NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
2011-08-04
AND MULTI-BODY DYNAMICS Jayakumar , Smith, Ross, Jategaonkar, Konarzewski 4 August 2011 UNCLASSIFIED: Distribution Statement A. Approved for public...Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Cannot neglect vehicle dynamics 4 August 2011 3 UNCLASSIFIED Importance of Simulation Fidelity • Performance evaluation requires entire system
Animation of multi-flexible body systems and its use in control system design
NASA Technical Reports Server (NTRS)
Juengst, Carl; Stahlberg, Ron
1993-01-01
Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.
NASA Astrophysics Data System (ADS)
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.
Design of multi-body Lambert type orbits with specified departure and arrival positions
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Kawaguchi, Jun'ichiro; Matsuo, Hiroki
1991-10-01
A new procedure for designing a multi-body Lambert type orbit comprising a multiple swingby process is developed, aiming at relieving a numerical difficulty inherent to a highly nonlinear swingby mechanism. The proposed algorithm, Recursive Multi-Step Linearization, first divides a whole orbit into several trajectory segments. Then, with a maximum use of piecewised transition matrices, a segmentized orbit is repeatedly upgraded until an approximated orbit initially based on a patched conics method eventually converges. In application to the four body earth-moon system with sun's gravitation, one of the double lunar swingby orbits including 12 lunar swingbys is successfully designed without any velocity mismatch.
Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira
2017-01-01
Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies. PMID:28772974
Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira
2017-06-03
Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.
Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, W.; He, G.; Long, T.; Ni, Y.
2018-04-01
Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.
Integration of car-body flexibility into train-track coupling system dynamics analysis
NASA Astrophysics Data System (ADS)
Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong
2018-04-01
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels
2011-08-07
Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm(3) of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.
NASA Technical Reports Server (NTRS)
Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)
2003-01-01
A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
2011-08-01
VEHICLE IN AN OFF-ROAD SCENARIO USING INTEGRATED SENSOR, CONTROLLER, AND MULTI-BODY DYNAMICS Paramsothy Jayakumar , PhD William Smith US Army...environment for a control system, mechanical system dynamics , and sensor simulation for an improved assessment of the vehicle system performance...improve vehicle dynamic performance; we must also evaluate and improve the sensor suite employed on the vehicle, and the controller used to operate
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inclusion bodies of the multi-nuclear... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. The microbial pest control agent inclusion bodies of the multi-nuclear...
Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin
2018-01-13
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.
Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin
2018-01-01
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850
Development of multi-dimensional body image scale for malaysian female adolescents
Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371
Development of multi-dimensional body image scale for malaysian female adolescents.
Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.
Böhnke, Frank; Bretan, Theodor; Lehner, Stefan; Strenger, Tobias
2013-10-22
The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.
Accuracy comparison in mapping water bodies using Landsat images and Google Earth Images
NASA Astrophysics Data System (ADS)
Zhou, Z.; Zhou, X.
2016-12-01
A lot of research has been done for the extraction of water bodies with multiple satellite images. The Water Indexes with the use of multi-spectral images are the mostly used methods for the water bodies' extraction. In order to extract area of water bodies from satellite images, accuracy may depend on the spatial resolution of images and relative size of the water bodies. To quantify the impact of spatial resolution and size (major and minor lengths) of the water bodies on the accuracy of water area extraction, we use Georgetown Lake, Montana and coalbed methane (CBM) water retention ponds in the Montana Powder River Basin as test sites to evaluate the impact of spatial resolution and the size of water bodies on water area extraction. Data sources used include Landsat images and Google Earth images covering both large water bodies and small ponds. Firstly we used water indices to extract water coverage from Landsat images for both large lake and small ponds. Secondly we used a newly developed visible-index method to extract water coverage from Google Earth images covering both large lake and small ponds. Thirdly, we used the image fusion method in which the Google Earth Images are fused with multi-spectral Landsat images to obtain multi-spectral images of the same high spatial resolution as the Google earth images. The actual area of the lake and ponds are measured using GPS surveys. Results will be compared and the optimal method will be selected for water body extraction.
Water requirements of canine athletes during multi-day exercise.
Stephens-Brown, Lara; Davis, Michael
2018-03-23
Exercise increases water requirements, but there is little information regarding water loss in dogs performing multi-day exercise OBJECTIVES: Quantify the daily water turnover of working dogs during multi-day exercise and establish the suitability of SC administration of tracer to determine water turnover. Fifteen privately owned Labrador retrievers trained for explosive detection duties and 16 privately owned Alaskan Huskies conditioned for mid-distance racing. All dogs received 0.3 g D 2 O/kg body weight by IV infusion, gavage, or SC injection before the start of a multi-day exercise challenge. Explosive detection dogs conducted 5 days of simulated off-leash explosive detection activity. Alaskan sled dogs completed a mid-distance stage race totaling 222 km in 2 days. Total body water (TBW) and daily water turnover were calculated using both indicator dilution and elimination regression techniques. Total body water (% of body weight) varied from 60% ± 8.6% in minimally conditioned Labrador retrievers to 74% ± 4.5% in highly conditioned Labrador retrievers. Daily water turnover was as high as 45% of TBW during exercise in cold conditions. There was no effect of sex or speed on daily water turnover. There was good agreement between results calculated using the indicator dilution approach and those calculated using a semilog linear regression approach when indicator isotope was administered IV or SC. Water requirements are influenced primarily by the amount of work done. SC administration of isotope-labeled water offers a simple and accurate alternative method for metabolic studies. © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-09-01
Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Kottner, Sören; Ebert, Lars C; Ampanozi, Garyfalia; Braun, Marcel; Thali, Michael J; Gascho, Dominic
2017-03-01
Injuries such as bite marks or boot prints can leave distinct patterns on the body's surface and can be used for 3D reconstructions. Although various systems for 3D surface imaging have been introduced in the forensic field, most techniques are both cost-intensive and time-consuming. In this article, we present the VirtoScan, a mobile, multi-camera rig based on close-range photogrammetry. The system can be integrated into automated PMCT scanning procedures or used manually together with lifting carts, autopsy tables and examination couch. The VirtoScan is based on a moveable frame that carries 7 digital single-lens reflex cameras. A remote control is attached to each camera and allows the simultaneous triggering of the shutter release of all cameras. Data acquisition in combination with the PMCT scanning procedures took 3:34 min for the 3D surface documentation of one side of the body compared to 20:20 min of acquisition time when using our in-house standard. A surface model comparison between the high resolution output from our in-house standard and a high resolution model from the multi-camera rig showed a mean surface deviation of 0.36 mm for the whole body scan and 0.13 mm for a second comparison of a detailed section of the scan. The use of the multi-camera rig reduces the acquisition time for whole-body surface documentations in medico-legal examinations and provides a low-cost 3D surface scanning alternative for forensic investigations.
Scaling of plasma-body interactions in low Earth orbit
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2017-04-01
This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.
NASA Astrophysics Data System (ADS)
Fu, Yao; Song, Jeong-Hoon
2014-08-01
Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect's 3D body point's time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point's time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point's time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters' walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman's bias and limits of agreement. Body point's time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point's time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner.
Geerse, Daphne J.; Coolen, Bert H.; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect’s 3D body point’s time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point’s time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point’s time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters’ walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias and limits of agreement. Body point’s time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point’s time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner. PMID:26461498
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
Multi-Party, Whole-Body Interactions in Mathematical Activity
ERIC Educational Resources Information Center
Ma, Jasmine Y.
2017-01-01
This study interrogates the contributions of multi-party, whole-body interactions to students' collaboration and negotiation of mathematics ideas in a task setting called walking scale geometry, where bodies in interaction became complex resources for students' emerging goals in problem solving. Whole bodies took up overlapping roles representing…
Morfeld, Kari A; Meehan, Cheryl L; Hogan, Jennifer N; Brown, Janine L
2016-01-01
Obesity has a negative effect on health and welfare of many species, and has been speculated to be a problem for zoo elephants. To address this concern, we assessed the body condition of 240 elephants housed in North American zoos based on a set of standardized photographs using a 5-point Body Condition Score index (1 = thinnest; 5 = fattest). A multi-variable regression analysis was then used to determine how demographic, management, housing, and social factors were associated with an elevated body condition score in 132 African (Loxodonta africana) and 108 Asian (Elephas maximus) elephants. The highest BCS of 5, suggestive of obesity, was observed in 34% of zoo elephants. In both species, the majority of elephants had elevated BCS, with 74% in the BCS 4 (40%) and 5 (34%) categories. Only 22% of elephants had BCS 3, and less than 5% of the population was assigned the lowest BCS categories (BCS 1 and 2). The strongest multi-variable model demonstrated that staff-directed walking exercise of 14 hours or more per week and highly unpredictable feeding schedules were associated with decreased risk of BCS 4 or 5, while increased diversity in feeding methods and being female was associated with increased risk of BCS 4 or 5. Our data suggest that high body condition is prevalent among North American zoo elephants, and management strategies that help prevent and mitigate obesity may lead to improvements in welfare of zoo elephants.
Morfeld, Kari A.; Meehan, Cheryl L.; Hogan, Jennifer N.; Brown, Janine L.
2016-01-01
Obesity has a negative effect on health and welfare of many species, and has been speculated to be a problem for zoo elephants. To address this concern, we assessed the body condition of 240 elephants housed in North American zoos based on a set of standardized photographs using a 5-point Body Condition Score index (1 = thinnest; 5 = fattest). A multi-variable regression analysis was then used to determine how demographic, management, housing, and social factors were associated with an elevated body condition score in 132 African (Loxodonta africana) and 108 Asian (Elephas maximus) elephants. The highest BCS of 5, suggestive of obesity, was observed in 34% of zoo elephants. In both species, the majority of elephants had elevated BCS, with 74% in the BCS 4 (40%) and 5 (34%) categories. Only 22% of elephants had BCS 3, and less than 5% of the population was assigned the lowest BCS categories (BCS 1 and 2). The strongest multi-variable model demonstrated that staff-directed walking exercise of 14 hours or more per week and highly unpredictable feeding schedules were associated with decreased risk of BCS 4 or 5, while increased diversity in feeding methods and being female was associated with increased risk of BCS 4 or 5. Our data suggest that high body condition is prevalent among North American zoo elephants, and management strategies that help prevent and mitigate obesity may lead to improvements in welfare of zoo elephants. PMID:27415629
Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU
NASA Astrophysics Data System (ADS)
Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.
2016-09-01
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.
Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data
Rover, Jennifer R.; Ji, Lei; Wylie, Bruce K.; Tieszen, Larry L.
2012-01-01
An accurate approach is needed for monitoring, quantifying and understanding surface water variability due to climate change. Separating inter- and intra-annual variances from longer-term shifts in surface water extents due to contemporary climate warming requires repeat measurements spanning a several-decade period. Here, we show that trends developed from multi-date measurements of the extents of more than 15,000 water bodies in central Alaska using Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data (1979–2009) were highly influenced by the quantity and timing of the data. Over the 30-year period from 1979 to 2009, the study area had a net decrease (p < 0.05) in the extents of 3.4% of water bodies whereas 86% of water bodies exhibited no significant change. The Landsat-derived dataset provides an opportunity for additional research assessing the drivers of lake and wetland change in this region.
Multi-body modeling method for rollover using MADYMO
NASA Astrophysics Data System (ADS)
Liu, Changye; Lin, Zhigui; Lv, Juncheng; Luo, Qinyue; Qin, Zhenyao; Zhang, Pu; Chen, Tao
2017-04-01
Rollovers are complex road accidents causing a big deal of fatalities. FE model for rollover study will costtoo much time due to its long duration.A new multi-body modeling method is proposed in this paper which can save a lot of time and has high-fidelity meanwhile. Following works were carried out to validate this new method. First, a small van was tested following the FMVSS 208 protocol for the validation of the proposed modeling method. Second, a MADYMO model of this small van was reconstructed. The vehicle body was divided into two main parts, the deformable upper body and the rigid lower body, modeled by different waysbased on an FE model. The specific method of modeling is offered in this paper. Finally, the trajectories of the vehicle from test and simulation were comparedand the match was very good. Acceleration of left B pillar was taken into consideration, which turned out fitting the test result well in the time of event. The final deformation status of the vehicle in test and simulation showed similar trend. This validated model provides a reliable wayfor further research in occupant injuries during rollovers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yao, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu
2014-08-07
Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifiesmore » the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.« less
An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method
NASA Astrophysics Data System (ADS)
Furuya, N.; Sakamoto, K.; Kanai, H.
2010-04-01
It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes
NASA Astrophysics Data System (ADS)
Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele
2018-04-01
We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.
Anthropometric body measurements based on multi-view stereo image reconstruction.
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.
Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700
Small Bodies, Big Concepts: Bringing Visual Analysis into the Middle School Classroom
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Lebofsky, L. A.; Ristvey, J. D.; Buxner, S.; Weeks, S.; Zolensky, M. E.
2012-03-01
Multi-disciplinary PD model digs into high-end planetary science backed by a pedagogical framework, Designing Effective Science Instruction. NASA activities are sequenced to promote visual analysis of emerging data from Discovery Program missions.
Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.
Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado
2014-10-01
Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.
A multinational report of technical factors on stereotactic body radiotherapy for oligometastases.
Redmond, Kristin J; Lo, Simon S; Dagan, Roi; Poon, Ian; Foote, Matthew C; Erler, Darby; Lee, Young; Lohr, Frank; Biswas, Tithi; Ricardi, Umberto; Sahgal, Arjun
2017-05-01
Oligometastatic cancer is being increasingly managed with aggressive local therapy using stereotactic body radiation therapy (SBRT). However, few guidelines exist. We summarize the results of an international survey reviewing technical factors for extracranial SBRT for oligometastatic disease to guide safe management. Seven high-volume centers contributed. Levels of agreement were categorized as strong (6-7 common responses), moderate (4-5), low (2-3) or no agreement. We present the results of a multi-national and multi-institutional survey of technical factors of SBRT for extracranial oligometastases. Key methods including target delineation, prescription doses, normal tissue constraints, imaging and set-up for safe implementation and practice of SBRT for oligometastasis have been identified. This manuscript will serve as a foundation for future clinical evaluations.
Distributed digital signal processors for multi-body flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
Multi-energy spectral CT: adding value in emergency body imaging.
Punjabi, Gopal V
2018-04-01
Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.
Acquisition of Ice-Tethered Profilers with Velocity (ITP-V) Instruments for Future Arctic Studies
2016-11-15
instrument that measures sea water temperature and salinity versus depth, the ITP-V adds a multi-axis acoustic -travel-time current meter and...housing capped by an ultra-high-molecular-weight polyethylene dome. The electronics case sits within a foam body designed to provide buoyancy for...then transmits them by satellite to a logger computer at WHO I. The ITP-V instruments add a multi-axis acoustic -travel-time current meter and
ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Sarah J.; Kratter, Kaitlin M., E-mail: morrison@lpl.arizona.edu, E-mail: kkratter@email.arizona.edu
2016-06-01
In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an ordermore » of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet–star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.« less
Opposing Effects of Expectancy and Somatic Focus on Pain
Wager, Tor D.
2012-01-01
High-pain expectancy increases pain and pain-related brain activity, creating a cycle of psychologically maintained pain. Though these effects are robust, little is known about how expectancy works and what psychological processes either support or mitigate its effects. To address this, we independently manipulated pain expectancy and “top-down” attention to the body, and examined their effects on both a performance-based measure of body-focus and heat-induced pain. Multi-level mediation analyses showed that high-pain expectancy substantially increased pain, replicating previous work. However, attention to the body reduced pain, partially suppressing the effects of expectancy. Furthermore, increased body-focus had larger pain-reducing effects when pain expectancy was high, suggesting that attempts to focus on external distractors are counterproductive in this situation. Overall, the results show that attention to the body cannot explain pain-enhancing expectancy effects, and that focusing on sensory/discriminative aspects of pain might be a useful pain-regulation strategy when severe pain is expected. PMID:22723896
Multi-site recording and spectral analysis of spontaneous photon emission from human body.
Wijk, Eduard P A Van; Wijk, Roeland Van
2005-04-01
In the past years, research on ultraweak photon emission (UPE) from human body has increased for isolated cells and tissues. However, there are only limited data on UPE from the whole body, in particular from the hands. To describe a protocol for the management of subjects that (1) avoids interference with light-induced longterm delayed luminescence, and (2) includes the time slots for recording photon emission. The protocol was utilised for multi-site recording of 4 subjects at different times of the day and different seasons, and for one subject to complete spectral analysis of emission from different body locations. An especially selected low-noise end-window photomultiplier was utilised for the detection of ultraviolet / visible light (200-650 nm) photon emission. For multi-site recording it was manipulated in three directions in a darkroom with a very low count rate. A series of cut-off filters was used for spectral analysis of UPE. 29 body sites were selected such that the distribution in UPE could be studied as right-left symmetry, dorsal-ventral symmetry, and the ratio between the central body part and extremities. Generally, the fluctuation in photon counts over the body was lower in the morning than in the afternoon. The thorax-abdomen region emitted lowest and most constantly. The upper extremities and the head region emitted most and increasingly over the day. Spectral analysis of low, intermediate and high emission from the superior frontal part of the right leg, the forehead and the palms in the sensitivity range of the photomultiplier showed the major spontaneous emission at 470-570 nm. The central palm area of hand emission showed a larger contribution of the 420-470 nm range in the spectrum of spontaneous emission from the hand in autumn/winter. The spectrum of delayed luminescence from the hand showed major emission in the same range as spontaneous emission. Examples of multi-site UPE recordings and spectral analysis revealed individual patterns and dynamics of spontaneous UPE over the body, and spectral differences over the body. The spectral data suggest that measurements might well provide quantitative data on the individual pattern of peroxidative and anti-oxidative processes in vivo. We expect that the measurements provide physiological information that can be useful in clinical examination.
NASA Technical Reports Server (NTRS)
Yew, Alvin G.; Chai, Dean J.; Olney, David J.
2010-01-01
The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.
2008-01-01
various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be
MacVittie, Thomas J; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M
2012-10-01
The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min(-1) to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for efficacy and interaction during the concomitant evolution of acute and delayed key organ-specific subsyndromes.
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
Multi-Body Analysis of the 1/5 Scale Wind Tunnel Model of the V-22 Tiltrotor
NASA Technical Reports Server (NTRS)
Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.
1999-01-01
The paper presents a multi-body analysis of the 1/5 scale wind tunnel model of the V-22 tiltrotor, the Wing and Rotor Aeroelastic Testing System (WRATS), currently tested at NASA Langley Research Center. An original multi-body formulation has been developed at the Dipartimento di Ingegneria Aerospaziale of the Politecnico di Milano, Italy. It is based on the direct writing of the equilibrium equations of independent rigid bodies, connected by kinematic constraints that result in the addition of algebraic constraint equations, and by dynamic constraints, that directly contribute to the equilibrium equations. The formulation has been extended to the simultaneous solution of interdisciplinary problems by modeling electric and hydraulic networks, for aeroservoelastic problems. The code has been tailored to the modeling of rotorcrafts while preserving a complete generality. A family of aerodynamic elements has been introduced to model high aspect aerodynamic surfaces, based on the strip theory, with quasi-steady aerodynamic coefficients, compressibility, post-stall interpolation of experimental data, dynamic stall modeling, and radial flow drag. Different models for the induced velocity of the rotor can be used, from uniform velocity to dynamic in flow. A complete dynamic and aeroelastic analysis of the model of the V-22 tiltrotor has been performed, to assess the validity of the formulation and to exploit the unique features of multi-body analysis with respect to conventional comprehensive rotorcraft codes; These are the ability to model the exact kinematics of mechanical systems, and the possibility to simulate unusual maneuvers and unusual flight conditions, that are particular to the tiltrotor, e.g. the conversion maneuver. A complete modal validation of the analytical model has been performed, to assess the ability to reproduce the correct dynamics of the system with a relatively coarse beam model of the semispan wing, pylon and rotor. Particular care has been used to model the kinematics of the gimbal joint, that characterizes the rotor hub, and of the control system, consisting in the entire swashplate mechanism. The kinematics of the fixed and the rotating plates have been modeled, with variable length control links used to input the controls, the rotating flexible links, the pitch horns and the pitch bearings. The investigations took advantage of concurring wind tunnel test runs, that were performed in August 1998, and allowed the acquisition of data specific to the multi-body analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trędak, Przemysław, E-mail: przemyslaw.tredak@fuw.edu.pl; Rudnicki, Witold R.; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPUmore » to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.« less
Body position alters human resting-state: Insights from multi-postural magnetoencephalography.
Thibault, Robert T; Lifshitz, Michael; Raz, Amir
2016-09-01
Neuroimaging researchers tacitly assume that body-position scantily affects neural activity. However, whereas participants in most psychological experiments sit upright, many modern neuroimaging techniques (e.g., fMRI) require participants to lie supine. Sparse findings from electroencephalography and positron emission tomography suggest that body position influences cognitive processes and neural activity. Here we leverage multi-postural magnetoencephalography (MEG) to further unravel how physical stance alters baseline brain activity. We present resting-state MEG data from 12 healthy participants in three orthostatic conditions (i.e., lying supine, reclined at 45°, and sitting upright). Our findings demonstrate that upright, compared to reclined or supine, posture increases left-hemisphere high-frequency oscillatory activity over common speech areas. This proof-of-concept experiment establishes the feasibility of using MEG to examine the influence of posture on brain dynamics. We highlight the advantages and methodological challenges inherent to this approach and lay the foundation for future studies to further investigate this important, albeit little-acknowledged, procedural caveat.
Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Hotchko, Nathaniel J.; Samareh, Jamshid; Covell, Peter F.; Tartabini, Paul V.
2006-01-01
The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data.
An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-06-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Rapid space trajectory generation using a Fourier series shape-based approach
NASA Astrophysics Data System (ADS)
Taheri, Ehsan
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipments. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.
Experimental Study of RF Energy Transfer System in Indoor Environment
NASA Astrophysics Data System (ADS)
Adami, S.-E.; Proynov, P. P.; Stark, B. H.; Hilton, G. S.; Craddock, I. J.
2014-11-01
This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor.
NASA Astrophysics Data System (ADS)
Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui
2007-11-01
Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.
Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments
2017-12-01
BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS by Adam L. Atwood December 2017 Thesis Advisor: Mark Karpenko Second...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FLEXIBLE MULTI-BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS 5...spacecraft simulator for use in testing optimal control-based slew and maneuver designs . The simulator is modified from an earlier prototype, which
A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
2011-01-01
Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191
Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo
2018-05-03
Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
Trajectory Design Tools for Libration and Cis-Lunar Environments
NASA Technical Reports Server (NTRS)
Folta, David C.; Webster, Cassandra M.; Bosanac, Natasha; Cox, Andrew; Guzzetti, Davide; Howell, Kathleen C.
2016-01-01
Innovative trajectory design tools are required to support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration of propulsion influences. Two distinctive tools, Adaptive Trajectory Design and the General Mission Analysis Tool have been developed and certified to provide the astrodynamics community with the ability to design multi-body trajectories. In this paper we discuss the multi-body design process and the capabilities of both tools. Demonstrable applications to confirmed missions, the Lunar IceCube Cubesat lunar mission and the Wide-Field Infrared Survey Telescope (WFIRST) Sun-Earth L2 mission, are presented.
2013-01-01
Background Daily pain and multi-site pain are both associated with reduction in work ability and health-related quality of life (HRQoL) among adults. However, no population-based studies have yet investigated the prevalence of daily and multi-site pain among adolescents and how these are associated with respondent characteristics. The purpose of this study was to investigate the prevalence of self-reported daily and multi-site pain among adolescents aged 12–19 years and associations of almost daily pain and multi-site pain with respondent characteristics (sex, age, body mass index, HRQoL and sports participation). Methods A population-based cross-sectional study was conducted among 4,007 adolescents aged 12–19 years in Denmark. Adolescents answered an online questionnaire during physical education lessons. The questionnaire contained a mannequin divided into 12 regions on which the respondents indicated their current pain sites and pain frequency (rarely, monthly, weekly, more than once per week, almost daily pain), characteristics, sports participation and HRQoL measured by the EuroQoL 5D. Multivariate regression was used to calculate the odds ratio for the association between almost daily pain, multi-site pain and respondent characteristics. Results The response rate was 73.7%. A total of 2,953 adolescents (62% females) answered the questionnaire. 33.3% reported multi-site pain (pain in >1 region) while 19.8% reported almost daily pain. 61% reported current pain in at least one region with knee and back pain being the most common sites. Female sex (OR: 1.35-1.44) and a high level of sports participation (OR: 1.51-2.09) were associated with increased odds of having almost daily pain and multi-site pain. Better EQ-5D score was associated with decreased odds of having almost daily pain or multi-site pain (OR: 0.92-0.94). Conclusion In this population-based cohort of school-attending Danish adolescents, nearly two out of three reported current pain and, on average, one out of three reported pain in more than one body region. Female sex, and high level of sports participation were associated with increased odds of having almost daily pain and multi-site pain. The study highlights an important health issue that calls for investigations to improve our understanding of adolescent pain and our capacity to prevent and treat this condition. PMID:24252440
NASA Technical Reports Server (NTRS)
Kwak, Moon K.; Meirovitch, Leonard
1991-01-01
Interest lies in a mathematical formulation capable of accommodating the problem of maneuvering a space structure consisting of a chain of articulated flexible substructures. Simultaneously, any perturbations from the 'rigid body' maneuvering and any elastic vibration must be suppressed. The equations of motion for flexible bodies undergoing rigid body motions and elastic vibrations can be obtained conveniently by means of Lagrange's equations in terms of quasi-coordinates. The advantage of this approach is that it yields equations in terms of body axes, which are the same axes that are used to express the control forces and torques. The equations of motion are nonlinear hybrid differential quations. The partial differential equations can be discretized (in space) by means of the finite element method or the classical Rayleigh-Ritz method. The result is a set of nonlinear ordinary differential equations of high order. The nonlinearity can be traced to the rigid body motions and the high order to the elastic vibration. Elastic motions tend to be small when compared with rigid body motions.
Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; McHugo, Maureen; Heckers, Stephan; Landman, Bennett A.
2017-02-01
Known for its distinct role in memory, the hippocampus is one of the most studied regions of the brain. Recent advances in magnetic resonance imaging have allowed for high-contrast, reproducible imaging of the hippocampus. Typically, a trained rater takes 45 minutes to manually trace the hippocampus and delineate the anterior from the posterior segment at millimeter resolution. As a result, there has been a significant desire for automated and robust segmentation of the hippocampus. In this work we use a population of 195 atlases based on T1-weighted MR images with the left and right hippocampus delineated into the head and body. We initialize the multi-atlas segmentation to a region directly around each lateralized hippocampus to both speed up and improve the accuracy of registration. This initialization allows for incorporation of nearly 200 atlases, an accomplishment which would typically involve hundreds of hours of computation per target image. The proposed segmentation results in a Dice similiarity coefficient over 0.9 for the full hippocampus. This result outperforms a multi-atlas segmentation using the BrainCOLOR atlases (Dice 0.85) and FreeSurfer (Dice 0.75). Furthermore, the head and body delineation resulted in a Dice coefficient over 0.87 for both structures. The head and body volume measurements also show high reproducibility on the Kirby 21 reproducibility population (R2 greater than 0.95, p < 0.05 for all structures). This work signifies the first result in an ongoing work to develop a robust tool for measurement of the hippocampus and other temporal lobe structures.
Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph S; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried
2010-01-01
Analogous to the evolution of biological sensor-systems, the progress in "medical sensor-systems", i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.
Clements, Julie; Sanchez, Jessica N
2015-11-01
This research aims to validate a novel, visual body scoring system created for the Magellanic penguin (Spheniscus magellanicus) suitable for the zoo practitioner. Magellanics go through marked seasonal fluctuations in body mass gains and losses. A standardized multi-variable visual body condition guide may provide a more sensitive and objective assessment tool compared to the previously used single variable method. Accurate body condition scores paired with seasonal weight variation measurements give veterinary and keeper staff a clearer understanding of an individual's nutritional status. San Francisco Zoo staff previously used a nine-point body condition scale based on the classic bird standard of a single point of keel palpation with the bird restrained in hand, with no standard measure of reference assigned to each scoring category. We created a novel, visual body condition scoring system that does not require restraint to assesses subcutaneous fat and muscle at seven body landmarks using illustrations and descriptive terms. The scores range from one, the least robust or under-conditioned, to five, the most robust, or over-conditioned. The ratio of body weight to wing length was used as a "gold standard" index of body condition and compared to both the novel multi-variable and previously used single-variable body condition scores. The novel multi-variable scale showed improved agreement with weight:wing ratio compared to the single-variable scale, demonstrating greater accuracy, and reliability when a trained assessor uses the multi-variable body condition scoring system. Zoo staff may use this tool to manage both the colony and the individual to assist in seasonally appropriate Magellanic penguin nutrition assessment. © 2015 Wiley Periodicals, Inc.
Gant, Katie L; Nagle, Kathleen G; Cowan, Rachel E; Field-Fote, Edelle C; Nash, Mark S; Kressler, Jochen; Thomas, Christine K; Castellanos, Mabelin; Widerström-Noga, Eva; Anderson, Kimberly D
2018-02-01
The safety and efficacy of pharmacological and cellular transplantation strategies are currently being evaluated in people with spinal cord injury (SCI). In studies of people with chronic SCIs, it is thought that functional recovery will be best achieved when drug or cell therapies are combined with rehabilitation protocols. However, any functional recovery attributed to the therapy may be confounded by the conditioned state of the body and by training-induced effects on neuroplasticity. For this reason, we sought to investigate the effects of a multi-modal training program on several body systems. The training program included body-weight-supported treadmill training for locomotion, circuit resistance training for upper body conditioning, functional electrical stimulation for activation of sublesional muscles, and wheelchair skills training for overall mobility. Eight participants with chronic, thoracic-level, motor-complete SCI completed the 12-week training program. After 12 weeks, upper extremity muscular strength improved significantly for all participants, and some participants experienced improvements in function, which may be explained by increased strength. Neurological function did not change. Changes in pain and spasticity were highly variable between participants. This is the first demonstration of the effect of this combination of four training modalities. However, balancing participant and study-site burden with capturing meaningful outcome measures is also an important consideration.
High efficiency photovoltaic device
Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang
1999-11-02
An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.
Investigation on pitch system loads by means of an integral multi body simulation approach
NASA Astrophysics Data System (ADS)
Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.
2016-09-01
In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.
Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields
NASA Astrophysics Data System (ADS)
Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.
