our device is about 8 x T(ACC), where T(ACC) is the ROM access time. With a value of T(ACC) close to the 10 ns allowed by the current ROM technology, the proposed neuron responds within 80 ns, NEUROM is therefore the neuron device proposed in the literature which allows for maximum throughput. Moreover, when a pipeline mode of operation is adopted, the pipeline delay can assume a value as low as about 14 ns. In the case study considered, the total amount of ROM is about 5.55 Mbits. Thus, using current technology, it is possible to integrate several residue neurons into a single VLSI chip, thereby enhancing chip throughput. The paper also discusses how this amount of memory could be reduced, at the expense of the response time. PMID:15795115

  2. Channel Properties of Nax Expressed in Neurons

    PubMed Central

    Matsumoto, Masahito; Hiyama, Takeshi Y.; Kuboyama, Kazuya; Suzuki, Ryoko; Fujikawa, Akihiro; Noda, Masaharu

    2015-01-01

    Nax is a sodium-concentration ([Na+])-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o) in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95) through its PSD95/Disc-large/ZO-1 (PDZ)-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells. PMID:25961826

  3. Ancient origin of somatic and visceral neurons

    PubMed Central

    2013-01-01

    Background A key to understanding the evolution of the nervous system on a large phylogenetic scale is the identification of homologous neuronal types. Here, we focus this search on the sensory and motor neurons of bilaterians, exploiting their well-defined molecular signatures in vertebrates. Sensorimotor circuits in vertebrates are of two types: somatic (that sense the environment and respond by shaping bodily motions) and visceral (that sense the interior milieu and respond by regulating vital functions). These circuits differ by a small set of largely dedicated transcriptional determinants: Brn3 is expressed in many somatic sensory neurons, first and second order (among which mechanoreceptors are uniquely marked by the Brn3+/Islet1+/Drgx+ signature), somatic motoneurons uniquely co-express Lhx3/4 and Mnx1, while the vast majority of neurons, sensory and motor, involved in respiration, blood circulation or digestion are molecularly defined by their expression and dependence on the pan-visceral determinant Phox2b. Results We explore the status of the sensorimotor transcriptional code of vertebrates in mollusks, a lophotrochozoa clade that provides a rich repertoire of physiologically identified neurons. In the gastropods Lymnaea stagnalis and Aplysia californica, we show that homologues of Brn3, Drgx, Islet1, Mnx1, Lhx3/4 and Phox2b differentially mark neurons with mechanoreceptive, locomotory and cardiorespiratory functions. Moreover, in the cephalopod Sepia officinalis, we show that Phox2 marks the stellate ganglion (in line with the respiratory — that is, visceral— ancestral role of the mantle, its target organ), while the anterior pedal ganglion, which controls the prehensile and locomotory arms, expresses Mnx. Conclusions Despite considerable divergence in overall neural architecture, a molecular underpinning for the functional allocation of neurons to interactions with the environment or to homeostasis was inherited from the urbilaterian ancestor by

  4. Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images.

    PubMed

    Kim, Kwang-Min; Son, Kilho; Palmore, G Tayhas R

    2015-01-01

    Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation. PMID:26593337

  5. Decision-related activity in sensory neurons reflects more than a neuron's causal effect.

    PubMed

    Nienborg, Hendrikje; Cumming, Bruce G

    2009-05-01

    During perceptual decisions, the activity of sensory neurons correlates with a subject's percept, even when the physical stimulus is identical. The origin of this correlation is unknown. Current theory proposes a causal effect of noise in sensory neurons on perceptual decisions, but the correlation could result from different brain states associated with the perceptual choice (a top-down explanation). These two schemes have very different implications for the role of sensory neurons in forming decisions. Here we use white-noise analysis to measure tuning functions of V2 neurons associated with choice and simultaneously measure how the variation in the stimulus affects the subjects' (two macaques) perceptual decisions. In causal models, stronger effects of the stimulus upon decisions, mediated by sensory neurons, are associated with stronger choice-related activity. However, we find that over the time course of the trial these measures change in different directions-at odds with causal models. An analysis of the effect of reward size also supports this conclusion. Finally, we find that choice is associated with changes in neuronal gain that are incompatible with causal models. All three results are readily explained if choice is associated with changes in neuronal gain caused by top-down phenomena that closely resemble attention. We conclude that top-down processes contribute to choice-related activity. Thus, even forming simple sensory decisions involves complex interactions between cognitive processes and sensory neurons.

  6. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    NASA Technical Reports Server (NTRS)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  7. Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images

    PubMed Central

    Kim, Kwang-Min; Son, Kilho; Palmore, G. Tayhas R.

    2015-01-01

    Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation. PMID:26593337

  8. Neuronal Survival, Morphology and Outgrowth of Spiral Ganglion Neurons Using a Defined Growth Factor Combination

    PubMed Central

    Schwieger, Jana; Warnecke, Athanasia; Lenarz, Thomas; Esser, Karl-Heinz; Scheper, Verena

    2015-01-01

    Objectives The functionality of cochlear implants (CI) depends, among others, on the number and excitability of surviving spiral ganglion neurons (SGN). The spatial separation between the SGN, located in the bony axis of the inner ear, and the CI, which is inserted in the scala tympani, results in suboptimal performance of CI patients and may be decreased by attracting the SGN neurites towards the electrode contacts. Neurotrophic factors (NTFs) can support neuronal survival and neurite outgrowth. Methods Since brain-derived neurotrophic factor (BDNF) is well known for its neuroprotective effect and ciliary neurotrophic factor (CNTF) increases neurite outgrowth, we evaluated if the combination of BDNF and CNTF leads to an enhanced neuronal survival with extended neurite outgrowth. Both NTFs were added in effective high concentrations (BDNF 50ng/ml, CNTF 100ng/ml), alone and in combination, to cultured dissociated SGN of neonatal rats for 48 hours. Results The neuronal survival and neurite outgrowth were significantly higher in SGN treated with the combination of the two NTFs compared to treatment with each factor alone. Additionally, with respect to the morphology, the combination of BDNF and CNTF leads to a significantly higher number of bipolar neurons and a decreased number of neurons without neurites in culture. Conclusion The combination of BDNF and CNTF shows a great potential to increase the neuronal survival and the number of bipolar neurons in vitro and to regenerate retracted nerve fibers. PMID:26263175

  9. MetaNeuron: A Free Neuron Simulation Program for Teaching Cellular Neurophysiology.

    PubMed

    Newman, Mark H; Newman, Eric A

    2013-01-01

    MetaNeuron, a neuron simulation program, is an effective interactive tool for teaching cellular neurophysiology. The computer program simulates a wide range of neuronal behavior in its six lessons: i) Resting Membrane Potential, ii) Membrane Time Constant, iii) Membrane Length Constant, iv) Axon Action Potential, v) Axon Voltage Clamp, and vi) Synaptic Potential. The program is designed foremost as a platform for conducting neurophysiology experiments in silico. Neuronal parameters are easily modified and a virtual stimulator injects single or double current pulses into the neuron. Phenomena such as temporal summation of synaptic potentials, passive spread of a synaptic potential from the dendrite to the soma, the refractory period, families of voltage-clamp traces, and the reversal potential of synaptic responses, are easily illustrated in MetaNeuron. Responses are displayed graphically and can be measured with a cursor. Families of traces can be generated and viewed in rotatable 3D plots. Mac and Windows versions of the program can be downloaded, free of charge, onto individual student computers from the website www.MetaNeuron.org. A manual containing operating instructions, a description of the lessons, and exercises conducted on MetaNeuron, can also be downloaded for free.

  10. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  11. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-07-07

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity.

  12. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. PMID:26151674

  13. Identification and mechanosensitivity of viscerofugal neurons.

    PubMed

    Hibberd, T J; Zagorodnyuk, V P; Spencer, N J; Brookes, S J H

    2012-12-01

    Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All

  14. Neuronal and glial purinergic receptors functions in neuron development and brain disease

    PubMed Central

    del Puerto, Ana; Wandosell, Francisco; Garrido, Juan José

    2013-01-01

    Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the

  15. Synaptic destabilization by neuronal Nogo-A.

    PubMed

    Aloy, Elisabeth M; Weinmann, Oliver; Pot, Caroline; Kasper, Hansjörg; Dodd, Dana A; Rülicke, Thomas; Rossi, Ferdinando; Schwab, Martin E

    2006-06-01

    Formation and maintenance of a neuronal network is based on a balance between plasticity and stability of synaptic connections. Several molecules have been found to regulate the maintenance of excitatory synapses but nothing is known about the molecular mechanisms involved in synaptic stabilization versus disassembly at inhibitory synapses. Here, we demonstrate that Nogo-A, which is well known to be present in myelin and inhibit growth in the adult CNS, is present in inhibitory presynaptic terminals in cerebellar Purkinje cells at the time of Purkinje cell-Deep Cerebellar Nuclei (DCN) inhibitory synapse formation and is then downregulated during synapse maturation. We addressed the role of neuronal Nogo-A in synapse maturation by generating several mouse lines overexpressing Nogo-A, starting at postnatal ages and throughout adult life, specifically in cerebellar Purkinje cells and their terminals. The overexpression of Nogo-A induced a progressive disassembly, retraction and loss of the inhibitory Purkinje cell terminals. This led to deficits in motor learning and coordination in the transgenic mice. Prior to synapse disassembly, the overexpression of neuronal Nogo-A led to the downregulation of the synaptic scaffold proteins spectrin, spectrin-E and beta-catenin in the postsynaptic neurons. Our data suggest that neuronal Nogo-A might play a role in the maintenance of inhibitory synapses by modulating the expression of synaptic anchoring molecules.

  16. Fast sigmoidal networks via spiking neurons.

    PubMed

    Maass, W

    1997-02-15

    We show that networks of relatively realistic mathematical models for biological neurons in principle can simulate arbitrary feedforward sigmoidal neural nets in a way that has previously not been considered. This new approach is based on temporal coding by single spikes (respectively by the timing of synchronous firing in pools of neurons) rather than on the traditional interpretation of analog variables in terms of firing rates. The resulting new simulation is substantially faster and hence more consistent with experimental results about the maximal speed of information processing in cortical neural systems. As a consequence we can show that networks of noisy spiking neurons are "universal approximators" in the sense that they can approximate with regard to temporal coding any given continuous function of several variables. This result holds for a fairly large class of schemes for coding analog variables by firing times of spiking neurons. This new proposal for the possible organization of computations in networks of spiking neurons systems has some interesting consequences for the type of learning rules that would be needed to explain the self-organization of such networks. Finally, the fast and noise-robust implementation of sigmoidal neural nets by temporal coding points to possible new ways of implementing feedforward and recurrent sigmoidal neural nets with pulse stream VLSI.

  17. Probing extracellular Sonic hedgehog in neurons

    PubMed Central

    Eitan, Erez; Petralia, Ronald S.; Wang, Ya-Xian; Indig, Fred E.; Mattson, Mark P.

