Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, W.; He, G.; Long, T.; Ni, Y.
2018-04-01
Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
NASA Astrophysics Data System (ADS)
Schwindling, Jerome
2010-04-01
This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
NASA Astrophysics Data System (ADS)
Heremans, Stien; Suykens, Johan A. K.; Van Orshoven, Jos
2016-02-01
To be physically interpretable, sub-pixel land cover fractions or abundances should fulfill two constraints, the Abundance Non-negativity Constraint (ANC) and the Abundance Sum-to-one Constraint (ASC). This paper focuses on the effect of imposing these constraints onto the MultiLayer Perceptron (MLP) for a multi-class sub-pixel land cover classification of a time series of low resolution MODIS-images covering the northern part of Belgium. Two constraining modes were compared, (i) an in-training approach that uses 'softmax' as the transfer function in the MLP's output layer and (ii) a post-training approach that linearly rescales the outputs of the unconstrained MLP. Our results demonstrate that the pixel-level prediction accuracy is markedly increased by the explicit enforcement, both in-training and post-training, of the ANC and the ASC. For aggregations of pixels (municipalities), the constrained perceptrons perform at least as well as their unconstrained counterparts. Although the difference in performance between the in-training and post-training approach is small, we recommend the former for integrating the fractional abundance constraints into MLPs meant for sub-pixel land cover estimation, regardless of the targeted level of spatial aggregation.
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks.
Savalia, Shalin; Emamian, Vahid
2018-05-04
The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musson, John C.; Seaton, Chad; Spata, Mike F.
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less
Understanding auditory distance estimation by humpback whales: a computational approach.
Mercado, E; Green, S R; Schneider, J N
2008-02-01
Ranging, the ability to judge the distance to a sound source, depends on the presence of predictable patterns of attenuation. We measured long-range sound propagation in coastal waters to assess whether humpback whales might use frequency degradation cues to range singing whales. Two types of neural networks, a multi-layer and a single-layer perceptron, were trained to classify recorded sounds by distance traveled based on their frequency content. The multi-layer network successfully classified received sounds, demonstrating that the distorting effects of underwater propagation on frequency content provide sufficient cues to estimate source distance. Normalizing received sounds with respect to ambient noise levels increased the accuracy of distance estimates by single-layer perceptrons, indicating that familiarity with background noise can potentially improve a listening whale's ability to range. To assess whether frequency patterns predictive of source distance were likely to be perceived by whales, recordings were pre-processed using a computational model of the humpback whale's peripheral auditory system. Although signals processed with this model contained less information than the original recordings, neural networks trained with these physiologically based representations estimated source distance more accurately, suggesting that listening whales should be able to range singers using distance-dependent changes in frequency content.
Cooperative photometric redshift estimation
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.
2017-06-01
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.
NASA Astrophysics Data System (ADS)
Ebrahimi Orimi, H.; Esmaeili, M.; Refahi Oskouei, A.; Mirhadizadehd, S. A.; Tse, P. W.
2017-10-01
Condition monitoring of rotary devices such as helical gears is an issue of great significance in industrial projects. This paper introduces a feature extraction method for gear fault diagnosis using wavelet packet due to its higher frequency resolution. During this investigation, the mother wavelet Daubechies 10 (Db-10) was applied to calculate the coefficient entropy of each frequency band of 5th level (32 frequency bands) as features. In this study, the peak value of the signal entropies was selected as applicable features in order to improve frequency band differentiation and reduce feature vectors' dimension. Feature extraction is followed by the fusion network where four different structured multi-layer perceptron networks are trained to classify the recorded signals (healthy/faulty). The robustness of fusion network outputs is greater compared to perceptron networks. The results provided by the fusion network indicate a classification of 98.88 and 97.95% for healthy and faulty classes, respectively.
Resting State Network Estimation in Individual Subjects
Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.
2014-01-01
Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260
NASA Astrophysics Data System (ADS)
Nuzhny, Anton S.; Shumsky, Sergey A.; Korzhov, Alexey G.; Lyubynskaya, Tatiana E.
2008-02-01
Optical scattering spectra obtained in the clinical trials of breast cancer diagnostic system were analyzed for the purpose to detect in the dataflow the segments corresponding to malignant tissues. Minimal invasive probe with optical fibers inside delivers white light from the source and collects the scattering light while being moved through the tissue. The sampling rate is 100 Hz and each record contains the results of measurements of scattered light intensity at 184 fixed wavelength points. Large amount of information acquired in each procedure, fuzziness in criteria of 'cancer' family membership and data noisiness make neural networks to be an attractive tool for analysis of these data. To define the dividing rule between 'cancer' and 'non-cancer' spectral families a three-layer perceptron was applied. In the process of perceptron learning back propagation method was used to minimize the learning error. Regularization was done using the Bayesian approach. The learning sample was formed by the experts. End-to-end probability calculation throughout the procedure dataset showed reliable detection of the 'cancer' segments. Much attention was paid on the spectra of the tissues with high blood content. Often the reason is vessel injury caused by the penetrating optical probe. But also it can be a dense vessel net surrounding the malignant tumor. To make the division into 'cancer' and 'non-cancer' families for the tissues with high blood content a special perceptron was learnt exceptionally on such spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, W; Jiang, M; Yin, F
Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, amore » Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results demonstrate that the ASMLP respiratory prediction method is more accurate than MLP method and can improve the respiration forecast accuracy.« less
On-line Gibbs learning. II. Application to perceptron and multilayer networks
NASA Astrophysics Data System (ADS)
Kim, J. W.; Sompolinsky, H.
1998-08-01
In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.
Estimation of effective connectivity using multi-layer perceptron artificial neural network.
Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman
2018-02-01
Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.
Lectures in Complex Systems (1991)
1992-08-05
momentum term and the line required to reach termination criterion. Fig- ture 2 shows this function for the case where Lcarninglate = 1.0. Peeling and...Soc. Am., in press. 17. Peeling , S. M., and R. K. Moore. "Isolated Digit Recognition Experiments using the Multi-Layer Perceptron." Speech Comm. 7...surfaces which form the focal conic defects seen in Figure 1. These are the cyclides of Dupin. The surfaces go from banana -shaped to squashed doughnuts to
Standard cell-based implementation of a digital optoelectronic neural-network hardware.
Maier, K D; Beckstein, C; Blickhan, R; Erhard, W
2001-03-10
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
Benchmark of Machine Learning Methods for Classification of a SENTINEL-2 Image
NASA Astrophysics Data System (ADS)
Pirotti, F.; Sunar, F.; Piragnolo, M.
2016-06-01
Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performance.
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System
Beruvides, Gerardo
2017-01-01
Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions. PMID:28906450
Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning
NASA Astrophysics Data System (ADS)
Florios, Kostas; Kontogiannis, Ioannis; Park, Sung-Hong; Guerra, Jordan A.; Benvenuto, Federico; Bloomfield, D. Shaun; Georgoulis, Manolis K.
2018-02-01
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 - 2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude {>} M1 and {>} C1 within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00), true skill statistic TSS=0.74(0.02), and Heidke skill score HSS=0.49(0.01) for {>} M1 flare prediction with probability threshold 15% and ACC=0.84(0.00), TSS=0.60(0.01), and HSS=0.59(0.01) for {>} C1 flare prediction with probability threshold 35%.
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System.
Castaño, Fernando; Beruvides, Gerardo; Haber, Rodolfo E; Artuñedo, Antonio
2017-09-14
Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors' knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.
Gas demand forecasting by a new artificial intelligent algorithm
NASA Astrophysics Data System (ADS)
Khatibi. B, Vahid; Khatibi, Elham
2012-01-01
Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Bandyopadhyay, Goutami
2007-01-01
Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.
Artificial neural networks and the study of the psychoactivity of cannabinoid compounds.
Honório, Káthia M; de Lima, Emmanuela F; Quiles, Marcos G; Romero, Roseli A F; Molfetta, Fábio A; da Silva, Albérico B F
2010-06-01
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher's weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Separate the inseparable one-layer mapping
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2000-04-01
When the input-output mapping of a one-layered perceptron (OLP) does NOT meet the PLI condition which is the if-and- only-if, or 'IFF, condition that the mapping can be realized by a OLP, then no matter what learning rule we use, a OLP just cannot realize this mapping at all. However, because of the nature of the PLI, one can still construct a parallel- cascaded, two-layered perceptron system to realize this `illegal' mapping. Theory and design example of this novel design will be reported in detail in this paper.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1995-01-01
Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
NASA Technical Reports Server (NTRS)
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
Generalization and capacity of extensively large two-layered perceptrons.
Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido
2002-09-01
The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.