2017-09-01
A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.
An extraction algorithm of pulmonary fissures from multislice CT image
NASA Astrophysics Data System (ADS)
Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki
2005-04-01
Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.
Cellular Response to the high protein digestibility/high-Lysine (hdhl) sorghum mutation.
Benmoussa, Mustapha; Chandrashekar, Arun; Ejeta, Gebisa; Hamaker, Bruce R
2015-12-01
A high protein digestibility/high-lysine mutant P721Q (hdhl) with a multi-folded protein body morphology has been developed, with a 22kDa α-kafirin single point mutation having also been recently identified. Relatively little is known regarding the resulting cellular response in hdhl endosperm. The aim is to elucidate these biochemical changes. Two-dimentional gel electrophoresis showed an apparent increase of non-kafirin and a decrease in kafirins content in hdhl endosperm. Mass spectrometry data yielded the identity of differentially expressed non-kafirin proteins in hdhl, wild-type lines such as cytoskeleton and chaperones proteins, and also others involved in amino acids and carbohydrates biochemical synthesis pathways. Western blot analysis showed that chaperone proteins were more highly expressed in the hdhl than the wild-type sorghum and confirmed the non-kafirin proteins proteomic results. Two-dimentional gel electrophoresis showed that the γ-kafirin subunits content had decreased, and the 22kDa α-kafirin subunit was increased in hdhl without any apparent molecular mass change. The observed differential expression most likely led to proteins interactions between γ- and α-kafirin subunits in particular, which resulted in a kafirins packing differently to form the protein body's multi-folded morphology, while also improving its digestibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
On the calculation of dynamic and heat loads on a three-dimensional body in a hypersonic flow
NASA Astrophysics Data System (ADS)
Bocharov, A. N.; Bityurin, V. A.; Evstigneev, N. M.; Fortov, V. E.; Golovin, N. N.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.
2018-01-01
We consider a three-dimensional body in a hypersonic flow at zero angle of attack. Our aim is to estimate heat and aerodynamic loads on specific body elements. We are considering a previously developed code to solve coupled heat- and mass-transfer problem. The change of the surface shape is taken into account by formation of the iterative process for the wall material ablation. The solution is conducted on the multi-graphics-processing-unit (multi-GPU) cluster. Five Mach number points are considered, namely for M = 20-28. For each point we estimate body shape after surface ablation, heat loads on the surface and aerodynamic loads on the whole body and its elements. The latter is done using Gauss-type quadrature on the surface of the body. The comparison of the results for different Mach numbers is performed. We also estimate the efficiency of the Navier-Stokes code on multi-GPU and central processing unit architecture for the coupled heat and mass transfer problem.
Shrestha, Bhushan; Han, Sang-Kuk; Sung, Jae-Mo
2012-01-01
Interest in commercial cultivation and product development of Cordyceps species has shown a recent increase. Due to its biochemical and pharmacological effects, Cordyceps militaris, commonly known as orange caterpillar fungus, is being investigated with great interest. Cultivation of C. militaris has been practiced on a large scale in order to fulfill a demand for scientific investigation and product development. Isolates of C. militaris can be easily established from both spores and tissue. For isolation of spores, ascospores released from mature stromata are trapped in sterile medium. Multi-ascospore isolates, as well as combinations of single ascospore strains, are used for production of fruiting bodies. Progeny ascospore strains can be isolated from artificial fruiting bodies, thus, the cycle of fruiting body production can be continued for a long period of time. In this study, we examined fruiting body production from multi-ascospore isolates and their progeny strains for three generations. F1 progeny strains generally produced a larger number of fruiting bodies, compared with their mother multi-ascospore isolates; however, F2 and F3 progeny strains produced fewer fruiting bodies. Optimum preservation conditions could help to increase the vitality of the progeny strains. In order to retain the fruiting ability of the strains, further testing of various methods of preservation and different methods for isolation should be performed. PMID:22870051
Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components
NASA Astrophysics Data System (ADS)
Dong, Z. H.; Ye, X.; Yang, F.
2018-05-01
Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2013-04-01
Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.
Numerical simulation of active track tensioning system for autonomous hybrid vehicle
NASA Astrophysics Data System (ADS)
Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel
2017-05-01
One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.
Performance of Ultra Wideband On-Body Communication Based on Statistical Channel Model
NASA Astrophysics Data System (ADS)
Wang, Qiong; Wang, Jianqing
Ultra wideband (UWB) on-body communication is attracting much attention in biomedical applications. In this paper, the performance of UWB on-body communication is investigated based on a statistically extracted on-body channel model, which provides detailed characteristics of the multi-path-affected channel with an emphasis on various body postures or body movement. The possible data rate, the possible communication distance, as well as the bit error rate (BER) performance are clarified via computer simulation. It is found that the conventional correlation receiver is incompetent in the multi-path-affected on-body channel, while the RAKE receiver outperforms the conventional correlation receiver at a cost of structure complexity. Different RAKE receiver structures are compared to show the improvement of the BER performance.
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-04-01
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein equations in terms of bars. We find that each multi-pole corresponds to the Newtonian potential of a bar with linear density proportional to a Legendre polynomial. We use this fact to find an integral representation of the 0264-9381/16/4/010/img1 function. These integral representations are used in the context of the inverse scattering method to find solutions associated with one or more rotating bodies each with their own multi-polar structure.
System Theory Aspects of Multi-Body Dynamics.
1978-08-18
systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)
Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.
System properties, feedback control and effector coordination of human temperature regulation.
Werner, Jürgen
2010-05-01
The aim of human temperature regulation is to protect body processes by establishing a relative constancy of deep body temperature (regulated variable), in spite of external and internal influences on it. This is basically achieved by a distributed multi-sensor, multi-processor, multi-effector proportional feedback control system. The paper explains why proportional control implies inherent deviations of the regulated variable from the value in the thermoneutral zone. The concept of feedback of the thermal state of the body, conveniently represented by a high-weighted core temperature (T (c)) and low-weighted peripheral temperatures (T (s)) is equivalent to the control concept of "auxiliary feedback control", using a main (regulated) variable (T (c)), supported by an auxiliary variable (T (s)). This concept implies neither regulation of T (s) nor feedforward control. Steady-states result in the closed control-loop, when the open-loop properties of the (heat transfer) process are compatible with those of the thermoregulatory processors. They are called operating points or balance points and are achieved due to the inherent property of dynamical stability of the thermoregulatory feedback loop. No set-point and no comparison of signals (e.g. actual-set value) are necessary. Metabolic heat production and sweat production, though receiving the same information about the thermal state of the body, are independent effectors with different thresholds and gains. Coordination between one of these effectors and the vasomotor effector is achieved by the fact that changes in the (heat transfer) process evoked by vasomotor control are taken into account by the metabolic/sweat processor.
Self-contained, low-cost Body-on-a-Chip systems for drug development.
Wang, Ying I; Oleaga, Carlota; Long, Christopher J; Esch, Mandy B; McAleer, Christopher W; Miller, Paula G; Hickman, James J; Shuler, Michael L
2017-11-01
Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.
Predicting Instability Timescales in Closely-Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen
2018-04-01
Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.
[Multi-month dynamics of the functional condition of organism of normal male northeners of Russia].
Solonin, Iu G; Markov, A L; Boĭko, E R
2012-01-01
In conjunction with the Mars-500 project, 17 male residents (25-46 y.o.) of the North of Russia (62 degrees 40'N) were examined monthly using hard- and software EKOSAN-2007. In the period of June, 2010 through to November, 2011 they visited a standard laboratory to go through comprehensive anthropophysiometric, psychophysiological and physiological investigations at rest and combined with exercise, standing and cold tests aimed at tracking the seasonal responses of the body functional parameters. The larger part of group-average psychomotor, breathing and circulation measurements as well as heart rate variability did not exhibit statistically significant differences between months or seasons. Reliable seasonal variations were documented in the life index, body and cutaneous temperature, myocardium index and regulatory systems activity. A correlation between environmental and some body functional parameters was established. In the course of the multi-month monitoring there were periods when essentially healthy people were diagnosed as prenosologic and even premorbid. Some findings in the functioning of male northerner's organism are clearly attributable to living in the high-altitude area.
Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph. S.; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried
2010-01-01
Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given. PMID:22219684
Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT
Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.
2012-01-01
Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross-sectional mouse data. PMID:23152834
Body Awareness: Construct and Self-Report Measures
Mehling, Wolf E.; Gopisetty, Viranjini; Daubenmier, Jennifer; Price, Cynthia J.; Hecht, Frederick M.; Stewart, Anita
2009-01-01
Objectives Heightened body awareness can be adaptive and maladaptive. Improving body awareness has been suggested as an approach for treating patients with conditions such as chronic pain, obesity and post-traumatic stress disorder. We assessed the psychometric quality of selected self-report measures and examined their items for underlying definitions of the construct. Data sources PubMed, PsychINFO, HaPI, Embase, Digital Dissertations Database. Review methods Abstracts were screened; potentially relevant instruments were obtained and systematically reviewed. Instruments were excluded if they exclusively measured anxiety, covered emotions without related physical sensations, used observer ratings only, or were unobtainable. We restricted our study to the proprioceptive and interoceptive channels of body awareness. The psychometric properties of each scale were rated using a structured evaluation according to the method of McDowell. Following a working definition of the multi-dimensional construct, an inter-disciplinary team systematically examined the items of existing body awareness instruments, identified the dimensions queried and used an iterative qualitative process to refine the dimensions of the construct. Results From 1,825 abstracts, 39 instruments were screened. 12 were included for psychometric evaluation. Only two were rated as high standard for reliability, four for validity. Four domains of body awareness with 11 sub-domains emerged. Neither a single nor a compilation of several instruments covered all dimensions. Key domains that might potentially differentiate adaptive and maladaptive aspects of body awareness were missing in the reviewed instruments. Conclusion Existing self-report instruments do not address important domains of the construct of body awareness, are unable to discern between adaptive and maladaptive aspects of body awareness, or exhibit other psychometric limitations. Restricting the construct to its proprio- and interoceptive channels, we explore the current understanding of the multi-dimensional construct and suggest next steps for further research. PMID:19440300
NASA Astrophysics Data System (ADS)
Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang
2018-03-01
Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.
FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks
Kopta, Vladimir; Farserotu, John; Enz, Christian
2017-01-01
The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248
NASA Astrophysics Data System (ADS)
Sasaki, Taro; Endoh, Tetsuo
2018-04-01
In this paper, from the viewpoint of cell size and sensing margin, the impact of a novel cross-point-type one transistor and one magnetic tunnel junction (1T–1MTJ) spin-transfer-torque magnetoresistive random access memory (STT-MRAM) cell with a multi-pillar vertical body channel (BC) MOSFET is shown for high density and wide sensing margin STT-MRAM, with a 10 ns writing period and 1.2 V V DD. For that purpose, all combinations of n/p-type MOSFETs and bottom/top-pin MTJs are compared, where the diameter of MTJ (D MTJ) is scaled down from 55 to 15 nm and the tunnel magnetoresistance (TMR) ratio is increased from 100 to 200%. The results show that, benefiting from the proposed STT-MRAM cell with no back bias effect, the MTJ with a high TMR ratio (200%) can be used in the design of smaller STT-MRAM cells (over 72.6% cell size reduction), which is a difficult task for conventional planar MOSFET based design.
Heterothallic Type of Mating System for Cordyceps cardinalis
Sung, Gi-Ho; Shrestha, Bhushan; Han, Sang-Kuk; Kim, Soo-Young
2010-01-01
Cordyceps cardinalis successfully produced its fruiting bodies from multi-ascospore isolates. However, subcultures of multi-ascospore isolates could not produce fruiting bodies after few generations. Fruiting body production also differed from sector to sector of the same isolate. Single ascospore isolates were then co-inoculated in combinations of two to observe the fruiting characteristics. Combinations of certain isolates produced perithecial stromata formation, whereas other combinations did not produce any fruiting bodies. These results show that C. cardinalis is a heterothallic fungus, requiring two isolates of opposite mating types for fruiting body production. It was also shown that single ascospore isolates are hermaphrodites. PMID:23956667
Integrated and Multi-Function Navigation (Les Systemes de Navigation Integres Multifunctions)
1992-11-01
assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field. The...SARMCS is aimed at the motion compensation of experience in the development and applications radar returns to achieve high resolution, high of Integrated...development project such as the essentially the same technology and utilize Synthetic Aperture Radar Motion Compensation similar sensors, the mission
Epidemiology of moderate-to-severe injury patterns observed in rollover crashes.
McMurry, Timothy L; Bose, Dipan; Ridella, Stephen A; Eigen, Ana M; Crandall, Jeff R; Kerrigan, Jason R
2016-05-01
Previous epidemiological studies have highlighted the high risk of injury to the head, thorax, and cervical spine in rollover crashes. However, such results provide limited information on whole-body injury distribution and multiple region injury patterns necessary for the improvement and prioritization of rollover-focused injury countermeasures. Sampled cases representing approximately 133,000 U.S. adult occupants involved in rollover crashes (between 1995 and 2013) sustaining moderate-to-severe injuries were selected from the National Automotive Sampling System Crashworthiness Data System database. A retrospective cohort study, based on a survey of population-based data, was used to identify relevant whole body injury patterns. Among belted occupants injured in rollover crashes, 79.2% sustained injuries to only one body region. The three most frequently injured (AIS2+) body regions were head (42.1%), upper extremity (28.0%), and thorax (27.1%). The most frequent multi-region injury pattern involved the head and upper extremity, but this pattern only accounted for 2.3% of all of occupants with moderate or worse injuries. The results indicated that for rollover-dominated crashes, the frequently observed injury patterns involved isolated body regions. In contrast, multi-region injury patterns are more frequently observed in rollovers with significant planar impacts. Identification of region-specific injury patterns in pure rollover crashes is essential for clarifying injury mitigation targets and developing whole-body injury metrics specifically applicable to rollovers. Copyright © 2016 Elsevier Ltd. All rights reserved.
System and method having multi-tube fuel nozzle with differential flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight
A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.
Space Station Common Berthing Mechanism, a multi-body simulation application
NASA Technical Reports Server (NTRS)
Searle, Ian
1993-01-01
This paper discusses an application of multi-body dynamic analysis conducted at the Boeing Company in connection with the Space Station (SS) Common Berthing Mechanism (CBM). After introducing the hardware and analytical objectives we will focus on some of the day-to-day computational issues associated with this type of analysis.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.
2009-01-01
Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322
Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.
2010-01-01
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919
2012-01-01
performance. Ob- stacle climbing using the tail is compared to results from a previous robot with a posterior body segment and body flexion joint. Actual...3. Mechanisms of Locomotion for Multi-Modal Mobility 3.1. Gate and Tail Design Demands of multi-modal locomotion motivated a quadruped design for...tail instead of a rear body segment simplifies waterproofing design requirements and adds stability both on land and in water. This new morphology is
Ultraflexible organic amplifier with biocompatible gel electrodes.
Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao
2016-04-29
In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.
Code of Federal Regulations, 2011 CFR
2011-07-01
... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all raw...
Code of Federal Regulations, 2014 CFR
2014-07-01
... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all raw...
Code of Federal Regulations, 2013 CFR
2013-07-01
... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all raw...
Code of Federal Regulations, 2012 CFR
2012-07-01
... polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. 180.1149 Section 180... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the... polyhedrosis virus of Anagrapha falcifera is exempted from the requirement of a tolerance in or on all raw...
Surface pretreatments for medical application of adhesion
Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C
2003-01-01
Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228
Sahl, Jason W; Johnson, J Kristie; Harris, Anthony D; Phillippy, Adam M; Hsiao, William W; Thom, Kerri A; Rasko, David A
2011-06-04
Acinetobacter baumannii has recently emerged as a significant global pathogen, with a surprisingly rapid acquisition of antibiotic resistance and spread within hospitals and health care institutions. This study examines the genomic content of three A. baumannii strains isolated from distinct body sites. Isolates from blood, peri-anal, and wound sources were examined in an attempt to identify genetic features that could be correlated to each isolation source. Pulsed-field gel electrophoresis, multi-locus sequence typing and antibiotic resistance profiles demonstrated genotypic and phenotypic variation. Each isolate was sequenced to high-quality draft status, which allowed for comparative genomic analyses with existing A. baumannii genomes. A high resolution, whole genome alignment method detailed the phylogenetic relationships of sequenced A. baumannii and found no correlation between phylogeny and body site of isolation. This method identified genomic regions unique to both those isolates found on the surface of the skin or in wounds, termed colonization isolates, and those identified from body fluids, termed invasive isolates; these regions may play a role in the pathogenesis and spread of this important pathogen. A PCR-based screen of 74 A. baumanii isolates demonstrated that these unique genes are not exclusive to either phenotype or isolation source; however, a conserved genomic region exclusive to all sequenced A. baumannii was identified and verified. The results of the comparative genome analysis and PCR assay show that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease regardless of the isolation source.
NASA Astrophysics Data System (ADS)
Kino, Saiko; Omori, Suguru; Matsuura, Yuji
2016-03-01
An attenuated-total-reflection (ATR), mid-infrared spectroscopy system that consists of hollow optical fibers, a trapezoidal multi-reflection ATR prism, and a conventional FT-IR spectrometer has been developed to measure blood glucose levels. Owing to the low transmission loss and high flexibility of the hollow-optical fiber, the system can measure any sites of the human body where blood capillaries are close to the surface of mucosa, such as inner lips. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. The results of in-vivo measurement of human inner lips showed the feasibility of the proposed system, and the measurement errors were within 20%.
Predator size divergence depends on community context.
Okuzaki, Yutaka; Sota, Teiji
2018-05-09
Body size is a multi-functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator-size variation is attributed to prey-size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus. © 2018 John Wiley & Sons Ltd/CNRS.
Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan
2018-03-20
The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.
Dynamic analysis of space structures including elastic, multibody, and control behavior
NASA Technical Reports Server (NTRS)
Pinson, Larry; Soosaar, Keto
1989-01-01
The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.
Multi-level obstruction in obstructive sleep apnoea: prevalence, severity and predictive factors.
Phua, C Q; Yeo, W X; Su, C; Mok, P K H
2017-11-01
To characterise multi-level obstruction in terms of prevalence, obstructive sleep apnoea severity and predictive factors, and to collect epidemiological data on upper airway morphology in obstructive sleep apnoea patients. Retrospective review of 250 obstructive sleep apnoea patients. On clinical examination, 171 patients (68.4 per cent) had multi-level obstruction, 49 (19.6 per cent) had single-level obstruction and 30 (12 per cent) showed no obstruction. Within each category of obstructive sleep apnoea severity, multi-level obstruction was more prevalent. Multi-level obstruction was associated with severe obstructive sleep apnoea (more than 30 events per hour) (p = 0.001). Obstructive sleep apnoea severity increased with the number of obstruction sites (correlation coefficient = 0.303, p < 0.001). Multi-level obstruction was more likely in younger (p = 0.042), male (p = 0.045) patients, with high body mass index (more than 30 kg/m2) (p < 0.001). Palatal (p = 0.004), tongue (p = 0.026) and lateral pharyngeal wall obstructions (p = 0.006) were associated with severe obstructive sleep apnoea. Multi-level obstruction is more prevalent in obstructive sleep apnoea and is associated with increased severity. Obstruction at certain anatomical levels contributes more towards obstructive sleep apnoea severity.
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less
Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI
NASA Astrophysics Data System (ADS)
Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef
2017-02-01
Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.
Wang, Yawei; Wang, Lizhen; Du, Chengfei; Mo, Zhongjun; Fan, Yubo
2016-06-01
In contrast to numerous researches on static or quasi-static stiffness of cervical spine segments, very few investigations on their dynamic stiffness were published. Currently, scale factors and estimated coefficients were usually used in multi-body models for including viscoelastic properties and damping effects, meanwhile viscoelastic properties of some tissues were unavailable for establishing finite element models. Because dynamic stiffness of cervical spine segments in these models were difficult to validate because of lacking in experimental data, we tried to gain some insights on current modeling methods through studying dynamic stiffness differences between these models. A finite element model and a multi-body model of C6-C7 segment were developed through using available material data and typical modeling technologies. These two models were validated with quasi-static response data of the C6-C7 cervical spine segment. Dynamic stiffness differences were investigated through controlling motions of C6 vertebrae at different rates and then comparing their reaction forces or moments. Validation results showed that both the finite element model and the multi-body model could generate reasonable responses under quasi-static loads, but the finite element segment model exhibited more nonlinear characters. Dynamic response investigations indicated that dynamic stiffness of this finite element model might be underestimated because of the absence of dynamic stiffen effect and damping effects of annulus fibrous, while representation of these effects also need to be improved in current multi-body model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2013-01-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J
2015-06-22
Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand interaction with 3D, multi-component terrain.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Multi-camera volumetric PIV for the study of jumping fish
NASA Astrophysics Data System (ADS)
Mendelson, Leah; Techet, Alexandra H.
2018-01-01
Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.
Finite element methods in a simulation code for offshore wind turbines
NASA Astrophysics Data System (ADS)
Kurz, Wolfgang
1994-06-01
Offshore installation of wind turbines will become important for electricity supply in future. Wind conditions above sea are more favorable than on land and appropriate locations on land are limited and restricted. The dynamic behavior of advanced wind turbines is investigated with digital simulations to reduce time and cost in development and design phase. A wind turbine can be described and simulated as a multi-body system containing rigid and flexible bodies. Simulation of the non-linear motion of such a mechanical system using a multi-body system code is much faster than using a finite element code. However, a modal representation of the deformation field has to be incorporated in the multi-body system approach. The equations of motion of flexible bodies due to deformation are generated by finite element calculations. At Delft University of Technology the simulation code DUWECS has been developed which simulates the non-linear behavior of wind turbines in time domain. The wind turbine is divided in subcomponents which are represented by modules (e.g. rotor, tower etc.).
Attitude and Configuration Control of Flexible Multi-Body Spacecraft
NASA Astrophysics Data System (ADS)
Cho, Sung-Ki; Cochran, John E., Jr.
2002-06-01
Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.
Multi-body coalescence in Pickering emulsions
NASA Astrophysics Data System (ADS)
Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng
2015-01-01
Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.
NASA Astrophysics Data System (ADS)
Yang, F.; Dong, Z. H.; Ye, X.
2018-05-01
Currently, space robots have been become a very important means of space on-orbit maintenance and support. Many countries are taking deep research and experiment on this. Because space operation attitude is very complicated, it is difficult to model them in research lab. This paper builds up a complete equivalent experiment framework according to the requirement of proposed space soft-contact technology. Also, this paper carries out flexible multi-body dynamics parameters verification for on-orbit soft-contact mechanism, which combines on-orbit experiment data, the built soft-contact mechanism equivalent model and flexible multi-body dynamics equivalent model that is based on KANE equation. The experiment results approve the correctness of the built on-orbit soft-contact flexible multi-body dynamics.
Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes
NASA Technical Reports Server (NTRS)
Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.
1989-01-01
The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.
Flexible quality of service model for wireless body area sensor networks.
Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D
2016-03-01
Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.
Joint detection and localization of multiple anatomical landmarks through learning
NASA Astrophysics Data System (ADS)
Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean
2008-03-01
Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.
Carter, M; Zhu, F; Kotanko, P; Kuhlmann, M; Ramirez, L; Heymsfield, S B; Handelman, G; Levin, N W
2009-01-01
This study used multi-frequency bioimpedance spectroscopy (BIS) of the arm and whole body to estimate muscle mass (MM) and subcutaneous adipose tissue (SAT) in 31 hemodialysis (HD) patients comparing these results with magnetic resonance imaging (MRI) and body potassium ((40)K) as gold standards. Total body and arm MM (MM(MRI)) and SAT (SAT(MRI)) were measured by MRI. All measurements were made before dialysis treatment. Regression models with the arm (aBIS) and whole body (wBIS) resistances were established. Correlations between gold standards and the BIS model were high for the arm SAT (r(2) = 0.93, standard error of estimate (SEE) = 3.6 kg), and whole body SAT (r(2) = 0.92, SEE = 3.5 kg), and for arm MM (r(2) = 0.84, SEE = 2.28 kg) and whole body MM (r(2) = 0.86, SEE = 2.28 kg). Total body MM and SAT can be accurately predicted by arm BIS models with advantages of convenience and portability, and it should be useful to assess nutritional status in HD patients. Copyright (c) 2009 S. Karger AG, Basel.
Multi-component lightweight gearwheels with deep-drawn wheel body for automotive applications
NASA Astrophysics Data System (ADS)
Benkert, Tim; Hiller, Maria; Volk, Wolfram
2017-09-01
Multi-component gearwheels offer great lightweight opportunities for automotive applications. An assembly of a gear ring and a wheel body joined by press fit replaces the monolithic gearwheel. To save weight, the wheel body uses lightweight design. This lightweight design influences the assembled gearwheel’s mechanical properties like stiffness, weight and torque capacity. Further, the wheel body material influences the mentioned properties as well. In this paper, the effects of the lightweight wheel body manufactured by deep-drawing on the mechanical properties of the assembled gearwheel are investigated. Three different wheel body designs are examined regarding their stiffness and weight compared to a reference gearwheel. Using the best design, the influence of five materials with increasing yield strength on the maximum torque the gearwheel can transmit is studied. All research is done virtually using Abaqus 6.12-3.
Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents
NASA Astrophysics Data System (ADS)
Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.
2014-03-01
Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.
Ultraflexible organic amplifier with biocompatible gel electrodes
Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao
2016-01-01
In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm−2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910
NASA Astrophysics Data System (ADS)
Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling
2017-03-01
In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.
NASA Astrophysics Data System (ADS)
Meschut, G.; Janzen, V.; Olfermann, T.
2014-05-01
Driven by increasing costs for energy and raw material and especially by the European CO2-emission laws, automotive industry faces the challenge to develop more lightweight and at the same time still rigid and crash-stable car bodies, that are affordable for large-scale production. The implementation of weight-reduced constructions depends not only on the availability of lightweight materials and related forming technologies, but also on cost-efficient and reliable joining technologies suitable for multi-material design. This article discusses the challenges and requirements for these technologies, based on the example of joining aluminium with press-hardened boron steels, what is considered as a very important material combination for affordable future lightweight mobility. Besides a presentation of recent developments for extending the process limits of conventional mechanical joining methods, new promising technologies such as resistance element welding are introduced. In addition, the performance, advantages, and disadvantages of the presented technologies are compared and discussed.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Prytkova, Vera; Heyden, Matthias; Khago, Domarin; Freites, J Alfredo; Butts, Carter T; Martin, Rachel W; Tobias, Douglas J
2016-08-25
We present a novel multi-conformation Monte Carlo simulation method that enables the modeling of protein-protein interactions and aggregation in crowded protein solutions. This approach is relevant to a molecular-scale description of realistic biological environments, including the cytoplasm and the extracellular matrix, which are characterized by high concentrations of biomolecular solutes (e.g., 300-400 mg/mL for proteins and nucleic acids in the cytoplasm of Escherichia coli). Simulation of such environments necessitates the inclusion of a large number of protein molecules. Therefore, computationally inexpensive methods, such as rigid-body Brownian dynamics (BD) or Monte Carlo simulations, can be particularly useful. However, as we demonstrate herein, the rigid-body representation typically employed in simulations of many-protein systems gives rise to certain artifacts in protein-protein interactions. Our approach allows us to incorporate molecular flexibility in Monte Carlo simulations at low computational cost, thereby eliminating ambiguities arising from structure selection in rigid-body simulations. We benchmark and validate the methodology using simulations of hen egg white lysozyme in solution, a well-studied system for which extensive experimental data, including osmotic second virial coefficients, small-angle scattering structure factors, and multiple structures determined by X-ray and neutron crystallography and solution NMR, as well as rigid-body BD simulation results, are available for comparison.
Widen, Elizabeth M; Factor-Litvak, Pam R; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N; Heymsfield, Steven B; Lederman, Sally A
2015-10-01
The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health, but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of GWG related to changes in maternal body composition during pregnancy and infant size at birth. A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/week) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low ≤25, high ≥75 percentile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14 to 37 weeks, adjusting for covariates. Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester were associated with larger gains in maternal fat mass (β range for fat Δ = 2.86-5.29 kg, all p < 0.01). For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β = 356 g, p = 0.001) and length (β = 0.85 cm, p = 0.002). First and third trimester GWG were not associated with neonatal size. The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG.
Dynamical Stability and Evolution of Kepler’s compact inner multi-planet systems
NASA Astrophysics Data System (ADS)
Pu, Bonan
2017-06-01
NASA’s Kepler mission has revealed a population of highly compact inner multi-planet systems. These systems, typically consisting of 4-6 super-Earths, feature tight orbital spacing between planets as well as low orbital inclinations (~2 deg. ) and eccentricities (~2%). This stands in contrast to Kepler’s singles population, which appears to feature higher orbital obliquities and eccentricities, as well as a lower transit timing variation fraction indicative of lower true planet multiplicities.In this talk, I will present some previous and ongoing research aimed at understanding the dynamical evolution of these Kepler systems. First, I will present numerical N-body investigations on the long-term stability of multi-planet systems, the results of which suggest that Kepler’s systems are near the edge of stability. Next, I will discuss some current research on the dynamics of planetary close encounters and collisions, and their implications for the ultimate fate of dynamically unstable multi-planet systems. Finally, I will highlight some recent results on the dynamical stability and evolution of inner multi-planet systems when they are accompanied by external giant planet and/or stellar companions.
Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation
Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-01-01
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.
Weak decays of doubly heavy baryons: multi-body decay channels
NASA Astrophysics Data System (ADS)
Shi, Yu-Ji; Wang, Wei; Xing, Ye; Xu, Ji
2018-01-01
The newly-discovered Ξ _{cc}^{++} decays into the Λ c^+ K^-π ^+π ^+, but the experimental data has indicated that this decay is not saturated by any two-body intermediate state. In this work, we analyze the multi-body weak decays of doubly heavy baryons Ξ _{cc}, Ω _{cc}, Ξ _{bc}, Ω _{bc}, Ξ _{bb} and Ω _{bb}, in particular the three-body nonleptonic decays and four-body semileptonic decays. We classify various decay modes according to the quark-level transitions and present an estimate of the typical branching fractions for a few golden decay channels. Decay amplitudes are then parametrized in terms of a few SU(3) irreducible amplitudes. With these amplitudes, we find a number of relations for decay widths, which can be examined in future.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas
2014-06-30
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
NASA Astrophysics Data System (ADS)
Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng
2018-02-01
Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.