    2016-01-01

    ABSTRACT The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  18. Inhibitory control of hippocampal inhibitory neurons

    PubMed Central

    Chamberland, Simon; Topolnik, Lisa

    2012-01-01

    Information processing within neuronal networks is determined by a dynamic partnership between principal neurons and local circuit inhibitory interneurons. The population of GABAergic interneurons is extremely heterogeneous and comprises, in many brain regions, cells with divergent morphological and physiological properties, distinct molecular expression profiles, and highly specialized functions. GABAergic interneurons have been studied extensively during the past two decades, especially in the hippocampus, which is a relatively simple cortical structure. Different types of hippocampal inhibitory interneurons control spike initiation [e.g., axo-axonic and basket cells (BCs)] and synaptic integration (e.g., bistratified and oriens–lacunosum moleculare interneurons) within pyramidal neurons and synchronize local network activity, providing a means for functional segregation of neuronal ensembles and proper routing of hippocampal information. Thus, it is thought that, at least in the hippocampus, GABAergic inhibitory interneurons represent critical regulating elements at all stages of information processing, from synaptic integration and spike generation to large-scale network activity. However, this raises an important question: if inhibitory interneurons are fundamental for network computations, what are the mechanisms that control the activity of the interneurons themselves? Given the essential role of synaptic inhibition in the regulation of neuronal activity, it would be logical to expect that specific inhibitory mechanisms have evolved to control the operation of interneurons. Here, we review the mechanisms of synaptic inhibition of interneurons and discuss their role in the operation of hippocampal inhibitory circuits. PMID:23162426

  19. Binding by Asynchrony: The Neuronal Phase Code

    PubMed Central

    Nadasdy, Zoltan

    2010-01-01

    Neurons display continuous subthreshold oscillations and discrete action potentials (APs). When APs are phase-locked to the subthreshold oscillation, we hypothesize they represent two types of information: the presence/absence of a sensory feature and the phase of subthreshold oscillation. If subthreshold oscillation phases are neuron-specific, then the sources of APs can be recovered based on the AP times. If the spatial information about the stimulus is converted to AP phases, then APs from multiple neurons can be combined into a single axon and the spatial configuration reconstructed elsewhere. For the reconstruction to be successful, we introduce two assumptions: that a subthreshold oscillation field has a constant phase gradient and that coincidences between APs and intracellular subthreshold oscillations are neuron-specific as defined by the “interference principle.” Under these assumptions, a phase-coding model enables information transfer between structures and reproduces experimental phenomenons such as phase precession, grid cell architecture, and phase modulation of cortical spikes. This article reviews a recently proposed neuronal algorithm for information encoding and decoding from the phase of APs (Nadasdy, 2009). The focus is given to the principles common across different systems instead of emphasizing system specific differences. PMID:20859525

  20. Synchronous behavior of two coupled electronic neurons

    SciTech Connect

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  1. Spin orbit torque based electronic neuron

    SciTech Connect

    Sengupta, Abhronil Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  2. Millisecond Timescale Synchrony among Hippocampal Neurons

    PubMed Central

    Amarasingham, Asohan; Mizuseki, Kenji; Buzsáki, György

    2014-01-01

    Inhibitory neurons in cortical circuits play critical roles in composing spike timing and oscillatory patterns in neuronal activity. These roles in turn require coherent activation of interneurons at different timescales. To investigate how the local circuitry provides for these activities, we applied resampled cross-correlation analyses to large-scale recordings of neuronal populations in the cornu ammonis 1 (CA1) and CA3 regions of the hippocampus of freely moving rats. Significant counts in the cross-correlation of cell pairs, relative to jittered surrogate spike-trains, allowed us to identify the effective couplings between neurons in CA1 and CA3 hippocampal regions on the timescale of milliseconds. In addition to putative excitatory and inhibitory monosynaptic connections, we uncovered prominent millisecond timescale synchrony between cell pairs, observed as peaks in the central 0 ms bin of cross-correlograms. This millisecond timescale synchrony appeared to be independent of network state, excitatory input, and γ oscillations. Moreover, it was frequently observed between cells of differing putative interneuronal type, arguing against gap junctions as the sole underlying source. Our observations corroborate recent in vitro findings suggesting that inhibition alone is sufficient to synchronize interneurons at such fast timescales. Moreover, we show that this synchronous spiking may cause stronger inhibition and rebound spiking in target neurons, pointing toward a potential function for millisecond synchrony of interneurons in shaping and affecting timing in pyramidal populations within and downstream from the circuit. PMID:25378164

  3. Axonal PPARγ promotes neuronal regeneration after injury.

    PubMed

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  4. Exploring Neuronal Bistability at the Depolarization Block

    PubMed Central

    Dovzhenok, Andrey; Kuznetsov, Alexey S.

    2012-01-01

    Many neurons display bistability–coexistence of two firing modes such as bursting and tonic spiking or tonic spiking and silence. Bistability has been proposed to endow neurons with richer forms of information processing in general and to be involved in short-term memory in particular by allowing a brief signal to elicit long-lasting changes in firing. In this paper, we focus on bistability that allows for a choice between tonic spiking and depolarization block in a wide range of the depolarization levels. We consider the spike-producing currents in two neurons, models of which differ by the parameter values. Our dopaminergic neuron model displays bistability in a wide range of applied currents at the depolarization block. The Hodgkin-Huxley model of the squid giant axon shows no bistability. We varied parameter values for the model to analyze transitions between the two parameter sets. We show that bistability primarily characterizes the inactivation of the Na+ current. Our study suggests a connection between the amount of the Na+ window current and the length of the bistability range. For the dopaminergic neuron we hypothesize that bistability can be linked to a prolonged action of antipsychotic drugs. PMID:22900051

  5. Doubly stochastic coherence in complex neuronal networks

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Jianjun

    2012-11-01

    A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.

  6. Learning intrinsic excitability in medium spiny neurons

    PubMed Central

    Scheler, Gabriele

    2014-01-01

    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction. PMID:25520776

  7. Probing extracellular Sonic hedgehog in neurons.

    PubMed

    Eitan, Erez; Petralia, Ronald S; Wang, Ya-Xian; Indig, Fred E; Mattson, Mark P; Yao, Pamela J

    2016-01-01

    The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  8. Probing the diversity of serotonin neurons

    PubMed Central

    Gaspar, Patricia; Lillesaar, Christina

    2012-01-01

    The serotonin (5-HT) system is generally considered as a single modulatory system, with broad and diffuse projections. However, accumulating evidence points to the existence of distinct cell groups in the raphe. Here, we review prior evidence for raphe cell heterogeneity, considering different properties of 5-HT neurons, from metabolism to anatomy, and neurochemistry to physiology. We then summarize more recent data in mice and zebrafish that support a genetic diversity of 5-HT neurons, based on differential transcription factor requirements for the acquisition of the 5-HT identity. In both species, PET1 plays a major role in the acquisition and maintenance of 5-HT identity in the hindbrain, although some 5-HT neurons do not require PET1 for their differentiation, indicating the existence of several transcriptional routes to become serotoninergic. In mice, both PET1-dependent and -independent 5-HT neurons are located in the raphe, but have distinct anatomical features, such as the morphology of axon terminals and projection patterns. In zebrafish, all raphe neurons express pet1, but Pet1-independent 5-HT cell groups are present in the forebrain. Overall, these observations support the view that there are a number of distinct 5-HT subsystems, including within the raphe nuclei, with unique genetic programming and functions. PMID:22826339

  9. Neuronal networks and energy bursts in epilepsy.

    PubMed

    Wu, Y; Liu, D; Song, Z

    2015-02-26

    Epilepsy can be defined as the abnormal activities of neurons. The occurrence, propagation and termination of epileptic seizures rely on the networks of neuronal cells that are connected through both synaptic- and non-synaptic interactions. These complicated interactions contain the modified functions of normal neurons and glias as well as the mediation of excitatory and inhibitory mechanisms with feedback homeostasis. Numerous spread patterns are detected in disparate networks of ictal activities. The cortical-thalamic-cortical loop is present during a general spike wave seizure. The thalamic reticular nucleus (nRT) is the major inhibitory input traversing the region, and the dentate gyrus (DG) controls CA3 excitability. The imbalance between γ-aminobutyric acid (GABA)-ergic inhibition and glutamatergic excitation is the main disorder in epilepsy. Adjustable negative feedback that mediates both inhibitory and excitatory components affects neuronal networks through neurotransmission fluctuation, receptor and transmitter signaling, and through concomitant influences on ion concentrations and field effects. Within a limited dynamic range, neurons slowly adapt to input levels and have a high sensitivity to synaptic changes. The stability of the adapting network depends on the ratio of the adaptation rates of both the excitatory and inhibitory populations. Thus, therapeutic strategies with multiple effects on seizures are required for the treatment of epilepsy, and the therapeutic functions on networks are reviewed here. Based on the high-energy burst theory of epileptic activity, we propose a potential antiepileptic therapeutic strategy to transfer the high energy and extra electricity out of the foci.

  10. High-Throughput Screening in Primary Neurons

    PubMed Central

    Sharma, Punita; Ando, D. Michael; Daub, Aaron; Kaye, Julia A.; Finkbeiner, Steven

    2013-01-01

    Despite years of incremental progress in our understanding of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), there are still no disease-modifying therapeutics. The discrepancy between the number of lead compounds and approved drugs may partially be a result of the methods used to generate the leads and highlights the need for new technology to obtain more detailed and physiologically relevant information on cellular processes in normal and diseased states. Our high-throughput screening (HTS) system in a primary neuron model can help address this unmet need. HTS allows scientists to assay thousands of conditions in a short period of time which can reveal completely new aspects of biology and identify potential therapeutics in the span of a few months when conventional methods could take years or fail all together. HTS in primary neurons combines the advantages of HTS with the biological relevance of intact, fully differentiated neurons which can capture the critical cellular events or homeostatic states that make neurons uniquely susceptible to disease-associated proteins. We detail methodologies of our primary neuron HTS assay workflow from sample preparation to data reporting. We also discuss our adaptation of our HTS system into high-content screening (HCS), a type of HTS that uses multichannel fluorescence images to capture biological events in situ, and is uniquely suited to study dynamical processes in living cells. PMID:22341232

  11. Neuronal Machinery of Sleep Homeostasis in Drosophila

    PubMed Central

    Donlea, Jeffrey M.; Pimentel, Diogo; Miesenböck, Gero

    2014-01-01

    Summary Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila’s sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c. PMID:24559676

  12. Serotonin neurons in the dorsal raphe nucleus encode reward signals.

    PubMed

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-28

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing.

  13. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis.

    PubMed

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M; Rune, Gabriele M; Arevalo, Maria-Angeles

    2016-01-01

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development. PMID:27553191

  14. Respiratory Modulation Of Premotor Cardiac Vagal Neurons In The Brainstem

    PubMed Central

    Dergacheva, Olga; Griffioen, Kathleen J.; Neff, Robert A.; Mendelowitz, David

    2010-01-01

    The respiratory and cardiovascular systems are highly intertwined, both anatomically and physiologically. Respiratory and cardiovascular neurons are often co-localized in the same brainstem regions, and this is particularly evident in the ventral medulla which contains pre-sympathetic neurons in the rostral ventrolateral medulla, premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus, and the ventral respiratory group, which includes the pre-Botzinger complex. Anatomical studies of respiratory and cardiovascular neurons have demonstrated that many of these neurons have projections and axon collateral processes which extend into their neighboring cardiorespiratory regions providing an anatomical substrate for cardiorespiratory interactions. As other reports in this Special Issue of Respiratory Physiology & Neurobiology focus on interactions between the respiratory network and baroreceptors, neurons in the nucleus tractus solitarius, presympathetic neurons and sympathetic activity, this report will focus on the respiratory modulation of parasympathetic activity and the neurons that generate parasympathetic activity to the heart, cardiac vagal neurons. PMID:20452467

  15. Serotonin neurons in the dorsal raphe nucleus encode reward signals

    PubMed Central

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-01

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing. PMID:26818705

  16. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis

    PubMed Central

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M.; Rune, Gabriele M.; Arevalo, Maria-Angeles

    2016-01-01

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development. PMID:27553191

  17. Characteristics of sodium currents in rat geniculate ganglion neurons.

    PubMed

    Nakamura, Shiro; Bradley, Robert M

    2011-12-01

    Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. GG neurons expressed two classes of Na(+) channels, TTX sensitive (TTX-S) and TTX resistant (TTX-R). The majority of GG neurons expressed TTX-R currents of different amplitudes. TTX-R currents were relatively small in 60% of the neurons but were large in 12% of the sampled population. In a further 28% of the neurons, TTX completely abolished all Na(+) currents. Application of TTX completely inhibited action potential generation in all CT and PA neurons but had little effect on the generation of action potentials in 40% of GSP neurons. Most CT, GSP, and PA neurons stained positively with IB(4), and 27% of the GSP neurons were capsaicin sensitive. The majority of IB(4)-positive GSP neurons with large TTX-R Na(+) currents responded to capsaicin, whereas IB(4)-positive GSP neurons with small TTX-R Na(+) currents were capsaicin insensitive. These data demonstrate the heterogeneity of GG neurons and indicate the existence of a subset of GSP neurons sensitive to capsaicin, usually associated with nociceptors. Since there are no reports of nociceptors in the GSP receptive field, the role of these capsaicin-sensitive neurons is not clear.