Automatic Mexican sign language and digits recognition using normalized central moments
NASA Astrophysics Data System (ADS)
Solís, Francisco; Martínez, David; Espinosa, Oscar; Toxqui, Carina
2016-09-01
This work presents a framework for automatic Mexican sign language and digits recognition based on computer vision system using normalized central moments and artificial neural networks. Images are captured by digital IP camera, four LED reflectors and a green background in order to reduce computational costs and prevent the use of special gloves. 42 normalized central moments are computed per frame and used in a Multi-Layer Perceptron to recognize each database. Four versions per sign and digit were used in training phase. 93% and 95% of recognition rates were achieved for Mexican sign language and digits respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my; Hannan, M.A., E-mail: hannan@eng.ukm.my; Basri, Hassan
Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensormore » intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.« less
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio
2018-06-19
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Neural network diagnosis of avascular necrosis from magnetic resonance images
NASA Astrophysics Data System (ADS)
Manduca, Armando; Christy, Paul S.; Ehman, Richard L.
1993-09-01
We have explored the use of artificial neural networks to diagnose avascular necrosis (AVN) of the femoral head from magnetic resonance images. We have developed multi-layer perceptron networks, trained with conjugate gradient optimization, which diagnose AVN from single sagittal images of the femoral head with 100% accuracy on the training data and 97% accuracy on test data. These networks use only the raw image as input (with minimal preprocessing to average the images down to 32 X 32 size and to scale the input data values) and learn to extract their own features for the diagnosis decision. Various experiments with these networks are described.
An ECG signals compression method and its validation using NNs.
Fira, Catalina Monica; Goras, Liviu
2008-04-01
This paper presents a new algorithm for electrocardiogram (ECG) signal compression based on local extreme extraction, adaptive hysteretic filtering and Lempel-Ziv-Welch (LZW) coding. The algorithm has been verified using eight of the most frequent normal and pathological types of cardiac beats and an multi-layer perceptron (MLP) neural network trained with original cardiac patterns and tested with reconstructed ones. Aspects regarding the possibility of using the principal component analysis (PCA) to cardiac pattern classification have been investigated as well. A new compression measure called "quality score," which takes into account both the reconstruction errors and the compression ratio, is proposed.
BCC skin cancer diagnosis based on texture analysis techniques
NASA Astrophysics Data System (ADS)
Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.
2011-03-01
In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.
Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk
Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo
2011-01-01
Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966
Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A; Riad, A M
2008-03-28
The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.
Multilayer perceptron architecture optimization using parallel computing techniques.
Castro, Wilson; Oblitas, Jimy; Santa-Cruz, Roberto; Avila-George, Himer
2017-01-01
The objective of this research was to develop a methodology for optimizing multilayer-perceptron-type neural networks by evaluating the effects of three neural architecture parameters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation function type (AF), on the sum of squares error (SSE). The data for the study were obtained from quality parameters (physicochemical and microbiological) of milk samples. Architectures or combinations were organized in groups (G1, G2, and G3) generated upon interspersing one, two, and three layers. Within each group, the networks had three neurons in the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF (tan-sig, log-sig, and linear) types. The number of architectures was determined using three factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and implemented for constructing, training, and evaluating multilayer-perceptron-type neural networks using parallel computing techniques. The results show that HL and NHL have a statistically relevant effect on SSE, and from two hidden layers, AF also has a significant effect; thus, both AF and NHL can be evaluated to determine the optimal combination per group. Moreover, in the three study groups, it is observed that there is an inverse relationship between the number of processors and the total optimization time.
Multilayer perceptron architecture optimization using parallel computing techniques
Castro, Wilson; Oblitas, Jimy; Santa-Cruz, Roberto; Avila-George, Himer
2017-01-01
The objective of this research was to develop a methodology for optimizing multilayer-perceptron-type neural networks by evaluating the effects of three neural architecture parameters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation function type (AF), on the sum of squares error (SSE). The data for the study were obtained from quality parameters (physicochemical and microbiological) of milk samples. Architectures or combinations were organized in groups (G1, G2, and G3) generated upon interspersing one, two, and three layers. Within each group, the networks had three neurons in the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF (tan-sig, log-sig, and linear) types. The number of architectures was determined using three factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and implemented for constructing, training, and evaluating multilayer-perceptron-type neural networks using parallel computing techniques. The results show that HL and NHL have a statistically relevant effect on SSE, and from two hidden layers, AF also has a significant effect; thus, both AF and NHL can be evaluated to determine the optimal combination per group. Moreover, in the three study groups, it is observed that there is an inverse relationship between the number of processors and the total optimization time. PMID:29236744
A novel single neuron perceptron with universal approximation and XOR computation properties.
Lotfi, Ehsan; Akbarzadeh-T, M-R
2014-01-01
We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain's nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine) pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.
Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi
2017-08-01
The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.
Deep Belief Networks Learn Context Dependent Behavior
Raudies, Florian; Zilli, Eric A.; Hasselmo, Michael E.
2014-01-01
With the goal of understanding behavioral mechanisms of generalization, we analyzed the ability of neural networks to generalize across context. We modeled a behavioral task where the correct responses to a set of specific sensory stimuli varied systematically across different contexts. The correct response depended on the stimulus (A,B,C,D) and context quadrant (1,2,3,4). The possible 16 stimulus-context combinations were associated with one of two responses (X,Y), one of which was correct for half of the combinations. The correct responses varied symmetrically across contexts. This allowed responses to previously unseen stimuli (probe stimuli) to be generalized from stimuli that had been presented previously. By testing the simulation on two or more stimuli that the network had never seen in a particular context, we could test whether the correct response on the novel stimuli could be generated based on knowledge of the correct responses in other contexts. We tested this generalization capability with a Deep Belief Network (DBN), Multi-Layer Perceptron (MLP) network, and the combination of a DBN with a linear perceptron (LP). Overall, the combination of the DBN and LP had the highest success rate for generalization. PMID:24671178
Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices
Guiry, John J.; van de Ven, Pepijn; Nelson, John
2014-01-01
In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406
Guiry, John J; van de Ven, Pepijn; Nelson, John
2014-03-21
In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.
Cosmic-ray discrimination capabilities of /ΔE-/E silicon nuclear telescopes using neural networks
NASA Astrophysics Data System (ADS)
Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; Marzo, C. N. D.; Montaruli, T.
2000-02-01
An isotope classifier of cosmic-ray events collected by space detectors has been implemented using a multi-layer perceptron neural architecture. In order to handle a great number of different isotopes a modular architecture of the ``mixture of experts'' type is proposed. The performance of this classifier has been tested on simulated data and has been compared with a ``classical'' classifying procedure. The quantitative comparison with traditional techniques shows that the neural approach has classification performances comparable - within /1% - with that of the classical one, with efficiency of the order of /98%. A possible hardware implementation of such a kind of neural architecture in future space missions is considered.
Post interaural neural net-based vowel recognition
NASA Astrophysics Data System (ADS)
Jouny, Ismail I.
2001-10-01
Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.
The application of neural networks to myoelectric signal analysis: a preliminary study.
Kelly, M F; Parker, P A; Scott, R N
1990-03-01
Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multidegree of freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameters for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least squares (SLS) algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single site MES based on two features, specifically the first time series parameter, and the signal power. Using these features, the perceptron is trained to distinguish between four separate arm functions. The two-dimensional decision boundaries used by the perceptron classifier are delineated. It is also demonstrated that the perceptron is able to rapidly compensate for variations when new data are incorporated into the training set. This adaptive quality suggests that perceptrons may provide a useful tool for future MES analysis.
Phylogenetic convolutional neural networks in metagenomics.
Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare
2018-03-08
Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.
NASA Technical Reports Server (NTRS)
Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.
1992-01-01
This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.
Chaotic map clustering algorithm for EEG analysis
NASA Astrophysics Data System (ADS)
Bellotti, R.; De Carlo, F.; Stramaglia, S.
2004-03-01
The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.
Taravat, Alireza; Oppelt, Natascha
2014-01-01
Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies. PMID:25474376
NASA Astrophysics Data System (ADS)
Rishi, Rahul; Choudhary, Amit; Singh, Ravinder; Dhaka, Vijaypal Singh; Ahlawat, Savita; Rao, Mukta
2010-02-01
In this paper we propose a system for classification problem of handwritten text. The system is composed of preprocessing module, supervised learning module and recognition module on a very broad level. The preprocessing module digitizes the documents and extracts features (tangent values) for each character. The radial basis function network is used in the learning and recognition modules. The objective is to analyze and improve the performance of Multi Layer Perceptron (MLP) using RBF transfer functions over Logarithmic Sigmoid Function. The results of 35 experiments indicate that the Feed Forward MLP performs accurately and exhaustively with RBF. With the change in weight update mechanism and feature-drawn preprocessing module, the proposed system is competent with good recognition show.
NASA Astrophysics Data System (ADS)
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease
NASA Astrophysics Data System (ADS)
Babaoğlu, Ismail; Baykan, Ömer Kaan; Aygül, Nazif; Özdemir, Kurtuluş; Bayrak, Mehmet
The aim of this study is to show a comparison of multi-layered perceptron neural network (MLPNN) and support vector machine (SVM) on determination of coronary artery disease existence upon exercise stress testing (EST) data. EST and coronary angiography were performed on 480 patients with acquiring 23 verifying features from each. The robustness of the proposed methods is examined using classification accuracy, k-fold cross-validation method and Cohen's kappa coefficient. The obtained classification accuracies are approximately 78% and 79% for MLPNN and SVM respectively. Both MLPNN and SVM methods are rather satisfactory than human-based method looking to Cohen's kappa coefficients. Besides, SVM is slightly better than MLPNN when looking to the diagnostic accuracy, average of sensitivity and specificity, and also Cohen's kappa coefficient.