Naclerio, Fernando; Larumbe-Zabala, Eneko
2016-01-01
Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated with small extra gains in fat-free mass or lean body mass, resulting in an effect size of g = 0.301, 95% confidence interval (CI) 0.032-0.571. Subgroup analyses showed less clear positive trends resulting in small to moderate effect size g = 0.217 (95% CI -0.113 to 0.547) and g = 0.468 (95% CI 0.003-0.934) in favor of whey and multi-ingredient, respectively. Additionally, a positive overall extra effect was also observed to maximize lower (g = 0.316, 95% CI 0.045-0.588) and upper body maximal strength (g = 0.458, 95% CI 0.161-0.755). Subgroup analyses showed smaller superiority to maximize strength gains with respect to the contrast groups for lower body (whey protein: g = 0.343, 95% CI -0.016 to 0.702, multi-ingredient: g = 0.281, 95% CI -0.135 to 0.697) while in the upper body, multi-ingredient (g = 0.612, 95% CI 0.157-1.068) seemed to produce more clear effects than whey protein alone (g = 0.343, 95% CI -0.048 to 0.735). Studies involving interventions of more than 6 weeks on resistance-training individuals are scarce and account for a small number of participants. Furthermore, no studies with an intervention longer than 12 weeks have been found. The variation regarding the supplementation protocol, namely the different doses criteria or timing of ingestion also add some concerns to the studies comparison. Whey protein alone or as a part of a multi-ingredient appears to maximize lean body mass or fat-free mass gain, as well as upper and lower body strength improvement with respect to the ingestion of an iso-energetic equivalent carbohydrate or non-whey protein supplement in resistance-training individuals. This enhancement effect seems to be more evident when whey proteins are consumed within a multi-ingredient containing creatine.
Exploiting Many-Body Bus States for Multi-Qubit Entanglement
2013-06-06
ancilla qubits . We studied electron-spin-photon coupling in a single-spin double quantum dot embedded in a superconducting stripline cavity. We... qubit to a superconducting stripline cavity,” Xuedong Hu, Yu-xi Liu, and Franco Nori, Phys. Rev. B 86, 035314 (2012). [9] “Controllable exchange...DARPA) EXPLOITING MANY-BODY BUS STATES FOR MULTI- QUBIT ENTANGLEMENT MARK FRIESEN UNIVERSITY OF WISCONSIN SYSTEM 06/06/2013 Final Report
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.
Watson, Peter J; Gröning, Flora; Curtis, Neil; Fitton, Laura C; Herrel, Anthony; McCormack, Steven W; Fagan, Michael J
2014-10-06
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis
Watson, Peter J.; Gröning, Flora; Curtis, Neil; Fitton, Laura C.; Herrel, Anthony; McCormack, Steven W.; Fagan, Michael J.
2014-01-01
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments. PMID:25121650
DTN routing in body sensor networks with dynamic postural partitioning.
Quwaider, Muhannad; Biswas, Subir
2010-11-01
This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks ( WBAN ) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.
Esch, Mandy B; Mahler, Gretchen J; Stokol, Tracy; Shuler, Michael L
2014-08-21
The use of nanoparticles in medical applications is highly anticipated, and at the same time little is known about how these nanoparticles affect human tissues. Here we have simulated the oral uptake of 50 nm carboxylated polystyrene nanoparticles with a microscale body-on-a-chip system (also referred to as multi-tissue microphysiological system or micro Cell Culture Analog). Using the 'GI tract-liver-other tissues' system allowed us to observe compounding effects and detect liver tissue injury at lower nanoparticle concentrations than was expected from experiments with single tissues. To construct this system, we combined in vitro models of the human intestinal epithelium, represented by a co-culture of enterocytes (Caco-2) and mucin-producing cells (TH29-MTX), and the liver, represented by HepG2/C3A cells, within one microfluidic device. The device also contained chambers that together represented the liquid portions of all other organs of the human body. Measuring the transport of 50 nm carboxylated polystyrene nanoparticles across the Caco-2/HT29-MTX co-culture, we found that this multi-cell layer presents an effective barrier to 90.5 ± 2.9% of the nanoparticles. Further, our simulation suggests that a larger fraction of the 9.5 ± 2.9% nanoparticles that travelled across the Caco-2/HT29-MTX cell layer were not large nanoparticle aggregates, but primarily single nanoparticles and small aggregates. After crossing the GI tract epithelium, nanoparticles that were administered in high doses estimated in terms of possible daily human consumption (240 and 480 × 10(11) nanoparticles mL(-1)) induced the release of aspartate aminotransferase (AST), an intracellular enzyme of the liver that indicates liver cell injury. Our results indicate that body-on-a-chip devices are highly relevant in vitro models for evaluating nanoparticle interactions with human tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less
2017-03-23
Dynamical Astronomy , vol. 90, no. January 2004, pp. 165–178, 2004. [Online]. Available: https://www.researchgate.net/publication/ 225231299 On The...Celestial Mechanics and Dynamical Astronomy , vol. 32, no. 1, pp. 53–71, 1984. [Online]. Available: https://engineering.purdue.edu/people/kathleen.howell
Multi-Body Analysis of a Tiltrotor Configuration
NASA Technical Reports Server (NTRS)
Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.
1997-01-01
The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first order differential equations. The equilibrium equations of every rigid body are written, together with the definitions of the momenta. The bodies are connected by kinematic constraints, applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements, based on an original finite volume formulation. Multi-disciplinar problems can be solved by adding user-defined differential equations. In the presented analysis the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.
2015-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Numerical Simulation of Rolling-Airframes Using a Multi-Level Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)
2002-01-01
A supersonic rolling missile with two synchronous canard control surfaces is analyzed using an automated, inviscid, Cartesian method. Sequential-static and time-dependent dynamic simulations of the complete motion are computed for canard dither schedules for level flight, pitch, and yaw maneuver. The dynamic simulations are compared directly against both high-resolution viscous simulations and relevant experimental data, and are also utilized to compute dynamic stability derivatives. The results show that both the body roll rate and canard dither motion influence the roll-averaged forces and moments on the body. At the relatively, low roll rates analyzed in the current work these dynamic effects are modest, however the dynamic computations are effective in predicting the dynamic stability derivatives which can be significant for highly-maneuverable missiles.
Multi-zone cooling/warming garment
NASA Technical Reports Server (NTRS)
Leon, Gloria R. (Inventor); Koscheyev, Victor S. (Inventor); Dancisak, Michael J. (Inventor)
2006-01-01
A thermodynamically efficient garment for cooling and/or heating a human body. The thermodynamic efficiency is provided in part by targeting the heat exchange capabilities of the garment to specific areas and/or structures of the human body. The heat exchange garment includes heat exchange zones and one or more non-heat exchange zones, where the heat exchange zones are configured to correspond to one or more high density tissue areas of the human body when the garment is worn. A system including the garment can be used to exchange heat with the adjacent HD tissue areas under the control of a feedback control system. Sensed physiological parameters received by the feedback control system can be used to adjust the characteristics of heat exchange fluid moving within the heat exchange garment.
Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies. [NASA NIAC Phase I Study
NASA Technical Reports Server (NTRS)
Pavone, Marco; Castillo-Rogez, Julie C.; Hoffman, Jeffrey A.; Nesnas, Issa A. D.
2012-01-01
This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable.
Secure and Privacy-Preserving Body Sensor Data Collection and Query Scheme.
Zhu, Hui; Gao, Lijuan; Li, Hui
2016-02-01
With the development of body sensor networks and the pervasiveness of smart phones, different types of personal data can be collected in real time by body sensors, and the potential value of massive personal data has attracted considerable interest recently. However, the privacy issues of sensitive personal data are still challenging today. Aiming at these challenges, in this paper, we focus on the threats from telemetry interface and present a secure and privacy-preserving body sensor data collection and query scheme, named SPCQ, for outsourced computing. In the proposed SPCQ scheme, users' personal information is collected by body sensors in different types and converted into multi-dimension data, and each dimension is converted into the form of a number and uploaded to the cloud server, which provides a secure, efficient and accurate data query service, while the privacy of sensitive personal information and users' query data is guaranteed. Specifically, based on an improved homomorphic encryption technology over composite order group, we propose a special weighted Euclidean distance contrast algorithm (WEDC) for multi-dimension vectors over encrypted data. With the SPCQ scheme, the confidentiality of sensitive personal data, the privacy of data users' queries and accurate query service can be achieved in the cloud server. Detailed analysis shows that SPCQ can resist various security threats from telemetry interface. In addition, we also implement SPCQ on an embedded device, smart phone and laptop with a real medical database, and extensive simulation results demonstrate that our proposed SPCQ scheme is highly efficient in terms of computation and communication costs.
A computer vision-based system for monitoring Vojta therapy.
Khan, Muhammad Hassan; Helsper, Julien; Farid, Muhammad Shahid; Grzegorzek, Marcin
2018-05-01
A neurological illness is t he disorder in human nervous system that can result in various diseases including the motor disabilities. Neurological disorders may affect the motor neurons, which are associated with skeletal muscles and control the body movement. Consequently, they introduce some diseases in the human e.g. cerebral palsy, spinal scoliosis, peripheral paralysis of arms/legs, hip joint dysplasia and various myopathies. Vojta therapy is considered a useful technique to treat the motor disabilities. In Vojta therapy, a specific stimulation is given to the patient's body to perform certain reflexive pattern movements which the patient is unable to perform in a normal manner. The repetition of stimulation ultimately brings forth the previously blocked connections between the spinal cord and the brain. After few therapy sessions, the patient can perform these movements without external stimulation. In this paper, we propose a computer vision-based system to monitor the correct movements of the patient during the therapy treatment using the RGBD data. The proposed framework works in three steps. In the first step, patient's body is automatically detected and segmented and two novel techniques are proposed for this purpose. In the second step, a multi-dimensional feature vector is computed to define various movements of patient's body during the therapy. In the final step, a multi-class support vector machine is used to classify these movements. The experimental evaluation carried out on the large captured dataset shows that the proposed system is highly useful in monitoring the patient's body movements during Vojta therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Secure and Privacy-Preserving Body Sensor Data Collection and Query Scheme
Zhu, Hui; Gao, Lijuan; Li, Hui
2016-01-01
With the development of body sensor networks and the pervasiveness of smart phones, different types of personal data can be collected in real time by body sensors, and the potential value of massive personal data has attracted considerable interest recently. However, the privacy issues of sensitive personal data are still challenging today. Aiming at these challenges, in this paper, we focus on the threats from telemetry interface and present a secure and privacy-preserving body sensor data collection and query scheme, named SPCQ, for outsourced computing. In the proposed SPCQ scheme, users’ personal information is collected by body sensors in different types and converted into multi-dimension data, and each dimension is converted into the form of a number and uploaded to the cloud server, which provides a secure, efficient and accurate data query service, while the privacy of sensitive personal information and users’ query data is guaranteed. Specifically, based on an improved homomorphic encryption technology over composite order group, we propose a special weighted Euclidean distance contrast algorithm (WEDC) for multi-dimension vectors over encrypted data. With the SPCQ scheme, the confidentiality of sensitive personal data, the privacy of data users’ queries and accurate query service can be achieved in the cloud server. Detailed analysis shows that SPCQ can resist various security threats from telemetry interface. In addition, we also implement SPCQ on an embedded device, smart phone and laptop with a real medical database, and extensive simulation results demonstrate that our proposed SPCQ scheme is highly efficient in terms of computation and communication costs. PMID:26840319
Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae
2012-01-01
Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605
NASA Astrophysics Data System (ADS)
Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.
2018-05-01
We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.
Koscheyev, Victor S; Leon, Gloria R; Coca, Aitor
2005-11-01
The designation of a simple, non-invasive, and highly precise method to monitor the thermal status of astronauts is important to enhance safety during extravehicular activities (EVA) and onboard emergencies. Finger temperature (Tfing), finger heat flux, and indices of core temperature (Tc) [rectal (Tre), ear canal (Tec)] were assessed in 3 studies involving different patterns of heat removal/insertion from/to the body by a multi-compartment liquid cooling/warming garment (LCWG). Under both uniform and nonuniform temperature conditions on the body surface, Tfing and finger heat flux were highly correlated with garment heat flux, and also highly correlated with each other. Tc responses did not adequately reflect changes in thermal balance during the ongoing process of heat insertion/removal from the body. Overall, Tfing/finger heat flux adequately reflected the initial destabilization of thermal balance, and therefore appears to have significant potential as a useful index for monitoring and maintaining thermal balance and comfort in extreme conditions in space as well as on Earth. c2005 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
The role of dosimetry audit in lung SBRT multi-centre clinical trials.
Clark, Catharine H; Hurkmans, Coen W; Kry, Stephen F
2017-12-01
Stereotactic Body Radiotherapy (SBRT) in the lung is a challenging technique which requires high quality clinical trials to answer the un-resolved clinical questions. Quality assurance of these clinical trials not only ensures the safety of the treatment of the participating patients but also minimises the variation in treatment, thus allowing the lowest number of patient treatments to answer the trial question. This review addresses the role of dosimetry audits in the quality assurance process and considers what can be done to ensure the highest accuracy of dose calculation and delivery and it's assessment in multi-centre trials. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ultra-high spatial resolution multi-energy CT using photon counting detector technology
NASA Astrophysics Data System (ADS)
Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.
2017-03-01
Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.
Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.
Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji
2015-12-01
A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.
Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G
2017-02-01
In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-11-16
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-09-14
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Friedrich, Miriam; Rüst, Christoph A.; Rosemann, Thomas; Knechtle, Patrizia; Barandun, Ursula; Lepers, Romuald; Knechtle, Beat
2013-01-01
Purpose Lower limb skin-fold thicknesses have been differentially associated with sex in elite runners. Front thigh and medial calf skin-fold appear to be related to 1,500m and 10,000m time in men but 400m time in women. The aim of the present study was to compare anthropometric and training characteristics in recreational female and male half-marathoners. Methods The association between both anthropometry and training characteristics and race time was investigated in 83 female and 147 male recreational half marathoners using bi- and multi-variate analyses. Results In men, body fat percentage (β=0.6), running speed during training (β=-3.7), and body mass index (β=1.9) were related to half-marathon race time after multi-variate analysis. After exclusion of body mass index, r2 decreased from 0.51 to 0.49, but body fat percentage (β=0.8) and running speed during training (β=-4.1) remained predictive. In women, body fat percentage (β=0.75) and speed during training (β=-6.5) were related to race time (r2=0.73). For women, the exclusion of body mass index had no consequence on the predictive variables for half-marathon race time. Conclusion To summarize, in both female and male recreational half-marathoners, both body fat percentage and running speed during training sessions were related to half-marathon race times when corrected with co-variates after multi-variate regression analyses. PMID:24868427
Friedrich, Miriam; Rüst, Christoph A; Rosemann, Thomas; Knechtle, Patrizia; Barandun, Ursula; Lepers, Romuald; Knechtle, Beat
2014-03-01
Lower limb skin-fold thicknesses have been differentially associated with sex in elite runners. Front thigh and medial calf skin-fold appear to be related to 1,500m and 10,000m time in men but 400m time in women. The aim of the present study was to compare anthropometric and training characteristics in recreational female and male half-marathoners. The association between both anthropometry and training characteristics and race time was investigated in 83 female and 147 male recreational half marathoners using bi- and multi-variate analyses. In men, body fat percentage (β=0.6), running speed during training (β=-3.7), and body mass index (β=1.9) were related to half-marathon race time after multi-variate analysis. After exclusion of body mass index, r (2) decreased from 0.51 to 0.49, but body fat percentage (β=0.8) and running speed during training (β=-4.1) remained predictive. In women, body fat percentage (β=0.75) and speed during training (β=-6.5) were related to race time (r (2) =0.73). For women, the exclusion of body mass index had no consequence on the predictive variables for half-marathon race time. To summarize, in both female and male recreational half-marathoners, both body fat percentage and running speed during training sessions were related to half-marathon race times when corrected with co-variates after multi-variate regression analyses.
Mutsaerts, Henri J M M; Petr, Jan; Thomas, David L; De Vita, Enrico; Cash, David M; van Osch, Matthias J P; Golay, Xavier; Groot, Paul F C; Ourselin, Sebastien; van Swieten, John; Laforce, Robert; Tagliavini, Fabrizio; Borroni, Barbara; Galimberti, Daniela; Rowe, James B; Graff, Caroline; Pizzini, Francesca B; Finger, Elizabeth; Sorbi, Sandro; Castelo Branco, Miguel; Rohrer, Jonathan D; Masellis, Mario; MacIntosh, Bradley J
2018-01-01
To compare registration strategies to align arterial spin labeling (ASL) with 3D T1-weighted (T1w) images, with the goal of reducing the between-subject variability of cerebral blood flow (CBF) images. Multi-center 3T ASL data were collected at eight sites with four different sequences in the multi-center GENetic Frontotemporal dementia Initiative (GENFI) study. In a total of 48 healthy controls, we compared the following image registration options: (I) which images to use for registration (perfusion-weighted images [PWI] to the segmented gray matter (GM) probability map (pGM) (CBF-pGM) or M0 to T1w (M0-T1w); (II) which transformation to use (rigid-body or non-rigid); and (III) whether to mask or not (no masking, M0-based FMRIB software library Brain Extraction Tool [BET] masking). In addition to visual comparison, we quantified image similarity using the Pearson correlation coefficient (CC), and used the Mann-Whitney U rank sum test. CBF-pGM outperformed M0-T1w (CC improvement 47.2% ± 22.0%; P < 0.001), and the non-rigid transformation outperformed rigid-body (20.6% ± 5.3%; P < 0.001). Masking only improved the M0-T1w rigid-body registration (14.5% ± 15.5%; P = 0.007). The choice of image registration strategy impacts ASL group analyses. The non-rigid transformation is promising but requires validation. CBF-pGM rigid-body registration without masking can be used as a default strategy. In patients with expansive perfusion deficits, M0-T1w may outperform CBF-pGM in sequences with high effective spatial resolution. BET-masking only improves M0-T1w registration when the M0 image has sufficient contrast. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:131-140. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Granda, Jose J.
2003-01-01
Conceptually, modeling of flexible, multi-body systems involves a formulation as a set of time-dependent partial differential equations. However, for practical, engineering purposes, this modeling is usually done using the method of Finite Elements, which approximates the set of partial differential equations, thus generalizing the approach to all continuous media. This research investigates the links between the Bond Graph method and the classical methods used to develop system models and advocates the Bond Graph Methodology and current bond graph tools as alternate approaches that will lead to a quick and precise understanding of a flexible multi-body system under automatic control. For long endurance, complex spacecraft, because of articulation and mission evolution the model of the physical system may change frequently. So a method of automatic generation and regeneration of system models that does not lead to implicit equations, as does the Lagrange equation approach, is desirable. The bond graph method has been shown to be amenable to automatic generation of equations with appropriate consideration of causality. Indeed human-interactive software now exists that automatically generates both symbolic and numeric system models and evaluates causality as the user develops the model, e.g. the CAMP-G software package. In this paper the CAMP-G package is used to generate a bond graph model of the International Space Station (ISS) at an early stage in its assembly, Zvezda. The ISS is an ideal example because it is a collection of bodies that are articulated, many of which are highly flexible. Also many reaction jets are used to control translation and attitude, and many electric motors are used to articulate appendages, which consist of photovoltaic arrays and composite assemblies. The Zvezda bond graph model is compared to an existing model, which was generated by the NASA Johnson Space Center during the Verification and Analysis Cycle of Zvezda.
Image quality phantom and parameters for high spatial resolution small-animal SPECT
NASA Astrophysics Data System (ADS)
Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.
2011-10-01
At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.
NASA Astrophysics Data System (ADS)
Li, Chen; Fearing, Ronald; Full, Robert
Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z; Gong, G
2014-06-01
Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and themore » EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.« less
Methods for making a multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2007-05-29
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Diabetic nephropathy and antioxidants.
Tavafi, Majid
2013-01-01
Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.
2015-06-01
Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
The NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) aims to develop a framework for functional mapping the human body with cellular resolution to enhance our understanding of cellular organization-function. HuBMAP will accelerate the development of the next generation of tools and techniques to generate 3D tissue maps using validated high-content, high-throughput imaging and omics assays, and establish an open data platform for integrating, visualizing data to build multi-dimensional maps.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Predictor Variables for Marathon Race Time in Recreational Female Runners
Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-01-01
Purpose We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Methods Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. Results The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=− 0.38), number of running training sessions per week (r=− 0.46) and the speed of the training sessions (r= − 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r 2=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) –11.9 x (speed in running during training, km/h) for recreational female marathoners. Conclusions Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners. PMID:22942994
Predictor variables for marathon race time in recreational female runners.
Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald
2012-06-01
We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=- 0.38), number of running training sessions per week (r=- 0.46) and the speed of the training sessions (r= - 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r(2)=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) -11.9 x (speed in running during training, km/h) for recreational female marathoners. Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners.
[BIPOLAR DISORDER AS A MULTI-SYSTEM ILLNESS].
Fenchel, Daphna; Levkovitz, Yechiel; Kotler, Moshe
2017-12-01
Bipolar disorder is a chronic condition, characterized by high distress in patients and high suicide rates (30%). Most patients suffer from medical and other psychiatric comorbidities, which worsen the psychiatric symptoms and decrease the likelihood of remission. More than 70% of bipolar patients have cardio-metabolic symptoms, with higher rates compared to other psychiatric disorders. Cardiovascular disease is the major cause of high mortality rates in these patients, with 1.5-2 fold increased risk of mortality, compared to the general population without psychiatric symptoms. The rates of cardiovascular risk factors and their resulting increased mortality rates are similar to those found in schizophrenia. In addition to cardio-metabolic conditions, 50% of patients with bipolar disorder suffer from other medical symptoms, which are also associated with worse outcomes. Therefore, the current perspective is that bipolar disorder is not only a psychiatric disorder, but rather a multi-system illness, affecting the entire body. The optimal treatment for these patients should include diagnosis, monitoring and treatment of both psychiatric and physical symptoms, which would improve their prognosis.
Magnesium Front End Research and Development: A Canada-China-USA Collaboration
NASA Astrophysics Data System (ADS)
Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang
The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.
Sub-discretized surface model with application to contact mechanics in multi-body simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S; Williams, J
2008-02-28
The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidatesmore » assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.« less
A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.
Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue
2016-10-01
Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.
Hybrid Wing Body Multi-Bay Test Article Analysis and Assembly Final Report
NASA Technical Reports Server (NTRS)
Velicki, Alexander; Hoffman, Krishna; Linton, Kim A.; Baraja, Jaime; Wu, Hsi-Yung T.; Thrash, Patrick
2017-01-01
This report summarizes work performed by The Boeing Company, through its Boeing Research & Technology organization located in Huntington Beach, California, under the Environmentally Responsible Aviation (ERA) project. The report documents work performed to structurally analyze and assemble a large-scale Multi-bay Box (MBB) Test Article capable of withstanding bending and internal pressure loadings representative of a Hybrid Wing Body (HWB) aircraft. The work included fabrication of tooling elements for use in the fabrication and assembly of the test article.
Computer aided design environment for the analysis and design of multi-body flexible structures
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant V.; Singh, Ramen P.
1989-01-01
A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.
Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.
Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu
2016-01-01
Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time.
Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water
Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu
2016-01-01
Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time. PMID:27128096
High Resolution Asteroid Profile by Multi Chord Occultation Observations
NASA Astrophysics Data System (ADS)
Degenhardt, Scott
2009-05-01
For millennia man has observed celestial objects occulting other bodies and distant stars. We have used these celestial synchronicities to measure the properties of objects. On January 1, 1801 Italian astronomer Giusappe Piazzi discovered the first asteroid that would soon be named Ceres. To date 190,000 of these objects have been catalogued, but only a fraction of these have accurate measurements of their true size and shape. The International Occultation Timing Association (IOTA) currently facilitates the prediction and reduction of asteroidal occultations. By measuring the shadow cast on the earth by an asteroid during a stellar occultation one can directly measure the physical size, shape, and position in space of this body to accuracies orders of magnitudes better than the best ground based adaptive optics telescope and can provide verification to 3D inverted reflective lightcurve prediction models. Recent novel methods developed by IOTA involving an individual making multiple observations through unattended remote observing stations have made way for numerous chords of occultation measurement through a single body yielding high resolution profiles of asteroid bodies. Methodology of how observing stations are deployed will be demonstrated, results of some of these observations are presented as comparisons to their inverted lightcurve are shown.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology
NASA Astrophysics Data System (ADS)
Rossi, Davide; Pullini, Antonio; Loi, Igor; Gautschi, Michael; Gürkaynak, Frank K.; Bartolini, Andrea; Flatresse, Philippe; Benini, Luca
2016-03-01
Ultra-low power operation and extreme energy efficiency are strong requirements for a number of high-growth application areas, such as E-health, Internet of Things, and wearable Human-Computer Interfaces. A promising approach to achieve up to one order of magnitude of improvement in energy efficiency over current generation of integrated circuits is near-threshold computing. However, frequency degradation due to aggressive voltage scaling may not be acceptable across all performance-constrained applications. Thread-level parallelism over multiple cores can be used to overcome the performance degradation at low voltage. Moreover, enabling the processors to operate on-demand and over a wide supply voltage and body bias ranges allows to achieve the best possible energy efficiency while satisfying a large spectrum of computational demands. In this work we present the first ever implementation of a 4-core cluster fabricated using conventional-well 28 nm UTBB FD-SOI technology. The multi-core architecture we present in this work is able to operate on a wide range of supply voltages starting from 0.44 V to 1.2 V. In addition, the architecture allows a wide range of body bias to be applied from -1.8 V to 0.9 V. The peak energy efficiency 60 GOPS/W is achieved at 0.5 V supply voltage and 0.5 V forward body bias. Thanks to the extended body bias range of conventional-well FD-SOI technology, high energy efficiency can be guaranteed for a wide range of process and environmental conditions. We demonstrate the ability to compensate for up to 99.7% of chips for process variation with only ±0.2 V of body biasing, and compensate temperature variation in the range -40 °C to 120 °C exploiting -1.1 V to 0.8 V body biasing. When compared to leading-edge near-threshold RISC processors optimized for extremely low power applications, the multi-core architecture we propose has 144× more performance at comparable energy efficiency levels. Even when compared to other low-power processors with comparable performance, including those implemented in 28 nm technology, our platform provides 1.4× to 3.7× better energy efficiency.
Widen, Elizabeth M.; Factor-Litvak, Pam R.; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N.; Heymsfield, Steven B.; Lederman, Sally A.
2015-01-01
Objectives The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health; but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of gestational weight gain (GWG) related to changes in maternal body composition during pregnancy and infant size at birth. Methods A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/wk) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low≤25%ile, high≥75%ile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14–37 weeks, adjusting for covariates. Results Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester was associated with larger gains in maternal fat mass (β range for fat Δ=2.86–5.29 kg, all p<0.01) For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β=356 g, p=0.001) and length (β=0.85 cm, p=0.002). First and third trimester GWG were not associated with neonatal size. Conclusions The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG. PMID:26179720
Fearnbach, S Nicole; English, Laural K; Lasschuijt, Marlou; Wilson, Stephen J; Savage, Jennifer S; Fisher, Jennifer O; Rolls, Barbara J; Keller, Kathleen L
2016-08-01
Energy balance is regulated by a multifaceted system of physiological signals that influence energy intake and expenditure. Therefore, variability in the brain's response to food may be partially explained by differences in levels of metabolically active tissues throughout the body, including fat-free mass (FFM) and fat mass (FM). The purpose of this study was to test the hypothesis that children's body composition would be related to their brain response to food images varying in energy density (ED), a measure of energy content per weight of food. Functional magnetic resonance imaging (fMRI) was used to measure brain response to High (>1.5kcal/g) and Low (<1.5kcal/g) ED food images, and Control images, in 36 children ages 7-10years. Body composition was measured using bioelectrical impedance analysis. Multi-subject random effects general linear model (GLM) and two-factor repeated measures analysis of variance (ANOVA) were used to test for main effects of ED (High ED vs. Low ED) in a priori defined brain regions of interest previously implicated in energy homeostasis and reward processing. Pearson's correlations were then calculated between activation in these regions for various contrasts (High ED-Low ED, High ED-Control, Low ED-Control) and child body composition (FFM index, FM index, % body fat). Relative to Low ED foods, High ED foods elicited greater BOLD activation in the left thalamus. In the right substantia nigra, BOLD activation for the contrast of High ED-Low ED foods was positively associated with child FFM. There were no significant results for the High ED-Control or Low ED-Control contrasts. Our findings support literature on FFM as an appetitive driver, such that greater amounts of lean mass were associated with greater activation for High ED foods in an area of the brain associated with dopamine signaling and reward (substantia nigra). These results confirm our hypothesis that brain response to foods varying in energy content is related to measures of child body composition. Copyright © 2016 Elsevier Inc. All rights reserved.
Al-Mohaimeed, Abdulrahman; Ahmed, Saifuddin; Dandash, Khadiga; Ismail, Mohammed Saleh; Saquib, Nazmus
2015-03-05
In Saudi Arabia, where childhood obesity is a major public health issue, it is important to identify the best tool for obesity classification. Hence, we compared two field methods for their usefulness in epidemiological studies. The sample consisted of 874 primary school (grade I-IV) children, aged 6-10 years, and was obtained through a multi-stage random sampling procedure. Weight and height were measured, and BMI (kg/m(2)) was calculated. Percent body fat was determined with a Futrex analyzer that uses near infrared reactance (NIR) technology. Method specific cut-off values were used for obesity classification. Sensitivity, specificity, positive and negative predictive values were determined for BMI, and the agreement between BMI and percent body fat was calculated. Compared to boys, the mean BMI was higher in girls whereas the mean percent body fat was lower (p-values < 0.0001). According to BMI, the prevalence of overweight or obesity was significantly higher in girls (34.3% vs. 17.3%); as oppose to percent body fat, which was similar between the sexes (6.6% vs. 7.0%). The sensitivity of BMI to classify overweight or obesity was high (boys = 93%, girls = 100%); and its false-positive detection rate was also high (boys = 63%, girls = 81%). The agreement rate was low between these two methods (boys = 0.48, girls =0.24). There is poor agreement in obesity classification between BMI and percent body fat, using NIR method, among Saudi school children.
NASA Astrophysics Data System (ADS)
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.
Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen
2005-07-01
In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.