  18. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    PubMed

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward.

  19. Circular RNAs: Novel Regulators of Neuronal Development.

    PubMed

    van Rossum, Daniëlle; Verheijen, Bert M; Pasterkamp, R Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons. PMID:27616979

  20. Motor neurons and the sense of place.

    PubMed

    Jessell, Thomas M; Sürmeli, Gülşen; Kelly, John S

    2011-11-01

    Seventy years ago George Romanes began to document the anatomical organization of the spinal motor system, uncovering a multilayered topographic plan that links the clustering and settling position of motor neurons to the spatial arrangement and biomechanical features of limb muscles. To this day, these findings have provided a structural foundation for analysis of the neural control of movement and serve as a guide for studies to explore mechanisms that direct the wiring of spinal motor circuits. In this brief essay we outline the core of Romanes's findings and place them in the context of recent studies that begin to provide insight into molecular programs that assign motor pool position and to resolve how motor neuron position shapes circuit assembly. Romanes's findings reveal how and why neuronal positioning contributes to sensory-motor connectivity and may have relevance to circuit organization in other regions of the central nervous system.

  1. Neuronal typology of Gallotia galloti optic tectum.

    PubMed

    Morales, M C; Monzón, M; Yanes, C; Diaz, C; Martin, A; Marrero, A

    1989-01-01

    The object of this work has been to show neuronal typology and stratification of the optic tectum in Gallotia galloti adult specimens so as to have a basic model for the neuronal genesis study. As methodology Nissl and Golgi-Stensaas technique were employed. Six strata have been identified that include 14 layers where the neuronal types can be included, poligonals, bipolar, monopolar and stellate types. The stratification of the optic tectum in the 14 layers is corroborated in Reptiles, a fact which is maintained in birds, and is reduced in amphibians, urodels, and fish here the reptil optic tectum presentes an extraordinary importance in the study of the auditive and visual vias in phylogeny. PMID:2471730

  2. Circular RNAs: Novel Regulators of Neuronal Development

    PubMed Central

    van Rossum, Daniëlle; Verheijen, Bert M.; Pasterkamp, R. Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons. PMID:27616979

  3. Neuronal oscillations and visual amplification of speech

    PubMed Central

    Schroeder, Charles E; Lakatos, Peter; Kajikawa, Yoshinao; Partan, Sarah; Puce, Aina

    2009-01-01

    It is widely recognized that viewing a speaker’s face enhances vocal communication, although the neural substrates of this phenomenon remain unknown. We propose that the enhancement effect uses the ongoing oscillatory activity of local neuronal ensembles in the primary auditory cortex. Neuronal oscillations reflect rhythmic shifting of neuronal ensembles between high and low excitability states. Our hypothesis holds that oscillations are ‘predictively’ modulated by visual input, so that related auditory input arrives during a high excitability phase and is thus amplified. We discuss the anatomical substrates and key timing parameters that enable and constrain this effect. Our hypothesis makes testable predictions for future studies and emphasizes the idea that ‘background’ oscillatory activity is instrumental to cortical sensory processing. PMID:18280772

  4. Neuronal intranuclear inclusion disease in identical twins.

    PubMed

    Haltia, M; Somer, H; Palo, J; Johnson, W G

    1984-04-01

    A pair of female identical twins exhibited slurred speech, nystagmus, and oculogyral spasms starting at age 11. The patients then had episodic rage, extrapyramidal and lower motor neuron abnormalities, and grand mal seizures, but retained largely normal intelligence, until death at age 21. Severe loss of nigral and craniospinal motor neurons was noted postmortem. Round, eosinophilic, autofluorescent inclusion bodies, 3 to 10 microns in diameter, were observed in the nuclei of most nerve cell types of the central and peripheral nervous systems and retina. Ultrastructurally the inclusions appeared as masses of filaments without a limiting membrane, the constituent filaments having a diameter of 8.5 to 9.5 nm. Histochemical results suggested the presence of proteins with a high content of tryptophan. Four similar cases have been reported previously under various designations. We propose the name neuronal intranuclear inclusion disease for the disorder. PMID:6331275

  5. Circular RNAs: Novel Regulators of Neuronal Development

    PubMed Central

    van Rossum, Daniëlle; Verheijen, Bert M.; Pasterkamp, R. Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons.

  6. Characterizing spiking in noisy type II neurons.

    PubMed

    Boďová, Katarína; Paydarfar, David; Forger, Daniel B

    2015-01-21

    Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin-Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model.

  7. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  8. Merkel cells and neurons keep in touch

    PubMed Central

    Woo, Seung-Hyun; Lumpkin, Ellen A.; Patapoutian, Ardem

    2014-01-01

    The Merkel cell-neurite complex is a unique vertebrate touch receptor comprising two distinct cell types in the skin. Its presence in touch-sensitive skin areas was recognized more than a century ago, but the functions of each cell type in sensory transduction have been unclear. Three recent studies demonstrate that Merkel cells are mechanosensitive cells that function in touch transduction via Piezo2. One study concludes that Merkel cells rather than sensory neurons are principal sites of mechanotransduction, whereas the other two studies report that both Merkel cells and neurons encode mechanical inputs. Together, these studies settle a longstanding debate on whether Merkel cells are mechanosensory cells, and enable future investigations of how these skin cells communicate with neurons. PMID:25480024

  9. Revealing neuronal function through microelectrode array recordings

    PubMed Central

    Obien, Marie Engelene J.; Deligkaris, Kosmas; Bullmann, Torsten; Bakkum, Douglas J.; Frey, Urs

    2015-01-01

    Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function. PMID:25610364

  10. Electromagnetic limits to radiofrequency (RF) neuronal telemetry.

    PubMed

    Diaz, R E; Sebastian, T

    2013-12-18

    The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.

  11. How to make a mesodiencephalic dopaminergic neuron.

    PubMed

    Smidt, Marten P; Burbach, J Peter H

    2007-01-01

    Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease. PMID:17180160

  12. Modeling Molecular Pathways of Neuronal Ischemia

    PubMed Central

    Taxin, Zachary H.; Neymotin, Samuel A.; Mohan, Ashutosh; Lipton, Peter; Lytton, William W.

    2014-01-01

    Neuronal ischemia, the consequence of a stroke (cerebrovascular accident), is a condition of reduced delivery of nutrients to brain neurons. The brain consumes more energy per gram of tissue than any other organ, making continuous blood flow critical. Loss of nutrients, most critically glucose and O2, triggers a large number of interacting molecular pathways in neurons and astrocytes. The dynamics of these pathways take place over multiple temporal scales and occur in multiple interacting cytosolic and organelle compartments: in mitochondria, endoplasmic reticulum, and nucleus. The complexity of these relationships suggests the use of computer simulation to understand the interplay between pathways leading to reversible or irreversible damage, the forms of damage, and interventions that could reduce damage at different stages of stroke. We describe a number of models and simulation methods that can be used to further our understanding of ischemia. PMID:24560148

  13. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    PubMed

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines.

  14. Neuronal glycogen synthesis contributes to physiological aging

    PubMed Central

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425

  15. Neuronal glycogen synthesis contributes to physiological aging.

    PubMed

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans.

  16. Coping with variability in small neuronal networks.

    PubMed

    Calabrese, Ronald L; Norris, Brian J; Wenning, Angela; Wright, Terrence M

    2011-12-01

    Experimental and corresponding modeling studies indicate that there is a 2- to 5-fold variation of intrinsic and synaptic parameters across animals while functional output is maintained. Here, we review experiments, using the heartbeat central pattern generator (CPG) in medicinal leeches, which explore the consequences of animal-to-animal variation in synaptic strength for coordinated motor output. We focus on a set of segmental heart motor neurons that all receive inhibitory synaptic input from the same four premotor interneurons. These four premotor inputs fire in a phase progression and the motor neurons also fire in a phase progression because of differences in synaptic strength profiles of the four inputs among segments. Our work tested the hypothesis that functional output is maintained in the face of animal-to-animal variation in the absolute strength of connections because relative strengths of the four inputs onto particular motor neurons is maintained across animals. Our experiments showed that relative strength is not strictly maintained across animals even as functional output is maintained, and animal-to-animal variations in strength of particular inputs do not correlate strongly with output phase. Further experiments measured the precise temporal pattern of the premotor inputs, the segmental synaptic strength profiles of their connections onto motor neurons, and the temporal pattern (phase progression) of those motor neurons all in the same animal for a series of 12 animals. The analysis of input and output in this sample of 12 individuals suggests that the number (four) of inputs to each motor neuron and the variability of the temporal pattern of input from the CPG across individuals weaken the influence of the strength of individual inputs. Moreover, the temporal pattern of the output varies as much across individuals as that of the input. Essentially, each animal arrives at a unique solution for how the network produces functional output. PMID

  17. Diverse precerebellar neurons share similar intrinsic excitability.

    PubMed

    Kolkman, Kristine E; McElvain, Lauren E; du Lac, Sascha

    2011-11-16

    The cerebellum dedicates a majority of the brain's neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch-clamp recordings to neurons in eight precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis, and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK (small-conductance calcium-activated potassium) currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perform similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition. PMID:22090493

  18. Acetaminophen Induces Apoptosis in Rat Cortical Neurons

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Blanco, Almudena; Muñoz-Fernández, Maríangeles; Ceña, Valentín

    2010-01-01

    Background Acetaminophen (AAP) is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. Methodology/Principal Findings We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM) that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/Kg) that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial–mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/Kg) injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. Conclusions/Significance The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment) are present. PMID:21170329

  19. The question of the fusion of neuron processes.

    PubMed

    Sotnikov, O S; Rybakova, G I; Solov'eva, I A

    2008-10-01

    The authors, whilst accepting the neuron theory, present data indicating the possibility that neuronal syncytia exist when myelin-coated ring-like structures form in the dendritic field, in nerve arcades close to neuron bodies, and on formation of thick, straight anastomoses between neuron bodies. Studies using computerized time-lapse videomicroscopy in cultures of isolated neurons demonstrated the mechanism by which these structures form. This report provides the first evidence of the time parameters of the fusion of the processes of a single live neuron; the fusion of fragments of an isolated glial-free fiber was demonstrated. PMID:18802755

  20. Mirror neurons: Enigma of the metaphysical modular brain.

    PubMed

    Acharya, Sourya; Shukla, Samarth

    2012-07-01

    Mirror neurons are one of the most important discoveries in the last decade of neuroscience. These are a variety of visuospatial neurons which indicate fundamentally about human social interaction. Essentially, mirror neurons respond to actions that we observe in others. The interesting part is that mirror neurons fire in the same way when we actually recreate that action ourselves. Apart from imitation, they are responsible for myriad of other sophisticated human behavior and thought processes. Defects in the mirror neuron system are being linked to disorders like autism. This review is a brief introduction to the neurons that shaped our civilization.