Neural architecture design based on extreme learning machine.
Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis
2013-12-01
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
Raj, Retheep; Sivanandan, K S
2017-01-01
Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.
Signal processing and neural network toolbox and its application to failure diagnosis and prognosis
NASA Astrophysics Data System (ADS)
Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.
2001-07-01
Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.
Data-driven automated acoustic analysis of human infant vocalizations using neural network tools.
Warlaumont, Anne S; Oller, D Kimbrough; Buder, Eugene H; Dale, Rick; Kozma, Robert
2010-04-01
Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f(0), duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network's weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network's receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations.
Machine-learning the string landscape
NASA Astrophysics Data System (ADS)
He, Yang-Hui
2017-11-01
We propose a paradigm to apply machine learning various databases which have emerged in the study of the string landscape. In particular, we establish neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories, using a novel framework of recasting geometrical and physical data as pixelated images. We find that even a relatively simple neural network can learn many significant quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered results, whereby rendering the paradigm a valuable tool in physics as well as pure mathematics. Of course, this paradigm is useful not only to physicists but to also to mathematicians; for instance, could our NN be trained well enough to approximate bundle cohomology calculations? This, and a host of other examples, we will now examine.Methodology Neural networks are known for their complexity, involving usually a complicated directed graph each node of which is a ;perceptron; (an activation function imitating a neuron) and amongst the multitude of which there are many arrows encoding input/output. Throughout this letter, we will use a rather simple multi-layer perceptron (MLP) consisting of 5 layers, three of which are hidden, with activation functions typically of the form of a logistic sigmoid or a hyperbolic tangent. The input layer is a linear layer of 100 to 1000 nodes, recognizing a tensor (as we will soon see, algebro-geometric objects such as Calabi-Yau manifolds or polytopes are generically configurations of integer tensors) and the output layer is a summation layer giving a number corresponding to a Hodge number, or to rank of a cohomology group, etc. Such an MLP can be implemented, for instance, on the latest versions of Wolfram Mathematica. With 500-1000 training rounds, the running time is merely about 5-20 minutes on an ordinary laptop. It is reassuring and pleasantly surprising that even such a relatively simple NN can achieve the level of accuracy shortly to be presented.This letter is a companion summary of the longer paper[42]where the interested reader can find more details of the computations and the data.
Hybrid Feature Extraction-based Approach for Facial Parts Representation and Recognition
NASA Astrophysics Data System (ADS)
Rouabhia, C.; Tebbikh, H.
2008-06-01
Face recognition is a specialized image processing which has attracted a considerable attention in computer vision. In this article, we develop a new facial recognition system from video sequences images dedicated to person identification whose face is partly occulted. This system is based on a hybrid image feature extraction technique called ACPDL2D (Rouabhia et al. 2007), it combines two-dimensional principal component analysis and two-dimensional linear discriminant analysis with neural network. We performed the feature extraction task on the eyes and the nose images separately then a Multi-Layers Perceptron classifier is used. Compared to the whole face, the results of simulation are in favor of the facial parts in terms of memory capacity and recognition (99.41% for the eyes part, 98.16% for the nose part and 97.25 % for the whole face).
VizieR Online Data Catalog: SDSS-DR9 photometric redshifts (Brescia+, 2014)
NASA Astrophysics Data System (ADS)
Brescia, M.; Cavuoti, S.; Longo, G.; de Stefano, V.
2014-07-01
We present an application of a machine learning method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced. The MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) model provided within the framework of the DAMEWARE (DAta Mining and Exploration Web Application REsource) is an interpolative method derived from machine learning models. The obtained redshifts have an overall uncertainty of σ=0.023 with a very small average bias of about 3x10-5 and a fraction of catastrophic outliers of about 5%. After removal of the catastrophic outliers, the uncertainty is about σ=0.017. The catalogue files report in their name the range of DEC degrees related to the included objects. (60 data files).
Comparison of universal approximators incorporating partial monotonicity by structure.
Minin, Alexey; Velikova, Marina; Lang, Bernhard; Daniels, Hennie
2010-05-01
Neural networks applied in control loops and safety-critical domains have to meet more requirements than just the overall best function approximation. On the one hand, a small approximation error is required; on the other hand, the smoothness and the monotonicity of selected input-output relations have to be guaranteed. Otherwise, the stability of most of the control laws is lost. In this article we compare two neural network-based approaches incorporating partial monotonicity by structure, namely the Monotonic Multi-Layer Perceptron (MONMLP) network and the Monotonic MIN-MAX (MONMM) network. We show the universal approximation capabilities of both types of network for partially monotone functions. On a number of datasets, we investigate the advantages and disadvantages of these approaches related to approximation performance, training of the model and convergence. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
A deep auto-encoder model for gene expression prediction.
Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua
2017-11-17
Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
A novel method for pediatric heart sound segmentation without using the ECG.
Sepehri, Amir A; Gharehbaghi, Arash; Dutoit, Thierry; Kocharian, Armen; Kiani, A
2010-07-01
In this paper, we propose a novel method for pediatric heart sounds segmentation by paying special attention to the physiological effects of respiration on pediatric heart sounds. The segmentation is accomplished in three steps. First, the envelope of a heart sounds signal is obtained with emphasis on the first heart sound (S(1)) and the second heart sound (S(2)) by using short time spectral energy and autoregressive (AR) parameters of the signal. Then, the basic heart sounds are extracted taking into account the repetitive and spectral characteristics of S(1) and S(2) sounds by using a Multi-Layer Perceptron (MLP) neural network classifier. In the final step, by considering the diastolic and systolic intervals variations due to the effect of a child's respiration, a complete and precise heart sounds end-pointing and segmentation is achieved. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Seismic activity prediction using computational intelligence techniques in northern Pakistan
NASA Astrophysics Data System (ADS)
Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat
2017-10-01
Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.
Rotation, scale, and translation invariant pattern recognition using feature extraction
NASA Astrophysics Data System (ADS)
Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.
1997-03-01
A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.
Relabeling exchange method (REM) for learning in neural networks
NASA Astrophysics Data System (ADS)
Wu, Wen; Mammone, Richard J.
1994-02-01
The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.
Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih
2015-11-01
This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.
A statistical framework for evaluating neural networks to predict recurrent events in breast cancer
NASA Astrophysics Data System (ADS)
Gorunescu, Florin; Gorunescu, Marina; El-Darzi, Elia; Gorunescu, Smaranda
2010-07-01
Breast cancer is the second leading cause of cancer deaths in women today. Sometimes, breast cancer can return after primary treatment. A medical diagnosis of recurrent cancer is often a more challenging task than the initial one. In this paper, we investigate the potential contribution of neural networks (NNs) to support health professionals in diagnosing such events. The NN algorithms are tested and applied to two different datasets. An extensive statistical analysis has been performed to verify our experiments. The results show that a simple network structure for both the multi-layer perceptron and radial basis function can produce equally good results, not all attributes are needed to train these algorithms and, finally, the classification performances of all algorithms are statistically robust. Moreover, we have shown that the best performing algorithm will strongly depend on the features of the datasets, and hence, there is not necessarily a single best classifier.
An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems
1991-12-01
neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input
Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania
Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi-layer perceptron (MLP), and a convolutional neural network (CNN). This research found that the multi-layer perceptron model produced the lowest error rates overall, with an RMSE of 1.22W / m2 sr mum when compared to actual Terra/MODIS band 31 image data. This research further aimed to characterize the errors associated with each method so that any potential user will have the best information available should they wish to apply these methods towards their own application.
The use of neural network technology to model swimming performance.
Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida
2007-01-01
to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance).
Adiabatic superconducting cells for ultra-low-power artificial neural networks.
Schegolev, Andrey E; Klenov, Nikolay V; Soloviev, Igor I; Tereshonok, Maxim V
2016-01-01
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Embedded feature ranking for ensemble MLP classifiers.
Windeatt, Terry; Duangsoithong, Rakkrit; Smith, Raymond
2011-06-01
A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features.
MIMO transmit scheme based on morphological perceptron with competitive learning.
Valente, Raul Ambrozio; Abrão, Taufik
2016-08-01
This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Farda, N. M.
2017-12-01
Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.
Neural network and letter recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hue Yeon.
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C-layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken themore » on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the Gabor transform. Pattern dependent choice of center and wavelengths of Gabor filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets.« less
NASA Astrophysics Data System (ADS)
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.
2015-06-01
Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Multicategory nets of single-layer perceptrons: complexity and sample-size issues.