Ho Hoang, Khai-Long; Mombaur, Katja
2015-10-15
Dynamic modeling of the human body is an important tool to investigate the fundamentals of the biomechanics of human movement. To model the human body in terms of a multi-body system, it is necessary to know the anthropometric parameters of the body segments. For young healthy subjects, several data sets exist that are widely used in the research community, e.g. the tables provided by de Leva. None such comprehensive anthropometric parameter sets exist for elderly people. It is, however, well known that body proportions change significantly during aging, e.g. due to degenerative effects in the spine, such that parameters for young people cannot be used for realistically simulating the dynamics of elderly people. In this study, regression equations are derived from the inertial parameters, center of mass positions, and body segment lengths provided by de Leva to be adjustable to the changes in proportion of the body parts of male and female humans due to aging. Additional adjustments are made to the reference points of the parameters for the upper body segments as they are chosen in a more practicable way in the context of creating a multi-body model in a chain structure with the pelvis representing the most proximal segment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Applications to car bodies - Generalized layout design of three-dimensional shells
NASA Technical Reports Server (NTRS)
Fukushima, Junichi; Suzuki, Katsuyuki; Kikuchi, Noboru
1993-01-01
We shall describe applications of the homogenization method, formulated in Part 1, to design layout of car bodies represented by three-dimensional shell structures based on a multi-loading optimization.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack
NASA Astrophysics Data System (ADS)
Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li
2017-12-01
The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.
Neupane, Subas; Nygård, Clas-Håkan; Oakman, Jodi
2016-06-16
Work-related musculoskeletal pain is a major occupational problem. Those with pain in multiple sites usually report worse health outcomes than those with pain in one site. This study explored prevalence and associated predictors of multi-site pain in health care sector employees. Survey responses from 1348 health care sector employees across three organisations (37% response rate) collected data on job satisfaction, work life balance, psychosocial and physical hazards, general health and work ability. Musculoskeletal discomfort was measured across 5 body regions with pain in ≥ 2 sites defined as multi-site pain. Generalized linear models were used to identify relationships between work-related factors and multi-site pain. Over 52% of the employees reported pain in multiple body sites and 19% reported pain in one site. Poor work life balance (PRR = 2.33, 95% CI = 1.06-5.14). physical (PRR = 7.58, 95% CI = 4.89-11.77) and psychosocial (PRR = 1.59, 95% CI = 1.00-2.57) hazard variables were related to multi-site pain (after controlling for age, gender, health and work ability. Older employees and females were more likely to report multi-site pain. Effective risk management of work related multi-site pain must include identification and control of psychosocial and physical hazards.
Deurenberg, P; Andreoli, A; de Lorenzo, A
1996-01-01
Total body water and extracellular water were measured by deuterium oxide and bromide dilution respectively in 23 healthy males and 25 healthy females. In addition, total body impedance was measured at 17 frequencies, ranging from 1 kHz to 1350 kHz. Modelling programs were used to extrapolate impedance values to frequency zero (extracellular resistance) and frequency infinity (total body water resistance). Impedance indexes (height2/Zf) were computed at all 17 frequencies. The estimation errors of extracellular resistance and total body water resistance were 1% and 3%, respectively. Impedance and impedance index at low frequency were correlated with extracellular water, independent of the amount of total body water. Total body water showed the greatest correlation with impedance and impedance index at high frequencies. Extrapolated impedance values did not show a higher correlation compared to measured values. Prediction formulas from the literature applied to fixed frequencies showed the best mean and individual predictions for both extracellular water and total body water. It is concluded that, at least in healthy individuals with normal body water distribution, modelling impedance data has no advantage over impedance values measured at fixed frequencies, probably due to estimation errors in the modelled data.
NASA Astrophysics Data System (ADS)
Tan, X. G.; Przekwas, A. J.; Gupta, R. K.
2017-11-01
The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.
Mass measurement using energy spectra in three-body decays
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...
2016-05-24
In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this study, we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction ofmore » the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off -shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an “event mixing” technique, the performance of which is discussed in detail. In conclusion, taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.« less
Meillère, Alizée; Brischoux, François; Parenteau, Charline; Angelier, Frédéric
2015-01-01
Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows’ nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds. PMID:26270531
Meillère, Alizée; Brischoux, François; Parenteau, Charline; Angelier, Frédéric
2015-01-01
Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows' nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.
Body composition analysis: Cellular level modeling of body component ratios.
Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N
2008-01-01
During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.
Polyhydroxybutyrate accumulation by a Serratia sp.
Lugg, Harriet; Sammons, Rachel L; Marquis, Peter M; Hewitt, Christopher J; Yong, Ping; Paterson-Beedle, Marion; Redwood, Mark D; Stamboulis, Artemis; Kashani, Mitra; Jenkins, Mike; Macaskie, Lynne E
2008-03-01
A strain of Serratia sp. showed intracellular electron-transparent inclusion bodies when incubated in the presence of citrate and glycerol 2-phosphate without nitrogen source following pre-growth under carbon-limitation in continuous culture. About 1.3 mmol citrate were consumed per 450 mg biomass, giving a calculated yield of maximally 55% of stored material per g of biomass dry wt. The inclusion bodies were stained with Sudan Black and Nile Red (NR), suggesting a lipid material, which was confirmed as polyhydroxybutyrate (PHB) by analysis of molecular fragments by GC and by FTIR spectroscopy of isolated bio-PHB in comparison with reference material. Multi-parameter flow cytometry in conjunction with NR fluorescence, and electron microscopy, showed that not all cells contained heavy PHB bodies, suggesting the potential for increasing the overall yield. The economic attractiveness is enhanced by the co-production of nanoscale hydroxyapatite (HA), a possible high-value precursor for bone replacement materials.
Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.
2008-01-01
A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.
Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.
2016-01-01
The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed.
Wearable, multimodal, vitals acquisition unit for intelligent field triage.
Beck, Christoph; Georgiou, Julius
2016-09-01
In this Letter, the authors describe the characterisation design and development of the authors' wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams.
NASA Technical Reports Server (NTRS)
Norman, M.; McCulloch, M.; ONeill, H.; Brandon, A.
2004-01-01
Magnesium isotopes potentially offer new insights into a diverse range of processes including evaporation and condensation in the solar nebula, melting and metasomatism in planetary interiors, and hydrothermal alteration [1,2,3,4]. Volatility-related Mg isotopic variations of up to 10 per mil/amu relative to a terrestrial standard have been found in early nebular phases interpreted as evaporation residues [1], and relatively large variations (up to 3 per mil/amu) in the terrestrial mantle have been reported recently [4]. In order to investigate possible differences in the nebular history of material contributing to the terrestrial planets, and to search for evidence of a high-temperature origin of the Moon, we have measured the magnesium isotopic composition of primitive olivines from the Earth, Moon, Mars, and pallasite parent body using laser-ablation multicollector ICPMS.
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.
2013-04-01
This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.
Multi-Objective Optimization of Spacecraft Trajectories for Small-Body Coverage Missions
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2017-01-01
Visual coverage of surface elements of a small-body object requires multiple images to be taken that meet many requirements on their viewing angles, illumination angles, times of day, and combinations thereof. Designing trajectories capable of maximizing total possible coverage may not be useful since the image target sequence and the feasibility of said sequence given the rotation-rate limitations of the spacecraft are not taken into account. This work presents a means of optimizing, in a multi-objective manner, surface target sequences that account for such limitations.
Process Improvement Through Tool Integration in Aero-Mechanical Design
NASA Technical Reports Server (NTRS)
Briggs, Clark
2010-01-01
Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.
Octopus-inspired multi-arm robotic swimming.
Sfakiotakis, M; Kazakidi, A; Tsakiris, D P
2015-05-13
The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.
Experimental and numerical study of physiological responses in hot environments.
Yang, Jie; Weng, Wenguo; Zhang, Baoting
2014-10-01
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
Application of an Evolution Strategy in Planetary Ephemeris Optimization
NASA Astrophysics Data System (ADS)
Mai, E.
2016-12-01
Classical planetary ephemeris construction comprises three major steps, which are performed iteratively: simultaneous numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of thousands of observations (reduction step), and optimization of various selected model parameters (adjustment step). This traditional approach is challenged by ongoing refinements in force modeling, e.g. inclusion of much more significant minor bodies, an ever-growing number of planetary observations, e.g. vast amount of spacecraft tracking data, etc. To master the high computational burden and in order to circumvent the need for inversion of huge normal equation matrices, we propose an alternative ephemeris construction method. The main idea is to solve the overall optimization problem by a straightforward direct evaluation of the whole set of mathematical formulas involved, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and numerical difficulties. We replace the usual gradient search by a stochastic search, namely an evolution strategy, the latter of which is also perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach enables multi-criteria optimization and time-varying optima. This issue will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of the physical state (orbit, size, shape, rotation, gravity,…) of celestial bodies (planets, satellites, asteroids, or comets), and if one seeks near real-time solutions. Here we outline the general idea and discuss first results. As an example, we present a simultaneous optimization of high-correlated asteroidal ring model parameters (total mass and heliocentric radius), based on simulations.
The in situ aeration in an old landfill in China: Multi-wells optimization method and application.
Liu, Lei; Ma, Jun; Xue, Qiang; Shao, Jingbang; Chen, Yijun; Zeng, Gang
2018-06-01
The optimization design of well spacing (WS) and aeration rate (AR) is crucial to the in situ aeration system operation in under long-term and high-efficiency conditions. This optimization design aims to transport additional air into landfills and to develop an improved oxygen environment for enhancing aerobic degradation. Given the specific pore structure distribution within landfills, providing sufficient oxygen in all waste bodies in field sites through gas wells is difficult. The design of well distribution also lacks adequate criteria. In this work, the multi-well optimization aeration method (MWOAM) was proposed to select the WS and AR from prediction results that consider gas transport properties by maximizing oxygen storage ratio (OSR) as the key objective threshold. This method was applied to the aeration restoration engineering in Jinkou landfill, which represents the first full-scale application of an aeration project in China, to optimize the operation scheme of the aeration system. Results of the gas concentration monitoring show that the trend of the OSR with aeration time based on the measurement agrees with the prediction. The oxygen and methane contents remain high and low within the landfill during the aeration process, respectively. Moreover, the temperature in the waste body did not exceed the upper limit value. These results suggested that the MWOAM is an effective means of supplying sufficient oxygen content across the landfill body and extend the aeration system operation for the long term. Therefore, this work provides reliable evidence to support the design and operation management of the aeration systems in full-scale landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming
2014-05-01
Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance.
Hollar, Danielle; Lombardo, Michelle; Lopez-Mitnik, Gabriella; Hollar, Theodore L; Almon, Marie; Agatston, Arthur S; Messiah, Sarah E
2010-05-01
Successfully addressing childhood onset obesity requires multilevel (individual, community, and governmental), multi-agency collaboration. The Healthier Options for Public Schoolchildren (HOPS)/OrganWise Guys (OWG) quasi-experimental controlled pilot study (four intervention schools, one control school, total N=3,769; 50.2% Hispanic) was an elementary school-based obesity prevention intervention designed to keep children at a normal, healthy weight, and improve health status and academic achievement. The HOPS/OWG included the following replicable, holistic components: (1) modified dietary offerings, (2) nutrition/lifestyle educational curricula; (3) physical activity component; and (4) wellness projects. Demographic, anthropometric (body mass index [BMI]), blood pressure, and academic data were collected during the two-year study period (2004-6). Statistically significant improvements in BMI, blood pressure, and academic scores, among low-income Hispanic and White children in particular, were seen in the intervention versus controls. Holistic school-based obesity prevention interventions can improve health outcomes and academic performance, in particular among high-risk populations.
Johnson, Steve A.
1990-01-01
An arrangement especially suitable for use in a laser apparatus for converting a plurality of different input light beams, for example copper vapor laser beams, into a plurality of substantially identical light beams is disclosed herein. This arrangement utilizes an optical mixing bar which is preferably integrally formed as a single unit and which includes a main body for mixing light therein, a flat input surface on one end of the main body, and a multi-faceted output face on the opposite end of the main body. This arrangement also includes means for directing the plurality of different input light beams onto the input face of the mixing base, whereby to cause the different beams to mix within the main body of the mixing bar and exit the latter from its multi-faceted output face as the desired plurality of substantially identical output beams.
NASA Astrophysics Data System (ADS)
Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu
2009-03-01
This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Radke, Tara; Chuhta, Jesse; Hughes, Michael
2014-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion Multi-Purpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust but affordable human spacecraft capability.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close approach to a planet, the central body switches from the sun to that planet and the trajectory is modeled as a hyperbola with respect to the planet. This is known as the method of patched conics. The impulsive and patched-conic assumptions significantly simplify the preliminary design problem.
Influences of system uncertainties on the numerical transfer path analysis of engine systems
NASA Astrophysics Data System (ADS)
Acri, A.; Nijman, E.; Acri, A.; Offner, G.
2017-10-01
Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.
Multi-gradient drilling method and system
Maurer, William C.; Medley, Jr., George H.; McDonald, William J.
2003-01-01
A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
PROGRAPE-1: A Programmable, Multi-Purpose Computer for Many-Body Simulations
NASA Astrophysics Data System (ADS)
Hamada, Tsuyoshi; Fukushige, Toshiyuki; Kawai, Atsushi; Makino, Junichiro
2000-10-01
We have developed PROGRAPE-1 (PROgrammable GRAPE-1), a programmable multi-purpose computer for many-body simulations. The main difference between PROGRAPE-1 and ``traditional'' GRAPE systems is that the former uses FPGA (Field Programmable Gate Array) chips as the processing elements, while the latter relies on a hardwired pipeline processor specialized to gravitational interactions. Since the logic implemented in FPGA chips can be reconfigured, we can use PROGRAPE-1 to calculate not only gravitational interactions, but also other forms of interactions, such as the van der Waals force, hydro\\-dynamical interactions in the SPHr calculation, and so on. PROGRAPE-1 comprises two Altera EPF10K100 FPGA chips, each of which contains nominally 100000 gates. To evaluate the programmability and performance of PROGRAPE-1, we implemented a pipeline for gravitational interactions similar to that of GRAPE-3. One pipeline is fitted into a single FPGA chip, operated at 16 MHz clock. Thus, for gravitational interactions, PROGRAPE-1 provided a speed of 0.96 Gflops-equivalent. PROGRAPE will prove to be useful for a wide-range of particle-based simulations in which the calculation cost of interactions other than gravity is high, such as the evaluation of SPH interactions.
Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles
NASA Technical Reports Server (NTRS)
Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.
2011-01-01
The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.
An Energy Efficient MAC Protocol for Multi-Hop Swallowable Body Sensor Networks
Lin, Lin; Yang, Chengfeng; Wong, Kai Juan; Yan, Hao; Shen, Junwen; Phee, Soo Jay
2014-01-01
Swallowable body sensor networks (BSNs) are composed of sensors which are swallowed by patients and send the collected data to the outside coordinator. These sensors are energy constraint and the batteries are difficult to be replaced. The medium access control (MAC) protocol plays an important role in energy management. This paper investigates an energy efficient MAC protocol design for swallowable BSNs. Multi-hop communication is analyzed and proved more energy efficient than single-hop communication within the human body when the circuitry power is low. Based on this result, a centrally controlled time slotting schedule is proposed. The major workload is shifted from the sensors to the coordinator. The coordinator collects the path-loss map and calculates the schedules, including routing, slot assignment and transmission power. Sensor nodes follow the schedules to send data in a multi-hop way. The proposed protocol is compared with the IEEE 802.15.6 protocol in terms of energy consumption. The results show that it is more energy efficient than IEEE 802.15.6 for swallowable BSN scenarios. PMID:25330049
NASA Astrophysics Data System (ADS)
Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj
2018-05-01
In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.
Multi-wavelength photoacoustic system based on high-power diode laser bars
NASA Astrophysics Data System (ADS)
Leggio, Luca; Wiśniowski, Bartosz; Gawali, Sandeep Babu; Rodríguez, Sergio; Sánchez, Miguel; Gallego, Daniel; Carpintero, Guillermo; Lamela, Horacio
2017-03-01
Multi-wavelength laser sources are necessary for a functional photoacoustic (PA) spectroscopy. The use of high-power diode lasers (HPDLs) has aroused great interest for their relatively low costs and small sizes if compared to solid state lasers. However, HPDLs are only available at few wavelengths and can deliver low optical energy (normally in the order of μJ), while diode laser bars (DLBs) offer more wavelengths in the market and can deliver more optical energy. We show the simulations of optical systems for beam coupling of single high-power DLBs operating at different wavelengths (i.e. 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm) into 400-μm optical fibers. Then, in a separate design, the beams of the DLBs are combined in a compact system making use of dichroic mirrors and focusing lenses for beam coupling into a 400-μm optical fiber. The use of optical fibers with small core diameter (< 1 mm) is particularly suggestive for future photoacoustic endoscopy (PAE) applications that require interior examination of the body.
Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W
2018-04-01
Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' < 0.04). Similarly, the multi-axial suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abtew, M. A.; Loghin, C.; Cristian, I.; Boussu, F.; Bruniaux, P.; Chen, Y.; Wang, L.
2018-06-01
In today’s scenario for the various technical applications, from composites to body armour, the material mouldability along with its mechanical property become very important. In the present study, two dimensional (2D) woven fabrics made of para-aramid high performance fibres in multi-layer dry structure were used for investigating different forming characteristics. The different layers were arranged with 0°/90° orientation for deep drawing formability test to analyse the effect of number of layers and blank-holder pressure (BHP) during the test. Specific preforming device with low speed forming process and predefined hemispherical shape of punch has been applied. Using fine photographic analysis, some important 2D multi-layer fabrics forming characteristics i.e., material drawing-in, surface shear angle etc. from the imposed deformation have been observed, measured and analysed for better understanding and co MPa rison. The result revealed that the mouldability behaviour of the multi-layered dry textile fabric preforms is directional, and closely dependent on blank-holding pressure and number of layers. This indicates both parameters should be carefully considered while material deformation to avoid the formation of wrinkling and maintain other mechanical properties on final application.
He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao
2018-01-01
A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643
He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao
2018-04-26
A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.
Integrated Modeling of Spacecraft Touch-and-Go Sampling
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2009-01-01
An integrated modeling tool has been developed to include multi-body dynamics, orbital dynamics, and touch-and-go dynamics for spacecraft covering three types of end-effectors: a sticky pad, a brush-wheel sampler, and a pellet gun. Several multi-body models of a free-flying spacecraft with a multi-link manipulator driving these end-effectors have been tested with typical contact conditions arising when the manipulator arm is to sample the surface of an asteroidal body. The test data have been infused directly into the dynamics formulation including such information as the mass collected as a function of end-effector longitudinal speed for the brush-wheel and sticky-pad samplers, and the mass collected as a function of projectile speed for the pellet gun sampler. These data represent the realistic behavior of the end effector while in contact with a surface, and represent a low-order model of more complex contact conditions that otherwise would have to be simulated. Numerical results demonstrate the adequacy of these multibody models for spacecraft and manipulator- arm control design. The work contributes to the development of a touch-and-go testbed for small body exploration, denoted as the GREX Testbed (GN&C for Rendezvous-based EXploration). The GREX testbed addresses the key issues involved in landing on an asteroidal body or comet; namely, a complex, low-gravity field; partially known terrain properties; possible comet outgassing; dust ejection; and navigating to a safe and scientifically desirable zone.
2013-01-01
Background The cardiovascular (CV) and metabolic health benefits or risks associated with consumption of multi-ingredient performance supplements (MIPS) in conjunction with periodized resistance training (RT) in resistance-trained men are unknown. This population is a major target audience for performance supplements, and therefore, the purpose of this study was to investigate the combined effect of RT and commercially available pre- and post-exercise performance supplements on CV health and body fat in resistance-trained men. Methods Twenty-four resistance-trained men completed six weeks (three times/week) of periodized RT while either ingesting SHOT 15-min pre-exercise and SYN immediately post-exercise (multi-ingredient performance supplement group: MIPS) or an isocaloric maltodextrin placebo 15-min pre-exercise and immediately post-exercise (Placebo group). Before and after six weeks of RT and supplementation, resting heart rate (HR), blood pressure (BP), total body fat, android fat, gynoid fat, fat-free mass (FFM) and fasting blood measures of glucose, lipids, nitrate/nitrite (NOx), cortisol and high sensitivity C-reactive protein (hs-CRP) were measured. Statistical analysis was conducted using a one-way ANOVA for baseline differences and a 2 × 2 (group × time) repeated measures ANOVA and Tukey post-hoc tests where appropriate. Significance was set at p < 0.05. Results There was no group × time interaction for HR, BP, blood glucose, lipids, NOx, hs-CRP, cortisol concentrations or body fat. However, there was a time effect where significant decreases in body fat (mean ± SD; MIPS: -1.2 ± 1.2%; Placebo: -0.9 ± 1.1%), android fat (MIPS: -1.8 ± 2.1%; Placebo: -1.6 ± 2.0%), and gynoid fat (MIPS: -1.3 ± 1.6%; Placebo: -1.0 ± 1.4%) for both groups were observed. FFM increased in both groups, and a group × time interaction was observed with MIPS increasing significantly more than the Placebo group (4.2% vs. 1.9%). Conclusions Six weeks of MIPS ingestion and periodized RT does not alter CV health parameters or blood indices of health or body fat more than a Placebo treatment in healthy, resistance-trained men. However, MIPS significantly increased FFM more than Placebo. PMID:23680036
Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc
2004-01-01
To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.
Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer
2017-01-01
The effects of circuit-like functional high-intensity training (Circuit HIIT ) alone or in combination with high-volume low-intensity exercise (Circuit combined ) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk -1 ) of either Circuit HIIT ( n = 11), or Circuit combined ( n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent ( p < 0.05) by Circuit HIIT , whereas Circuit combined improved perception of general health more ( p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, Circuit HIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuit combined results in better perception of general health.
Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer
2017-01-01
The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk−1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by CircuitHIIT, whereas Circuitcombined improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health. PMID:28420999
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Lopez, Bruno; Augereau, Jean-Charles; Delbo, Marco; Dominik, Carsten; Henning, Thomas; Hofmann, Karl-Heinz; Hogerheijde, Michiel; Hron, Josef; Jaffe, Walter; Lanz, Thierry; Meisenheimer, Klaus; Millour, Florentin; Pantin, Eric; Petrov, Roman; Schertl, Dieter; van Boekel, Roy; Weigelt, Gerd; Chiavassa, Andrea; Juhasz, Attila; Matter, Alexis; Meilland, Anthony; Nardetto, Nicolas; Paladini, Claudia
2016-07-01
We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star and planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.
Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H
2016-06-01
This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p < 0.05) BWG and feed conversion ratio (FCR) compared to CON group. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p < 0.05). Drip loss percentage on days 3 and 5 and also meat colour were not affected significantly. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p < 0.05). Among measured blood constituents, chickens fed supplemented diets with thermo-resistant multi-enzyme showed higher (p < 0.05) IgG. Counts of red and white blood cells and lymphocyte percentage were not affected. In conclusion, the results demonstrated that supplementing pelleted diets with thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Neupane, S; Virtanen, P; Leino-Arjas, P; Miranda, H; Siukola, A; Nygård, C-H
2013-03-01
We investigated the separate and joint effects of multi-site musculoskeletal pain and physical and psychosocial exposures at work on future work ability. A survey was conducted among employees of a Finnish food industry company in 2005 (n = 1201) and a follow-up survey in 2009 (n = 734). Information on self-assessed work ability (current work ability on a scale from 0 to 10; 7 = poor work ability), multi-site musculoskeletal pain (pain in at least two anatomical areas of four), leisure-time physical activity, body mass index and physical and psychosocial exposures was obtained by questionnaire. The separate and joint effects of multi-site pain and work exposures on work ability at follow-up, among subjects with good work ability at baseline, were assessed by logistic regression, and p-values for the interaction derived. Compared with subjects with neither multi-site pain nor adverse work exposure, multi-site pain at baseline increased the risk of poor work ability at follow-up, allowing for age, gender, occupational class, body mass index and leisure-time physical activity. The separate effects of the work exposures on work ability were somewhat smaller than those of multi-site pain. Multi-site pain had an interactive effect with work environment and awkward postures, such that no association of multi-site pain with poor work ability was seen when work environment was poor or awkward postures present. The decline in work ability connected with multi-site pain was not increased by exposure to adverse physical or psychosocial factors at work. © 2012 European Federation of International Association for the Study of Pain Chapters.
Curtis, Jeffrey R; Greenberg, Jeffrey D; Harrold, Leslie R; Kremer, Joel M; Palmer, J Lynn
2018-02-01
Traditional markers of inflammation are often required for inclusion in rheumatoid arthritis trials, yet patients with active disease may have normal lab tests. The potential use of the multi-biomarker disease activity (MBDA) test in this setting is unclear, as is understanding of whether it is influenced by patient characteristics (e.g., age, BMI, and comorbidities). Using data from the Corrona registry, we conducted a cross-sectional analysis of RA patients with MBDA tests. Patients were classified as low (<30), moderate (30-44, and high (>44) and by clinical and RA-related factors. Regression was used to evaluate the association between MBDA score and age, body mass index, comorbidities, and RA-related factors. Of 357 eligible patients, 76% (n = 273) had normal CRP (<10mg/L) with high (33%), moderate (45%), and low (22%) disease activity by MBDA. The MBDA score was significantly associated with BMI, age, CDAI, and SJC. There was no association between MBDA score and fibromyalgia, diabetes, smoking, or COPD; none were confounders between MBDA score and either SJC or CDAI. For patients in CDAI remission, older age (2.6 units per decade; p = 0.03) and obesity (β = 10.5 for BMI > 30, referent to <25; p = 0.02) were independently associated with MBDA score. An adjusted MBDA score was proposed that was highly correlated with the original MBDA (r = 0.91). In this real-world analysis, the MBDA score was associated with RA disease activity, obesity, and age, and was negligibly affected by common comorbidities. Almost one-third of patients with normal CRP had high MBDA scores. An adjustment to the MBDA score to account for body mass index and age is proposed. Copyright © 2018 Elsevier Inc. All rights reserved.
Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System
NASA Astrophysics Data System (ADS)
Nouiraa, H.; Deschaud, J. E.; Goulettea, F.
2016-06-01
LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.
A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.
Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud
2011-01-01
In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.
2012-01-01
Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247
NASA Astrophysics Data System (ADS)
Shitzer, Avraham; Arens, Edward; Zhang, Hui
2016-07-01
The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and reliable data.
Kreipke, Vince C; Allman, Brittany R; Kinsey, Amber W; Moffatt, Robert J; Hickner, Robert C; Ormsbee, Michael J
2015-12-01
Although multi-ingredient performance supplements (MIPS) have increased in popularity because of their array of ergogenic ingredients, their efficacy and safety remain in question. The objective of this study was to determine the impact of supplementation with T+ (SUP; Onnit Labs, Austin, TX, USA), an MIPS containing long jack root, beta-alanine, and branched-chain amino acids, and other proprietary blends, on strength, body composition, and hormones in young resistance-trained men. Subjects were randomized to consume either T+ (SUP; n = 14; age, 21 ± 3 years; body fat, 18.3 ± 4.7%) or an isocaloric placebo (PL; n = 13; age, 21 ± 3 years; body fat, 21.5 ± 6.2%) for 4 weeks. Both groups underwent a progressive, 4-week high-intensity resistance training protocol. Before and after the training protocol, mood state, body composition, blood hormones (also collected at midpoint), and maximal strength were measured. SUP had significantly greater increases in bench press (SUP, 102 ± 16 kg to 108 ± 16 kg vs. PL, 96 ± 22 kg to 101 ± 22 kg; p < 0.001) and total weight lifted (SUP, 379 ± 59 kg to 413 ± 60 kg vs. PL, 376 ± 70 kg to 400 ± 75 kg; p < 0.001) compared with PL. Additionally, deadlift strength relative to total body mass (calculated as weight lifted/body mass; kg:kg) (2.08 ± 0.18 to 2.23 ± 0.16; p = 0.036) and lean mass (2.55 ± 0.19 to 2.72 ± 0.16; p = 0.021) increased significantly in SUP but not PL (2.02 ± 0.30 to 2.15 ± 0.36 and 2.56 ± 0.31 to 2.70 ± 0.36, respectively). No other significant differences were detected between groups for the remaining variables. Supplementing with SUP enhanced resistance training adaptations independent of hormonal status, and thus SUP use may warrant inclusion into peri-workout nutrition regimens. This study was registered with clinicaltrials.gov (identifier: NCT01971723).
Applications of Multi-Body Dynamical Environments: The ARTEMIS Transfer Trajectory Design
NASA Technical Reports Server (NTRS)
Folta, David C.; Woodard, Mark; Howell, Kathleen; Patterson, Chris; Schlei, Wayne
2010-01-01
The application of forces in multi-body dynamical environments to pennit the transfer of spacecraft from Earth orbit to Sun-Earth weak stability regions and then return to the Earth-Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecraft into EarthMoon libration orbits by means of these applications.
Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
Nguyen, Anh Tuan; Han, Jong-Seob; Han, Jae-Hung
2016-12-14
This study explores the effects of the body aerodynamics on the dynamic flight stability of an insect at various different forward flight speeds. The insect model, whose morphological parameters are based on measurement data from the hawkmoth Manduca sexta, is treated as an open-loop six-degree-of-freedom dynamic system. The aerodynamic forces and moments acting on the insect are computed by an aerodynamic model that combines the unsteady panel method and the extended unsteady vortex-lattice method. The aerodynamic model is then coupled to a multi-body dynamic code to solve the system of motion equations. First, the trimmed flight conditions of insect models with and without consideration of the body aerodynamics are obtained using a trim search algorithm. Subsequently, the effects of the body aerodynamics on the dynamic flight stability are analysed through modal structures, i.e., eigenvalues and eigenvectors in this case, which are based on linearized equations of motion. The solutions from the nonlinear and linearized equations of motion due to gust disturbances are obtained, and the effects of the body aerodynamics are also investigated through these solutions. The results showed the important effect of the body aerodynamics at high-speed forward flight (in this paper at 4.0 and 5.0 m s -1 ) and the movement trends of eigenvalues when the body aerodynamics is included.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Computer Aided Multi-Data Fusion Dismount Modeling
2012-03-22
The ability of geometric morphometric methods to estimate a known covariance matrix., volume 49. Systematic Biology, 2000. [39] Wang C., Yuen M...the use of human shape descriptors like landmarks, body composition, body segmentation, skeletonisation, body representation using geometrical shapes...Springer. [10] Bookstein, F. L. “ Morphometric Tools for Landmark Data: Geometry and Biology.” Cambridge University Press, 1991. [11] Borengasser, M
Non-iterative volumetric particle reconstruction near moving bodies
NASA Astrophysics Data System (ADS)
Mendelson, Leah; Techet, Alexandra
2017-11-01
When multi-camera 3D PIV experiments are performed around a moving body, the body often obscures visibility of regions of interest in the flow field in a subset of cameras. We evaluate the performance of non-iterative particle reconstruction algorithms used for synthetic aperture PIV (SAPIV) in these partially-occluded regions. We show that when partial occlusions are present, the quality and availability of 3D tracer particle information depends on the number of cameras and reconstruction procedure used. Based on these findings, we introduce an improved non-iterative reconstruction routine for SAPIV around bodies. The reconstruction procedure combines binary masks, already required for reconstruction of the body's 3D visual hull, and a minimum line-of-sight algorithm. This approach accounts for partial occlusions without performing separate processing for each possible subset of cameras. We combine this reconstruction procedure with three-dimensional imaging on both sides of the free surface to reveal multi-fin wake interactions generated by a jumping archer fish. Sufficient particle reconstruction in near-body regions is crucial to resolving the wake structures of upstream fins (i.e., dorsal and anal fins) before and during interactions with the caudal tail.