  1. Leader neurons in leaky integrate and fire neural network simulations.

    PubMed

    Zbinden, Cyrille

    2011-10-01

    In this paper, we highlight the topological properties of leader neurons whose existence is an experimental fact. Several experimental studies show the existence of leader neurons in population bursts of activity in 2D living neural networks (Eytan and Marom, J Neurosci 26(33):8465-8476, 2006; Eckmann et al., New J Phys 10(015011), 2008). A leader neuron is defined as a neuron which fires at the beginning of a burst (respectively network spike) more often than we expect by chance considering its mean firing rate. This means that leader neurons have some burst triggering power beyond a chance-level statistical effect. In this study, we characterize these leader neuron properties. This naturally leads us to simulate neural 2D networks. To build our simulations, we choose the leaky integrate and fire (lIF) neuron model (Gerstner and Kistler 2002; Cessac, J Math Biol 56(3):311-345, 2008), which allows fast simulations (Izhikevich, IEEE Trans Neural Netw 15(5):1063-1070, 2004; Gerstner and Naud, Science 326:379-380, 2009). The dynamics of our lIF model has got stable leader neurons in the burst population that we simulate. These leader neurons are excitatory neurons and have a low membrane potential firing threshold. Except for these two first properties, the conditions required for a neuron to be a leader neuron are difficult to identify and seem to depend on several parameters involved in the simulations themselves. However, a detailed linear analysis shows a trend of the properties required for a neuron to be a leader neuron. Our main finding is: A leader neuron sends signals to many excitatory neurons as well as to few inhibitory neurons and a leader neuron receives only signals from few other excitatory neurons. Our linear analysis exhibits five essential properties of leader neurons each with different relative importance. This means that considering a given neural network with a fixed mean number of connections per neuron, our analysis gives us a way of

  2. General overview of neuronal cell culture.

    PubMed

    Gordon, Jennifer; Amini, Shohreh; White, Martyn K

    2013-01-01

    In this introductory chapter, we provide a general overview of neuronal cell culture. This is a rapidly evolving area of research and we provide an outline and contextual framework for the different chapters of this book. These chapters were all contributed by scientists actively working in the field who are currently using state-of-the-art techniques to advance our understanding of the molecular and cellular biology of the central nervous system. Each chapter provides detailed descriptions and experimental protocols for a variety of techniques ranging in scope from basic neuronal cell line culturing to advanced and specialized methods.

  3. Insights into the role of neuronal glucokinase

    PubMed Central

    De Backer, Ivan; Hussain, Sufyan S.; Gardiner, James V.

    2016-01-01

    Glucokinase is a key component of the neuronal glucose-sensing mechanism and is expressed in brain regions that control a range of homeostatic processes. In this review, we detail recently identified roles for neuronal glucokinase in glucose homeostasis and counterregulatory responses to hypoglycemia and in regulating appetite. We describe clinical implications from these advances in our knowledge, especially for developing novel treatments for diabetes and obesity. Further research required to extend our knowledge and help our efforts to tackle the diabetes and obesity epidemics is suggested. PMID:27189932

  4. Effect of mescaline on single cortical neurones.

    PubMed

    Bradshaw, C M; Roberts, M H; Szabadi, E

    1971-12-01

    The effects of mescaline upon single cortical neurones were studied, using the microiontophoretic technique. Mescaline elicited excitatory and depressant responses similar to those evoked by noradrenaline (NA) and 5-hydroxytryptamine (5-HI). The responses to NA and mescaline were usually in the same direction, the neurone being either excited by both drugs or depressed by both drugs. The correlation between the effects of mescaline and 5-HT, however, was less consistent. The beta-adrenoceptor blocking agent MJ-1999 and the 5-HT antagonist methysergide were both effective in antagonizing mescaline responses.

  5. Subcellular neuronal quasicrystals: Implications for consciousness

    PubMed Central

    Gardiner, John

    2015-01-01

    Neuron neurotransmitter receptors are in general pentameric. This enables them to form pentagonal components in biological quasicrystals (similar to mathematical aperiodic tilings). As quasicrystals have been proposed to require quantum effects to exist this might introduce such effects as a component of neurotransmission and thus consciousness. Microtubules may play a role in the clustering of the receptors into quasicrystals, thus modulating their function and may even form quasicrystals themselves. Other quaiscrystals in neurons are potentially formed by water, cholera toxin complexes, and the cytoskeletal components actin and ankyrin. PMID:26629259

  6. Neuronal aggregates: formation, clearance and spreading

    PubMed Central

    Lim, Junghyun; Yue, Zhenyu

    2015-01-01

    Summary Proteostasis is maintained by multiple cellular pathways, including protein synthesis, quality control and degradation. An imbalance of neuronal proteostasis, associated with protein misfolding and aggregation, leads to proteinopathies or neurodegeneration. While genetic variations and protein modifications contribute to aggregate formation, components of the proteostasis network dictate the fate of protein aggregates. Here we provide an overview of proteostasis pathways and their interplay (particularly autophagy) with the metabolism of disease-related proteins. We review recent studies on neuronal activity-mediated regulation of proteostasis and transcellular propagation of protein aggregates in the nervous system. Targeting proteostasis pathways therapeutically remains an attractive but challenging task. PMID:25710535

  7. Subcellular neuronal quasicrystals: Implications for consciousness.

    PubMed

    Gardiner, John

    2015-01-01

    Neuron neurotransmitter receptors are in general pentameric. This enables them to form pentagonal components in biological quasicrystals (similar to mathematical aperiodic tilings). As quasicrystals have been proposed to require quantum effects to exist this might introduce such effects as a component of neurotransmission and thus consciousness. Microtubules may play a role in the clustering of the receptors into quasicrystals, thus modulating their function and may even form quasicrystals themselves. Other quaiscrystals in neurons are potentially formed by water, cholera toxin complexes, and the cytoskeletal components actin and ankyrin. PMID:26629259

  8. Improving data quality in neuronal population recordings.

    PubMed

    Harris, Kenneth D; Quiroga, Rodrigo Quian; Freeman, Jeremy; Smith, Spencer L

    2016-08-26

    Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here we discuss methods for assessing and improving the quality of data from these techniques and outline likely future directions in this field. PMID:27571195

  9. Asynchronous response of coupled pacemaker neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2009-01-01

    We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input. PMID:19257636

  10. Subcellular neuronal quasicrystals: Implications for consciousness

    PubMed Central

    Gardiner, John

    2015-01-01

    Neuron neurotransmitter receptors are in general pentameric. This enables them to form pentagonal components in biological quasicrystals (similar to mathematical aperiodic tilings). As quasicrystals have been proposed to require quantum effects to exist this might introduce such effects as a component of neurotransmission and thus consciousness. Microtubules may play a role in the clustering of the receptors into quasicrystals, thus modulating their function and may even form quasicrystals themselves. Other quaiscrystals in neurons are potentially formed by water, cholera toxin complexes, and the cytoskeletal components actin and ankyrin. PMID:26478770

  11. Correlation of action potentials in adjacent neurons

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2015-12-01

    A possible mechanism for the synchronization of action potential propagation along a bundle of neurons (ephaptic coupling) is considered. It is shown that this mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons. The proposed model allows us to estimate the scale of the correlation, i.e., the distance between neurons in the nervous tissue, wherein their synchronization becomes possible. The possibility for experimental verification of the proposed model of synchronization is discussed.

  12. FET proteins regulate lifespan and neuronal integrity

    PubMed Central

    Therrien, Martine; Rouleau, Guy A.; Dion, Patrick A.; Parker, J. Alex

    2016-01-01

    The FET protein family includes FUS, EWS and TAF15 proteins, all of which have been linked to amyotrophic lateral sclerosis, a fatal neurodegenerative disease affecting motor neurons. Here, we show that a reduction of FET proteins in the nematode Caenorhabditis elegans causes synaptic dysfunction accompanied by impaired motor phenotypes. FET proteins are also involved in the regulation of lifespan and stress resistance, acting partially through the insulin/IGF-signalling pathway. We propose that FET proteins are involved in the maintenance of lifespan, cellular stress resistance and neuronal integrity. PMID:27117089

  13. Insights into the role of neuronal glucokinase.

    PubMed

    De Backer, Ivan; Hussain, Sufyan S; Bloom, Stephen R; Gardiner, James V

    2016-07-01

    Glucokinase is a key component of the neuronal glucose-sensing mechanism and is expressed in brain regions that control a range of homeostatic processes. In this review, we detail recently identified roles for neuronal glucokinase in glucose homeostasis and counterregulatory responses to hypoglycemia and in regulating appetite. We describe clinical implications from these advances in our knowledge, especially for developing novel treatments for diabetes and obesity. Further research required to extend our knowledge and help our efforts to tackle the diabetes and obesity epidemics is suggested. PMID:27189932

  14. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures

    PubMed Central

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks. PMID:24385953

  15. Towards neuronal organoids: a method for long-term culturing of high-density hippocampal neurons.

    PubMed

    Todd, George K; Boosalis, Casey A; Burzycki, Aaron A; Steinman, Michael Q; Hester, Lynda D; Shuster, Pete W; Patterson, Randen L

    2013-01-01

    One of the goals in neuroscience is to obtain tractable laboratory cultures that closely recapitulate in vivo systems while still providing ease of use in the lab. Because neurons can exist in the body over a lifetime, long-term culture systems are necessary so as to closely mimic the physiological conditions under laboratory culture conditions. Ideally, such a neuronal organoid culture would contain multiple cell types, be highly differentiated, and have a high density of interconnected cells. However, before these types of cultures can be created, certain problems associated with long-term neuronal culturing must be addressed. We sought to develop a new protocol which may further prolong the duration and integrity of E18 rat hippocampal cultures. We have developed a protocol that allows for culturing of E18 hippocampal neurons at high densities for more than 120 days. These cultured hippocampal neurons are (i) well differentiated with high numbers of synapses, (ii) anchored securely to their substrate, (iii) have high levels of functional connectivity, and (iv) form dense multi-layered cellular networks. We propose that our culture methodology is likely to be effective for multiple neuronal subtypes-particularly those that can be grown in Neurobasal/B27 media. This methodology presents new avenues for long-term functional studies in neurons.

  16. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat.

    PubMed

    Niu, Jian-Guo; Yokota, Shigefumi; Tsumori, Toshiko; Qin, Yi; Yasui, Yukihiko

    2010-10-28

    We performed this study to understand the anatomical substrates of parabrachial nucleus (PBN) modulation of orexin (ORX)-containing neurons in the hypothalamus. After biotinylated dextranamine (BDA) injection into the lateral PBN and immunostaining of ORX-containing neurons in the rat, the prominent overlap of the distribution field of the BDA-labeled fibers and that of the ORX-immunoreactive (ir) neurons was found in the lateralmost part of the dorsomedial nucleus and adjacent dorsal perifornical area (this overlapping field was referred to as "suprafornical area" in the present study), and the labeled axon terminals made asymmetrical synaptic contacts with somata and dendrites of the ORX-ir neurons. We further revealed that almost all the "suprafornical area"-projecting lateral PBN neurons were positive for vesicular glutamate transporter 2 mRNA and very few of them were positive for glutamic acid decarboxylase 67 mRNA. The present data suggest that ORX-containing neurons in the "suprafornical area" may be under the excitatory influence of the glutamatergic lateral PBN neurons probably for the regulation of arousal and waking.