Raudys, Sarunas; Kybartas, Rimantas; Zavadskas, Edmundas Kazimieras
2010-05-01
The standard cost function of multicategory single-layer perceptrons (SLPs) does not minimize the classification error rate. In order to reduce classification error, it is necessary to: 1) refuse the traditional cost function, 2) obtain near to optimal pairwise linear classifiers by specially organized SLP training and optimal stopping, and 3) fuse their decisions properly. To obtain better classification in unbalanced training set situations, we introduce the unbalance correcting term. It was found that fusion based on the Kulback-Leibler (K-L) distance and the Wu-Lin-Weng (WLW) method result in approximately the same performance in situations where sample sizes are relatively small. The explanation for this observation is by theoretically known verity that an excessive minimization of inexact criteria becomes harmful at times. Comprehensive comparative investigations of six real-world pattern recognition (PR) problems demonstrated that employment of SLP-based pairwise classifiers is comparable and as often as not outperforming the linear support vector (SV) classifiers in moderate dimensional situations. The colored noise injection used to design pseudovalidation sets proves to be a powerful tool for facilitating finite sample problems in moderate-dimensional PR tasks.
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi
2017-04-01
Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.
Watad, Abdulla; Bragazzi, Nicola L; Bacigaluppi, Susanna; Amital, Howard; Watad, Samaa; Sharif, Kassem; Bisharat, Bishara; Siri, Anna; Mahamid, Ala; Abu Ras, Hakim; Nasr, Ahmed; Bilotta, Federico; Robba, Chiara; Adawi, Mohammad
2018-02-23
Artificial Intelligence (AI) techniques play a major role in anesthesiology, even though their importance is often overlooked. In the extant literature, AI approaches, such as Artificial Neural Networks (ANNs), have been underutilized, mainly being used to model patient's consciousness state, to predict the precise amount of anesthetic gases, the level of analgesia, or the need of anesthesiological blocks, among others. In the field of neurosurgery, ANNs have been effectively applied to the diagnosis and prognosis of cerebral tumors, seizures, low back pain, and also to the monitoring of intracranial pressure (ICP). A MultiLayer Perceptron (MLP), which is a feedforward ANN, with hyperbolic tangent as activation function in the input/hidden layers, softmax as activation function in the output layer, and cross-entropy as error function, was used to model the impact of prone versus supine position and the use of positive end expiratory pressure (PEEP) on ICP in a sample of 30 patients undergoing spinal surgery. Different non invasive surrogate estimations of ICP have been used and compared: namely, mean optic nerve sheath diameter (ONSD), non invasive estimated cerebral perfusion pressure (NCPP), pulsatility index (PI), ICP derived from PI (ICP-PI), and flow velocity diastolic formula (FVDICP). ONSD proved to be a more robust surrogate estimation of ICP, with a predictive power of 75%, whilst the power of NCPP, ICP-PI, PI, and FVDICP were 60.5%, 54.8%, 53.1%, and 47.7%, respectively. Our MLP analysis confirmed our findings previously obtained with regression, correlation, multivariate Receiving Operator Curve (multi-ROC) analyses. ANNs can be successfully used to predict the effects of prone versus supine position and PEEP on ICP in patients undergoing spinal surgery using different non invasive surrogate estimators of ICP.
Gas Classification Using Deep Convolutional Neural Networks.
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-08
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).
Gas Classification Using Deep Convolutional Neural Networks
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-01
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723
Wei, Yawei; Venayagamoorthy, Ganesh Kumar
2017-09-01
To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.
An oil fraction neural sensor developed using electrical capacitance tomography sensor data.
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-08-26
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.
2016-07-01
Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network
NASA Astrophysics Data System (ADS)
Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser
2018-02-01
The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.
An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-01-01
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598
Audio Classification in Speech and Music: A Comparison between a Statistical and a Neural Approach
NASA Astrophysics Data System (ADS)
Bugatti, Alessandro; Flammini, Alessandra; Migliorati, Pierangelo
2002-12-01
We focus the attention on the problem of audio classification in speech and music for multimedia applications. In particular, we present a comparison between two different techniques for speech/music discrimination. The first method is based on Zero crossing rate and Bayesian classification. It is very simple from a computational point of view, and gives good results in case of pure music or speech. The simulation results show that some performance degradation arises when the music segment contains also some speech superimposed on music, or strong rhythmic components. To overcome these problems, we propose a second method, that uses more features, and is based on neural networks (specifically a multi-layer Perceptron). In this case we obtain better performance, at the expense of a limited growth in the computational complexity. In practice, the proposed neural network is simple to be implemented if a suitable polynomial is used as the activation function, and a real-time implementation is possible even if low-cost embedded systems are used.
Activity recognition with smartphone support.
Guiry, John J; van de Ven, Pepijn; Nelson, John; Warmerdam, Lisanne; Riper, Heleen
2014-06-01
In this paper, the authors describe a method of accurately detecting human activity using a smartphone accelerometer paired with a dedicated chest sensor. The design, implementation, testing and validation of a custom mobility classifier are also presented. Offline analysis was carried out to compare this custom classifier to de-facto machine learning algorithms, including C4.5, CART, SVM, Multi-Layer Perceptrons, and Naïve Bayes. A series of trials were carried out in Ireland, initially involving N=6 individuals to test the feasibility of the system, before a final trial with N=24 subjects took place in the Netherlands. The protocol used and analysis of 1165min of recorded activities from these trials are described in detail in this paper. Analysis of collected data indicate that accelerometers placed in these locations, are capable of recognizing activities including sitting, standing, lying, walking, running and cycling with accuracies as high as 98%. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
Application of neural models as controllers in mobile robot velocity control loop
NASA Astrophysics Data System (ADS)
Cerkala, Jakub; Jadlovska, Anna
2017-01-01
This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.
The Effect of Normalization in Violence Video Classification Performance
NASA Astrophysics Data System (ADS)
Ali, Ashikin; Senan, Norhalina
2017-08-01
Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.
Using "big data" to optimally model hydrology and water quality across expansive regions
Roehl, E.A.; Cook, J.B.; Conrads, P.A.
2009-01-01
This paper describes a new divide and conquer approach that leverages big environmental data, utilizing all available categorical and time-series data without subjectivity, to empirically model hydrologic and water-quality behaviors across expansive regions. The approach decomposes large, intractable problems into smaller ones that are optimally solved; decomposes complex signals into behavioral components that are easier to model with "sub- models"; and employs a sequence of numerically optimizing algorithms that include time-series clustering, nonlinear, multivariate sensitivity analysis and predictive modeling using multi-layer perceptron artificial neural networks, and classification for selecting the best sub-models to make predictions at new sites. This approach has many advantages over traditional modeling approaches, including being faster and less expensive, more comprehensive in its use of available data, and more accurate in representing a system's physical processes. This paper describes the application of the approach to model groundwater levels in Florida, stream temperatures across Western Oregon and Wisconsin, and water depths in the Florida Everglades. ?? 2009 ASCE.
Lamti, Hachem A; Gorce, Philippe; Ben Khelifa, Mohamed Moncef; Alimi, Adel M
2016-12-01
The goal of this study is to investigate the influence of mental fatigue on the event related potential P300 features (maximum pick, minimum amplitude, latency and period) during virtual wheelchair navigation. For this purpose, an experimental environment was set up based on customizable environmental parameters (luminosity, number of obstacles and obstacles velocities). A correlation study between P300 and fatigue ratings was conducted. Finally, the best correlated features supplied three classification algorithms which are MLP (Multi Layer Perceptron), Linear Discriminate Analysis and Support Vector Machine. The results showed that the maximum feature over visual and temporal regions as well as period feature over frontal, fronto-central and visual regions were correlated with mental fatigue levels. In the other hand, minimum amplitude and latency features didn't show any correlation. Among classification techniques, MLP showed the best performance although the differences between classification techniques are minimal. Those findings can help us in order to design suitable mental fatigue based wheelchair control.
Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar
2008-02-01
The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.
Estimates of Storage Capacity of Multilayer Perceptron with Threshold Logic Hidden Units.
Kowalczyk, Adam
1997-11-01
We estimate the storage capacity of multilayer perceptron with n inputs, h(1) threshold logic units in the first hidden layer and 1 output. We show that if the network can memorize 50% of all dichotomies of a randomly selected N-tuple of points of R(n) with probability 1, then N=2(nh(1)+1), while at 100% memorization N=nh(1)+1. Furthermore, if the bounds are reached, then the first hidden layer must be fully connected to the input. It is shown that such a network has memory capacity (in the sense of Cover) between nh(1)+1 and 2(nh(1)+1) input patterns and for the most efficient networks in this class between 1 and 2 input patterns per connection. Comparing these results with the recent estimates of VC-dimension we find that in contrast to a single neuron case, the VC-dimension exceeds the capacity for a sufficiently large n and h(1). The results are based on the derivation of an explicit expression for the number of dichotomies which can be implemented by such a network for a special class of N-tuples of input patterns which has a positive probability of being randomly chosen.