Kamysheva, Ekaterina; Skouteris, Helen; Wertheim, Eleanor H; Paxton, Susan J; Milgrom, Jeannette
2008-06-01
The aim of this cross-sectional study was to investigate relationships among women's body attitudes, physical symptoms, self-esteem, depression, and sleep quality during pregnancy. Pregnant women (N=215) at 15-25 weeks gestation completed a questionnaire including four body image subscales assessing self-reported feeling fat, attractiveness, strength/fitness, and salience of weight and shape. Women reported on 29 pregnancy-related physical complaints, and completed the Beck Depression Inventory, Rosenberg Self-esteem Scale, and Pittsburgh Sleep Quality Index. In regressions, controlling for retrospective reports of body image, more frequent and intense physical symptoms were related to viewing the self as less strong/fit, and to poorer sleep quality and more depressive symptoms. In a multi-factorial model extending previous research, paths were found from sleep quality to depressive symptoms to self-esteem; self-esteem was found to be a mediator associated with lower scores on feeling fat and salience of weight and shape, and on higher perceived attractiveness.
A Multicultural Sequence of Humanities Electives.
ERIC Educational Resources Information Center
Anderson, Gwendolyn; Ewing, Dessa
In order to promote multi-cultural literacy among its students, Delaware County Community College (DCCC) developed a multi-cultural sequence of humanities electives. The sequence emerged as a response to the predominantly White student body's lack of knowledge or curiosity about other cultures. The first of the four courses in the sequence is…
Bezerra, Ewertton de Souza; Moro, Antônio Renato Pereira; Orssatto, Lucas Bet da Rosa; da Silva, Mariane Eichendorf; Willardson, Jeffrey Michael; Simão, Roberto
2018-06-01
The aim of the present study was to compare muscular performance and body composition changes following low-volume resistance-training programs consisting of multi-joint (MJ) exercises (cable chest press and seated row) versus a combination of multi- and single-joint (MJ+SJ) exercises (cable chest press, seated row, biceps curl, and triceps extension). Thirty untrained healthy aging adults were randomly assigned to 3 groups: MJ (n = 11), MJ+SJ (n = 11), and control (n = 8). Twelve-repetition maximums (12-RMs) for the cable chest press and seated row, localized muscular endurance for the elbow flexors handgrip strength, and body composition were assessed before and after the 8-week training program. All comparisons were analyzed via a mixed-model analysis with repeated measures (group × time) and the Bonferroni post hoc test (p < 0.05). The MJ and MJ+SJ groups increased performance in the 12-RM cable chest press (MJ = 61.5% ± 24.6% and MJ+SJ = 71.1% ± 25.6%), 12-RM seated row (MJ = 46.4% ± 26.3% and MJ+SJ = 51.5% ± 21.0%), localized muscular endurance (MJ = 24.7% ± 16.7% and MJ+SJ = 37.0% ± 11.4%), and handgrip strength (MJ = 9.3% ± 10.4% and MJ+SJ = 16.6% ± 25.3%) after the intervention. Body composition (i.e., trunk and upper limb fat and lean mass) did not change for any groups. No significant differences were observed between the MJ versus the MJ+SJ protocols after the intervention for any variables. In conclusion, for aging adults, either MJ or MJ+SJ low-volume resistance training resulted in similar increases in 12-RM, localized muscular endurance, and handgrip strength, without changes in body composition after 8 weeks of training.
HARV ANSER Flight Test Data Retrieval and Processing Procedures
NASA Technical Reports Server (NTRS)
Yeager, Jessie C.
1997-01-01
Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.
Influence of prey body characteristics and performance on predator selection.
Holmes, Thomas H; McCormick, Mark I
2009-03-01
At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and the action of external environmental characteristics, may all influence which individuals survive.
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Rahmim, Arman
2014-03-01
Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge
Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.
2013-01-01
Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.
Tourab, Wafa; Babouri, Abdesselam
2016-06-01
This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.
Lemon, Stephenie C.; Wang, Monica L.; Wedick, Nicole M.; Estabrook, Barbara; Druker, Susan; Schneider, Kristin L.; Li, Wenjun; Pbert, Lori
2014-01-01
Objective To describe the effectiveness, reach and implementation of a weight gain prevention intervention among public school employees. Method A multi-level intervention was tested in a cluster randomized trial among 782 employees in 12 central Massachusetts public high schools from 2009 to 2012. The intervention targeted the nutrition and physical activity environment and policies, the social environment and individual knowledge, attitudes and skills. The intervention was compared to a materials only condition. The primary outcome measures were change in weight and body mass index (BMI) at 24-month follow-up. Implementation of physical environment, policy and social environment strategies at the school and interpersonal levels, and intervention participation at the individual level were assessed. Results At 24-month follow-up, there was a net change (difference of the difference) of −3.03 pounds (p=.04) and of −.48 BMI units (p=.05) between intervention and comparison conditions. The majority of intervention strategies were successfully implemented by all intervention schools, although establishing formal policies was challenging. Employee participation in programs targeting the physical and social environment was maintained over time. Conclusion This study supports that a multi-level intervention integrated within the organizational culture can be successfully implemented and prevent weight gain in public high school employees. PMID:24345602
Su, Tin Tin; Sim, Pei Ying; Nahar, Azmi Mohamed; Majid, Hazreen Abd; Murray, Liam J; Cantwell, Marie M; Al-Sadat, Nabilla; Jalaludin, Muhammad Yazid
2014-10-01
Obesity and lack of physical activity are fast becoming a concern among Malaysian adolescents. This study aims to assess physical activity levels among Malaysian adolescents and investigate the association between physical activity levels and body composition such as body mass index (BMI), waist circumference (WC) and percentage of body fat. 1361 school-going 13 year old multi-ethnic adolescents from population representative samples in Malaysia were involved in our study. Self-reported physical activity levels were assessed using the validated Malay version of the Physical Activity Questionnaire for Older Children (PAQ-C). Height, weight, body fat composition and waist circumference (WC) were measured. Data collection period was from March to May 2012. 10.8% of the males and 7.4% of the females were obese according to the International Obesity Task Force standards. A majority of the adolescents (63.9%) were physically inactive. There is a weak but significant correlation between physical activity scores and the indicators of obesity. The adjusted coefficient for body fatness was relatively more closely correlated to physical activity scores followed by waist circumference and lastly BMI. This study demonstrates that high physical activity scores were associated with the decreased precursor risk factors of obesity. Copyright © 2014. Published by Elsevier Inc.
The independent association between diet quality and body composition.
Drenowatz, Clemens; Shook, Robin P; Hand, Gregory A; Hébert, James R; Blair, Steven N
2014-05-12
Excess body weight is associated with an imbalance between energy expenditure and dietary intake but evidence on the association between diet quality and body composition remains equivocal. Rather than relying on differences in diet quality between overweight/obese and normal weight adults, this study examined the association between the Healthy Eating Index 2010 (HEI-2010) and body fatness on a continuous scale, independent of physical activity (PA). Further the association between components of the HEI-2010 and risk for overweight/obesity was explored. 407 adults (27.6 ± 3.7 years) provided at least two 24-hour diet recalls over a period of 14 days, which were used to calculate the HEI-2010. Percent body fat (BF) was assessed via dual X-ray absorptiometry and PA was determined via a multi-sensor device, worn over a period of 10 days. PA was a stronger contributor to the variability in BF than the HEI-2010 and the association between HEI-2010 and BF was significant only in men. Particularly a high consumption of protein, sodium and empty calories increased the risk for overweight/obesity. Adherence to dietary guidelines positively affects body fatness in men, independent of PA. In contrast to current dietary recommendations, the risk for overweight/obesity was increased with a higher protein intake.
Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric
2007-01-01
The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.
Thielens, Arno; Agneessens, Sam; Van Torre, Patrick; Van den Bossche, Matthias; Eeftens, Marloes; Huss, Anke; Vermeulen, Roel; de Seze, René; Mazet, Paul; Cardis, Elisabeth; Röösli, Martin; Martens, Luc; Joseph, Wout
2018-01-01
A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m−2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6. PMID:29346280
Solar-pumped lasers for space power transmission
NASA Technical Reports Server (NTRS)
Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.
1979-01-01
Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.
Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.
2008-01-01
bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).
Ultrasonically Assisted Cutting of Bio-tissues in Microtomy
NASA Astrophysics Data System (ADS)
Wang, Dong; Roy, Anish; Silberschmidt, Vadim V.
Modern-day histology of bio-tissues for supporting stratified medicine diagnoses requires high-precision cutting to ensure high quality extremely thin specimens used in analysis. Additionally, the cutting quality is significantly affected by a wide variety of soft and hard tissues in the samples. This paper deals with development of a next generation of microtome employing introduction of controlled ultrasonic vibration to realise a hybrid cutting process of bio-tissues. The study is based on a combination of advanced experimental and numerical (finite-element) studies of multi-body dynamics of a cutting system. The quality of cut samples produced with the prototype is compared with the state-of-the-art.
Re-187 Os-187 Isotopic and Highly Siderophile Element Systematics of Group IVB Irons
NASA Technical Reports Server (NTRS)
Honesto, J.; McDonough, W. F.; Walker, R. J.; McCoy, T. J.; Ash, R. D.
2005-01-01
Study of the magmatic iron meteorite groups permits constraints to be placed on the chemical and isotopic composition of parent bodies, and the timing of, and crystal-liquid fractionation processes involved in the crystallization of asteroidal cores. Here we examine Re-Os isotopic and trace elemental systematics of group IVB irons. Compared to most irons, the irons comprising this group are enriched in some of the most refractory siderophile elements, yet highly-depleted in most volatile siderophile elements. These characteristics have been attributed to processes such as high temperature condensation of precursor materials and oxidation in the parent body. Most recently it has been suggested that both processes may be involved in the chemical complexity of the group. Here, high precision isotopic and highly siderophile element (HSE) concentrations are used to further examine these possible origins, and the crystallization history of the group. In addition, we have begun to assess the possibility of relating certain ungrouped irons with major groups via multi-element, trace element modeling. In a companion abstract, the isotopic and trace element systematics of the ungrouped iron Tishomingo are compared with the IVB irons.
The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation
NASA Astrophysics Data System (ADS)
Noh, Yookyung
The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.
Veronese, Ivan; De Martin, Elena; Martinotti, Anna Stefania; Fumagalli, Maria Luisa; Vite, Cristina; Redaelli, Irene; Malatesta, Tiziana; Mancosu, Pietro; Beltramo, Giancarlo; Fariselli, Laura; Cantone, Marie Claire
2015-06-13
A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres. The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered. The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value. The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.
Rat medium-term multi-organ carcinogenesis bioassay of Agaricus blazei Murrill fruit-body extract.
Doi, Yuko; Furukawa, Fumio; Suguro, Mayuko; Ito, Hikaru; Imai, Norio; Nabae, Kyoko; Toda, Yosuke; Inatomi, Satoshi; Kinugasa, Satomi; Kobayashi, Hitoshi
2010-01-01
The modifying potential of Agaricus blazei Murrill fruit-body extract (ABFE) on tumor development was investigated in a medium-term multi-organ carcinogenesis bioassay. Male 6-week-old F344 rats were treated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), 1,2-dimethylhydrazine dihydrochloride (DMH), N-butyl-N-(hydroxybutyl)-nitrosamine (BBN), and diisopropanolnitrosamine (DHPN) for initiation (DMBDD treatment). After a 1-week withdrawal period, the animals received distilled water (vehicle control) or ABFE A, gamma-amino butyric acid (GABA) at 0.8 mg/kg, ABFE B (GABA level of 3.0mg/kg) or ABFE C (GABA level of 12.0mg/kg) by gavage for 24 weeks. There were no effects of ABFE on survival rate, general condition, body weight, food and water consumption, and organ weights. The multiplicity of large intestinal nodules, smaller than 2mm was significantly increased in the ABFE C group with DMBDD treatment. However, there were no significantly inter-group differences in incidences of hyperplastic or neoplastic lesions in colon or other organs, or in immunohistochemically identified preneoplastic lesions in the liver. In conclusion, A. blazei Murrill fruit-body extract, even at a GABA level up to 12 mg/kg, did not exert modifying potential in the present medium-term multi-organ carcinogenesis bioassay in male F344 rats (DMBDD method). Copyright 2009 Elsevier Ltd. All rights reserved.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
Cardiometabolic risks profile of normal weight obese and multi-ethnic women in a developing country.
Moy, Foong Ming; Loh, Debbie Ann
2015-07-01
To determine the prevalence of normal weight obesity among multi-ethnic women in Peninsular Malaysia and examine its associations with cardiometabolic risks and lifestyle behaviours. This was a cross-sectional study involving women recruited via multi-stage sampling from six states in Malaysia. Anthropometric and body composition analysis were performed. Normal weight obese (NWO) was defined as normal body mass index for Asians and the highest tertile of % body fat (BF). Biochemical measurements included fasting lipid and blood glucose levels. Metabolic syndrome was diagnosed based on the Harmonization criteria. Participants completed self-reported questionnaires that included physical activity, smoking, alcohol consumption, fruit and vegetable intake and sleep duration. Body mass index, %BF, cardiometabolic risk factors, lifestyle behaviours. A total of 6854 women were recruited and the prevalence of NWO was 19.8% (95% CI: 17.3-22.5). NWO was more prevalent among the Indians and older women. NWO women had higher odds for abdominal obesity (OR: 2.64, 95% CI: 1.73-4.04), hypertriglyceridemia (2.51, 1.47-4.29) and hypertension (1.63, 1.15-2.31) compared to women with lower % body fat after adjusted for age and ethnicity. The prevalence of metabolic syndrome among NWO women was 5.4% (95% CI: 3.0-9.8). None of the lifestyle behaviours were significantly associated with NWO. Women with NWO had cardiometabolic abnormalities including abdominal obesity, dyslipidaemia and increased blood pressure. Health promotion efforts should include NWO women who may be oblivious of their deleterious health risks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Landmesser, John Andrew
2014-01-01
Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…
Body Image of Women Submitted to Breast Cancer Treatment
Guedes, Thais Sousa Rodrigues; Dantas de Oliveira, Nayara Priscila; Holanda, Ayrton Martins; Reis, Mariane Albuquerque; Silva, Clécia Patrocínio da; Rocha e Silva, Bárbara Layse; Cancela, Marianna de Camargo; de Souza, Dyego Leandro Bezerra
2018-06-25
Background: The study of body image includes the perception of women regarding the physical appearance of their own body. The objective of the present study was to verify the prevalence of body image dissatisfaction and its associated factors in women submitted to breast cancer treatment. Methods: A cross-sectional study carried out with 103 female residents of the municipality of Natal (Northeast Brazil), diagnosed with breast cancer who had undergone cancer treatment for at least 12 months prior to the study, and remained under clinical monitoring. The variable body image was measured through the validated Body Image Scale (BIS). Socioeconomic variables and clinical history were also collected through an individual interview with each participant. The Pearson’s chi-squared test (Fisher’s Exact) was utilized for bivariate analysis, calculating the prevalence ratio with 95% confidence interval. Poisson regression with robust variance was utilized for multivariate analysis. The statistical significance considered was 0.05. Results: The prevalence of body image dissatisfaction was 74.8% CI (65%-82%). Statistically significant associations were observed between body image and multi-professional follow-up (p=0.009) and return to employment after treatment (p=0.022). Conclusion: It was concluded that women who reported employment after cancer treatment presented more alterations in self-perception concerning their appearance. Patients who did not receive multi-professional follow-up reported negative body image, evidencing the need for strategies that increase and improve healthcare, aiming to meet the demands of this population. Creative Commons Attribution License
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif
2012-01-01
The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the “transmit-whenever-appropriate” principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposed to ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency. PMID:23202224
High voltage semiconductor devices and methods of making the devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit
A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias.more » The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.« less
Phase separation like dynamics during Myxococcus xanthus fruiting body formation
NASA Astrophysics Data System (ADS)
Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua
2015-03-01
Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.
High voltage semiconductor devices and methods of making the devices
Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit
2017-02-28
A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.
Application-oriented programming model for sensor networks embedded in the human body.
Barbosa, Talles M G de A; Sene, Iwens G; da Rocha, Adson F; Nascimento, Fransisco A de O; Carvalho, Hervaldo S; Camapum, Juliana F
2006-01-01
This work presents a new programming model for sensor networks embedded in the human body which is based on the concept of multi-programming application-oriented software. This model was conceived with a top-down approach of four layers and its main goal is to allow the healthcare professionals to program and to reconfigure the network locally or by the Internet. In order to evaluate this hypothesis, a benchmarking was executed in order to allow the assessment of the mean time spent in the programming of a multi-functional sensor node used for the measurement and transmission of the electrocardiogram.
Design and Implementation of the ARTEMIS Lunar Transfer Using Multi-Body Dynamics
NASA Technical Reports Server (NTRS)
Folta, David; Woodard, Mark; Sweetser, Theodore; Broschart, Stephen B.; Cosgrove, Daniel
2011-01-01
The use of multi-body dynamics to design the transfer of spacecraft from Earth elliptical orbits to the Earth-Moon libration (L(sub 1) and L(sub 2)) orbits has been successfully demonstrated by the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission. Operational support of the two ARTEMIS spacecraft is a final step in the realization of a design process that can be used to transfer spacecraft with restrictive operational constraints and fuel limitations. The focus of this paper is to describe in detail the processes and implementation of this successful approach.
Function combined method for design innovation of children's bike
NASA Astrophysics Data System (ADS)
Wu, Xiaoli; Qiu, Tingting; Chen, Huijuan
2013-03-01
As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children's tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children's bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows
NASA Astrophysics Data System (ADS)
Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.
2018-03-01
It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.
Wearable, multimodal, vitals acquisition unit for intelligent field triage
Georgiou, Julius
2016-01-01
In this Letter, the authors describe the characterisation design and development of the authors’ wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams. PMID:27733926
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.
Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.
2016-01-01
Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic, quantitative and multi-scale techniques in understanding the different cellular processing routes of functionalised nanomaterials. This correlative approach has wide implications for assessing the biopersistence of MWNT aggregates elsewhere in the body, in particular their interaction with macrophages in the lung. PMID:26298523
NASA Astrophysics Data System (ADS)
Smith, J. Torquil; Morrison, H. Frank; Doolittle, Lawrence R.; Tseng, Hung-Wen
2007-03-01
Equivalent dipole polarizabilities are a succinct way to summarize the inductive response of an isolated conductive body at distances greater than the scale of the body. Their estimation requires measurement of secondary magnetic fields due to currents induced in the body by time varying magnetic fields in at least three linearly independent (e.g., orthogonal) directions. Secondary fields due to an object are typically orders of magnitude smaller than the primary inducing fields near the primary field sources (transmitters). Receiver coils may be oriented orthogonal to primary fields from one or two transmitters, nulling their response to those fields, but simultaneously nulling to fields of additional transmitters is problematic. If transmitter coils are constructed symmetrically with respect to inversion in a point, their magnetic fields are symmetric with respect to that point. If receiver coils are operated in pairs symmetric with respect to inversion in the same point, then their differenced output is insensitive to the primary fields of any symmetrically constructed transmitters, allowing nulling to three (or more) transmitters. With a sufficient number of receivers pairs, object equivalent dipole polarizabilities can be estimated in situ from measurements at a single instrument sitting, eliminating effects of inaccurate instrument location on polarizability estimates. The method is illustrated with data from a multi-transmitter multi-receiver system with primary field nulling through differenced receiver pairs, interpreted in terms of principal equivalent dipole polarizabilities as a function of time.
Ritchie, David W; Kozakov, Dima; Vajda, Sandor
2008-09-01
Predicting how proteins interact at the molecular level is a computationally intensive task. Many protein docking algorithms begin by using fast Fourier transform (FFT) correlation techniques to find putative rigid body docking orientations. Most such approaches use 3D Cartesian grids and are therefore limited to computing three dimensional (3D) translational correlations. However, translational FFTs can speed up the calculation in only three of the six rigid body degrees of freedom, and they cannot easily incorporate prior knowledge about a complex to focus and hence further accelerate the calculation. Furthemore, several groups have developed multi-term interaction potentials and others use multi-copy approaches to simulate protein flexibility, which both add to the computational cost of FFT-based docking algorithms. Hence there is a need to develop more powerful and more versatile FFT docking techniques. This article presents a closed-form 6D spherical polar Fourier correlation expression from which arbitrary multi-dimensional multi-property multi-resolution FFT correlations may be generated. The approach is demonstrated by calculating 1D, 3D and 5D rotational correlations of 3D shape and electrostatic expansions up to polynomial order L=30 on a 2 GB personal computer. As expected, 3D correlations are found to be considerably faster than 1D correlations but, surprisingly, 5D correlations are often slower than 3D correlations. Nonetheless, we show that 5D correlations will be advantageous when calculating multi-term knowledge-based interaction potentials. When docking the 84 complexes of the Protein Docking Benchmark, blind 3D shape plus electrostatic correlations take around 30 minutes on a contemporary personal computer and find acceptable solutions within the top 20 in 16 cases. Applying a simple angular constraint to focus the calculation around the receptor binding site produces acceptable solutions within the top 20 in 28 cases. Further constraining the search to the ligand binding site gives up to 48 solutions within the top 20, with calculation times of just a few minutes per complex. Hence the approach described provides a practical and fast tool for rigid body protein-protein docking, especially when prior knowledge about one or both binding sites is available.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes
NASA Astrophysics Data System (ADS)
Ubaidillah, Permata, A. N. S.; Wibowo, A.; Budiana, E. P.; Yahya, I.; Mazlan, S. A.
2016-03-01
This paper describes the 3D magnetostatic simulation of a novel design axially multi-coiled magnetorheological (MRB). The proposed model is expected to produce a concentrated magnetic flux on the surface of the rotor disk brake. Thus, the braking torque enhancement is expected to be higher than that of conventional big size single-coil-equipped disk-type MRB. The axially multi-coiled MRB design features multiple electromagnetic poles from by several coils placed in the axial direction outside the MRB body. The magnetostatic analysis was developed utilizing finite element software namely ANSOFT-MAXWELL in 3D environment. The distribution of magnetic flux was investigated in a pair of the coil that represents the other pairs of electromagnetic parts. The simulation was done in 0.5 mm gap filled by magnetorheological fluids (MRFs) (MRF-132DG). The simulation was performed in various applied currents i.e. 0.25, 0.5, 0.75, 1, 1.5, and 2 Amperes. The results showed that the axially multi-coiled MRB provides a considerable magnetic flux (maximum of 337 mT/area). The active energizing areas of the MRB are proven to be more intensive than the conventional MRB. The proposed MRB exhibited a compact and robust design for achieving high torque MRB.
Li, Xinru; Yang, Xiucong; Lin, Zhiqiang; Wang, Dan; Mei, Dong; He, Bing; Wang, Xiaoyou; Wang, Xueqing; Zhang, Qiang; Gao, Wei
2015-08-30
The purpose of this work was to demonstrate the advantages of a folate modified pH sensitive micelle system (HPPF) on reducing the systemic toxicity of antitumor drug doxorubicin (DOX) as well as increasing the antitumor efficacy on multi-drug resistant tumor. The micelle HPPF was fabricated by PHIS-PEG and Fol-PEG-PLA using dialysis method. Multi-drug resistant human breast-cancer cell (MCF-7Adr) was used to test the therapeutic effect of DOX loaded HPPF micelles (HPPF/DOX). Nude mice bearing MCF-7Adr tumor was used to evaluate the systemic toxicity of HPPF/DOX. The micelle HPPF was successfully prepared with good size uniformity and pH sensitivity. The in vitro experiments showed that HPPF significantly increased the intracellular level and cytotoxicity of DOX. The in vivo experiments demonstrated that HPPF had largely reduced the mortality and body weight loss, improved the animal status and decreased damages on heart and lung tissues comparing to free DOX. The HPPF/DOX could significantly increase the antitumor efficacy of DOX and largely alleviate the systemic side effects induced by high dose DOX in the treatment of multi-drug resistant tumor. Copyright © 2015 Elsevier B.V. All rights reserved.
Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging
NASA Astrophysics Data System (ADS)
Key, Jaehong
One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.
Multi-limbed locomotion systems for space construction and maintenance
NASA Technical Reports Server (NTRS)
Waldron, K. J.; Klein, C. A.
1987-01-01
A well developed technology of coordination of multi-limbed locomotory systems is now available. Results from a NASA sponsored study of several years ago are presented. This was a simulation study of a three-limbed locomotion/manipulation system. Each limb had six degrees of freedom and could be used either as a locomotory grasping hand-holds, or as a manipulator. The focus of the study was kinematic coordination algorithms. The presentation will also include very recent results from the Adaptive Suspension Vehicle Project. The Adaptive Suspension Vehicle (ASV) is a legged locomotion system designed for terrestrial use which is capable of operating in completely unstructured terrain in either a teleoperated or operator-on-board mode. Future development may include autonomous operation. The ASV features a very advanced coordination and control system which could readily be adapted to operation in space. An inertial package with a vertical gyro, and rate gyros and accelerometers on three orthogonal axes provides body position information at high bandwidth. This is compared to the operator's commands, injected via a joystick to provide a commanded force system on the vehicle's body. This system is, in turn, decomposed by a coordination algorithm into force commands to those legs which are in contact with the ground.
Development of a Mars Surface Imager
NASA Technical Reports Server (NTRS)
Squyres, Steve W.
1994-01-01
The Mars Surface Imager (MSI) is a multispectral, stereoscopic, panoramic imager that allows imaging of the full scene around a Mars lander from the lander body to the zenith. It has two functional components: panoramic imaging and sky imaging. In the most recent version of the MSI, called PIDDP-cam, a very long multi-line color CCD, an innovative high-performance drive system, and a state-of-the-art wavelet image compression code have been integrated into a single package. The requirements for the flight version of the MSI and the current design are presented.
NASA Astrophysics Data System (ADS)
McHarge, J. L.; Hajek, E. A.; Heller, P. L.
2007-12-01
Allogenic processes are considered a prime control on the stratigraphic distribution of channel bodies, however, recent studies have indicated that autogenic stratigraphic organization may occur within fluvial systems on basin- filling time scales (105-106 years). Groupings or clusters of closely-spaced channel bodies can be produced by several different mechanisms, including both allogenic and autogenic processes. Commonly, sand- dominated intervals in stratigraphic successions are interpreted as incised-valley fills produced by base-level changes. In contrast, long-timescale organization of river avulsion can generate similar stratigraphic patterns. For example, sand-dominated intervals in the fluvial Lance Formation (Maastrichtian; Bighorn Basin, WY) have been interpreted as incised-valley fills formed during sea-level lowstand. However, closely-spaced sand bodies in the Ferris Formation (Lance equivalent; Hanna Basin, WY) are interpreted as aggradational in origin, and have been compared to autogenic avulsion stratigraphy produced in experimental basins. We evaluate the Lance Formation in the southern Bighorn Basin in an effort to determine whether these sand-dominated intervals are truly incised- valley fills resulting from sea-level changes, or if they were generated by autogenic processes. The Lance Formation crops out in the western and southern margins of the basin, exposing relatively proximal and distal portions of the system. By comparing alluvial architecture between exposures, we evaluate similarities and differences from upstream to downstream and look for evidence of intrinsic and extrinsic controls on deposition. In both localities, the Lance Formation comprises multi-story sheet sandstones and smaller, single-story sandstones. Observed changes from upstream to downstream in the system include: 1) increasing paleoflow depths (from ~30-60 cm to ~70-120 cm); 2) decreasing preservation of fine-grained material within channel bodies; 3) increasing proportion of amalgamated, multi-story sand bodies; and 4) increasing lateral continuity of multi-story sand bodies. These results indicate that upstream, channel-body spacing is dominantly controlled by aggradational processes and may be the result of autogenic avulsion clustering, whereas downstream, evidence of incision and amalgamation indicate that base-level may have limited and controlled sand-body architecture.
How Multi-Organ Microdevices Can Help Foster Drug Development
Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.
2014-01-01
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641
Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-01-01
Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-10-01
Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
Jambon, Marc; Smetana, Judith G
2018-05-01
Drawing on the framework of social domain theory, this multi-method, multi-informant longitudinal study examined whether callous-unemotional (CU) tendencies moderated the association between U.S. 4 to 7 year olds' (n = 135; Mage = 5.65, 50% male; 75% White) ability to differentiate hypothetical, prototypical moral and conventional transgressions along theoretical criteria and teacher (n = 49) and parent (n = 128, 91% mothers) ratings of physical aggression. Deficits in domain distinction ability were associated with greater teacher-reported aggression both concurrently and 9 months later, but only for children high in CU traits. No main effects or interactions were found for parent reports. These findings build on a growing body of research demonstrating that children who use aggression in a deliberate and callous manner show deficits in their basic understanding of moral norms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The organization and control of an evolving interdependent population
Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.