  17. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons.

    PubMed

    Shinomiya, Kazunori; Matsuda, Keiji; Oishi, Takao; Otsuna, Hideo; Ito, Kei

    2011-04-01

    The long history of neuroscience has accumulated information about numerous types of neurons in the brain of various organisms. Because such neurons have been reported in diverse publications without controlled format, it is not easy to keep track of all the known neurons in a particular nervous system. To address this issue we constructed an online database called Flybrain Neuron Database (Flybrain NDB), which serves as a platform to collect and provide information about all the types of neurons published so far in the brain of Drosophila melanogaster. Projection patterns of the identified neurons in diverse areas of the brain were recorded in a unified format, with text-based descriptions as well as images and movies wherever possible. In some cases projection sites and the distribution of the post- and presynaptic sites were determined with greater detail than described in the original publication. Information about the labeling patterns of various antibodies and expression driver strains to visualize identified neurons are provided as a separate sub-database. We also implemented a novel visualization tool with which users can interactively examine three-dimensional reconstruction of the confocal serial section images with desired viewing angles and cross sections. Comprehensive collection and versatile search function of the anatomical information reported in diverse publications make it possible to analyze possible connectivity between different brain regions. We analyzed the preferential connectivity among optic lobe layers and the plausible olfactory sensory map in the lateral horn to show the usefulness of such a database.

  18. Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons

    PubMed Central

    Pagès, Stéphane; Côté, Daniel; De Koninck, Paul

    2011-01-01

    Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution. PMID:22016723

  19. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

    PubMed Central

    Huh, Christine J; Zhang, Bo; Victor, Matheus B; Dahiya, Sonika; Batista, Luis FZ; Horvath, Steve; Yoo, Andrew S

    2016-01-01

    Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion. DOI: http://dx.doi.org/10.7554/eLife.18648.001 PMID:27644593

  20. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    PubMed

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc.

  1. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    PubMed

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  2. Transcriptional comparison of human induced and primary midbrain dopaminergic neurons

    PubMed Central

    Xia, Ninuo; Zhang, Pengbo; Fang, Fang; Wang, Zhengyuan; Rothstein, Megan; Angulo, Benjamin; Chiang, Rosaria; Taylor, James; Reijo Pera, Renee A.

    2016-01-01

    Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson’s disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson’s Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression, especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies, including in vitro modeling of PD. However, further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs. PMID:26842779

  3. A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model

    NASA Astrophysics Data System (ADS)

    Klopf, A. Harry

    1986-08-01

    A neuronal learning mechanism is proposed that accounts for the basic animal learning phenomena that have been observed. Among the classical conditioning phenomena predicted by the neuronal model are delay conditioning, trace conditioning, simultaneous conditioning, conditioned stimulus duration and amplitude effects, unconditioned stimulus amplitude effects, interstimulus interval effects, second and higher order conditioning, conditioned inhibition, habituation and extinction, reacquisition effects, backward conditioning, blocking, overshadowing and serial compound conditioning. The proposed neuronal model and learning mechanism offer a new building block for constructing neural network-like computer arthitectures for artificial intelligence.

  4. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    PubMed

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  5. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    PubMed

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  6. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  7. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  8. Readministration of adenoviral gene delivery to dopamine neurons.

    PubMed

    Gonzalez, Sarah C; McMenamin, Margaret M; Charlton, Harry M; Goodman, James; Lantos, Tibor; Simpson, Christine; Wood, Matthew J A

    2007-10-01

    An approach currently being explored as treatment for Parkinson's disease is gene therapy. An important question concerns the duration of transgene expression in dopamine neurons and the issues of vector persistence, neuronal damage and the feasibility of readministering vector to the same neuronal population. We show, using an adenoviral vector expressing the LacZ reporter gene, that transgene expression declined over time but with minimal loss of dopamine neurons or vector DNA. Readministration of vector resulted in low levels of transgene delivery to the neurons. Moreover, the neurons to which vector had already been delivered were unable to transport the retrograde tracer fluorogold. Our findings indicate that transgene expression declined in dopamine neurons despite the persistence of virus, and the capacity to readminister vector to these neurons was limited. PMID:17885611

  9. Prolactin receptor in regulation of neuronal excitability and channels.

    PubMed

    Patil, Mayur J; Henry, Michael A; Akopian, Armen N

    2014-01-01

    Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca(2+) influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca(2+) -dependent K(+) channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.

  10. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    MedlinePlus

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  11. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex

    PubMed Central

    Marín, Oscar; Müller, Ulrich

    2014-01-01

    Summary Neocortical circuits are assembled from subtypes of glutamatergic excitatory and GABAergic inhibitory neurons with divergent anatomical and molecular signatures and unique physiological properties. Excitatory neurons derive from progenitors in the pallium, whereas inhibitory neurons originate from progenitors in the subpallium. Both classes of neurons subsequently migrate along well-defined routes to their final target area, where they integrate into common neuronal circuits. Recent findings show that neuronal diversity within the lineages of excitatory and inhibitory neurons is in part already established at the level of progenitor cells prior to migration. This poses challenges for our understanding of how radial units of interconnected excitatory and inhibitory neurons are assembled from progenitors that are spatially segregated and diverse in nature. PMID:24549207

  12. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  13. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9

    PubMed Central

    Liu, Justin; Merkle, Florian T.; Gandhi, Avni V.; Gagnon, James A.; Woods, Ian G.; Chiu, Cindy N.; Shimogori, Tomomi; Schier, Alexander F.; Prober, David A.

    2015-01-01

    Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development. PMID:25725064

  14. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways. PMID:26786898

  15. Neurons under viral attack: victims or warriors?

    PubMed

    Chakraborty, Swarupa; Nazmi, Arshed; Dutta, Kallol; Basu, Anirban

    2010-01-01

    When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections.

  16. Beyond the frontiers of neuronal types

    PubMed Central

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W.; Cauli, Bruno

    2012-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes. PMID:23403725

  17. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  18. Block structured dynamics and neuronal coding

    NASA Astrophysics Data System (ADS)

    González-Miranda, J. M.

    2005-11-01

    When certain control parameters of nervous cell models are varied, complex bifurcation structures develop in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical likelihood. This block structured dynamics may be a clue to understand how activated neurons encode information by firing spike trains of their action potentials.

  19. Consciousness and the structure of neuronal representations.

    PubMed Central

    Singer, W

    1998-01-01

    The hypothesis is defended that brains expressing phenomenal awareness are capable of generating metarepresentations of their cognitive processes, these metarepresentations resulting from an iteration of self-similar cortical operations. Search for the neuronal substrate of awareness therefore converges with the search for the nature of neuronal representations. It is proposed that evolved brains use two complementary representational strategies. One consists of the generation of neurons responding selectively to a particular constellation of features and is based on selective recombination of inputs in hierarchically structured feedforward architectures. The other relies on the dynamic association of feature-specific cells into functionally coherent cell assemblies that, as a whole, represent the constellation of features defining a particular perceptual object. Arguments are presented that favour the notion that the metarepresentations supporting awareness are established in accordance with the second strategy. Experimental data are reviewed that are compatible with the hypothesis that evolved brains use assembly codes for the representation of contents and that these assemblies become organized through transient synchronization of the discharges of associated neurons. It is argued that central states favouring the formation of assembly-based representations are similar to those favouring awareness. PMID:9854255

  20. Asynchronous Rate Chaos in Spiking Neuronal Circuits.

    PubMed

    Harish, Omri; Hansel, David

    2015-07-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  1. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. PMID:27606339

  2. Sweet Mitochondrial Dynamics in VMH Neurons.

    PubMed

    Steculorum, Sophie M; Brüning, Jens C

    2016-04-12

    The ventromedial nucleus of the hypothalamus (VMH) is a central region known to maintain glucose homeostasis. Toda et al. (2016) unravel a new mechanism underlying VMH-dependent regulation of systemic glucose homeostasis via uncoupling protein 2 (UCP2)-mediated control of mitochondrial dynamics and activation of glucose-excited neurons. PMID:27076074

  3. Neuronal Ca2+ disregulation in diabetes mellitus.

    PubMed

    Biessels, Geert Jan; ter Laak, Mariël P; Hamers, Frank P T; Gispen, Willem Hendrik

    2002-07-01

    The Ca(2+) hypothesis of brain ageing and dementia may account for part of the available data on the pathogenesis of dementia and certain neurodegenerative disorders. The hypothesis proposes that disturbances in the homeostasis of neuronal cytosolic free Ca(2+) are part of a final common pathway, ultimately leading to neuronal dysfunction and cell death. The hypothesis also proposes that a small change in cytosolic free Ca(2+) sustained over a long period of time will result in similar damage as a large change over a short period. Diabetes mellitus is associated with neurological complications in the peripheral and central nervous system, as reflected in peripheral neuropathy, modest cognitive impairments and an increased risk of dementia. In animal models of diabetes, learning impairments are associated with alterations in Ca(2+) -dependent forms of hippocampal synaptic plasticity. Disturbances in the homeostasis of cytosolic free Ca(2+) may present a final common pathway in the multifactorial pathogenesis of neurological complications of diabetes, which involves vascular changes, oxidative stress, and non-enzymatic protein glycation. In line with the Ca(2+) hypothesis of neurodegenerative disorders, a prolonged, small increase in basal cytosolic Ca(2+) levels indeed exists in sensory neurones of diabetic animals. In addition, Ca(2+) dynamics are affected. Ca(2+) channel blockers, such as nimodipine, have been shown to improve experimental peripheral neuropathy, through a vascular mechanism, possibly in combination with direct neuronal effects. Preliminary studies indicate that nimodipine may also improve Ca(2+)-dependent forms of synaptic plasticity in the hippocampus of diabetic rats.

  4. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs.

  5. Astrocytic Actions on Extrasynaptic Neuronal Currents

    PubMed Central

    Pál, Balázs

    2015-01-01

    In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance. PMID:26696832

  6. Beyond the frontiers of neuronal types.

    PubMed

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W; Cauli, Bruno

    2013-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.

  7. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  8. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins.

    PubMed

    Del Valle, M E; Cobo, T; Cobo, J L; Vega, J A

    2012-08-01

    The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.