The Use of Neural Network Technology to Model Swimming Performance
Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida
2007-01-01
The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance). PMID:24149233
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875
Tamouridou, Afroditi A.; Lagopodi, Anastasia L.; Kashefi, Javid; Kasampalis, Dimitris; Kontouris, Georgios; Moshou, Dimitrios
2017-01-01
Remote sensing techniques are routinely used in plant species discrimination and of weed mapping. In the presented work, successful Silybum marianum detection and mapping using multilayer neural networks is demonstrated. A multispectral camera (green-red-near infrared) attached on a fixed wing unmanned aerial vehicle (UAV) was utilized for the acquisition of high-resolution images (0.1 m resolution). The Multilayer Perceptron with Automatic Relevance Determination (MLP-ARD) was used to identify the S. marianum among other vegetation, mostly Avena sterilis L. The three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer resulting from local variance were used as input. The S. marianum identification rates using MLP-ARD reached an accuracy of 99.54%. Τhe study had an one year duration, meaning that the results are specific, although the accuracy shows the interesting potential of S. marianum mapping with MLP-ARD on multispectral UAV imagery. PMID:29019957
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
Tamouridou, Afroditi A; Alexandridis, Thomas K; Pantazi, Xanthoula E; Lagopodi, Anastasia L; Kashefi, Javid; Kasampalis, Dimitris; Kontouris, Georgios; Moshou, Dimitrios
2017-10-11
Remote sensing techniques are routinely used in plant species discrimination and of weed mapping. In the presented work, successful Silybum marianum detection and mapping using multilayer neural networks is demonstrated. A multispectral camera (green-red-near infrared) attached on a fixed wing unmanned aerial vehicle (UAV) was utilized for the acquisition of high-resolution images (0.1 m resolution). The Multilayer Perceptron with Automatic Relevance Determination (MLP-ARD) was used to identify the S. marianum among other vegetation, mostly Avena sterilis L. The three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer resulting from local variance were used as input. The S. marianum identification rates using MLP-ARD reached an accuracy of 99.54%. Τhe study had an one year duration, meaning that the results are specific, although the accuracy shows the interesting potential of S. marianum mapping with MLP-ARD on multispectral UAV imagery.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
A Computer Simulation of Braitenberg Vehicles
1991-03-01
first believed. In 1969 Marvin Minsky published his now famous (infamous?) proof of the inability of single layer networks to solve many simple problems...and Behavior. Englewood, NJ: Prentice-Hall, 1986. Minsky , Marvin and S. Papert. Perceptrons. Cambridge, MA, MIT Press, 1969. Porter, Kent and Mike...such as that of the exclusive-or gate ( Minsky and Papert, 1969). Many researchers gave up work in the artificial neuron field based on the impact of
1992-12-28
analysis. Marvin Minsky , carefully applying mathematical techniques, developed rigo.,ous theorems regarding netwcrk operation. His research led to the...electrical circuits but was later convened to computer simulation, which is still commonly used today. Early success by - Marvirn Minsky , Frank...publication of the book Perceptrons ( Minsky and Papert 1969), in which he and Seymore Papert proved that the single-layer networks then in use were
Automated road marking recognition system
NASA Astrophysics Data System (ADS)
Ziyatdinov, R. R.; Shigabiev, R. R.; Talipov, D. N.
2017-09-01
Development of the automated road marking recognition systems in existing and future vehicles control systems is an urgent task. One way to implement such systems is the use of neural networks. To test the possibility of using neural network software has been developed with the use of a single-layer perceptron. The resulting system based on neural network has successfully coped with the task both when driving in the daytime and at night.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
Financial time series prediction using spiking neural networks.
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Improved head direction command classification using an optimised Bayesian neural network.
Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James
2006-01-01
Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.
Design and optimisation of novel configurations of stormwater constructed wetlands
NASA Astrophysics Data System (ADS)
Kiiza, Christopher
2017-04-01
Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.
Monthly monsoon rainfall forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Ganti, Ravikumar
2014-10-01
Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.
Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I
2011-01-01
CHRONIOUS system is an integrated platform aiming at the management of chronic disease patients. One of the most important components of the system is a Decision Support System (DSS) that has been developed in a Smart Device (SD). This component decides on patient's current health status by combining several data, which are acquired either by wearable sensors or manually inputted by the patient or retrieved from the specific database. In case no abnormal situation has been tracked, the DSS takes no action and remains deactivated until next abnormal situation pack of data are being acquired or next scheduled data being transmitted. The DSS that has been implemented is an integrated classification system with two parallel classifiers, combining an expert system (rule-based system) and a supervised classifier, such as Support Vector Machines (SVM), Random Forests, artificial Neural Networks (aNN like the Multi-Layer Perceptron), Decision Trees and Naïve Bayes. The above categorized system is useful for providing critical information about the health status of the patient.
NASA Astrophysics Data System (ADS)
Chen, Jian; Randall, Robert Bond; Peeters, Bart
2016-06-01
Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.
Perceptron ensemble of graph-based positive-unlabeled learning for disease gene identification.
Jowkar, Gholam-Hossein; Mansoori, Eghbal G
2016-10-01
Identification of disease genes, using computational methods, is an important issue in biomedical and bioinformatics research. According to observations that diseases with the same or similar phenotype have the same biological characteristics, researchers have tried to identify genes by using machine learning tools. In recent attempts, some semi-supervised learning methods, called positive-unlabeled learning, is used for disease gene identification. In this paper, we present a Perceptron ensemble of graph-based positive-unlabeled learning (PEGPUL) on three types of biological attributes: gene ontologies, protein domains and protein-protein interaction networks. In our method, a reliable set of positive and negative genes are extracted using co-training schema. Then, the similarity graph of genes is built using metric learning by concentrating on multi-rank-walk method to perform inference from labeled genes. At last, a Perceptron ensemble is learned from three weighted classifiers: multilevel support vector machine, k-nearest neighbor and decision tree. The main contributions of this paper are: (i) incorporating the statistical properties of gene data through choosing proper metrics, (ii) statistical evaluation of biological features, and (iii) noise robustness characteristic of PEGPUL via using multilevel schema. In order to assess PEGPUL, we have applied it on 12950 disease genes with 949 positive genes from six class of diseases and 12001 unlabeled genes. Compared with some popular disease gene identification methods, the experimental results show that PEGPUL has reasonable performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Nonlinear channel equalization for QAM signal constellation using artificial neural networks.
Patra, J C; Pal, R N; Baliarsingh, R; Panda, G
1999-01-01
Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.
Pattern classification by memristive crossbar circuits using ex situ and in situ training.
Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B
2013-01-01
Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.
Pattern classification by memristive crossbar circuits using ex situ and in situ training
NASA Astrophysics Data System (ADS)
Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B.
2013-06-01
Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.
Neural Network and Letter Recognition.
NASA Astrophysics Data System (ADS)
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error rate, 4.9% is achieved for alphanumeric sets when 50 sets are trained. With the ambiguity resolver, it is reduced to 2.5%. In case that only numeral sets are trained and tested, 2.0% error rate is achieved. When only alphabet sets are considered, the error rate is reduced to 1.1%.
Optimized hardware framework of MLP with random hidden layers for classification applications
NASA Astrophysics Data System (ADS)
Zyarah, Abdullah M.; Ramesh, Abhishek; Merkel, Cory; Kudithipudi, Dhireesha
2016-05-01
Multilayer Perceptron Networks with random hidden layers are very efficient at automatic feature extraction and offer significant performance improvements in the training process. They essentially employ large collection of fixed, random features, and are expedient for form-factor constrained embedded platforms. In this work, a reconfigurable and scalable architecture is proposed for the MLPs with random hidden layers with a customized building block based on CORDIC algorithm. The proposed architecture also exploits fixed point operations for area efficiency. The design is validated for classification on two different datasets. An accuracy of ~ 90% for MNIST dataset and 75% for gender classification on LFW dataset was observed. The hardware has 299 speed-up over the corresponding software realization.
A new algorithm to detect earthquakes outside the seismic network: preliminary results
NASA Astrophysics Data System (ADS)
Giudicepietro, Flora; Esposito, Antonietta Maria; Ricciolino, Patrizia
2017-04-01
In this text we are going to present a new technique for detecting earthquakes outside the seismic network, which are often the cause of fault of automatic analysis system. Our goal is to develop a robust method that provides the discrimination result as quickly as possible. We discriminate local earthquakes from regional earthquakes, both recorded at SGG station, equipped with short period sensors, operated by Osservatorio Vesuviano (INGV) in the Southern Apennines (Italy). The technique uses a Multi Layer Perceptron (MLP) neural network with an architecture composed by an input layer, a hidden layer and a single node output layer. We pre-processed the data using the Linear Predictive Coding (LPC) technique to extract the spectral features of the signals in a compact form. We performed several experiments by shortening the signal window length. In particular, we used windows of 4, 2 and 1 seconds containing the onset of the local and the regional earthquakes. We used a dataset of 103 local earthquakes and 79 regional earthquakes, most of which occurred in Greece, Albania and Crete. We split the dataset into a training set, for the network training, and a testing set to evaluate the network's capacity of discrimination. In order to assess the network stability, we repeated this procedure six times, randomly changing the data composition of the training and testing set and the initial weights of the net. We estimated the performance of this method by calculating the average of correct detection percentages obtained for each of the six permutations. The average performances are 99.02%, 98.04% and 98.53%, which concern respectively the experiments carried out on 4, 2 and 1 seconds signal windows. The results show that our method is able to recognize the earthquakes outside the seismic network using only the first second of the seismic records, with a suitable percentage of correct detection. Therefore, this algorithm can be profitably used to make earthquake automatic analyses more robust and reliable. Finally, with appropriate tuning, it can be integrated in multi-parametric systems for monitoring high natural risk areas.