2015-01-01
Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
Stice, Eric; Yokum, Sonja; Veling, Harm; Kemps, Eva; Lawrence, Natalia S
2017-07-01
Elevated brain reward and attention region response, and weaker inhibitory region response to high-calorie food images have been found to predict future weight gain. These findings suggest that an intervention that reduces reward and attention region response and increases inhibitory control region response to such foods might reduce overeating. We conducted a randomized pilot experiment that tested the hypothesis that a multi-faceted food response and attention training with personalized high- and low-calorie food images would produce changes in behavioral and neural responses to food images and body fat compared to a control training with non-food images among community-recruited overweight/obese adults. Compared to changes observed in controls, completing the intervention was associated with significant reductions in reward and attention region response to high-calorie food images (Mean Cohen's d = 1.54), behavioral evidence of learning, reductions in palatability ratings and monetary valuation of high-calorie foods (p = 0.009, d's = 0.92), and greater body fat loss over a 4-week period (p = 0.009, d = 0.90), though body fat effects were not significant by 6-month follow-up. Results suggest that this multifaceted response and attention training intervention was associated with reduced reward and attention region responsivity to food cues, and a reduction in body fat. Because this implicit training treatment is both easy and inexpensive to deliver, and does not require top-down executive control that is necessary for negative energy balance obesity treatment, it may prove useful in treating obesity if future studies can determine how to create more enduring effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-time optical measurement of the dynamic body surface for use in guided radiotherapy
NASA Astrophysics Data System (ADS)
Price, G. J.; Parkhurst, J. M.; Sharrock, P. J.; Moore, C. J.
2012-01-01
Optical measurements are increasingly used in radiotherapy. In this paper we present, in detail, the design and implementation of a multi-channel optical system optimized for fast, high spatial resolution, dynamic body surface measurement in guided therapy. We include all algorithmic modifications and calibration procedures required to create a robust, practical system for clinical use. Comprehensive static and dynamic phantom validation measurements in the radiotherapy treatment room show: conformance with simultaneously measured cone beam CT data to within 1 mm over 62% ± 8% of the surface and 2 mm over 90% ± 3%; agreement with the measured radius of a precision geometrical phantom to within 1 mm; and true real-time performance with image capture through to surface display at 23 Hz. An example patient dataset is additionally included, indicating similar performance in the clinic.
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics
Bates, K. T.; Falkingham, P. L.
2012-01-01
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals. PMID:22378742
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics.
Bates, K T; Falkingham, P L
2012-08-23
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.
Integrated and flexible multichannel interface for electrotactile stimulation
NASA Astrophysics Data System (ADS)
Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry
2016-08-01
Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed system is convenient for practical applications and can be used to implement sensory perception training and/or closed-loop control of myoelectric prostheses, providing grasping force and proprioceptive feedback.
2016-09-20
This graphic depicts the Asteroid Redirect Vehicle conducting a flyby of its target asteroid. During these flybys, the Asteroid Redirect Mission (ARM) would come within 0.6 miles (1 kilometer), generating imagery with resolution of up to 0.4 of an inch (1 centimeter) per pixel. The robotic segment of ARM will demonstrate advanced, high-power, high-throughput solar electric propulsion; advanced autonomous precision proximity operations at a low-gravity planetary body; and controlled touchdown and liftoff with a multi-ton mass. The crew segment of the mission will include spacewalk activities for sample selection, extraction, containment and return; and mission operations of integrated robotic and crewed vehicle stack -- all key components of future in-space operations for human missions to the Mars system. After collecting a multi-ton boulder from the asteroid, the robotic spacecraft will redirect the boulder to a crew-accessible orbit around the moon, where NASA plans to conduct a series of proving ground missions in the 2020s that will help validate capabilities needed for NASA's Journey to Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21062
Demonstrating damage tolerance of composite airframes
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1993-01-01
Commercial transport aircraft operating in the United States are certified by the Federal Aviation Authority to be damage tolerant. On 28 April 1988, Aloha Airlines Flight 243, a Boeing 727-200 airplane, suffered an explosive decompression of the fuselage but landed safely. This event provides very strong justification for the damage tolerant design criteria. The likely cause of the explosive decompression was the linkup of numerous small fatigue cracks that initiated at adjacent fastener holes in the lap splice joint at the side of the body. Actually, the design should have limited the damage size to less than two frame spacings (about 40 inches), but this type of 'multi-site damage' was not originally taken into account. This cracking pattern developed only in the high-time airplanes (many flights). After discovery in the fleet, a stringent inspection program using eddy current techniques was inaugurated to discover these cracks before they linked up. Because of concerns about safety and the maintenance burden, the lap-splice joints of these high-time airplanes are being modified to remove cracks and prevent new cracking; newer designs account for 'multi-site damage'.
Evaluation of registration accuracy between Sentinel-2 and Landsat 8
NASA Astrophysics Data System (ADS)
Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia
2016-08-01
Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).
Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Simons, F. J.; Bozdag, E.
2014-12-01
We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.
Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments
NASA Astrophysics Data System (ADS)
Vaquero Escribano, Tatiana Mar
Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics
NASA Technical Reports Server (NTRS)
Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel
2008-01-01
This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Multi-orifice deposition nozzle for additive manufacturing
Lind, Randall F.; Post, Brian K.; Cini, Colin L.
2017-11-21
An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.
ERIC Educational Resources Information Center
Blackledge, Adrian; Creese, Angela
2017-01-01
This article reports communicative interactions with a focus on the body as a dimension of the semiotic repertoire. The research context is a four-year, multi-site linguistic ethnography which investigates how people communicate in superdiverse cities in the UK. In the setting of a butcher's stall in a city market we consider three interactions at…
Ono, Y.; Woodmass, J. M.; Nelson, A. A.; Boorman, R. S.; Thornton, G. M.
2016-01-01
Objectives This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269–275. DOI: 10.1302/2046-3758.56.2000535. PMID:27357383
Ono, Y; Woodmass, J M; Nelson, A A; Boorman, R S; Thornton, G M; Lo, I K Y
2016-06-01
This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of 'suture cutting through bone'. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed 'suture cutting through bone' as the predominant source of suture displacement in cadaveric bone (qualitative) and greater 'suture cutting through bone' comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone.Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269-275. DOI: 10.1302/2046-3758.56.2000535. © 2016 Lo et al.
Characterisation of the human-seat coupling in response to vibration.
Kim, Eunyeong; Fard, Mohammad; Kato, Kazuhito
2017-08-01
Characterising the coupling between the occupant and vehicle seat is necessary to understand the transmission of vehicle seat vibration to the human body. In this study, the vibration characteristics of the human body coupled with a vehicle seat were identified in frequencies up to 100 Hz. Transmissibilities of three volunteers seated on two different vehicle seats were measured under multi-axial random vibration excitation. The results revealed that the human-seat system vibration was dominated by the human body and foam below 10 Hz. Major coupling between the human body and the vehicle seat-structure was observed in the frequency range of 10-60 Hz. There was local coupling of the system dominated by local resonances of seat frame and seat surface above 60 Hz. Moreover, the transmissibility measured on the seat surface between the human and seat foam is suggested to be a good method of capturing human-seat system resonances rather than that measured on the human body in high frequencies above 10 Hz.Practitioner Summary: The coupling characteristics of the combined human body and vehicle seat system has not yet been fully understood in frequencies of 0.5-100 Hz. This study shows the human-seat system has distinctive dynamic coupling characteristics in three different frequency regions: below 10 Hz, 10-60 Hz, and above 60 Hz.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Ichikawa, Yoko; Hiramatsu, Fumie; Hamada, Hisayo; Sakai, Atsuko; Hara, Keiko; Kogirima, Miho; Kawahara, Kazuhiko; Minakuchi, Jun; Kawashima, Shu; Yamamoto, Shigeru
2007-10-01
This cross sectional study was performed to find the adequate amount and combination of dietary protein and energy for maintaining better nutritional status for stable non-diabetic maintenance hemodialysis (MHD) patients. The body composition including body fat, total body water, body cell mass and body protein were measured by multi-frequency bioelectrical impedance analysis in 200 stable MHD patients without diabetes (124 men, 76 women). Dietary energy intake (DEI) and dietary protein intake (DPI) were assessed by a brief self-administered diet history questionnaire (BDHQ), the DPI value being confirmed by calculating the normalized protein equivalent of total nitrogen appearance (nPNA). The nutritional status and the body composition were compared among 4 groups of patients in each gender that were divided by the combination of DEI and DPI; high energy (HE)/high protein (HP), HE/low protein (LP), low energy (LE)/HP and LE/LP groups. The mean DPI ranged between 1.17-1.23 and 0.89-0.95 g/kg IBW/d in the HP and LP groups, respectively for both genders, and the mean DEI was 35-37 and 24-25 kcal/kg IBW/d in HE and LE groups, respectively. BMI and serum albumin concentration were not different among the 4 groups. Body cell mass index (BCMI) was maintained in the HE groups regardless of DPI, and it was significantly higher in the HE/HP group than in the LE/LP group. Multiple regression analysis also showed that the BCMI was more greatly affected by DEI than DPI. These results indicated that a DPI of 0.89-0.95 g/kg IBW/d could be sufficient for maintaining BCMI, if DEI is kept over 35 kcal/kg IBW/d in stable non-diabetic MHD patients. This DPI level is lower than the recommended DPI proposed by dietary guidelines in the US and Japan.
Multi-sources data fusion framework for remote triage prioritization in telehealth.
Salman, O H; Rasid, M F A; Saripan, M I; Subramaniam, S K
2014-09-01
The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-01-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current–voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem. PMID:20937712
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse.
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-12-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.
Crustal and Moho Reflections Beneath Mount St. Helens from the iMUSH Experiment
NASA Astrophysics Data System (ADS)
Levander, A.; Kiser, E.; Schmandt, B.; Hansen, S. M.; Creager, K.
2017-12-01
The multi-disciplinary iMUSH project (imaging Magma Under St. Helens) was designed to illuminate the magmatic system beneath Mount St Helens (MSH) from the subducting Juan de Fuca slab to the surface using seismic, magnetotelluric, and petrologic data. The iMUSH active source experiment consisted of 23 large shots and 6000 seismograph stations. Included in the active-source seismic experiment were 2 dense linear profiles striking NW-SE and NE-SW, each with over 1000 receivers ( 150 m spacing) and 8 shots. Using averaged 1D velocity models around each shotpoint taken from the 2D velocity models of Kiser et al., 2016 (Geology), we have made CMP stacked sections of the two profiles. We made images using several types of signal preconditioning and enhancement methods, including analytic signal and STA/LTA envelopes. Reflection time corrections were determined using standard NMO, long-offset NMO, p-tau, and 2D travel time analyses. Bright reflection events in the CMP sections show remarkably close correspondence to abrupt velocity changes in the mid to lower crust and at the Moho in the 2D velocity models: Reflections appear at 20-25 km depth at the tops of two lower crustal high velocity (Vp > 7.5 km/s) bodies. One of these high velocity bodies is directly beneath MSH. The other is 40 km SE of MSH, under the 9ka Indian Heaven basaltic volcanic field. We interpret the high Vp bodies as cumulates from Quaternary or Tertiary volcanism. Separating the two high Vp bodies is a lower velocity column (Vp ≤ 6.5 km/s) dipping to the SE from the midcrust to the Moho. In the CMP section, the Moho reflection is bright under the region of low velocity and dims beneath both of the high velocity lower crustal bodies. The CMP images of the Moho are consistent with the PmP reflection amplitude analysis of Hansen et al, 2016 (Nature Communications). The 1980 eruption seismicity extended from the MSH summit to 20 km depth, stopping just above the bright reflection at the top of the MSH high Vp body. Deep long period events under MSH, often associated with motion of magmatic fluids, cluster at 20-30 km depth along the southeastern edge of the same reflection. We suggest that lower crustal magmas migrate from the southeast at the boundary of the MSH high velocity body, and then laterally across its top to continue vertical ascent to the magma storage zone under the summit.
Emotional modulation of body-selective visual areas.
Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik
2007-12-01
Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.
Nguyen, Nguyen H; Rastas, Pasi M A; Premachandra, H K A; Knibb, Wayne
2018-01-01
The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK) ( Seriola lalandi) are relative sparse. To overcome this, we aimed (1) to develop a linkage map for this species, and (2) to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight). Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs) generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseq TM ) in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs), with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS) and identified six variants/SNPs associated with body weight ( P < 5e -8 ) when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi .
Driessen, C E; Cameron, A J; Thornton, L E; Lai, S K; Barnett, L M
2014-12-01
Previous school obesity-prevention reviews have included multi-component interventions. Here, we aimed to review the evidence for the effect of isolated food environment interventions on both eating behaviours (including food purchasing) and/or body weight. Five electronic databases were searched (last updated 30 November 2013). Of the 1,002 unique papers identified, 55 reported on school food environment changes, based on a review of titles and abstracts. Thirty-seven further papers were excluded, for not meeting the inclusion criteria. The final selection consisted of 18 papers (14 United States, 4 United Kingdom). Two studies had a body mass index (BMI) outcome, 14 assessed purchasing or eating behaviours and two studies assessed both weight and behaviour. Seventeen of 18 papers reported a positive outcome on either BMI (or change in BMI) or the healthfulness of food sold or consumed. Two studies were rated as strong quality and 11 as weak. Only three studies included a control group. A school environment supportive of healthy eating is essential to combat heavy marketing of unhealthy food. Modification of the school food environment (including high-level policy changes at state or national level) can have a positive impact on eating behaviours. A need exists, however, for further high-quality studies. © 2014 World Obesity.
Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance.
Wang, Sheng; Xuan, Shouhu; Liu, Mei; Bai, Linfeng; Zhang, Shuaishuai; Sang, Min; Jiang, Wanquan; Gong, Xinglong
2017-03-29
A novel S-ST/MWCNT/Kevlar-based wearable electronic textile (WET) with enhanced safeguarding performance and force sensing ability was fabricated. Stab resistance performance tests under quasi-static and dynamic conditions show that the maximum resistance force and penetration impact energy for the WET are 18 N and 11.76 J, which represent a 90% and 50% increment with respect to the neat Kevlar, respectively. Dynamic impact resistance tests show that the WET absorbs all the impact energy. The maximum resistance force of the WET is 1052 N, which represents an improvement of about 190% with respect to neat Kevlar. With the incorporation of multi-walled carbon nanotubes (MWCNTs), the WET can achieve a stable electrical conductivity of ∼10 -2 S m -1 , and the conductivity is highly sensitive to external mechanic forces. Notably, the sensing fabric also exhibits an outstanding ability to detect and analyze external forces. In addition, it can be fixed at any position of the human body and exhibits an ideal monitoring performance. Because of its flexibility, high sensitivity to various types of deformations and excellent safeguarding performance, the WET has a strong potential for wearable monitoring devices that simultaneously provide body protection and monitor the movements of the human body under various conditions.
Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo
2014-11-01
The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. Copyright © 2014 John Wiley & Sons, Ltd.
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri
2017-07-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Silva, Danilo R P; Ribeiro, Alex S; Pavão, Fernando H; Ronque, Enio R V; Avelar, Ademar; Silva, Analiza M; Cyrino, Edilson S
2013-01-01
To analyze the validity of methods to assess body fat in children and adolescents using a systematic review. The search was conducted by two independent researchers using the MEDLINE, BioMed Central, SciELO and LILACS electronic databases. For inclusion, the articles should be written in English or Portuguese, and must have used multi-compartment models as the criterion measure of the model, with body fat measurement of whole body in non-athlete children and adolescents. A preliminary search resulted in 832 studies. After all selection steps were performed, 12 articles were included. The selected studies were published between 1997 and 2010, whose samples consisted of children and adolescents with levels of relative body fat ranging from 20.7% to 41.4%. The methods used were: dual energy X-ray absorptiometry (58.3%), isotope dilution (41.6%), skinfold thickness (33.3%), hydrostatic weighing (25%), bioelectrical impedance analysis (25%), air displacement plethysmography (16.6%), and total body electrical conductivity (8.3%). Based on the analysis of the studies, isotope dilution and air displacement plethysmography methods were the most reliable, despite the limited number of studies. As for clinical use or for population-based studies, the equation of Slaughter et al. (1998), which uses the triceps and subscapular skinfolds thickness, showed the best results for assessment of body fat in this population. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.
Chrono: A Parallel Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
2013-08-01
big data. Chrono::Render is capable of using 320 cores and is built around Pixar’s RenderMan. All these components combine to produce Chrono, a multi...rather small collection of rigid and/or deformable bodies of complex geometry (hourglass wall, wheel, track shoe, excava- tor blade, dipper ), and a...motivated by the scope of arbitrary data sets and the potentially immense scene complexity that results from big data; REYES, the underlying architecture
Insects traversing grass-like vertical compliant beams
NASA Astrophysics Data System (ADS)
Li, Chen; Fearing, Ronald; Full, Robert
2014-03-01
Small running animals encounter many challenging terrains. These terrains can be filled with 3D, multi-component obstacles. Here, we study cockroaches (Blaberus discoidalis) moving through grass-like vertical compliant beams during escape. We created an apparatus to control and vary geometric parameters and mechanical properties of model grass including height, width, thickness, lateral and fore-aft spacings, angle, number of layers, stiffness, and damping. We observed a suite of novel locomotor behaviors not previously described on simpler 2D ground. When model grass height was >2 × body length and lateral spacing was <0.5 × body width, the animal primarily (probability P = 50%) rolled its body onto its side to rapidly (time t = 2.1 s) maneuver through the gaps between model grass. We developed a simple energy minimization model, and found that body roll reduces the energy barriers that the animal must overcome during traversal. We hypothesized that the animal's ellipsoidal body shape facilitated traversal. To test our hypothesis, we modified body shape by adding either a rectangular or an oval plate onto its dorsal surface, and found that P dropped by an order of magnitude and t more than doubled. Upon removal of either plate, both P and t recovered. Locomotor kinematics and geometry effectively coupled to terrain properties enables negotiation of 3D, multi-component obstacles, and provides inspiration for small robots to navigate such terrain with minimal sensing and control.
Gopie, Jessica P; Mureau, Marc A M; Seynaeve, Caroline; Ter Kuile, Moniek M; Menke-Pluymers, Marian B E; Timman, Reinier; Tibben, Aad
2013-09-01
The outcome of bilateral prophylactic mastectomy with breast reconstruction (BPM-IBR) in healthy BRCA1/2 mutation carriers can be potentially burdensome for body image and the intimate relationship. Therefore, in the current analysis the impact on body image, sexual and partner relationship satisfaction was prospectively investigated in women opting for BPM-IBR as well as cancer distress and general quality of life. Healthy women undergoing BPM-IBR completed questionnaires preoperatively (T0, n = 48), at 6 months (T1, n = 44) and after finishing breast reconstruction (median 21 months, range 12-35) (T2, n = 36). With multi-level regression analyses the course of outcome variables was investigated and a statistically significant change in body image and/or sexual and partner relationship satisfaction was predicted by baseline covariates. Body image significantly decreased at T1. At T2 sexual relationship satisfaction and body image tended to be lower compared to baseline. The overall partner relationship satisfaction did not significantly change. At T2, 37 % of the women reported that their breasts felt unpleasantly, 29 % was not satisfied with their breast appearance and 21 % felt embarrassed for their naked body. Most body image issues remained unchanged in 30 % of the women. A negative body image was predicted by high preoperative cancer distress. BPM-IBR was associated with adverse impact on body image in a substantial subgroup, but satisfaction with the overall sexual and partner relationship did not significantly change in time. The psychosocial impact of BPM-IBR in unaffected women should not be underestimated. Psychological support should ideally be integrated both before and after BPM-IBR.
Children's Understanding of Nonverbal Expressions of Pride
ERIC Educational Resources Information Center
Nelson, Nicole L.; Russell, James A.
2012-01-01
To chart the developmental path of children's attribution of pride to others, we presented children (4 years 0 month to 11 years 11 months of age, N = 108) with video clips of head-and-face, body posture, and multi-cue (both head-and-face and body posture simultaneously) expressions that adults consider to convey pride. Across age groups, 4- and…
Me and My Body (MAMBO): An Interactive Science Education Programme for Primary Schools
ERIC Educational Resources Information Center
Scalzo, Clare; Killard, Fiona; MacCormac, Aoife; Fryar, James; O' Brien, Emma; O'Kennedy, Richard
2008-01-01
This paper describes a novel science education initiative developed for 8-to 12-year-old children by the Biomedical Diagnostics Institute at Dublin City University, Ireland. "Me and My Body" (MAMBO) is an interactive, multi-faceted programme that enables children to explore and understand the dynamic physiological parameters of the human…
Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato
2017-05-15
Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh -1 with an average of 5.9±3.2mgh -1 per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
NASA Astrophysics Data System (ADS)
Crouch, Dustin L.; (Helen Huang, He
2017-06-01
Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r = 0.25, p < 0.0001). The amputee subject could coordinate movement between the wrist and MCP joints, but favored metacarpophalangeal joint motion more highly than able-bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.
Kaiyala, Karl J
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.
Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan
2018-01-24
Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Agrawal, Paul; Hawbaker, James
2013-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.
Simulation requirements for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Soosaar, K.
1984-01-01
Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gulhan, Ali; Aftosmis, Michael; Brock, Joseph; Mathias, Donovan; Need, Dominic; Rodriguez, David; Seltner, Patrick; Stern, Eric; Wiles, Sebastian
2017-01-01
An airburst from a large asteroid during entry can cause significant ground damage. The damage depends on the energy and the altitude of airburst. Breakup of asteroids into fragments and their lateral spread have been observed. Modeling the underlying physics of fragmented bodies interacting at hypersonic speeds and the spread of fragments is needed for a true predictive capability. Current models use heuristic arguments and assumptions such as pancaking or point source explosive energy release at pre-determined altitude or an assumed fragmentation spread rate to predict airburst damage. A multi-year collaboration between German Aerospace Center (DLR) and NASA has been established to develop validated computational tools to address the above challenge.
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D; Cox, Kenneth R; Chapman, Walter G
2017-04-28
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
NASA Astrophysics Data System (ADS)
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.
2017-04-01
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration
NASA Astrophysics Data System (ADS)
Goldbogen, J. A.; Cade, D. E.; Calambokidis, J.; Friedlaender, A. S.; Potvin, J.; Segre, P. S.; Werth, A. J.
2017-01-01
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.
Multi-Functional BN-BN Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)
2017-01-01
Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.
Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.
Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J
2014-04-02
The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.
How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration.
Goldbogen, J A; Cade, D E; Calambokidis, J; Friedlaender, A S; Potvin, J; Segre, P S; Werth, A J
2017-01-03
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.
Alavez-Rosas, David; Malo, Edi A; Guzmán, Miguel A; Sánchez-Guillén, Daniel; Villanueva-Gutiérrez, Rogel; Cruz-López, Leopoldo
2017-10-01
Stingless bees foraging for food improve recruitment by depositing chemical cues on valuable food sites or pheromone marks on vegetation. Using gas chromatography/mass spectrometry and bioassays, we showed that Melipona solani foragers leave a mixture composed mostly of long chain hydrocarbons from their abdominal cuticle plus methyl oleate from the labial gland as a scent mark on rich food sites. The composition of hydrocarbons was highly variable among individuals and varied in proportions, depending on the body part. A wide ratio of compounds present in different body parts of the bees elicited electroantennogram responses from foragers and these responses were dose dependent. Generally, in bioassays, these bees prefer to visit previously visited feeders and feeders marked with extracts from any body part of conspecifics. The mean number of visits to a feeder was enhanced when synthetic methyl oleate was added. We propose that this could be a case of multi-source odor marking, in which hydrocarbons, found in large abundance, act as a signature mixture with attraction enhanced through deposition of methyl oleate, which may indicate a rich food source.
A Modern Take on the RV Classics: N-body Analysis of GJ 876 and 55 Cnc
NASA Astrophysics Data System (ADS)
Nelson, Benjamin E.; Ford, E. B.; Wright, J.
2013-01-01
Over the past two decades, radial velocity (RV) observations have uncovered a diverse population of exoplanet systems, in particular a subset of multi-planet systems that exhibit strong dynamical interactions. To extract the model parameters (and uncertainties) accurately from these observations, one requires self-consistent n-body integrations and must explore a high-dimensional 7 x number of planets) parameter space, both of which are computationally challenging. Utilizing the power of modern computing resources, we apply our Radial velocity Using N-body Differential Evolution Markov Chain Monte Carlo code (RUN DEMCMC) to two landmark systems from early exoplanet surveys: GJ 876 and 55 Cnc. For GJ 876, we analyze the Keck HIRES (Rivera et al. 2010) and HARPS (Correia et al. 2010) data and constrain the distribution of the Laplace argument. For 55 Cnc, we investigate the orbital architecture based on a cumulative 1086 RV observations from various sources and transit constraints from Winn et al. 2011. In both cases, we also test for long-term orbital stability.
Tai Chi and Rheumatic Diseases
Wang, Chenchen
2011-01-01
SYNOPSIS Many patients with chronic rheumatic diseases such as osteoarthritis, rheumatoid arthritis and fibromyalgia experience high levels of pain, psychological distress and negative emotions and have limited therapeutic options. Tai Chi is a complex multi-component mind-body exercise that increasing numbers of Americans are practicing, particularly those with musculoskeletal conditions. Clinical trials and observational studies have provided encouraging evidence that Tai Chi, both short and long-term, has benefits for patients with a variety of chronic disorders. As a form of physical exercise, Tai Chi enhances cardiovascular fitness, muscular strength, balance, and physical function. It also appears to be associated with reduced stress, anxiety and depression as well as improved quality of life. Thus, despite the noted limitations in the evidence, and the need for further methodologically rigorous studies, Tai Chi can be safely recommended to patients with osteoarthritis, rheumatoid arthritis and fibromyalgia as a complementary and alternative medical approach to affect patient well-being. This overview synthesizes the current body of knowledge about this ancient Chinese mind-body medicine to better inform clinical decision-making for our rheumatic patients. PMID:21220083
NASA Astrophysics Data System (ADS)
Harfst, S.; Portegies Zwart, S.; McMillan, S.
2008-12-01
We present MUSE, a software framework for combining existing computational tools from different astrophysical domains into a single multi-physics, multi-scale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a ``Noah's Ark'' milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe two examples calculated using MUSE: the merger of two galaxies and an N-body simulation with live stellar evolution. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.
NASA Astrophysics Data System (ADS)
Alemu, H.; Velpuri, N.; Senay, G. B.; Angerer, J.
2011-12-01
Information on the location and availability of water resources is a day-to-day challenge for pastoralists in the Sahelian region of Mali. They move seasonally along their migration corridors in search for water and forage. Satellite data can be used to map the spatial and temporal dynamics of these water resources. In this work, ASTER imagery is selected for its high (15 m) spatial resolution and suitable spectral bands for water body identification. Our research indicates that as most of the waterholes of interest in the study area are very shallow and heavily sediment-laden, using only one of those commonly used water identification indices such as the Simple Band Ratio (SBR), or the Normalized Difference Water Index (NDWI) alone does not help in effectively characterizing all the surface water bodies in the region. As a result, we used four different spectral indices to identify surface water features: (i) Simple Band Ratio (SBR), (ii) Normalized Difference Water Index (NDWI), (iii) Modified Normalized Difference Water Index (MNDWI), and (iv) the Mean Absolute Deviation (MAD) to identify and delineate surface water bodies using 91 ASTER images. Initial results indicate that the SBR method identified 17 waterholes while the NDWI 18, the MNDWI 36, and the MAD method identified 28 waterholes. However, by combining the results from the four aforementioned spectral indices following a multi-index approach, 89 waterholes that were previously unidentified by a single approach alone were identified. Furthermore, our analysis indicates that the SBR and the NDWI methods identify relatively clearer waterholes better (29% of the waterholes), whereas MNDWI and MAD proved to be good indices for identifying sediment-laden waterholes. Identifying the location and spatial distribution of surface water bodies is the first step towards monitoring their seasonal dynamics using a hydrologic modeling system, similar to an existing setup for east Africa (http://watermon.tamu.edu/). Seasonal trends in relative surface water levels are one of the most important inputs in the livestock early warning system (LEWS) along with forage and livestock market prices.
Development and Evaluation of an Order-N Formulation for Multi-Flexible Body Space Systems
NASA Technical Reports Server (NTRS)
Ghosh, Tushar K.; Quiocho, Leslie J.
2013-01-01
This paper presents development of a generic recursive Order-N algorithm for systems with rigid and flexible bodies, in tree or closed-loop topology, with N being the number of bodies of the system. Simulation results are presented for several test cases to verify and evaluate the performance of the code compared to an existing efficient dense mass matrix-based code. The comparison brought out situations where Order-N or mass matrix-based algorithms could be useful.
A pilot yoga physical education curriculum to promote positive body image.
Cox, Anne E; Ullrich-French, Sarah; Howe, Holly S; Cole, Amy N
2017-12-01
We examined the effects of a pilot yoga-based physical education (PE) curriculum by testing for change in trait body surveillance, physical self-worth, and body appreciation. Further, we examined the relationships among change in body image variables and the role of state mindfulness in predicting state body surveillance during classes. Adolescents participated in 12 weeks of yoga-based (n=20; M age =16.45, 90% female) or traditional (n=23;M age =14.52, 57% female) PE. Results showed significant (p=.004), moderate decreases in trait body surveillance and minimal nonsignificant (p=.11) increases in physical self-worth. Change in trait body surveillance was inversely related to change in physical self-worth and body appreciation in yoga participants. Multi-level modeling analyses revealed that more mindful students also surveyed their body less during class. Intentionally structured yoga participation may support positive body image among adolescents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network.
Hu, Long; Zhang, Yin; Feng, Dakui; Hassan, Mohammad Mehedi; Alelaiwi, Abdulhameed; Alamri, Atif
2015-12-01
With the advances in wearable computing and various wireless technologies, there is an increasing trend to outsource body signals from wireless body area network (WBAN) to outside world including cyber space, healthcare big data clouds, etc. Since the environmental and physiological data collected by multimodal sensors have different importance, the provisioning of quality of service (QoS) for the sensory data in WBAN is a critical issue. This paper proposes multiple level-based QoS design at WBAN media access control layer in terms of user level, data level and time level. In the proposed QoS provisioning scheme, different users have different priorities, various sensory data collected by different sensor nodes have different importance, while data priority for the same sensor node varies over time. The experimental results show that the proposed multi-level based QoS provisioning solution in WBAN yields better performance for meeting QoS requirements of personalized healthcare applications while achieving energy saving.
On the identifiability of inertia parameters of planar Multi-Body Space Systems
NASA Astrophysics Data System (ADS)
Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2018-04-01
This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.
Sulis, Andrea; Buscarinu, Paola; Soru, Oriana; Sechi, Giovanni M
2014-04-22
The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996-2012) in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy) provides useful insights into the strengths and limitations of the proposed synthetic index.
Non-contact multi-radar smart probing of body orientation based on micro-Doppler signatures.