  9. Beyond the frontiers of neuronal types.

    PubMed

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W; Cauli, Bruno

    2013-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes. PMID:23403725

  10. Sexually dimorphic neuronal responses to social isolation

    PubMed Central

    Senst, Laura; Baimoukhametova, Dinara; Sterley, Toni-Lee; Bains, Jaideep Singh

    2016-01-01

    Many species use social networks to buffer the effects of stress. The mere absence of a social network, however, may also be stressful. We examined neuroendocrine, PVN CRH neurons and report that social isolation alters the intrinsic properties of these cells in sexually dimorphic fashion. Specifically, isolating preadolescent female mice from littermates for <24 hr increased first spike latency (FSL) and decreased excitability of CRH neurons. These changes were not evident in age-matched males. By contrast, subjecting either males (isolated or grouped) or group housed females to acute physical stress (swim), increased FSL. The increase in FSL following either social isolation or acute physical stress was blocked by the glucocorticoid synthesis inhibitor, metyrapone and mimicked by exogenous corticosterone. The increase in FSL results in a decrease in the excitability of CRH neurons. Our observations demonstrate that social isolation, but not acute physical stress has sex-specific effects on PVN CRH neurons. DOI: http://dx.doi.org/10.7554/eLife.18726.001 PMID:27725087

  11. Genetics Home Reference: congenital neuronal ceroid lipofuscinosis

    MedlinePlus

    ... AE, Tyynelä J. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006 Jun;129(Pt 6):1438-45. Epub 2006 May 2. Citation on PubMed Steinfeld ... deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006 Jun; ...

  12. Neuronal autoantibodies in patients with Rasmussen's encephalitis.

    PubMed

    Samanci, Bedia; Tektürk, Pınar; Tüzün, Erdem; Erdağ, Ece; Kınay, Demet; Yapıcı, Zuhal; Baykan, Betül

    2016-06-01

    Rasmussen's encephalitis (RE) is a rare disease with unknown pathophysiology. To disclose whether anti-neuronal autoimmunity participates in the aetiology of RE, various neuronal autoantibodies (NAAbs) were investigated in sera of patients with RE and controls. The study included five patients who fulfilled the RE diagnostic criteria (clinical, EEG, and MRI findings) as the patient group, and 50 multiple sclerosis patients and 50 healthy subjects as the control groups. Sera were evaluated for various NAAbs by radioimmunoassay or cell-based assays. All sera were also screened for uncharacterized antibodies to neuronal cell surface or synapse antigens by indirect immunofluorescence using hippocampal cell cultures. The mean age at onset of seizures was 8.3±3.4 years (range: 4-13.5) and mean follow-up time was 11.2±5.4 years (range: 5-19). All patients had unihemispheric atrophy of the cerebral cortex and epilepsia partialis continua. Two of the patients had moderate cognitive impairment, while the others were severely affected, as shown by neuropsychological testing. NAAb positivity was not detected in any of the patients. Immune aetiology is thought to have a role in RE, but the responsible players have not yet been elucidated. Our extensive antibody screening in a small number of patients does not support the presence of antigen-specific anti-neuronal autoimmunity in RE pathophysiology. PMID:27248684

  13. Numbers, Neurons and Tides, Oh My!

    ERIC Educational Resources Information Center

    Ortiz, Mary Theresa

    2006-01-01

    Mathematical applications to biology are presented in Anatomy & Physiology, General and Marine Biology. Body measurements and anatomical terminology are integrated, and problems involving neuron conduction speed, red blood cells, hemoglobin and glomerular filtration presented. General Biology applications include trans-membrane potential and…

  14. Lower motor neuron dysfunction in ALS.

    PubMed

    de Carvalho, Mamede; Swash, Michael

    2016-07-01

    In the motor system there is a complex interplay between cortical structures and spinal cord lower motor neurons (LMN). In this system both inhibitory and excitatory neurons have relevant roles. LMN loss is a marker of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Conventional needle electromyography (EMG) does not allow LMN loss to be quantified. Measurement of compound muscle action potential (CMAP) amplitude or area, and the neurophysiological index, provide a surrogate estimate of the number of functional motor units. Increased motor neuronal excitability is a neurophysiological marker of ALS in the context of a suspected clinical and electrophysiological diagnosis. In the LMN system, fasciculation potentials (FPs) are the earliest changes observed in affected muscles, a feature of LMN hyperexcitability. Reinnervation is best investigated by needle EMG although other methods can be explored. Moreover needle EMG give information about the temporal profile of the reinnervation process, important ancillary data. Quantitative motor unit potential analysis is a valuable method of evaluating reinnervation. The importance of FPs has been recognized in the Awaji criteria for the electrodiagnosis of ALS, criteria that are a sensitive adjunct to the revised El Escorial criteria. Finally, functionality of LMN's, and perhaps excitability studies in motor nerves, aids understanding of the disease process, allowing measurement of potential treatment effects in clinical trials. Other investigational techniques, such as electrical impedance myography, muscle and nerve ultrasound, and spinal cord imaging methods may prove useful in future. PMID:27117334

  15. Spiking neuron computation with the time machine.

    PubMed

    Garg, Vaibhav; Shekhar, Ravi; Harris, John G

    2012-04-01

    The Time Machine (TM) is a spike-based computation architecture that represents synaptic weights in time. This choice of weight representation allows the use of virtual synapses, providing an excellent tradeoff in terms of flexibility, arbitrary weight connections and hardware usage compared to dedicated synapse architectures. The TM supports an arbitrary number of synapses and is limited only by the number of simultaneously active synapses to each neuron. SpikeSim, a behavioral hardware simulator for the architecture, is described along with example algorithms for edge detection and objection recognition. The TM can implement traditional spike-based processing as well as recently developed time mode operations where step functions serve as the input and output of each neuron block. A custom hybrid digital/analog implementation and a fully digital realization of the TM are discussed. An analog chip with 32 neurons, 1024 synapses and an address event representation (AER) block has been fabricated in 0.5 μm technology. A fully digital field-programmable gate array (FPGA)-based implementation of the architecture has 6,144 neurons and 100,352 simultaneously active synapses. Both implementations utilize a digital controller for routing spikes that can process up to 34 million synapses per second. PMID:23852979

  16. C1 neurons: the body's EMTs.

    PubMed

    Guyenet, Patrice G; Stornetta, Ruth L; Bochorishvili, Genrieta; Depuy, Seth D; Burke, Peter G R; Abbott, Stephen B G

    2013-08-01

    The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension. PMID:23697799

  17. GaAs optoelectronic neuron arrays.

    PubMed

    Lin, S; Grot, A; Luo, J; Psaltis, D

    1993-03-10

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10(4) cm(-2) are discussed.

  18. Self-regulation of adult thalamocortical neurons.

    PubMed

    Kasten, Michael R; Anderson, Matthew P

    2015-07-01

    The thalamus acts as a conduit for sensory and other information traveling to the cortex. In response to continuous sensory stimulation in vivo, the firing rate of thalamocortical neurons initially increases, but then within a minute firing rate decreases and T-type Ca(2+) channel-dependent action potential burst firing emerges. While neuromodulatory systems could play a role in this inhibitory response, we instead report a novel and cell-autonomous inhibitory mechanism intrinsic to the thalamic relay neuron. Direct intracellular stimulation of thalamocortical neuron firing initially triggered a continuous and high rate of action potential discharge, but within a minute membrane potential (Vm) was hyperpolarized and firing rate to the same stimulus was decreased. This self-inhibition was observed across a wide variety of thalamic nuclei, and in a subset firing mode switched from tonic to bursting. The self-inhibition resisted blockers of intracellular Ca(2+) signaling, Na(+)-K(+)-ATPases, and G protein-regulated inward rectifier (GIRK) channels as implicated in other neuron subtypes, but instead was in part inhibited by an ATP-sensitive K(+) channel blocker. The results identify a new homeostatic mechanism within the thalamus capable of gating excitatory signals at the single-cell level. PMID:25948871

  19. Neuronal avalanches in spontaneous activity in vivo.

    PubMed

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  20. Stanislas Dehaene's Les Neurones de la Lecture

    ERIC Educational Resources Information Center

    Battro, Antonio M.

    2008-01-01

    Stanislas Dehaene has published a remarkable book on the neurons of reading. It is a comprehensive description of the main issues related to the "paradox of reading": how humans process linguistic information using the visual brain path while the brain has not evolved in the short period of time since the invention of writing. The article presents…

  1. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    PubMed Central

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  2. Motor neuron disease: a chemical perspective.

    PubMed

    Wood, Laura K; Langford, Steven J

    2014-08-14

    This Perspective provides a background to the pathogenesis of neurodegenerative disease and specifically amyotrophic lateral sclerosis (ALS) and gives an overview of the many pathways, both genetically inheritable and sporadic, that may lead to the premature activation of apoptotic pathways in neurons, as well as current and proposed approaches toward interrupting these pathways.

  3. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  4. Multiscale fingerprinting of neuronal functional connectivity

    PubMed Central

    Song, Gang; Tin, Chung; Poon, Chi-Sang

    2014-01-01

    SUMMARY Current cellular-based connectomics approaches aim to delineate the functional or structural organizations of mammalian brain circuits through neuronal activity mapping and/or axonal tracing. To discern possible connectivity between functionally identified neurons in widely distributed brain circuits, reliable and efficient network-based approaches of cross-registering or cross-correlating such functional-structural data are essential. Here, a novel cross-correlation approach that exploits multiple timing-specific, response-specific and cell-specific neuronal characteristics as coincident fingerprint markers at the systems, network and cellular levels is proposed. Application of this multiscale temporal-cellular coincident fingerprinting assay to the respiratory central pattern generator network in rats revealed a descending excitatory pathway with characteristic activity pattern and projecting from a distinct neuronal population in pons to its counterparts in medulla that control the post-inspiratory phase of the respiratory rhythm important for normal breathing, airway protection and respiratory-vocalization coordination. This enabling neurotracing approach may prove valuable for functional connectivity mapping of other brain circuits. PMID:25056933

  5. Are Some Neurons Hypersensitive to Metallic Nanoparticles?

    PubMed Central

    Scott, Bobby R.

    2010-01-01

    Engineered metallic nanomaterial particles (MENAP) represent a significant breakthrough in developing new products for use by consumers and industry. Skin application (e.g., via creams and sprays containing nanoparticles) may provide a key route of potential intake of MENAP and can lead to retrograde transport from nerve endings in the skin to the somatosensory neurons in dorsal root ganglia (DRG). This paper uses a novel theoretical model (stochastic threshold microdose [STM] model) to characterize survival of DRG neurons exposed in cell culture replicates to copper nanoparticles, based on published data. Cell death via autophagy is assumed here to occur as a result of the uptake (called hits) of the nanoparticles by mitochondria. Theoretical results are presented for the existence of a hypersensitive fraction (about 20%) of neurons that are killed in significant numbers when on average > 1 hit to the at-risk mitochondria occurs. Further, most hypersensitive neurons appear to be killed by a cumulative exposure of about 2,000 micromolar-hours and the remaining resistant cells may have dysfunctional mitochondria. Based on these theoretical findings, it is predicted that repeated exposure (e.g., over years) of the skin of humans to MENAP could lead to significant nervous system damage and related morbidity. PMID:22423227

  6. Variety of synchronous regimes in neuronal ensembles

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Suykens, J. A. K.

    2008-09-01

    We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.

  7. Magnesium induces neuronal apoptosis by suppressing excitability

    PubMed Central

    Dribben, W H; Eisenman, L N; Mennerick, S

    2010-01-01

    In clinical obstetrics, magnesium sulfate (MgSO4) use is widespread, but effects on brain development are unknown. Many agents that depress neuronal excitability increase developmental neuroapoptosis. In this study, we used dissociated cultures of rodent hippocampus to examine the effects of Mg++ on excitability and survival. Mg++-induced caspase-3-associated cell loss at clinically relevant concentrations. Whole-cell patch-clamp techniques measured Mg++ effects on action potential threshold, action potential peak amplitude, spike number and changes in resting membrane potential. Mg++ depolarized action potential threshold, presumably from surface charge screening effects on voltage-gated sodium channels. Mg++ also decreased the number of action potentials in response to fixed current injection without affecting action potential peak amplitude. Surprisingly, Mg++ also depolarized neuronal resting potential in a concentration-dependent manner with a +5.2 mV shift at 10 mM. Voltage ramps suggested that Mg++ blocked a potassium conductance contributing to the resting potential. In spite of this depolarizing effect of Mg++, the net inhibitory effect of Mg++ nearly completely silenced neuronal network activity measured with multielectrode array recordings. We conclude that although Mg++ has complex effects on cellular excitability, the overall inhibitory influence of Mg++ decreases neuronal survival. Taken together with recent in vivo evidence, our results suggest that caution may be warranted in the use of Mg++ in clinical obstetrics and neonatology. PMID:21364668

  8. Unbroken Mirror Neurons in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  9. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.