Przednowek, Krzysztof; Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-12-01
This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes' training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period.
NASA Astrophysics Data System (ADS)
Eslami, E.; Choi, Y.; Roy, A.
2017-12-01
Air quality forecasting carried out by chemical transport models often show significant error. This study uses a deep-learning approach over the Houston-Galveston-Brazoria (HGB) area to overcome this forecasting challenge, for the DISCOVER-AQ period (September 2013). Two approaches, deep neural network (DNN) using a Multi-Layer Perceptron (MLP) and Restricted Boltzmann Machine (RBM) were utilized. The proposed approaches analyzed input data by identifying features abstracted from its previous layer using a stepwise method. The approaches predicted hourly ozone and PM in September 2013 using several predictors of prior three days, including wind fields, temperature, relative humidity, cloud fraction, precipitation along with PM, ozone, and NOx concentrations. Model-measurement comparisons for available monitoring sites reported Indexes of Agreement (IOA) of around 0.95 for both DNN and RBM. A standard artificial neural network (ANN) (IOA=0.90) with similar architecture showed poorer performance than the deep networks, clearly demonstrating the superiority of the deep approaches. Additionally, each network (both deep and standard) performed significantly better than a previous CMAQ study, which showed an IOA of less than 0.80. The most influential input variables were identified using their associated weights, which represented the sensitivity of ozone to input parameters. The results indicate deep learning approaches can achieve more accurate ozone forecasting and identify the important input variables for ozone predictions in metropolitan areas.
Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-01-01
Abstract This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes’ training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period. PMID:29339998
Metzler, R; Kinzel, W; Kanter, I
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
NASA Astrophysics Data System (ADS)
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Convolutional Neural Network for Multi-Source Deep Learning Crop Classification in Ukraine
NASA Astrophysics Data System (ADS)
Lavreniuk, M. S.
2016-12-01
Land cover and crop type maps are one of the most essential inputs when dealing with environmental and agriculture monitoring tasks [1]. During long time neural network (NN) approach was one of the most efficient and popular approach for most applications, including crop classification using remote sensing data, with high an overall accuracy (OA) [2]. In the last years the most popular and efficient method for multi-sensor and multi-temporal land cover classification is convolution neural networks (CNNs). Taking into account presence clouds in optical data, self-organizing Kohonen maps (SOMs) are used to restore missing pixel values in a time series of optical imagery from Landsat-8 satellite. After missing data restoration, optical data from Landsat-8 was merged with Sentinel-1A radar data for better crop types discrimination [3]. An ensemble of CNNs is proposed for multi-temporal satellite images supervised classification. Each CNN in the corresponding ensemble is a 1-d CNN with 4 layers implemented using the Google's library TensorFlow. The efficiency of the proposed approach was tested on a time-series of Landsat-8 and Sentinel-1A images over the JECAM test site (Kyiv region) in Ukraine in 2015. Overall classification accuracy for ensemble of CNNs was 93.5% that outperformed an ensemble of multi-layer perceptrons (MLPs) by +0.8% and allowed us to better discriminate summer crops, in particular maize and soybeans. For 2016 we would like to validate this method using Sentinel-1 and Sentinel-2 data for Ukraine territory within ESA project on country level demonstration Sen2Agri. 1. A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," The Int. Arch. of Photogram., Rem. Sens. and Spatial Inform. Scie., vol. 40, no. 7, pp. 39-44, 2015. 2. F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. Journal of Rem. Sens. vol. 37, no. 14, pp 3196-3231, 2016. 3. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297.
Deferred discrimination algorithm (nibbling) for target filter management
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Johnson, John L.
1999-07-01
A new method of classifying objects is presented. Rather than trying to form the classifier in one step or in one training algorithm, it is done in a series of small steps, or nibbles. This leads to an efficient and versatile system that is trained in series with single one-shot examples but applied in parallel, is implemented with single layer perceptrons, yet maintains its fully sequential hierarchical structure. Based on the nibbling algorithm, a basic new method of target reference filter management is described.
Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank
2008-01-01
Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing. PMID:27879914
Non-intrusive reduced order modeling of nonlinear problems using neural networks
NASA Astrophysics Data System (ADS)
Hesthaven, J. S.; Ubbiali, S.
2018-06-01
We develop a non-intrusive reduced basis (RB) method for parametrized steady-state partial differential equations (PDEs). The method extracts a reduced basis from a collection of high-fidelity solutions via a proper orthogonal decomposition (POD) and employs artificial neural networks (ANNs), particularly multi-layer perceptrons (MLPs), to accurately approximate the coefficients of the reduced model. The search for the optimal number of neurons and the minimum amount of training samples to avoid overfitting is carried out in the offline phase through an automatic routine, relying upon a joint use of the Latin hypercube sampling (LHS) and the Levenberg-Marquardt (LM) training algorithm. This guarantees a complete offline-online decoupling, leading to an efficient RB method - referred to as POD-NN - suitable also for general nonlinear problems with a non-affine parametric dependence. Numerical studies are presented for the nonlinear Poisson equation and for driven cavity viscous flows, modeled through the steady incompressible Navier-Stokes equations. Both physical and geometrical parametrizations are considered. Several results confirm the accuracy of the POD-NN method and show the substantial speed-up enabled at the online stage as compared to a traditional RB strategy.
Coarse-graining and self-dissimilarity of complex networks
NASA Astrophysics Data System (ADS)
Itzkovitz, Shalev; Levitt, Reuven; Kashtan, Nadav; Milo, Ron; Itzkovitz, Michael; Alon, Uri
2005-01-01
Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety of directed and nondirected, natural and designed networks.
A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats.
Tejedor, Javier; Macias-Guarasa, Javier; Martins, Hugo F; Piote, Daniel; Pastor-Graells, Juan; Martin-Lopez, Sonia; Corredera, Pedro; Gonzalez-Herraez, Miguel
2017-02-12
This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes: (1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Financial Time Series Prediction Using Spiking Neural Networks
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618
Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
NASA Astrophysics Data System (ADS)
Pietrowski, Wojciech; Górny, Konrad
2017-12-01
Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.
Biometric verification in dynamic writing
NASA Astrophysics Data System (ADS)
George, Susan E.
2002-03-01
Pen-tablet devices capable of capturing the dynamics of writing record temporal and pressure information as well as the spatial pattern. This paper explores biometric verification based upon the dynamics of writing where writers are distinguished not on the basis of what they write (ie the signature), but how they write. We have collected samples of dynamic writing from 38 Chinese writers. Each writer was asked to provide 10 copies of a paragraph of text and the same number of signature samples. From the data we have extracted stroke-based primitives from the sentence data utilizing pen-up/down information and heuristic rules about the shape of the character. The x, y and pressure values of each primitive were interpolated into an even temporal range based upon a 20 msec sampling rate. We applied the Daubechies 1 wavelet transform to the x signal, y signal and pressure signal using the coefficients as inputs to a multi-layer perceptron trained with back-propagation on the sentence data. We found a sensitivity of 0.977 and specificity of 0.990 recognizing writers based on test primitives extracted from sentence data and measures of 0.916 and 0.961 respectively, from test primitives extracted from signature data.
NASA Astrophysics Data System (ADS)
Gaci, Said; Hachay, Olga; Zaourar, Naima
2017-04-01
One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.
Learning to classify in large committee machines
NASA Astrophysics Data System (ADS)
O'kane, Dominic; Winther, Ole
1994-10-01
The ability of a two-layer neural network to learn a specific non-linearly-separable classification task, the proximity problem, is investigated using a statistical mechanics approach. Both the tree and fully connected architectures are investigated in the limit where the number K of hidden units is large, but still much smaller than the number N of inputs. Both have continuous weights. Within the replica symmetric ansatz, we find that for zero temperature training, the tree architecture exhibits a strong overtraining effect. For nonzero temperature the asymptotic error is lowered, but it is still higher than the corresponding value for the simple perceptron. The fully connected architecture is considered for two regimes. First, for a finite number of examples we find a symmetry among the hidden units as each performs equally well. The asymptotic generalization error is finite, and minimal for T-->∞ where it goes to the same value as for the simple perceptron. For a large number of examples we find a continuous transition to a phase with broken hidden-unit symmetry, which has an asymptotic generalization error equal to zero.