Li, Yiran; Pal, Ranadip; Li, Changzhi
2014-01-01
Micro-Doppler signatures carry useful information about body movements and have been widely applied to different applications such as human activity recognition and gait analysis. In this paper, micro-Doppler signatures are used to identify body orientation. Four AC-coupled continuous-wave (CW) smart radar sensors were used to form a multiple-radar network to carry out the experiments in this paper. 162 tests were performed in total. The experiment results showed a 100% accuracy in recognizing eight body orientations, i.e., facing north, northeast, east, southeast, south, southwest, west, and northwest.
Anelastic tidal dissipation in multi-layer planets
NASA Astrophysics Data System (ADS)
Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.
2012-09-01
Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.
Design of small confocal endo-microscopic probe working under multiwavelength environment
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab
2010-02-01
Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.
NASA Astrophysics Data System (ADS)
Jedlikowski, Jan; Chibowski, Piotr; Karasek, Tomasz; Brambilla, Mattia
2016-05-01
Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.
Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation
NASA Astrophysics Data System (ADS)
Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo
2016-05-01
In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.
NASA Astrophysics Data System (ADS)
Ertas, Gokhan; Doran, Simon; Leach, Martin O.
2011-12-01
In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
Krasoulis, Agamemnon; Kyranou, Iris; Erden, Mustapha Suphi; Nazarpour, Kianoush; Vijayakumar, Sethu
2017-07-11
Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inertial measurements (IMs) and an appropriate training data collection paradigm. We demonstrate that this can significantly improve classification performance as compared to conventional techniques exclusively based on sEMG signals. We collected and analyzed a large dataset comprising recordings with 20 able-bodied and two amputee participants executing 40 movements. Additionally, we conducted a novel real-time prosthetic hand control experiment with 11 able-bodied subjects and an amputee by using a state-of-the-art commercial prosthetic hand. A systematic performance comparison was carried out to investigate the potential benefit of incorporating IMs in prosthetic hand control. The inclusion of IM data improved performance significantly, by increasing classification accuracy (CA) in the offline analysis and improving completion rates (CRs) in the real-time experiment. Our findings were consistent across able-bodied and amputee subjects. Integrating the sEMG electrodes and IM sensors within a single sensor package enabled us to achieve high-level performance by using on average 4-6 sensors. The results from our experiments suggest that IMs can form an excellent complimentary source signal for upper-limb myoelectric prostheses. We trust that multi-modal control solutions have the potential of improving the usability of upper-extremity prostheses in real-life applications.
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Valtueña, J; Gracia-Marco, L; Huybrechts, I; Breidenassel, C; Ferrari, M; Gottrand, F; Dallongeville, J; Sioen, I; Gutierrez, A; Kersting, M; Kafatos, A; Manios, Y; Widhalm, K; Moreno, L A; González-Gross, M
2013-09-01
High prevalence of vitamin D insufficiency (<75 nmol/l) has been previously reported in European adolescents. Vitamin D deficiency has been related to physical fitness and adiposity but it is not clearly known whether this relationship applies to growing children and adolescents. To determine how body composition and physical fitness are related to 25-hydroxyvitamin D [25(OH)D] concentrations in European adolescents. The HEalthy Lifestyle in Europe by Nutrition in Adolescence-CSS study was a multi-centre cross-sectional study. Plasma 25(OH)D, body composition and physical fitness measures were obtained in 1006 European adolescents (470 males) aged 12.5-17.5 years. Stepwise regression and ANCOVA were performed by gender using 25(OH)D as dependent variable, with body composition, physical fitness as independent variables controlling for age, seasonality and latitude. For males, maximum oxygen consumption (VO2max) (B = 0.189) and body mass index (BMI) (B = -0.124) were independently associated with 25(OH)D concentrations (both P < 0.05). For females, handgrip strength (B = 0.168; P < 0.01) was independently associated with 25(OH)D concentrations. Those adolescents at lower BMI and high fitness score presented significant higher 25(OH)D concentrations than those at lower fitness score in the other BMI groups (P < 0.05). Cardiorespiratory fitness and upper limbs muscular strength are positively associated with 25(OH)D concentrations in male and female adolescents, respectively. Adiposity in males and low fat free mass in females are related to hypovitaminosis D. The interaction between fitness and BMI has a positive effect on 25(OH)D concentrations. Therapeutic interventions to correct the high rates of vitamin D deficiency in adolescents should consider physical fitness.
Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela
1999-01-01
A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.
ERIC Educational Resources Information Center
Vetter-Smith, Molly; Massey, Vera; Rellergert, Linda; Wissmann, Mary
2014-01-01
Taking Care of You: Body, Mind, Spirit is a multi-session group program developed by University of Missouri Extension that provides a unique and practical approach to helping adults better managing their stress and bounce back from life's challenges while improving lifestyle behaviors. The program combines mindfulness and a variety of other…
ERIC Educational Resources Information Center
Macdonald, Doune; Rodger, Sylvia; Abbott, Rebecca; Ziviani, Jenny; Jones, Judy
2005-01-01
There is little research that reports children's perspectives on physical activity, bodies and health. This paper, drawn from a larger multi-method study on physical activity in the lives of seven- and eight-year-old Australian children, attempts to "give a voice" to 13 children's views. Interviews focused on children's activity…
NASA Astrophysics Data System (ADS)
Bernier, Caroline; Gazzola, Mattia; Ronsse, Renaud; Chatelain, Philippe
2017-11-01
We present a 2D fluid-structure interaction simulation method with a specific focus on articulated and actuated structures. The proposed algorithm combines a viscous Vortex Particle-Mesh (VPM) method based on a penalization technique and a Multi-Body System (MBS) solver. The hydrodynamic forces and moments acting on the structure parts are not computed explicitly from the surface stresses; they are rather recovered from the projection and penalization steps within the VPM method. The MBS solver accounts for the body dynamics via the Euler-Lagrange formalism. The deformations of the structure are dictated by the hydrodynamic efforts and actuation torques. Here, we focus on simplified swimming structures composed of neutrally buoyant ellipses connected by virtual joints. The joints are actuated through a simple controller in order to reproduce the swimming patterns of an eel-like swimmer. The method enables to recover the histories of torques applied on each hinge along the body. The method is verified on several benchmarks: an impulsively started elastically mounted cylinder and free swimming articulated fish-like structures. Validation will be performed by means of an experimental swimming robot that reproduces the 2D articulated ellipses.
Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications
NASA Technical Reports Server (NTRS)
Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.
2018-01-01
The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.
Karu, Kersti; Hornshaw, Martin; Woffendin, Gary; Bodin, Karl; Hamberg, Mats; Alvelius, Gunvor; Sjövall, Jan; Turton, John; Wang, Yuqin; Griffiths, William J.
2008-01-01
In man the brain accounts for about 20% of the body's free cholesterol, most of which is synthesised de novo in brain. To maintain cholesterol balance throughout life, cholesterol becomes metabolised to 24S-hydroxycholesterol principally in neurons. In mouse, rat, and probably human, metabolism to 24S-hydroxycholesterol accounts for about 50% of cholesterol turnover, however, the route by which the remainder is turned over has yet to be elucidated. Here we describe a novel liquid chromatography (LC) – multi-stage fragmentation mass spectrometry (MSn) methodology for the identification, with high sensitivity (low pg), of cholesterol metabolites in rat brain. The methodology includes derivatisation to enhance ionisation, exact mass analysis at high-resolution to identify potential metabolites, and LC-MS3 to allow their characterisation. 24S-Hydroxycholesterol was confirmed as a major oxysterol in rat brain, while other oxysterols identified for the first time in brain included 24,25-, 24,27-, 25,27-, 6,24, 7α,25-, and 7α,27-dihydroxycholesterols. In addition, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al and its aldol, two molecules linked to amyloidogenesis of proteins, were characterised in rat brain. PMID:17251593
Biological Rhythms in the Skin
Matsui, Mary S.; Pelle, Edward; Dong, Kelly; Pernodet, Nadine
2016-01-01
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. PMID:27231897
Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J
2007-07-20
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
Hunting Sea Mines with UUV-Based Magnetic and Electro-Optic Sensors
2010-06-01
assembly of four 3-axis fluxgate magnetometers and (c) magnetometer package for underwater deployment in flooded body section. data are automatically...features the Real-time Tracking Gradiometer (RTG), which is a multi-channel tensor gradiometer using conventional fluxgate technology. Also in this...integrated together into a Bluefin12 AUV [5]. A. RTG Sensor Technology The RTG is a multi-channel tensor gradiometer using conventional fluxgate
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation
NASA Astrophysics Data System (ADS)
Folonier, Hugo A.; Ferraz-Mello, Sylvio
2017-12-01
Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which corresponds to a shell's viscosity η _s≳ 10^{18} Pa s, depending on the ocean's thickness and viscosity values. In the case in which a subsurface ocean does not exist, the maximum shell relaxation factor is one order of magnitude smaller and the corresponding minimum shell's viscosity is one order higher.
aeroelastic simulation of drivetrain systems. At NREL, she supports the drivetrain modeling effort under the , electro-mechanical system design and optimization, structural analysis, and multi-body simulation. In
Tyrrell, V J; Richards, G; Hofman, P; Gillies, G F; Robinson, E; Cutfield, W S
2001-02-01
To determine the accuracy of foot-to-foot bioelectrical impedance analysis (BIA) and anthropometric indices as measures of body composition in children. Comparison of foot-to-foot BIA and anthropometry to dual-energy X-ray absorptiometry (DEXA)-derived body composition in a multi-ethnic group of children. : Eighty-two European, NZ Maori and Pacific Island children aged 4.9-10.9 y. DEXA body composition, foot-to-foot bioelectrical impedance, height, weight, hip and waist measurements. Using a BIA prediction equation derived from our study population we found a high correlation between DEXA and BIA in the estimation of fat-free mass (FFM), fat mass (FM) and percentage body fat (PBF) (r=0.98, 0.98 and 0.94, respectively). BIA-FFM underestimated DEXA-FFM by a mean of 0.75 kg, BIA-FM overestimated DEXA-FM by a mean of 1.02 kg and BIA-PBF overestimated DEXA-PBF by a mean of 2.53%. The correlation between six anthropometric indices (body mass index (BMI), ponderal index, Chinn's weight-for-height index, BMI standard deviation score, weight-for-length index and Cole's weight-for-height index) and DEXA were also examined. The correlation of these indices with PBF was remarkably similar (r=0.85-0.87), more variable with FM (r=0.77-0.94) and poor with FFM (r=0.41-0.75). BIA correlated better than anthropometric indices in the estimation of FFM, FM and PBF. Foot-to-foot BIA is an accurate technique in the measurement of body composition.
Decomposing Worldwide Complete Spherical Bouguer Gravity Anomaly Using 2-D Empirical Method
NASA Astrophysics Data System (ADS)
Firdaus, Ruhul; Mey Ekawati, Gestin
2017-04-01
Currently available worldwide gravity anomaly data provides a high-resolution (2’×2’) of Complete Spherical Bouguer Anomaly (CSBA) based on the available information of the Earth gravity field from surface and satellite measurements. The data has not only been provided and processed thoroughly but it also has been claimed to be appropriate for various geophysical applications. Therefore, the analysis of gravity anomaly is becoming increasingly significant for the earth sciences as a whole and assisting both shallow and deep geological problems. Earth gravity anomaly has to be analyzed carefully as it has very complex data due to anomaly mixing of the density masses spread over the Earth horizontally and vertically. The bigger the spatial coverage of data (e.g. global scale data), the more severe the data from anomaly mixing due to various wavelength. BEMD is an empirical method supposedly suitable with highly oscillation-mixing data. It can effectively isolate each local anomaly in details and is analogized as successively reverse moving average with local windowing. BEMD is designed to reduce multi-component, non-linear gravity field data to a series of single local anomaly contributions. Anomaly from a single body was assumed as a mono-component signal. The main advantage of BEMD processing techniques is to present the subtle details in the data which are not clearly identified in anomaly maps, without specifying any prior information about the nature of the source bodies. As the result, we have identified regional anomalies due to the drift of continental and oceanic masses considered as crust-regional anomaly (CRA). We remove the CRA from the CBA to provide surface-residual anomaly (SRA) where shallow geologic bodies reveal. Meanwhile, the CRA itself can be used as reference to reduce this high magnitude anomaly from any measurement data to exhibit only shallow body anomaly. Further analysis can be carried out to build a general understanding of the details and parameters of the shallower or deeper causative body distributions.
Song, Taejong; Cho, Juhee; Kim, Tae-Joong; Kim, Im-Ryung; Hahm, Tae Soo; Kim, Byoung-Gie; Bae, Duk-Soo
2013-01-01
To compare cosmetic satisfaction with laparoendoscopic single-site surgery (LESS) compared with multi-port surgery. Randomized controlled trial (Canadian Task Force classification I). University hospital. Twenty women who underwent laparoscopically-assisted vaginal hysterectomy (LAVH) via LESS or multi-port surgery. Laparoendoscopic single-site surgery or multi-port surgery. Cosmetic satisfaction was assessed using the Body Image Questionnaire at baseline and at 1, 4, and 24 weeks after surgery. Of the 20 LESS procedures, 1 was converted to multi-port surgery because of severe adhesions, and 1 woman assigned to undergo multi-port surgery was lost to follow-up. The 2 surgery groups did not differ in clinical demographic data and surgical results or postoperative pain scores at 12, 24, and 36 hours. Compared with the multi-port group, the LESS group reported significantly higher cosmetic satisfaction at 1, 4, and 24 weeks after surgery (p < .01). Compared with multi-port surgery, LESS is not only a feasible approach with comparable operative outcomes but also has an advantage insofar as cosmetic outcome. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.
Dimitriadis, Stavros I; Marimpis, Avraam D
2018-01-01
A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.
Swami, Viren; Weis, Laura; Barron, David; Furnham, Adrian
2017-10-20
Studies examining associations between positive body image and well-being have used a limited array of measures of each construct. To rectify this, we asked an online sample of 1148 U.K. adults to complete a range of measures of positive body image (body appreciation, body image flexibility, body pride, body acceptance from others) and a multi-dimensional measure of well-being (emotional, psychological, and social). Results showed that, once the effects of age and body mass index (BMI) had been accounted for, body appreciation significantly predicted all dimensions of well-being. Other positive body image measures emerged as significant predictors, but patterns of associations were mixed across sex and well-being dimension. Additional analyses showed that women had significantly lower scores than men on most body image measures, and that BMI was negatively associated with all body image measures. These results have implications for the promotion of well-being, which we discuss.
Whitney, T J; Gardner, D G; Mott, M L; Brandon, M
2010-03-09
The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.
NASA Astrophysics Data System (ADS)
Rider-Bertrand, Joey H.
At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the experiences of two multi-disciplinary teams of secondary teachers from Pennsylvania who developed and implemented integrative STEM curriculum. Four teachers from a rural high school and four teachers from a suburban high school participated in the study. A document review of integrative STEM curriculum and semi-structured interviews were conducted to learn about the curriculum development process and teachers' perceptions regarding conditions that support or hinder success. Individual and cross-case analyses were performed to establish findings and themes. Although the individual case themes varied slightly, the cross-case themes and assertions that emerged provided highly sought after guidance to practitioners and added to the limited body of research on integrative STEM education. This study found that current curriculum models do not fit integrative STEM curriculum, the development process is fluid, and substantial administrative support and resources are necessary to develop, implement, and sustain integrative STEM education programs. The results offered implications for all educators, as well as two examples of how teachers navigated the terrain of integrative STEM curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro, T.; Baptista, R.; Kafka, S.
We present a multi-epoch time-resolved high-resolution optical spectroscopy study of the short-period (P{sub orb} = 11.2 hr) eclipsing M0V+M5V RS CVn binary V405 Andromeda. By means of indirect imaging techniques, namely Doppler imaging, we study the surface activity features of the M0V component of the system. A modified version of a Doppler imaging code, which takes into account the tidal distortion of the surface of the star, is applied to the multi-epoch data set in order to provide indirect images of the stellar surface. The multi-epoch surface brightness distributions show a low intensity 'belt' of spots at latitudes {+-}40{sup 0}more » and a noticeable absence of high latitude features or polar spots on the primary star of V405 Andromeda. They also reveal slow evolution of the spot distribution over {approx}4 yr. An entropy landscape procedure is used in order to find the set of binary parameters that lead to the smoothest surface brightness distributions. As a result, we find M{sub 1} = 0.51 {+-} 0.03 M{sub sun}, M{sub 2} = 0.21 {+-} 0.01 M{sub sun}, R{sub 1} = 0.71 {+-} 0.01 R{sub sun}, and an inclination i = 65{sup 0} {+-} 1{sup 0}. The resulting systemic velocity is distinct for different epochs, raising the possibility of the existence of a third body in the system.« less
Kosumi, Takuya; Takeda, Makio
2017-08-08
In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism.Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets.Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold (t 0 ) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0 , that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions.Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0 , and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t 0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0 , large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.
NASA Astrophysics Data System (ADS)
Kosumi, Takuya; Takeda, Makio
2017-10-01
In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism. Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets. Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold ( t 0) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0, that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions. Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0, and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0, large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M., E-mail: micheline.abbas@ensiacet.fr; CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse; Magaud, P.
2014-12-15
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlledmore » by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.« less
Rio, A; Cawadias, E
2007-02-01
The management of amyotrophic lateral sclerosis/motor neurone disease (ALS/MND) has shifted from an attitude of nihilism to treatments that prolong survival and offer hope. Nutrition is an integral component of ALS/MND care requiring coordination among acute and community multi-disciplinary teams (MDT). Evidence-based nutrition guidelines exist for this patient group but their use among dietitians is unknown. The aim of this study was to survey the knowledge, practice and guideline use of dietitians working in ALS/MND centres/clinics across England, Wales, Northern Ireland (EWNI) and Canada. Dietetic contact details were obtained from the Motor Neurone Disease Association (MNDA) and the ALS Society of Canada (ALSSC) websites. Telephone interviews were conducted with 23 dietitians using a standardized questionnaire. Multi-disciplinary team membership was high (78%). Only 22% dietitians had >4-years experience in ALS/MND care. Dietitians reported using body weight, percentage weight loss (PWL) and body mass index (BMI) to assess nutritional status. Equations used to estimate energy and protein requirements differed. Most frequent dietary advice was high calorie, texture modification and prescription nutritional supplements. Artificial nutrition and hydration (ANH) was discussed when patients developed dysphagia, energy intake was inadequate, weight loss of 10% or forced vital capacity (FVC) was reduced. A percutaneous endoscopic gastrostomy (PEG) service was available at all clinics/centres. Nutritional assessment techniques and dietary advice should be standardized. Dietetic collaboration at national and international level is recommended to reduce professional isolation. Training and support in ALS/MND nutrition should be made available as part of post-dietetic registration. Further dietetic research is required to stimulate nutritional care.
Ferrer, Ana; Sebastián, Rafael; Sánchez-Quintana, Damián; Rodríguez, José F.; Godoy, Eduardo J.; Martínez, Laura; Saiz, Javier
2015-01-01
Atrial arrhythmias, and specifically atrial fibrillation (AF), induce rapid and irregular activation patterns that appear on the torso surface as abnormal P-waves in electrocardiograms and body surface potential maps (BSPM). In recent years both P-waves and the BSPM have been used to identify the mechanisms underlying AF, such as localizing ectopic foci or high-frequency rotors. However, the relationship between the activation of the different areas of the atria and the characteristics of the BSPM and P-wave signals are still far from being completely understood. In this work we developed a multi-scale framework, which combines a highly-detailed 3D atrial model and a torso model to study the relationship between atrial activation and surface signals in sinus rhythm. Using this multi scale model, it was revealed that the best places for recording P-waves are the frontal upper right and the frontal and rear left quadrants of the torso. Our results also suggest that only nine regions (of the twenty-one structures in which the atrial surface was divided) make a significant contribution to the BSPM and determine the main P-wave characteristics. PMID:26523732
Robust adaptive cruise control of high speed trains.
Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi
2014-03-01
The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-01-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core. PMID:28157204
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
NASA Astrophysics Data System (ADS)
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-02-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core.
Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
Multi-organ damage induced by anabolic steroid supplements: a case report and literature review
Samaha, Ali A; Nasser-Eddine, Walid; Shatila, Elizabeth; Haddad, John J; Wazne, Jaafar; Eid, Ali H
2008-01-01
Introduction The use of anabolic supplements and other related drugs for body building and to enhance athletic performance is nowadays widespread and acutely pervasive all around the world. This alarming increase in the use of anabolic and amino acid supplements has been linked to a diverse array of pathologies. As previously reported, the abuse of androgenic steroids is not without severe physiological, psychiatric and physical costs. The case we report here describes multi-organ damage resulting from the abuse and uncontrolled use of anabolic steroid supplements, mainly testosterone. Case presentation A 24-year-old white man presented with abdominal pain concomitant with nausea and vomiting. Laboratory analysis revealed hypercalcemia, elevated liver enzymes and high levels of amylase, lipase and creatine protein kinase. Conclusion Amino acid as well as anabolic supplements may lead to abnormal functioning of many organs, which could be fatal in some instances. This mandates worldwide and concerted efforts to educate the public, especially the youth, about the dangers of these increasingly abused drugs. PMID:18976461
How long will asteroids on retrograde orbits survive?
NASA Astrophysics Data System (ADS)
Kankiewicz, Paweł; Włodarczyk, Ireneusz
2018-05-01
Generally, a common scenario for the origin of minor planets with high orbital inclinations does not exist. This applies especially to objects whose orbital inclinations are much greater than 90° (retrograde asteroids). Since the discovery of Dioretsa in 1999, approximately 100 small bodies now are classified as retrograde asteroids. A small number of them were reclassified as comets, due to cometary activity. There are only 25 multi-opposition retrograde asteroids, with a relatively large number of observations and well-determined orbits. We studied the orbital evolution of numbered and multi-opposition retrograde asteroids by numerical integration up to 1 Gy forward and backward in time. Additionally, we analyzed the propagation of orbital elements with the observational errors, determined dynamical lifetimes and studied their chaotic properties. Conclusively, we obtained quantitative parameters describing the long-term stability of orbits relating to the past and the future. In turn, we were able to estimate their lifetimes and how long these objects will survive in the Solar System.
Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout
NASA Astrophysics Data System (ADS)
Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali
2017-09-01
Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.
NASA Astrophysics Data System (ADS)
Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.
2011-12-01
During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.
Zillmann, Teresa; Knechtle, Beat; Rüst, Christoph Alexander; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald
2013-06-30
Participation in endurance running such as half-marathon (21-km) and marathon (42-km) has increased over the last decades. We compared 147 recreational male half-marathoners and 126 recreational male marathoners to investigate similarities or differences in their anthropometric and training characteristics. The half-marathoners were heavier (P < 0.05), had longer legs (P < 0.001), thicker upper arms (P < 0.05), a thicker thigh (P < 0.01), a higher sum of skinfold thicknesses (P < 0.01), a higher body fat percentage (P < 0.05) and a higher skeletal muscle mass (P < 0.05) than the marathoners. They had fewer years of experience (P < 0.05), completed fewer weekly training kilometers (P < 0.001), and fewer weekly running hours (P < 0.01) compared to the marathoners. For half-marathoners, body mass index (P = 0.011), percent body fat (P = 0.036) and speed in running during training (P < 0.0001) were related to race time (r2 = 0.47). For marathoners, percent body fat (P = 0.001) and speed in running during training (P < 0.0001) were associated to race time (r2 = 0.47). When body mass index was excluded for the half-marathoners in the multi-variate analysis, r2 decreased to 0.45, therefore body mass index explained only 2% of the variance of half-marathon performance. Percent body fat was significantly and negatively related to running speed during training in both groups. To summarize, half-marathoners showed differences in both anthropometry and training characteristics compared to marathoners that could be related to their lower training volume, most probably due to the shorter race distance they intended to compete. Both groups of athletes seemed to profit from low body fat and a high running speed during training for fast race times.
Termination Shock Transition in Multi-ion Multi-fluid MHD Models of the Heliosphere
NASA Astrophysics Data System (ADS)
Zieger, B.; Opher, M.; Toth, G.
2013-12-01
As evidenced by Voyager 2 observations, pickup ions (PUIs) play a significant role in the termination shock (TS) transition of the solar wind [Richardson et al., Nature, 2008]. Recent kinetic simulations [Ariad and Gedalin, JGR, 2013] came to the conclusion that the contribution of the high energy tail of PUIs is negligible at the shock transition. The Rankine-Hugoniot (R-H) relations are determined by the low energy body of PUIs. Particle-in-cell simulations by Wu et al. [JGR, 2010] have shown that the sum of the thermal solar wind and non-thermal PUI distributions downstream of the TS can be approximated with a 2-Maxwellian distribution. It is important to note that this 2-Maxwellian distribution neglects the suprathermal tail population that has a characteristic power-law distribution. These results justify the fluid description of PUIs in our large-scale multi-ion multi-fluid MHD simulations of the heliospheric interface [Prested et al., JGR, 2013; Zieger et al., GRL, 2013]. The closure of the multi-ion MHD equations could be implemented with separate momentum and energy equations for the different ion species (thermal solar wind and PUIs) where the transfer rate of momentum and energy between the two ion species are considered as source terms, like in Glocer et al. [JGR, 2009]. Another option is to solve for the total energy equation with an additional equation for the PUI pressure, as suggested by Fahr and Chalov [A&A, 2008]. In this paper, we validate the energy conservation and the R-H relations across the TS in different numerical implementations of our latest multi-ion multi-fluid MHD model. We assume an instantaneous pickup process, where the convection velocity of the two ion fluids are the same, and the so-called strong scattering approximation, where newly born PUIs attain their spherical shell distribution within a short distance on fluid scales (spatial scales much larger than the respective ion gyroradius).
Automated measurement of human body shape and curvature using computer vision
NASA Astrophysics Data System (ADS)
Pearson, Jeremy D.; Hobson, Clifford A.; Dangerfield, Peter H.
1993-06-01
A system to measure the surface shape of the human body has been constructed. The system uses a fringe pattern generated by projection of multi-stripe structured light. The optical methodology used is fully described and the algorithms used to process acquired digital images are outlined. The system has been applied to the measurement of the shape of the human back in scoliosis.
Accounting for fluctuations in body dissatisfaction.
Colautti, Lauren A; Fuller-Tyszkiewicz, Matthew; Skouteris, Helen; McCabe, Marita; Blackburn, Stephen; Wyett, Elise
2011-09-01
The present study evaluated whether the strength of relationship between contextual cues (presence of company and mood) and state body dissatisfaction varied as a function of individual differences in key trait measures (body shame, body surveillance tendencies, internalization of appearance standards, and trait affect) which have been linked to trait body dissatisfaction. Fifty-five undergraduate women completed a questionnaire containing the trait-based measures and then carried a Personal Digital Assistant (PDA) for a 7-day period. The PDA prompted participants six times daily to self-report their current mood and state body dissatisfaction. Multi-level modeling revealed that individual differences in body shame predicted inter-individual variability in the strength of the relationships between presence of company and state body dissatisfaction, and positive mood and state body dissatisfaction. Trait positive affect also explained variance in the positive mood state-body dissatisfaction relationship. The implications of the findings for prevention of body image disturbances are discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
A generic multi-flex-body dynamics, controls simulation tool for space station
NASA Technical Reports Server (NTRS)
London, Ken W.; Lee, John F.; Singh, Ramen P.; Schubele, Buddy
1991-01-01
An order (n) multiflex body Space Station simulation tool is introduced. The flex multibody modeling is generic enough to model all phases of Space Station from build up through to Assembly Complete configuration and beyond. Multibody subsystems such as the Mobile Servicing System (MSS) undergoing a prescribed translation and rotation are also allowed. The software includes aerodynamic, gravity gradient, and magnetic field models. User defined controllers can be discrete or continuous. Extensive preprocessing of 'body by body' NASTRAN flex data is built in. A significant aspect, too, is the integrated controls design capability which includes model reduction and analytic linearization.
Factor structure of the Body Appreciation Scale among Malaysian women.
Swami, Viren; Chamorro-Premuzic, Tomas
2008-12-01
The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.
Methods for manufacturing geometric multi-crystalline cast materials
Stoddard, Nathan G
2013-11-26
Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.
Design and Implementation of Embedded Computer Vision Systems Based on Particle Filters
2010-01-01
for hardware/software implementa- tion of multi-dimensional particle filter application and we explore this in the third application which is a 3D...methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a...and hence multiprocessor implementation of parti- cle filters is an important option to examine. A significant body of work exists on optimizing generic
A New Tool For The Hospital Lab
NASA Technical Reports Server (NTRS)
1979-01-01
The multi-module AutoMicrobic System (AMS), whose development stemmed from space-biomedical research, is an automatic, time-saving system for detecting and identifying disease-producing microorganisms in the human body.
Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik
2018-03-01
The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.
3D high-resolution radar imaging of small body interiors
NASA Astrophysics Data System (ADS)
Sava, Paul; Asphaug, Erik
2017-10-01
Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5) exploiting the known (and complex) exterior shape of the studied body facilitates high-resolution imaging and tomography comparable with what could be accomplished by bi/multi-static systems.
Shafinaz, I S; Moy, F M
2016-03-07
Vitamin D deficiency is highly prevalent in both temperate as well as tropical countries. Obesity is one of the factors contributing to vitamin D deficiency. As our country has a high prevalence of overweight and obesity, we aimed to study serum 25-hydroxyvitamin D (25(OH)D) level and its association with adiposity using various adiposity indicators; and to study other risk factors that affect serum 25(OH)D level among multi-ethnic adults in Kuala Lumpur, Malaysia. This was a cross sectional study conducted with a multistage sampling. All permanent teachers working in government secondary schools in Kuala Lumpur were invited for the study. The data collection included serum 25(OH)D, Parathyroid Hormone (PTH), body fat percentage, waist circumference, body mass index (BMI) and blood pressure. Demographic characteristics, sun avoidance, sun exposure and physical activity were enquired from the participants using a self-administered questionnaire. The data was analyzed using a complex sample analysis. A total of 858 participants were recruited. Majority of them were Malays, females and had tertiary education. The overall prevalence of vitamin D deficiency (<20 ng/ml) was 67.4 %. Indian participants (80.9 %) had the highest proportion of vitamin D deficiency, followed by Malays (75.6 %), others (44.9 %) and Chinese (25.1 %). There was a significant negative association between serum 25(OH)D level with BMI (β = -0.23) and body fat percentage (β = -0.14). In the multivariate linear regression analysis, Malays, Indians and females (p < 0.001); higher BMI and larger waist circumference (p < 0.05) were significantly associated with lower serum 25(OH)D level. The full model explained 32.8 % of the variation between participants in the serum 25(OH)D level. The two most influential factors affecting serum 25(OH)D level were ethnicity and gender. The prevalence of vitamin D deficiency among our participants was high. Adiposity was associated with serum 25(OH)D level. Skin pigmentation and gender based behaviours were more dominant in contributing to serum 25(OH)D level. Health education should be targeted in weight management, gender based behaviours on sun exposure, as skin pigmentation is non-modifiable.