    PubMed

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  10. Synchronization and rhythm dynamics of a neuronal network consisting of mixed bursting neurons with hybrid synapses

    NASA Astrophysics Data System (ADS)

    Shi, Xia; Xi, Wenqi

    2016-05-01

    In this paper, burst synchronization and rhythm dynamics of a small-world neuronal network consisting of mixed bursting types of neurons coupled via inhibitory-excitatory chemical synapses are explored. Two quantities, the synchronization parameter and average width factor, are used to characterize the synchronization degree and rhythm dynamics of the neuronal network. Numerical results show that the percentage of the inhibitory synapses in the network is the major factor for we get a similarly bell-shaped dependence of synchronization on it, and the decrease of the average width factor of the network. We also find that not only the value of the coupling strength can promote the synchronization degree, but the probability of random edges adding to the small-world network also can. The ratio of the long bursting neurons has little effect on the burst synchronization and rhythm dynamics of the network.

  11. PYRETHROID MODULATION OF SPONTANEOUS NEURONAL EXCITABILITY AND NEUROTRANSMISSION IN HIPPOCAMPAL NEURONS IN CULTURE

    EPA Science Inventory

    Pyrethroid insecticides have potent actions on voltage-gated sodium channels, inhibiting inactivation and increasing channel open times. These are thought to underlie, at least in part, the clinical symptoms of pyrethroid intoxication. However, disruption of neuronal activity at ...

  12. Additivity of Pyrethroid Actions on Sodium Influx in Cortical Neurons in Cerebrocortical Neurons in Primary Culture

    EPA Science Inventory

    BACKGROUND: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular ...

  13. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations

    NASA Astrophysics Data System (ADS)

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  14. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae.

    PubMed

    Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung

    2014-10-30

    Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca(2+) imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.

  15. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses. PMID:27409809

  16. Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing

    PubMed Central

    Hwang, Jaewon

    2015-01-01

    During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614

  17. Global dynamics of a stochastic neuronal oscillator

    NASA Astrophysics Data System (ADS)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  18. Neuron-glia synapses in the brain.

    PubMed

    Bergles, Dwight E; Jabs, Ronald; Steinhäuser, Christian

    2010-05-01

    The ability to investigate the electrophysiological properties of individual cells in acute brain tissue led to the discovery that many glial cells have the capacity to respond rapidly to neuronal activity. In particular, a distinct class of neuroglial cells known as NG2 cells, which exhibit many of the properties that have been described for glial subtypes such as complex cells, polydendrocytes, synantocytes and GluR cells, express ionotropic receptors for glutamate and GABA. In both gray and white matter, NG2 cells form direct synaptic junctions with axons, which enable transient activation of these receptors. Electrophysiological analyses have shown that these neuron-glia synapses exhibit all the hallmarks of 'classical' neuron-neuron synapses, including rapid activation, quantized responses, facilitation and depression, and presynaptic inhibition. Electron microscopy indicates that axons form morphologically distinct junctions at discrete sites along processes of NG2 cells, suggesting that NG2 cells are an overt target of axonal projections. AMPA receptors expressed by NG2 cells exhibit varying degrees of Ca(2+) permeability, depending on the brain region and stage of development, and in white matter NG2 cells have also been shown to express functional NMDA receptors. Ca(2+) influx through AMPA receptors following repetitive stimulation can trigger long term potentiation of synaptic currents in NG2 cells. The expression of receptors with significant Ca(2+) permeability may increase the susceptibility of NG2 cells to excitotoxic injury. Future studies using transgenic mice in which expression of receptors can be manipulated selectively in NG2 cells have to define the functions of this enigmatic neuron-glia signaling in the normal and diseased CNS.

  19. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  20. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.

  1. Developmental time windows for axon growth influence neuronal network topology.

    PubMed

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  2. Motor neuron death in ALS – programmed by astrocytes?

    PubMed Central

    Pirooznia, Sheila K.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Motor neurons in ALS die via cell-autonomous and non-cell autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al (2014) discover that familial and sporadic ALS derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue. PMID:24607221

  3. The role of mirror neurons in language acquisition and evolution.

    PubMed

    Behme, Christina

    2014-04-01

    I argue that Cook et al.'s attack of the genetic hypothesis of mirror neurons misses its target because the authors miss the point that genetics may specify how neurons may learn, not what they learn. Paying more attention to recent work linking mirror neurons to language acquisition and evolution would strengthen Cook et al.'s arguments against a rigid genetic hypothesis.

  4. The origin and function of mirror neurons: the missing link.

    PubMed

    Lingnau, Angelika; Caramazza, Alfonso

    2014-04-01

    We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.

  5. A synaptic organizing principle for cortical neuronal groups

    PubMed Central

    Perin, Rodrigo; Berger, Thomas K.; Markram, Henry

    2011-01-01

    Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 μm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs. PMID:21383177

  6. Qualitative-Modeling-Based Silicon Neurons and Their Networks

    PubMed Central

    Kohno, Takashi; Sekikawa, Munehisa; Li, Jing; Nanami, Takuya; Aihara, Kazuyuki

    2016-01-01

    The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance. PMID:27378842

  7. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons.

    PubMed

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-01-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven't been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries. PMID:27052791

  8. Synchronization properties of heterogeneous neuronal networks with mixed excitability type

    NASA Astrophysics Data System (ADS)

    Leone, Michael J.; Schurter, Brandon N.; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G.

    2015-03-01

    We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.

  9. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-04-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.

  10. Selective extracellular stimulation of individual neurons in ganglia

    NASA Astrophysics Data System (ADS)

    Lu, Hui; Chestek, Cynthia A.; Shaw, Kendrick M.; Chiel, Hillel J.

    2008-09-01

    Selective control of individual neurons could clarify neural functions and aid disease treatments. To target specific neurons, it may be useful to focus on ganglionic neuron clusters, which are found in the peripheral nervous system in vertebrates. Because neuron cell bodies are found primarily near the surface of invertebrate ganglia, and often found near the surface of vertebrate ganglia, we developed a technique for controlling individual neurons extracellularly using the buccal ganglia of the marine mollusc Aplysia californica as a model system. We experimentally demonstrated that anodic currents can selectively activate an individual neuron and cathodic currents can selectively inhibit an individual neuron using this technique. To define spatial specificity, we studied the minimum currents required for stimulation, and to define temporal specificity, we controlled firing frequencies up to 45 Hz. To understand the mechanisms of spatial and temporal specificity, we created models using the NEURON software package. To broadly predict the spatial specificity of arbitrary neurons in any ganglion sharing similar geometry, we created a steady-state analytical model. A NEURON model based on cat spinal motor neurons showed responses to extracellular stimulation qualitatively similar to those of the Aplysia NEURON model, suggesting that this technique could be widely applicable to vertebrate and human peripheral ganglia having similar geometry.

  11. Distribution, structure and projections of the frog intracardiac neurons.

    PubMed

    Batulevicius, Darius; Skripkiene, Gertruda; Batuleviciene, Vaida; Skripka, Valdas; Dabuzinskiene, Anita; Pauza, Dainius H

    2012-05-21

    Histochemistry for acetylcholinesterase was used to determine the distribution of intracardiac neurons in the frog Rana temporaria. Seventy-nine intracardiac neurons from 13 frogs were labelled iontophoretically by the intracellular markers Alexa Fluor 568 and Lucifer Yellow CH to determine their structure and projections. Total neuronal number per frog heart was (Mean ± SE) 1374 ± 56. Largest collections of neurons were found in the interatrial septum (46%), atrioventricular junction (25%) and venal sinus (12%). Among the intracellularly labelled neurons, we found the cells of unipolar (71%), multipolar (20%) and bipolar (9%) types. Multiple processes originated from the neuron soma, hillock and proximal axon. These processes projected onto adjacent neuron somata and cardiac muscle fibers within the interatrial septum. Average total length of the processes from proximal axon was 348 ± 50 μm. Average total length of processes from soma and hillock was less, 118 ± 27 μm and 109 ± 24 μm, respectively. The somata of 59% of neurons had bubble- or flake-shaped extensions. Most neurons from the major nerves in the interatrial septum sent their axons towards the ventricle. In contrast, most neurons from the ventral part of the interatrial septum sent their axons towards the atria. Our findings contradict to a view that the frog intracardiac ganglia contain only non-dendritic neurons of the unipolar type. We conclude that the frog intracardiac neurons are structurally complex and diverse. This diversity may account for the complicated integrative functions of the frog intrinsic cardiac ganglia.

  12. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    PubMed Central

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-01-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries. PMID:27052791

  13. Synchronization properties of heterogeneous neuronal networks with mixed excitability type.

    PubMed

    Leone, Michael J; Schurter, Brandon N; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G

    2015-03-01

    We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.

  14. Interaction of leech neurons with topographical gratings: comparison with rodent and human neuronal lines and primary cells

    PubMed Central

    Tonazzini, Ilaria; Pellegrini, Monica; Pellegrino, Mario; Cecchini, Marco

    2014-01-01

    Controlling and improving neuronal cell migration and neurite outgrowth are critical elements of tissue engineering applications and development of artificial neuronal interfaces. To this end, a promising approach exploits nano/microstructured surfaces, which have been demonstrated to be capable of tuning neuronal differentiation, polarity, migration and neurite orientation. Here, we investigate the neurite contact guidance of leech neurons on plastic gratings (GRs; anisotropic topographies composed of alternating lines of grooves and ridges). By high-resolution microscopy, we quantitatively evaluate the changes in tubulin cytoskeleton organization and cell morphology and in the neurite and growth cone development. The topography-reading process of leech neurons on GRs is mediated by filopodia and is more responsive to 4-µm-period GRs than to smaller period GRs. Leech neuron behaviour on GRs is finally compared and validated with several other neuronal cells, from murine differentiated embryonic stem cells and primary hippocampal neurons to differentiated human neuroblastoma cells. PMID:24501675

  15. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-01-01

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387

  16. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease

    PubMed Central

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-01-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte–neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD. PMID:25301063

  17. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.

    2016-08-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  18. Targeted transgene expression in neuronal precursors: watching young neurons in the old brain.