Knechtle, Beat; Bragazzi, Nicola Luigi; König, Stefan; Nikolaidis, Pantelis Theodoros; Wild, Stefanie; Rosemann, Thomas; Rüst, Christoph Alexander
2016-01-01
(1) Background: We investigated the age of swimming champions in all strokes and race distances in World Championships (1994–2013) and Olympic Games (1992–2012); (2) Methods: Changes in age and swimming performance across calendar years for 412 Olympic and world champions were analysed using linear, non-linear, multi-level regression analyses and MultiLayer Perceptron (MLP); (3) Results: The age of peak swimming performance remained stable in most of all race distances for world champions and in all race distances for Olympic champions. Longer (i.e., 200 m and more) race distances were completed by younger (~20 years old for women and ~22 years old for men) champions than shorter (i.e., 50 m and 100 m) race distances (~22 years old for women and ~24 years old for men). There was a sex difference in the age of champions of ~2 years with a mean age of ~21 and ~23 years for women and men, respectively. Swimming performance improved in most race distances for world and Olympic champions with a larger trend of increase in Olympic champions; (4) Conclusion: Swimmers at younger ages (<20 years) may benefit from training and competing in longer race distances (i.e., 200 m and longer) before they change to shorter distances (i.e., 50 m and 100 m) when they become older (>22 years). PMID:29910265
A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean
NASA Astrophysics Data System (ADS)
Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.
2013-10-01
With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.
Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.
Dawson, Michael R W; Gupta, Maya
2017-01-01
Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.
Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability
2017-01-01
Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent’s environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned. PMID:28212422
Seminal quality prediction using data mining methods.
Sahoo, Anoop J; Kumar, Yugal
2014-01-01
Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.
Perceptron Genetic to Recognize Openning Strategy Ruy Lopez
NASA Astrophysics Data System (ADS)
Azmi, Zulfian; Mawengkang, Herman
2018-01-01
The application of Perceptron method is not effective for coding on hardware based systems because it is not real time learning. With Genetic algorithm approach in calculating and searching the best weight (fitness value) system will do learning only one iteration. And the results of this analysis were tested in the case of the introduction of the opening pattern of chess Ruy Lopez. The Analysis with Perceptron Model with Algorithm Approach Genetics from group Artificial Neural Network for open Ruy Lopez. The data is processed with base open chess, with step eight a position white Pion from end open chess. Using perceptron method have many input and one output process many weight and refraction until output equal goal. Data trained and test with software Matlab and system can recognize the chess opening Ruy Lopez or Not open Ruy Lopez with Real time.
Two-layer contractive encodings for learning stable nonlinear features.
Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven
2015-04-01
Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interactive learning in 2×2 normal form games by neural network agents
NASA Astrophysics Data System (ADS)
Spiliopoulos, Leonidas
2012-11-01
This paper models the learning process of populations of randomly rematched tabula rasa neural network (NN) agents playing randomly generated 2×2 normal form games of all strategic classes. This approach has greater external validity than the existing models in the literature, each of which is usually applicable to narrow subsets of classes of games (often a single game) and/or to fixed matching protocols. The learning prowess of NNs with hidden layers was impressive as they learned to play unique pure strategy equilibria with near certainty, adhered to principles of dominance and iterated dominance, and exhibited a preference for risk-dominant equilibria. In contrast, perceptron NNs were found to perform significantly worse than hidden layer NN agents and human subjects in experimental studies.
A fresh look at functional link neural network for motor imagery-based brain-computer interface.
Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid
2018-05-04
Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Nieto, Sonia; Dragna, Justin M.; Anslyn, Eric V.
2010-01-01
A protocol for the rapid determination of the absolute configuration and enantiomeric excess of α-chiral primary amines with potential applications in asymmetric reaction discovery has been developed. The protocol requires derivatization of α-chiral primary amines via condensation with pyridine carboxaldehyde to quantitatively yield the corresponding imine. The Cu(I) complex with 2,2'-bis (diphenylphosphino)-1,1'-dinaphthyl (BINAP -CuI) with the imine yields a metal-to-ligand-charge-transfer band (MLCT) in the visible region of the circular dichroism spectrum upon binding. Diastereomeric host-guest complexes give CD signals of the same signs, but different amplitudes, allowing for differentiation of enantiomers. Processing the primary optical data from the CD spectrum with linear discriminant analysis (LDA) allows for the determination of absolute configuration and identification of the amines, and processing with a supervised multi-layer perceptron artifical neural network (MLP-ANN) allows for the simultaneous determination of ee and concentration. The primary optical data necessary to determine the ee of unknown samples is obtained in 2 minutes per sample. To demonstrate the utility of the protocol in asymmetric reaction discovery, the ee's and concentrations for an asymmetric metal catalyzed reaction are determined. The potential of the protocol's application in high-throughput screening (HTS) of ee is discussed. PMID:19946914
Erdakov, Ivan Nikolaevich; Taha, Mohamed~Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-01-01
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness (Ra) prediction of one component in computer numerical control (CNC) turning over minimal machining time (Tm) and at prime machining costs (C). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness. PMID:29772670
Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
Ortiz-Catalan, Max; Håkansson, Bo; Brånemark, Rickard
2014-07-01
The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.
NASA Astrophysics Data System (ADS)
Chapman, R.; Johansen, A.; Mitchell, Å. R.; Caraballo Álvarez, I. O.; Taggart, M.; Smith, B.
2015-12-01
Monitoring and analyzing harmful algal blooms (HABs) and hypoxic events in the southern coastal areas of the Gulf of Mexico (GoM) is important for watershed management and mitigation of environmental degradation. This study uncovered trends and dynamic characteristics of chlorophyll-a (Chl) concentration, sea surface temperature (SST), colored dissolved organic matter index (CDOM), and photosynthetically available radiation (PAR); as evident in 8-day standard mapped image (SMI) products from the MODIS instrument on the Aqua platform from 2002-2015 using Clark Labs TerrSet Earth Trends Modeler (ETM). Predicted dissolved oxygen images were classified using a Multi-Layer Perceptron regression approach with in-situ data from the northern GoM. Additionally, sediment and nutrient loading values of the Grijalva-Usumacinta watershed were modeled using the ArcGIS Soil and Water Assessment Tool (SWAT). Lastly, A Turbidity Index was generated using Landsat 8 Operational Land Imager (OLI) scenes for 2014-2015. Results, tools, and products will assist local environmental and health authorities in revising water quality standards and mitigating the impacts of future HABs and hypoxic events in the region. This project uses NASA's earth observations as a viable alternative to studying a region with no in-situ data.
NASA Astrophysics Data System (ADS)
Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.
2017-09-01
Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.
NASA Astrophysics Data System (ADS)
Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar
2016-04-01
Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyanto, Totok R.
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less
Forecasting of natural gas consumption with neural network and neuro fuzzy system
NASA Astrophysics Data System (ADS)
Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan
2010-05-01
The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting
Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J
2011-01-01
The olfactory system detects volatile chemical compounds, known as odour molecules or odorants. Such odorants have a diverse chemical structure which in turn interact with the receptors of the olfactory system. The insect olfactory system provides a unique opportunity to directly measure the firing rates that are generated by the individual olfactory sensory neurons (OSNs) which have been stimulated by odorants in order to use this data to inform their classification. In this work, we demonstrate that it is possible to use the firing rates from an array of OSNs of the vinegar fly, Drosophila melanogaster, to train an Artificial Neural Network (ANN), as a series of a Multi-Layer Perceptrons (MLPs), to differentiate between eight distinct chemical classes. We demonstrate that the MLPs when trained on 108 odorants, for both clean and 10% noise injected data, can reliably identify 87% of an unseen validation set of chemicals using noise injection. In addition, the noise injected MLPs provide a more accurate level of identification. This demonstrates that a 10% noise injected series of MLPs provides a robust method for classifying chemicals from the firing rates of OSNs and paves the way to a future realisation of an artificial olfactory biosensor.
Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach
NASA Astrophysics Data System (ADS)
Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele
2012-09-01
The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.
Escherichia coli's water load affects zebrafish (Danio rerio) behavior.
Amorim, João; Fernandes, Miguel; Abreu, Isabel; Tavares, Fernando; Oliva-Teles, Luis
2018-05-01
Traditional physico-chemical sensors are becoming an obsolete tool for environmental quality assessment. Biomonitoring techniques, such as biological early warning systems present the advantage of being sensitivity, fast, non-invasive and ecologically relevant. In this work, we applied a video tracking system, developed with zebrafish (Danio rerio), to detect microbiological contamination in water. Using the fishs' behavior response, the system was able to detect the presence of a non-pathogenic environmental strain of Escherichia coli, at three different levels of contamination: 600, 1800 and 5000 CFU/100 mL (colony forming units/100 mL). Data was collected during 50 min of exposure and analyzed with the artificial neural networks Self-organizing Map and Multi-layer Perceptron. The behavior of exposed fish was more erratic, with pronounced and rapid changes on movement direction and with significant less exploratory activity. The accuracy, sensitivity and specificity values regarding the detection capability (distinction between presence or absence of contamination) ranged from 89 to 100%. Regarding the classification capability (distinction between experimental conditions), the values ranged from 67 to 89%. This research may be a valuable contribution to improve water monitoring and management strategies, by taking as reference the effects on biosensors, without a biased anthropocentric perspective. Copyright © 2018 Elsevier B.V. All rights reserved.