A system for activity recognition using multi-sensor fusion.
Gao, Lei; Bourke, Alan K; Nelson, John
2011-01-01
This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.
A systematic review of interventions to promote work participation in older workers.
Steenstra, Ivan; Cullen, Kimberley; Irvin, Emma; Van Eerd, Dwayne
2017-02-01
The objective of this systematic review was to synthesize evidence on the effectiveness of interventions aimed at promoting work participation in older workers. We followed a systematic review process developed by the Institute for Work & Health and a best evidence synthesis that ranked evidence as strong, moderate, limited, or insufficient. Seven electronic databases were searched from inception to March 2014. Evidence from 14 studies were synthesized in 4 different intervention categories: multi-component, exercise, medication and other interventions. There was moderate evidence that work participation was improved by multi-component interventions encompassing at least two of three components (health service delivery, coordination of services, and work modifications). There was not enough evidence to recommend the other interventions. Although there is a vast body of research on work participation of older workers, there are only a few high quality intervention studies aimed at improving work participation in this population. We recommend that multi-component interventions could be considered for implementation by practitioners to help improve work participation in older workers. With a moderate level of evidence, multi-component interventions could be considered for use in practice if practitioners deem it suitable for their setting. There is not enough evidence to recommend exercise interventions, pharmaceutical interventions, different types of surgeries, patient education or work accommodation alone to improve work participation. However, the lack of evidence should not be considered, as absence of effect and practitioners should continue to be creative in developing solutions. Copyright © 2016. Published by Elsevier Ltd.
3D laser optoacoustic ultrasonic imaging system for preclinical research
NASA Astrophysics Data System (ADS)
Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.
2013-03-01
In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).
Multi-purpose CMOS sensor interface for low-power applications
NASA Astrophysics Data System (ADS)
Wouters, P.; de Cooman, M.; Puers, R.
1994-08-01
A dedicated low-power CMOS transponder microchip is presented as part of a novel telemetry implant for biomedical applications. This mixed analog-digital circuit contains an identification code and collects information on physiological parameters, i.e., body temperature and physical activity, and on the status of the battery. To minimize the amount of data to be transmitted, a dedicated signal processing algorithm is embedded within its circuitry. All telemetry functions (encoding, modulation, generation of the carrier) are implemented on the integrated circuit. Emphasis is on a high degree of flexibility towards sensor inputs and internal data management, extreme miniaturization, and low-power consumption to allow a long implantation lifetime.
Development of a fast multi-line x-ray CT detector for NDT
NASA Astrophysics Data System (ADS)
Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.
2015-04-01
Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
Self-perpetuating Spiral Arms in Disk Galaxies
NASA Astrophysics Data System (ADS)
D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars
2013-03-01
The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.
Model-based registration of multi-rigid-body for augmented reality
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro
2009-02-01
Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.
Fuel-Optimal Trajectories in a Planet-Moon Environment Using Multiple Gravity Assists
NASA Technical Reports Server (NTRS)
Ross, Shane D.; Grover, Piyush
2007-01-01
For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system, multiple gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease fuel usage. In this paper, we outline a procedure to obtain a family of zero-fuel multi-moon orbiter trajectories, using a family of Keplerian maps derived by the first author previously. The maps capture well the dynamics of the full equations of motion; the phase space contains a connected chaotic zone where intersections between unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits of different semimajor axes. Patched three body approach is used and the four body problem is broken down into two three-body problems, and the search space is considerably reduced by the use of properties of the Keplerian maps. We also introduce the notion of Switching Region where the perturbations due to the two perturbing moons are of comparable strength, and which separates the domains of applicability of the corresponding two Keplerian maps.
Sulis, Andrea; Buscarinu, Paola; Soru, Oriana; Sechi, Giovanni M.
2014-01-01
The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996–2012) in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy) provides useful insights into the strengths and limitations of the proposed synthetic index. PMID:24759172
Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Fremaux, C. Michael
2013-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.
Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation
NASA Technical Reports Server (NTRS)
Patterson, Byron W.; Glaab, Louis J.
2012-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.
Stoddard, Nathan G
2015-02-10
Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.
Physics-Based Robot Motion Planning in Dynamic Multi-Body Environments
2010-05-10
be actuated by external influences and interactions, such as being carried or pushed. Foreign-controlled bodies are actively actuated, but by external...from the action space A. How this action is generated can strongly influence the overall behavior and performance of our planner and will be discussed in...evolving game-state and unpredictable player -input), an animator cannot manually adjust these controls in advance. The planning approaches introduced in
The Contact Dynamics method: A nonsmooth story
NASA Astrophysics Data System (ADS)
Dubois, Frédéric; Acary, Vincent; Jean, Michel
2018-03-01
When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches. xml:lang="fr"
Hirsch, Jana A; Diez Roux, Ana V; Moore, Kari A; Evenson, Kelly R; Rodriguez, Daniel A
2014-03-01
We investigated whether moving to neighborhoods with closer proximity of destinations and greater street connectivity was associated with more walking, a greater probability of meeting the "Every Body Walk!" campaign goals (≥ 150 minutes/week of walking), and reductions in body mass index (BMI). We linked longitudinal data from 701 participants, who moved between 2 waves of the Multi-Ethnic Study of Atherosclerosis (2004-2012), to a neighborhood walkability measure (Street Smart Walk Score) for each residential location. We used fixed-effects models to estimate if changes in walkability resulting from relocation were associated with simultaneous changes in walking behaviors and BMI. Moving to a location with a 10-point higher Walk Score was associated with a 16.04 minutes per week (95% confidence interval [CI] = 5.13, 29.96) increase in transport walking, 11% higher odds of meeting Every Body Walk! goals through transport walking (adjusted odds ratio = 1.11; 95% CI = 1.02, 1.21), and a 0.06 kilogram per meters squared (95% CI = -0.12, -0.01) reduction in BMI. Change in walkability was not associated with change in leisure walking. Our findings illustrated the potential for neighborhood infrastructure to support health-enhancing behaviors and overall health of people in the United States.
The importance of multi-level Rydberg interaction in electric field tuned Förster resonances
NASA Astrophysics Data System (ADS)
Kondo, Jorge; Booth, Donald; Gonçalves, Luis; Shaffer, James; Marcassa, Luis
2016-05-01
Many-body physics has been investigated in ultracold Rydberg atom systems, mainly because important parameters, such as density and interaction strength, can be controlled. Several puzzling experimental observations on Förster resonances have been associated to many-body effects, usually by comparison to complex theoretical models. In this work, we investigate the dc electric field dependence of 2 Förster resonant processes in ultracold 85 Rb, 37D5 / 2 + 37D5 / 2 --> 35 L(L = O , Q) + 39P3 / 2 , as a function of the atomic density in an optical dipole trap. At low densities, the 39 P yield as a function of electric field exhibits resonances. With increasing density, the linewidths increase until the peaks merge. Even under these extreme conditions, where many-body effects were expected to play a role, the 39 P population depends quadratically on the total Rydberg atom population. In order to explain our results, we implement a theoretical model which takes into account the multi-level character of the interactions and Rydberg atom blockade process using only atom pair interactions. The comparison between the experimental data and the model is very good, suggesting that the Förster resonant processes are dominated by 2-body interactions. This work is supported by FAPESP, AFOSR, NSF, INCT-IQ and CNPq.
Modeling the locomotion of the African trypanosome using multi-particle collision dynamics
NASA Astrophysics Data System (ADS)
Babu, Sujin B.; Stark, Holger
2012-08-01
The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value.
Kaiyala, Karl J.
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692
Giletta, Matteo; Scholte, Ron H J; Engels, Rutger C M E; Larsen, Junilla K
2010-12-01
This study applied a multi-method approach to examine the relationship between body mass index (BMI) and the experience of victimization during adolescence by investigating the role of intrapersonal feelings. The sample consisted of 2051 adolescents (M=13.8 years, S.D.=0.7; 51% male) from seven high schools in the Netherlands. Participants' weight and height were measured and they completed self-report questionnaires on victimization, depressive symptoms and self-esteem. Self-reported and peer-reported measures of victimization were collected and combined to create three different victimization types (i.e., self/peer-identified, self-identified, and peer-identified). Hierarchical logistic regression analyses revealed that higher BMI was associated with both self/peer-identified victimization and self-identified victimization. Intrapersonal feelings (i.e., depressive symptoms and self-esteem) were found to mediate these associations. However, BMI was not associated with peer-identified victimization. These findings suggest that the association between BMI and victimization might be exclusively related to the self-perception of high BMI adolescents. Moreover, the mediation effects indicate that the perception of victimization might be linked to psychological difficulties of adolescents with high BMI. Thus, to fully understand the associations between weight status and victimization, intrapersonal mechanisms need to be examined. Copyright © 2010 Elsevier Inc. All rights reserved.
Optimum Multi-Impulse Rendezvous Program
NASA Technical Reports Server (NTRS)
Glandorf, D. R.; Onley, A. G.; Rozendaal, H. L.
1970-01-01
OMIRPROGRAM determines optimal n-impulse rendezvous trajectories under the restrictions of two-body motion in free space. Lawden's primer vector theory is applied to determine optimum number of midcourse impulse applications. Global optimality is not guaranteed.
[Automobile versus pedestrian accidents analysis by fixed-parameters computer simulation].
Mao, Ming-Yuan; Chen, Yi-Jiu; Liu, Ning-Guo; Zou, Dong-Hua; Liu, Jun-Yong; Jin, Xian-Long
2008-04-01
Using computer simulation to analyze the effects of speed, type of automobile and impacted position on crash-course and injuries of pedestrians in automobile vs. pedestrian accidents. Automobiles (bus, minibus, car and truck) and pedestrian models were constructed with multi-body dynamics computing method. The crashes were simulated at different impact speeds (20, 30, 40, 50 and 60 km/h) and different positions (front, lateral and rear of pedestrians). Crash-courses and their biomechanical responses were studied. If the type of automobile and impact position were the same, the crash-courses were similar (impact speed < or = 60 km/h). There were some characteristics in the head acceleration, upper neck axial force and leg axial force. Multi-body dynamics computer simulation of crash can be applied to analyze crash-course and injuries (head, neck and leg) of pedestrians.
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
Momentum-Based Dynamics for Spacecraft with Chained Revolute Appendages
NASA Technical Reports Server (NTRS)
Queen, Steven; London, Ken; Gonzalez, Marcelo
2005-01-01
An efficient formulation is presented for a sub-class of multi-body dynamics problems that involve a six degree-of-freedom base body and a chain of N rigid linkages connected in series by single degree-of-freedom revolute joints. This general method is particularly well suited for simulations of spacecraft dynamics and control that include the modeling of an orbiting platform with or without internal degrees of freedom such as reaction wheels, dampers, and/or booms. In the present work, particular emphasis is placed on dynamic simulation of multi-linkage robotic manipulators. The differential equations of motion are explicitly given in terms of linear and angular momentum states, which can be evaluated recursively along a serial chain of linkages for an efficient real-time solution on par with the best of the O(N3) methods.
Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Kim, Young; Stough, Robert; Whorton, Mark
2005-01-01
Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1982-09-01
This Annual Technical Report covers research covering the period from October 1, 1981 to September 30, 1982. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a study of channel access protocols that are executed by the nodes of a network to schedule their transmissions on multi-access broadcast channel. In particular the main body consists of a Ph.D. dissertation, Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks. This work discusses some new channel access protocols useful for mobile radio networks. Included is an analysis of slotted ALOHA and some tight bounds on the performance of all possible protocols in a mobile environment.
Biomedical imaging with THz waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2010-03-01
We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
Morano, Milena; Colella, Dario; Rutigliano, Irene; Fiore, Pietro; Pettoello-Mantovani, Massimo; Campanozzi, Angelo
2012-01-01
(1) To examine relationships among changes in physical activity, physical fitness and some psychosocial determinants of activity behavior in a clinical sample of obese children involved in a multi-component program; (2) to investigate the causal relationship over time between physical activity and one of its strongest correlates (i.e. perceived physical ability). Self-reported physical activity and health-related fitness tests were administered before and after a 9-month intervention in 24 boys and 20 girls aged 8 to 11 years. Individuals' perceptions of strength, speed and agility were assessed using the Perceived Physical Ability Scale, while body image was measured using Collins' Child Figure Drawings. Findings showed that body mass index, physical activity, performances on throwing and weight-bearing tasks, perceived physical ability and body image significantly improved after treatment among obese children. Gender differences were found in the correlational analyses, showing a link between actual and perceived physical abilities in boys, but not in girls. For the specific measurement interval of this study, perception of physical ability was an antecedent and not a potential consequence of physical activity. Results indicate that a multi-component activity program not based merely on a dose-effect approach enhances adherence of the participants and has the potential to increase the lifelong exercise skills of obese children. Rather than focusing entirely on diet and weight loss, findings support the inclusion of interventions directed toward improving perceived physical ability that is predictive of subsequent physical activity.
Evidence That Head and Body Lice on Homeless Persons Have the Same Genotype
Veracx, Aurélie; Rivet, Romain; McCoy, Karen D.; Brouqui, Philippe; Raoult, Didier
2012-01-01
Human head lice and body lice are morphologically and biologically similar but have distinct ecologies. They were shown to have almost the same basic genetic content (one gene is absent in head lice), but differentially express certain genes, presumably responsible for the vector competence. They are now believed to be ecotypes of the same species (Pediculus humanus) and based on mitochondrial studies, body lice have been included with head lice in one of three clades of human head lice (Clade A). Here, we tested whether head and body lice collected from the same host belong to the same population by examining highly polymorphic intergenic spacers. This study was performed on lice collected from five homeless persons living in the same shelter in which Clade A lice are prevalent. Lice were individually genotyped at four spacer loci. The genetic identity and diversity of lice from head and body populations were compared for each homeless person. Population genetic structure was tested between lice from the two body regions and between the lice from different host individuals. We found two pairs of head and body lice on the same homeless person with identical multi locus genotypes. No difference in genetic diversity was found between head and body louse populations and no evidence of significant structure between the louse populations was found, even after controlling for a possible effect of the host individual. More surprisingly, no structure was obvious between lice of different homeless persons. We believe that the head and body lice collected from our five subjects belong to the same population and are shared between people living in the same shelter. These findings confirm that head and body lice are two ecotypes of the same species and show the importance of implementing measures to prevent lice transmission between homeless people in shelters. PMID:23049889
Evidence that head and body lice on homeless persons have the same genotype.
Veracx, Aurélie; Rivet, Romain; McCoy, Karen D; Brouqui, Philippe; Raoult, Didier
2012-01-01
Human head lice and body lice are morphologically and biologically similar but have distinct ecologies. They were shown to have almost the same basic genetic content (one gene is absent in head lice), but differentially express certain genes, presumably responsible for the vector competence. They are now believed to be ecotypes of the same species (Pediculus humanus) and based on mitochondrial studies, body lice have been included with head lice in one of three clades of human head lice (Clade A). Here, we tested whether head and body lice collected from the same host belong to the same population by examining highly polymorphic intergenic spacers. This study was performed on lice collected from five homeless persons living in the same shelter in which Clade A lice are prevalent. Lice were individually genotyped at four spacer loci. The genetic identity and diversity of lice from head and body populations were compared for each homeless person. Population genetic structure was tested between lice from the two body regions and between the lice from different host individuals.We found two pairs of head and body lice on the same homeless person with identical multi locus genotypes. No difference in genetic diversity was found between head and body louse populations and no evidence of significant structure between the louse populations was found, even after controlling for a possible effect of the host individual. More surprisingly, no structure was obvious between lice of different homeless persons.We believe that the head and body lice collected from our five subjects belong to the same population and are shared between people living in the same shelter. These findings confirm that head and body lice are two ecotypes of the same species and show the importance of implementing measures to prevent lice transmission between homeless people in shelters.
Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall
2012-01-01
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561
Automated Tracking and Quantification of Autistic Behavioral Symptoms Using Microsoft Kinect.
Kang, Joon Young; Kim, Ryunhyung; Kim, Hyunsun; Kang, Yeonjune; Hahn, Susan; Fu, Zhengrui; Khalid, Mamoon I; Schenck, Enja; Thesen, Thomas
2016-01-01
The prevalence of autism spectrum disorder (ASD) has risen significantly in the last ten years, and today, roughly 1 in 68 children has been diagnosed. One hallmark set of symptoms in this disorder are stereotypical motor movements. These repetitive movements may include spinning, body-rocking, or hand-flapping, amongst others. Despite the growing number of individuals affected by autism, an effective, accurate method of automatically quantifying such movements remains unavailable. This has negative implications for assessing the outcome of ASD intervention and drug studies. Here we present a novel approach to detecting autistic symptoms using the Microsoft Kinect v.2 to objectively and automatically quantify autistic body movements. The Kinect camera was used to film 12 actors performing three separate stereotypical motor movements each. Visual Gesture Builder (VGB) was implemented to analyze the skeletal structures in these recordings using a machine learning approach. In addition, movement detection was hard-coded in Matlab. Manual grading was used to confirm the validity and reliability of VGB and Matlab analysis. We found that both methods were able to detect autistic body movements with high probability. The machine learning approach yielded highest detection rates, supporting its use in automatically quantifying complex autistic behaviors with multi-dimensional input.
Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation.
Bobo, Meg F; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G; Hilmes, Melissa A; Landman, Bennett A
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities.
Fully convolutional neural networks improve abdominal organ segmentation
NASA Astrophysics Data System (ADS)
Bobo, Meg F.; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J.; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G.; Hilmes, Melissa A.; Landman, Bennett A.
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities. 1
Human body region enhancement method based on Kinect infrared imaging
NASA Astrophysics Data System (ADS)
Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing
2016-10-01
To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.
Eme, Paul Eze; Onuoha, Nnenna Ola; Mbah, Obioma B
2016-05-04
This study assessed fat-related anthropometric variables and regional patterns of body size and adiposity of adolescents in Aba South LGA. A total number of 600 adolescents who were secondary school students aged 10 to 19 years wereselected from 61 registered secondary schools. A multi-random sampling technique was used to select the patients. Ethical approval and informed consent were obtained from the patients who participated in the study. Each patient was subjected to weight, height, mid-upper arm circumference (MUAC), and skinfolds measurements using standard methods. Body fat percentage was calculated by the formulas described by Slaughter, Siris, and Shailk equations. Descriptive statistics of frequencies, percentages, mean, and standard deviation were used to examine the gender-specific anthropometric indices. Chi-square and independent t test were also applied to determine the differences between the parameters or variables of the genders at P< .05. The respondents aged 19 years had the highest measurement for triceps (14.60 mm), thigh (35.05 mm), and MUAC (25.95 mm), while those aged 18 years had the highest measurement for suprailiac (15.00 mm) and subscapular (16.94 mm). Females had more fat deposits than males in all the skinfold sites. They also had a significantly (P = .05) higher body fat percentage than males. A multiple regression analysis revealed that maximum calf fat was a strong predictor of body fat percentage of the patients. High prevalence of obesity was found in this study, and the 3 equations of body fat percentage showed similar findings that more females than males had higher body fat percentage. © The Author(s) 2016.
What Makes Us Smell: The Biochemistry of Body Odour and the Design of New Deodorant Ingredients.
Natsch, Andreas
2015-08-19
Today, axilla odours are socially stigmatized and are targeted with deodorants and antiperspirants representing a multi-billion market. Axilla odours aren't simple byproducts of our metabolism but specifically formed by an intricate interplay between i) specific glands, ii) secreted amino acid conjugates of highly specific odorants and iii) selective enzymes present in microorganisms colonizing our skin, providing a natural 'controlled-release' mechanism. Within a multidisciplinary research project, we were able to elucidate the structure of key body odorants, isolate and characterize secreted amino acid conjugates and identify the enzymes responsible for odour release. These enzymes then served as targets for the development of specific active compounds in an almost medicinal chemistry approach, an approach rarely used in the cosmetic field so far. Here we review the key new insights into the biochemistry of human body odour formation, with some remarks on the experimental steps undertaken and hurdles encountered. The development of deodorant actives and the difficult path to market for such specifically acting cosmetic actives is discussed. The basic insights into the biochemistry also opened the way to address some questions in population genetics: Why have large proportions of Asians lost the 'ability' to form body odours? Do twins smell the same? Are our typical body odours indeed influenced by the immune system as often claimed? After addressing these questions, I'll conclude with the key remaining challenges in this field on an ecological niche that is 'anatomically very close to our heart'.
What Makes Us Smell: The Biochemistry of Body Odour and the Design of New Deodorant Ingredients.
Natsch, Andreas
2015-01-01
Today, axilla odours are socially stigmatized and are targeted with deodorants and antiperspirants representing a multi-billion market. Axilla odours aren't simple byproducts of our metabolism but specifically formed by an intricate interplay between i) specific glands, ii) secreted amino acid conjugates of highly specific odorants and iii) selective enzymes present in microorganisms colonizing our skin, providing a natural 'controlled-release' mechanism. Within a multidisciplinary research project, we were able to elucidate the structure of key body odorants, isolate and characterize secreted amino acid conjugates and identify the enzymes responsible for odour release. These enzymes then served as targets for the development of specific active compounds in an almost medicinal chemistry approach, an approach rarely used in the cosmetic field so far. Here we review the key new insights into the biochemistry of human body odour formation, with some remarks on the experimental steps undertaken and hurdles encountered. The development of deodorant actives and the difficult path to market for such specifically acting cosmetic actives is discussed. The basic insights into the biochemistry also opened the way to address some questions in population genetics: Why have large proportions of Asians lost the 'ability' to form body odours? Do twins smell the same? Are our typical body odours indeed influenced by the immune system as often claimed? After addressing these questions, I'll conclude with the key remaining challenges in this field on an ecological niche that is 'anatomically very close to our heart'.
East meets West: applying Eastern spirituality in clinical practice.
Chan, Cecilia L W; Ng, S M; Ho, Rainbow T H; Chow, Amy Y M
2006-07-01
The paper discusses the application of the Eastern body-mind-spirit approach in healthcare practice. Traumas, sufferings and losses may induce immense distress in patients and their families, as well as apathy and exhaustion in healthcare workers. Over-specialization and compartmentalization of services may provide a convenient shelter for healthcare workers to be detached and to simply focus on a narrowly defined scope of intervention. However, the existential problems are still there. Based upon eastern philosophies and holistic health practices, we propose the body-mind-spirit approach in healthcare settings. This is a review paper summarizing the application of the approach on various clinical populations. The approach has been trialled with promising results in a number of health conditions and psychosocial predicaments. Spirituality is not restricted to any religious practices, nor is it narrowed to the pursuit of knowledge at a high level of abstraction. The interconnectedness of the body, mind and spirit presupposes that the practice of spirituality is multidimensional and multi-levelled. Using the body-mind-spirit framework flexibly we can engage more clients while facilitating the important process of exploration and change. The key components include getting in touch with the inner self, coming back to our senses, connecting our body and mind and rebalancing our relationship with the natural and social environment. The ultimate goal is to move out of meaninglessness and to reach a state of mature spirituality of tranquillity and transcendence. The practice of spirituality can be easily applied to daily life.
Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner
NASA Astrophysics Data System (ADS)
Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi
2017-03-01
The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.
Quantitative Image Reconstruction for Total-Body PET Imaging Using the 2-meter Long EXPLORER Scanner
Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.
2017-01-01
The EXPLORER project aims to build a 2-meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20-minute whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner. PMID:28240215
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
Optical Properties of Multi-Layered Insulation
NASA Technical Reports Server (NTRS)
Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin
2007-01-01
Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms, which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI.
Remote multi-function fire alarm system based on internet of things
NASA Astrophysics Data System (ADS)
Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu
2018-05-01
This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.
Thermal imaging of Al-CuO thermites
NASA Astrophysics Data System (ADS)
Densmore, John; Sullivan, Kyle; Kuntz, Joshua; Gash, Alex
2013-06-01
We have performed spatial in-situ temperature measurements of aluminum-copper oxide thermite reactions using high-speed color pyrometry. Electrophoretic deposition was used to create thermite microstructures. Tests were performed with micron- and nano-sized particles at different stoichiometries. The color pyrometry was performed using a high-speed color camera. The color filter array on the image sensor collects light within three spectral bands. Assuming a gray-body emission spectrum a multi-wavelength ratio analysis allows a temperature to be calculated. An advantage of using a two-dimensional image sensor is that it allows heterogeneous flames to be measured with high spatial resolution. Light from the initial combustion of the Al-CuO can be differentiated from the light created by the late time oxidization with atmosphere. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2014-01-01
Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.
A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2007-01-01
A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.
NASA Astrophysics Data System (ADS)
Itoh, Kazuki; Endoh, Tetsuo
2018-04-01
In this paper, we present a novel transistor layout of multi pillar-type vertical body-channel (BC) MOSFET for cascode power switches for improving the efficiency and compactness of CMOS DC–DC converters. The proposed layout features a stacked and multifingered layout to suppress the loss due to parasitic components such as diffusion resistance and contact resistance. In addition, the loss of each MOSFET, which configures cascode power switches, is analyzed, and it is revealed that the total optimum gate width and loss with the high-side (HS) n-type MOSFET topology are 27 and 16% smaller than those with the HS p-type MOSFET topology, respectively. Moreover, a circuit simulation of 2.0 to 0.8 V, 100 MHz CMOS DC–DC converters with the proposed layout is carried out by using experimentally extracted models of BSIM4 60 nm vertical BC MOSFETs. The peak efficiency of the HS n-type MOSFET converter with the proposed layout is 90.1%, which is 6.0% higher than that with the conventional layout.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2014-01-01
Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.
Enhanced PET resolution by combining pinhole collimation and coincidence detection
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.
2015-10-01
Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT algorithm. Hot rods of 1.4 mm diameter were resolved easily in a simulated phantom. System sensitivity was 0.09% for a simulated 70-mm line source corresponding to the NEMA NU-4 mouse phantom. Higher resolution is expected with further optimization of pinhole design, and higher sensitivity is expected with a focused and denser pinhole configuration. The simulations demonstrate high spatial resolution and feasibility of small animal imaging with an add-on multi-pinhole collimator for a clinical PET scanner. Further work is needed to develop geometric calibration and quantitative data corrections and, eventually, to construct a prototype device and produce images with physical phantoms.
Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.
Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J
2016-08-01
Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.
Use of Herbal Supplements in Chronic Kidney Disease
... build up in your body. The herbal supplement market is a multi-million dollar business. You may ... Ginseng Bai Zhi (root) Bitter Melon (fruit, leaf) Black Mustard (leaf) Blessed Thistle Chervit (leaf) Chicory (leaf) ...
Efficient stable isotope labeling and purification of vitamin D receptor from inclusion bodies
Zhu, Jinge; Rao, Hongyu; Tonelli, Marco; Westler, Milo; Singarapu, Kiran K.; Markley, John L.; DeLuca, Hector F.; Assadi-Porter, Fariba M.
2012-01-01
Vitamin D receptor (VDR) plays a crucial role in many cellular processes including calcium and phosphate homeostasis. Previous purification methods from prokaryotic and eukaryotic expression systems were challenged by low protein solubility accompanied by multi purification steps resulting in poor protein recovery. The full-length VDR and its ligand binding domain (LBD) were mostly (>90%) insoluble even when expressed at low temperatures in the bacterial system. We describe a one-step procedure that results in the purification of rat VDR and LBD proteins in high-yield from E. coli inclusion bodies. The heterologously expressed protein constructs retain full function as demonstrated by ligand binding and DNA binding assays. Furthermore, we describe an efficient strategy for labeling these proteins with, 13C, and 15N for structural and functional studies by nuclear magnetic resonance (NMR) spectroscopy. This efficient production system will facilitate future studies on the mechanism of vitamin D action including characterization of the large number of synthetic vitamin D analogs that have been developed. PMID:22750673
Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques
Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.
2016-01-01
Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597
Exact mapping between different dynamics of isotropically trapped quantum gases
NASA Astrophysics Data System (ADS)
Wamba, Etienne; Pelster, Axel; Anglin, James R.
2016-05-01
Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.
Competition and constraint drove Cope's rule in the evolution of giant flying reptiles
Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.
2014-01-01
The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584
Resonant- and avalanche-ionization amplification of laser-induced plasma in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo
2014-10-14
Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vivek; Shostrom, Valerie K.; Zhen, Weining
Purpose: To describe the impact of fractionation scheme and tumor location on toxicities in stereotactic body radiation therapy (SBRT) for ≥5-cm non-small cell lung cancer (NSCLC), as part of a multi-institutional analysis. Methods: Patients with primary ≥5-cm N0 M0 NSCLC who underwent ≤5-fraction SBRT were examined across multiple high-volume SBRT centers. Collected data included clinical/treatment parameters; toxicities were prospectively assessed at each institution according to the Common Terminology Criteria for Adverse Events. Patients treated daily were compared with those treated every other day (QOD)/other nondaily regimens. Stratification between central and peripheral tumors was also performed. Results: Ninety-two patients from 12 institutionsmore » were evaluated (2004-2016), with median follow-up of 12 months. In total there were 23 (25%) and 6 (7%) grade ≥2 and grade ≥3 toxicities, respectively. Grades 2 and 3 pulmonary toxicities occurred in 9% and 4%, respectively; 1 patient treated daily experienced grade 5 radiation pneumonitis. Of the entire cohort, 46 patients underwent daily SBRT, and 46 received QOD (n=40)/other nondaily (n=6) regimens. Clinical/treatment parameters were similar between groups; the QOD/other group was more likely to receive 3-/4-fraction schemas. Patients treated QOD/other experienced significantly fewer grade ≥2 toxicities as compared with daily treatment (7% vs 43%, P<.001). Patients treated daily also had higher rates of grade ≥2 pulmonary toxicities (P=.014). Patients with peripheral tumors (n=66) were more likely to receive 3-/4-fraction regimens than those with central tumors (n=26). No significant differences in grade ≥2 toxicities were identified according to tumor location (P>.05). Conclusions: From this multi-institutional study, toxicity of SBRT for ≥5-cm lesions is acceptable, and daily treatment was associated with a higher rate of toxicities.« less