    PubMed

    Couillard-Despres, Sebastien; Winner, Beate; Karl, Claudia; Lindemann, Gudrun; Schmid, Peter; Aigner, Robert; Laemke, Joern; Bogdahn, Ulrich; Winkler, Juergen; Bischofberger, Josef; Aigner, Ludwig

    2006-09-01

    Progress in the field of neurogenesis is limited by the lack of animal models allowing direct detection and analysis of living cells participating in neurogenesis. We engineered a transgenic mouse model that expresses the fluorescent reporter proteins enhanced green fluorescent protein or Discoma sp. reef coral red fluorescent protein under the control of the doublecortin (DCX) promoter, a gene specifically and transiently active in neuronal precursors and young neurons. The expression of the reporter proteins correlated with expression of the endogenous DCX protein, and with developmental and adult neurogenesis. Neurogenesis was unaffected by the presence of the fluorescent proteins. The transgenic mice allowed direct identification of the very few newly generated neurons present in the aged brain. We performed electrophysiological analysis and established that newly generated hippocampal granule cells in aged and young mice shared identical physiological properties. Hence, although the rate of neurogenesis tapers with ageing, a population of highly excitable young neurons indistinguishable to those found in younger animals is continuously generated. Therefore, maintenance of the fundamental properties of neuronal precursors even at advanced age suggests that stimulation of neurogenesis may constitute a valid strategy to counteract age-related neuronal loss and cognitive declines. PMID:17004917

  19. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches

    PubMed Central

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.

    2016-01-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal. PMID:27534901

  20. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.

    PubMed

    Michiels van Kessenich, L; de Arcangelis, L; Herrmann, H J

    2016-08-18

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  1. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.

    PubMed

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  2. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.

    PubMed

    Michiels van Kessenich, L; de Arcangelis, L; Herrmann, H J

    2016-01-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal. PMID:27534901

  3. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.

    PubMed

    Nakayama, Kimiko; Kiyosue, Kazuyuki; Taguchi, Takahisa

    2005-04-20

    Neuronal activity regulates the synaptic strength of neuronal networks. However, it is still unclear how diminished activity changes connection patterns in neuronal circuits. To address this issue, we analyzed neuronal connectivity and relevant mechanisms using hippocampal cultures in which developmental synaptogenesis had occurred. We show that diminution of network activity in mature neuronal circuit promotes reorganization of neuronal circuits via NR2B subunit-containing NMDA-type glutamate receptors (NR2B-NMDARs), which mediate silent synapse formation. Simultaneous double whole-cell recordings revealed that diminishing neuronal circuit activity for 48 h increased the number of synaptically connected neuron pairs with both silent and functional synapses. This increase was accompanied by the specific expression of NR2B-NMDARs at synaptic sites. Analysis of miniature EPSCs (mEPSCs) showed that the frequency of NMDAR-mediated, but not AMPAR-mediated, mEPSCs increased, indicating that diminished neuronal activity promotes silent synapse formation via the surface delivering NR2B-NMDARs in mature neurons. After activation of neuronal circuit by releasing from TTX blockade (referred as circuit reactivation), the frequency of AMPAR-mediated mEPSCs increased instead, and this increase was prevented by ifenprodil. The circuit reactivation also caused an increased colocalization of glutamate receptor 1-specfic and synaptic NR2B-specific puncta. These results indicate that the circuit reactivation converts rapidly silent synapses formed during activity suppression to functional synapses. These data may provide a new example of homeostatic circuit plasticity that entails the modulation of neuron-neuron connectivity by synaptic activity.

  4. Intrinsic and integrative properties of substantia nigra pars reticulata neurons

    PubMed Central

    Zhou, Fu-Ming; Lee, Christian R.

    2011-01-01

    The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active TRPC3 channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches −60 mV, a voltage-gated persistent sodium current (INaP) starts to activate, further depolarizing the membrane potential. At or slightly below −50 mV, the large transient voltage-activated sodium current (INaT) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of (INaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. INaT also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators

  5. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks.

    PubMed

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders. PMID:27108930

  6. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  7. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks.

    PubMed

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders.

  8. Progranulin is expressed within motor neurons and promotes neuronal cell survival

    PubMed Central

    2009-01-01

    Background Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U) associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. Results In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months). This is mediated at least in part through an anti-apoptotic mechanism

  9. Nonspatial Sequence Coding in CA1 Neurons

    PubMed Central

    Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam

    2016-01-01

    The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal

  10. Nonsmooth dynamics in spiking neuron models

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Thul, R.; Wedgwood, K. C. A.

    2012-11-01

    Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage

  11. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus

  12. Serotonin modulation of cortical neurons and networks

    PubMed Central

    Celada, Pau; Puig, M. Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe

  13. Ultrasound sensitive neurons in the cricket brain.

    PubMed

    Brodfuehrer, P D; Hoy, R R

    1990-03-01

    1. The aim of this study was to identify neurons in the brain of the cricket, Teleogryllus oceanicus, that are tuned to high frequencies and to determine if these neurons are involved in the pathway controlling negative phonotaxis. In this paper we describe, both morphologically and physiologically, 20 neurons in the cricket brain which are preferentially tuned to high frequencies. 2. These neurons can be divided into two morphological classes: descending brain interneurons (DBINs) which have a posteriorly projecting axon in the circumesophageal connective and local brain neurons (LBNs) whose processes reside entirely within the brain. All the DBINs and LBNs have processes which project into one common area of the brain, the ventral brain region at the border of the protocerebrum and deutocerebrum. Some of the terminal arborizations of Int-1, an ascending ultrasound sensitive interneuron which initiates negative phonotaxis, also extend into this region. 3. Physiologically, ultrasonic sound pulses produce 3 types of responses in the DBINs and LBNs. (1) Seven DBINs and 6 LBNs are excited by ultrasound. (2) Ongoing activity in one DBIN and 5 LBNs is inhibited by ultrasound, and (3) one cell, (LBN-ei), is either excited or inhibited by ultrasound depending on the direction of the stimulus. 4. Many of the response properties of both the DBINs and LBNs to auditory stimuli are similar to those of Int-1. Specifically, the strength of the response, either excitation or inhibition, to 20 kHz sound pulses increases with increasing stimulus intensity, while the response latency generally decreases. Moreover, the thresholds to high frequencies are much lower than to low frequencies. These observations suggest that the DBINs and LBNs receive a majority of their auditory input from Int-1. However, the response latencies and directional sensitivity of only LBN-ei suggest that it is directly connected to Int-1. 5. The response of only one identified brain neuron, DBIN8, which is

  14. Role of PPARγ in the Differentiation and Function of Neurons

    PubMed Central

    Quintanilla, Rodrigo A.; Utreras, Elias; Cabezas-Opazo, Fabián A.

    2014-01-01

    Neuronal processes (neurites and axons) have an important role in brain cells communication and, generally, they are damaged in neurodegenerative diseases. Recent evidence has showed that the activation of PPARγ pathway promoted neuronal differentiation and axon polarity. In addition, activation of PPARγ using thiazolidinediones (TZDs) prevented neurodegeneration by reducing neuronal death, improving mitochondrial function, and decreasing neuroinflammation in neuropathic pain. In this review, we will discuss important evidence that supports a possible role of PPARγ in neuronal development, improvement of neuronal health, and pain signaling. Therefore, activation of PPARγ is a potential target with therapeutic applications against neurodegenerative disorders, brain injury, and pain regulation. PMID:25246934

  15. Axon guidance and neuronal migration research in China.

    PubMed

    Yuan, XiaoBing

    2010-03-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits. Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years. Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration. Several unique experimental approaches, including the migration assay of single isolated neurons in response to locally delivered guidance cues, have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  16. Multitasking in Gonadotropin-Releasing Hormone Neuron Dendrites.

    PubMed

    Iremonger, Karl J; Herbison, Allan E

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) neurons integrate synaptic information in their dendrites in order to precisely control GnRH secretion and hence fertility. Recent discoveries concerning the structure and function of GnRH neuron dendrites have shed new light on the control of GnRH neuron excitability and GnRH secretion. This work suggests that GnRH neurons have a unique projection to the median eminence that possesses both dendritic and axonal properties. We propose that this 'dendron' projection allows GnRH neurons to multitask and integrate information in ways that would not be possible in a classically envisioned axon projection. PMID:25300776

  17. Bifurcation transitions in gap-junction-coupled neurons

    NASA Astrophysics Data System (ADS)

    Shaffer, Annabelle; Harris, Allison L.; Follmann, Rosangela; Rosa, Epaminondas

    2016-10-01

    Here we investigate transitions occurring in the dynamical states of pairs of distinct neurons electrically coupled, with one neuron tonic and the other bursting. Depending on the dynamics of the individual neurons, and for strong enough coupling, they synchronize either in a tonic or a bursting regime, or initially tonic transitioning to bursting via a period doubling cascade. Certain intrinsic properties of the individual neurons such as minimum firing rates are carried over into the dynamics of the coupled neurons affecting their ultimate synchronous state.

  18. Resynchronization in neuronal network divided by femtosecond laser processing.

    PubMed

    Hosokawa, Chie; Kudoh, Suguru N; Kiyohara, Ai; Taguchi, Takahisa

    2008-05-01

    We demonstrated scission of a living neuronal network on multielectrode arrays (MEAs) using a focused femtosecond laser and evaluated the resynchronization of spontaneous electrical activity within the network. By an irradiation of femtosecond laser into hippocampal neurons cultured on a multielectrode array dish, neurites were cut at the focal point. After the irradiation, synchronization of neuronal activity within the network drastically decreased over the divided area, indicating diminished functional connections between neurons. Cross-correlation analysis revealed that spontaneous activity between the divided areas gradually resynchronized within 10 days. These findings indicate that hippocampal neurons have the potential to regenerate functional connections and to reconstruct a network by self-assembly. PMID:18418255

  19. Introduction to cardiac neuronal imaging: a clinical perspective.

    PubMed

    Jacobson, Arnold F; Narula, Jagat

    2015-06-01

    Procedures for noninvasive and minimally invasive imaging of cardiac neurons and neuronal function using radiolabeled compounds were developed in the second half of the 20th century. The foundation for these procedures was several centuries of research that identified the structural components of the autonomic nervous system and explored the means by which neurotransmitters such as acetylcholine and norepinephrine contributed to neuronal control of target organ effector cells. This article provides a brief clinical overview of modern approaches to the assessment of cardiac neurons as an introduction to the in-depth articles on the current status of cardiac neuronal imaging presented in this supplement. PMID:26033903

  20. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis.

    PubMed

    Huizinga, Ruth; van der Star, Baukje J; Kipp, Markus; Jong, Rosa; Gerritsen, Wouter; Clarner, Tim; Puentes, Fabiola; Dijkstra, Christine D; van der Valk, Paul; Amor, Sandra

    2012-03-01

    Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating or damaged axons is unclear. Phagocytosis is essential for clearing neuronal debris to allow repair and regeneration. However, phagocytosis may lead to antigen presentation and autoimmunity, as has been described for neuroaxonal antigens. Despite this notion, it is unknown whether phagocytosis of neuronal antigens occurs in MS. Here, we show using novel, well-characterized antibodies to axonal antigens, that axonal damage is associated with HLA-DR expressing microglia/macrophages engulfing axonal bulbs, indicative of axonal damage. Neuronal proteins were frequently observed inside HLA-DR(+) cells in areas of axonal damage. In vitro, phagocytosis of neurofilament light (NF-L), present in white and gray matter, was observed in human microglia. The number of NF-L or myelin basic protein (MBP) positive cells was quantified using the mouse macrophage cell line J774.2. Intracellular colocalization of NF-L with the lysosomal membrane protein LAMP1 was observed using confocal microscopy confirming that NF-L is taken up and degraded by the cell. In vivo, NF-L and MBP was observed in cerebrospinal fluid cells from patients with MS, suggesting neuronal debris is drained by this route after axonal damage. In summary, neuroaxonal debris is engulfed, phagocytosed, and degraded by HLA-DR(+) cells. Although uptake is essential for clearing neuronal debris, phagocytic cells could also play a role in augmenting autoimmunity to neuronal antigens.