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
Separation of pulsar signals from noise using supervised machine learning algorithms
NASA Astrophysics Data System (ADS)
Bethapudi, S.; Desai, S.
2018-04-01
We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP), Adaboost, Gradient Boosting Classifier (GBC), and XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pipeline. This dataset was previously used for the cross-validation of the SPINN-based machine learning engine, obtained from the reprocessing of the HTRU-S survey data (Morello et al., 2014). We have used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with high-class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean for both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in Morello et al. (2014), for the same recall value.
Novel approach for dam break flow modeling using computational intelligence
NASA Astrophysics Data System (ADS)
Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar
2018-04-01
A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.
NASA Astrophysics Data System (ADS)
Parfenov, D. I.; Bolodurina, I. P.
2018-05-01
The article presents the results of developing an approach to detecting and protecting against network attacks on the corporate infrastructure deployed on the multi-cloud platform. The proposed approach is based on the combination of two technologies: a softwareconfigurable network and virtualization of network functions. The approach for searching for anomalous traffic is to use a hybrid neural network consisting of a self-organizing Kohonen network and a multilayer perceptron. The study of the work of the prototype of the system for detecting attacks, the method of forming a learning sample, and the course of experiments are described. The study showed that using the proposed approach makes it possible to increase the effectiveness of the obfuscation of various types of attacks and at the same time does not reduce the performance of the network
Simulation of a Multidimensional Input Quantum Perceptron
NASA Astrophysics Data System (ADS)
Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty
2018-06-01
In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).
Modeling neural circuits in Parkinson's disease.
Psiha, Maria; Vlamos, Panayiotis
2015-01-01
Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum.
Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.
Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed
2016-01-01
Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Retrieval of ice thickness from polarimetric SAR data
NASA Technical Reports Server (NTRS)
Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.
1993-01-01
We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.
Visual classification of medical data using MLP mapping.
Cağatay Güler, E; Sankur, B; Kahya, Y P; Raudys, S
1998-05-01
In this work we discuss the design of a novel non-linear mapping method for visual classification based on multilayer perceptrons (MLP) and assigned class target values. In training the perceptron, one or more target output values for each class in a 2-dimensional space are used. In other words, class membership information is interpreted visually as closeness to target values in a 2D feature space. This mapping is obtained by training the multilayer perceptron (MLP) using class membership information, input data and judiciously chosen target values. Weights are estimated in such a way that each training feature of the corresponding class is forced to be mapped onto the corresponding 2-dimensional target value.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1992-08-01
Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Alternative sensor system and MLP neural network for vehicle pedal activity estimation.
Wefky, Ahmed M; Espinosa, Felipe; Jiménez, José A; Santiso, Enrique; Rodríguez, José M; Fernández, Alfredo J
2010-01-01
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation
Wefky, Ahmed M.; Espinosa, Felipe; Jiménez, José A.; Santiso, Enrique; Rodríguez, José M.; Fernández, Alfredo J.
2010-01-01
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer. PMID:22319326
Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur
2018-06-13
Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
NASA Astrophysics Data System (ADS)
Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.
2018-01-01
The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.
Automatic Detection of Landslides at Stromboli Volcano
NASA Astrophysics Data System (ADS)
Giudicepietro, F.; Esposito, A. M.; D'Auria, L.; Peluso, R.; Martini, M.
2011-12-01
In this work we present an automatic system for the landslide detection at Stromboli volcano that has proved to be effective both during the 2007 effusive eruption and in the recent (2 August 2011) volcanic activity. The study of the landslides at Stromboli is important because they could be considered short-term precursors of effusive eruptions, as seen during the 2007 eruption, and in addition they allow to improve the monitoring of the gravitational instabilities of the Sciara del Fuoco flank. The proposed system uses a two-class MLP (Multi Layer Perceptron) neural network in order to discriminate the landslides from other seismic signals usually recorded at Stromboli, such as explosion-quakes and volcanic tremor. To train and test the network we used a dataset of 537 signals, including 267 landslides and 270 other events (130 explosion-quakes and 140 tremor signals). The net performance is of 98.7%, if averaged over different net configurations, and of 99.5% for the best net performance. Based on the neural network response, the automatic system calculates a Landslide Percentage Index (LPI) defined on the number of signals identified as landslides by the net on a given temporal interval in order to recognize anomalies in the landslide rate. This system was sensitive to the signals produced by the flow of lava front during a recent mild effusive episode on the "La Sciara del Fuoco" slope.
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images.
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-10-09
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.
Real-time ultrasonic weld evaluation system
NASA Astrophysics Data System (ADS)
Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.
1996-11-01
Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.
[Application of artificial neural networks on the prediction of surface ozone concentrations].
Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei
2011-08-01
Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.
Automatic QRS complex detection using two-level convolutional neural network.
Xiang, Yande; Lin, Zhitao; Meng, Jianyi
2018-01-29
The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.
Determination of combustion parameters using engine crankshaft speed
NASA Astrophysics Data System (ADS)
Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.
2013-07-01
Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.
Using Bayesian neural networks to classify forest scenes
NASA Astrophysics Data System (ADS)
Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni
1998-10-01
We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.
Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.
Li, Q; Clifford, G D
2012-09-01
In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.
Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression
NASA Astrophysics Data System (ADS)
Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S.
2017-11-01
We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is {>}1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions ({<}500 m). However, we show improved results of all the methods when data from a neighbouring meteorological tower are included, and also with a pre-processing scheme using a wavelet transform. Also presented are results of the algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.
Local residue coupling strategies by neural network for InSAR phase unwrapping
NASA Astrophysics Data System (ADS)
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-05-16
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.
Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur
2017-09-01
The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bianconi, André; Zuben, Cláudio J. Von; Serapião, Adriane B. de S.; Govone, José S.
2010-01-01
Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies. PMID:20569135
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-01-01
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. PMID:26450665
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.
2017-07-01
The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.
Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.
Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh
2017-11-01
Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
Crovato, César David Paredes; Schuck, Adalberto
2007-10-01
This paper presents a dysphonic voice classification system using the wavelet packet transform and the best basis algorithm (BBA) as dimensionality reductor and 06 artificial neural networks (ANN) acting as specialist systems. Each ANN was a 03-layer multilayer perceptron with 64 input nodes, 01 output node and in the intermediary layer the number of neurons depends on the related training pathology group. The dysphonic voice database was separated in five pathology groups and one healthy control group. Each ANN was trained and associated with one of the 06 groups, and fed by the best base tree (BBT) nodes' entropy values, using the multiple cross validation (MCV) method and the leave-one-out (LOO) variation technique and success rates obtained were 87.5%, 95.31%, 87.5%, 100%, 96.87% and 89.06% for the groups 01 to 06, respectively.
NASA Astrophysics Data System (ADS)
Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.
2018-03-01
In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.
Neural computing for numeric-to-symbolic conversion in control systems
NASA Technical Reports Server (NTRS)
Passino, Kevin M.; Sartori, Michael A.; Antsaklis, Panos J.
1989-01-01
A type of neural network, the multilayer perceptron, is used to classify numeric data and assign appropriate symbols to various classes. This numeric-to-symbolic conversion results in a type of information extraction, which is similar to what is called data reduction in pattern recognition. The use of the neural network as a numeric-to-symbolic converter is introduced, its application in autonomous control is discussed, and several applications are studied. The perceptron is used as a numeric-to-symbolic converter for a discrete-event system controller supervising a continuous variable dynamic system. It is also shown how the perceptron can implement fault trees, which provide useful information (alarms) in a biological system and information for failure diagnosis and control purposes in an aircraft example.
Out-of-equilibrium dynamical mean-field equations for the perceptron model
NASA Astrophysics Data System (ADS)
Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco
2018-02-01
Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.
ERIC Educational Resources Information Center
Kayri, Murat
2015-01-01
The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…
Preparation and properties of the multi-layer aerogel thermal insulation composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian
2018-03-01
Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.
1991-09-01
1948. Neurodynamics , out of print for thirty years, 4. Rosenblatt. F., Principles of Neurodynamics : Perceptrons was obtained from the Defense...1961. 156 Aeronautical Labs technical report. This report 5. Rosenblatt, F., Principles of Neurodynamics : Perceptrons was delivered after a long wait...Part 1, Wiley, NY, 1983. plorations in the Microstructure of Cognition , Vol. 1. MIT Press, Cambridge, MA, 1986. 8. Gorman, P. and Sejnowski, T
NASA Astrophysics Data System (ADS)
Uezu, Tatsuya; Kiyokawa, Shuji
2016-06-01
We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α C)bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.
NASA Astrophysics Data System (ADS)
Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh
2016-08-01
The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.
Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.
Regional shape-based feature space for segmenting biomedical images using neural networks
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.
1993-07-01
In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.
Method for automatic detection of wheezing in lung sounds.
Riella, R J; Nohama, P; Maia, J M
2009-07-01
The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.
NASA Astrophysics Data System (ADS)
Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia
2016-04-01
The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).
Soft sensor for real-time cement fineness estimation.
Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir
2015-03-01
This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Predicting coronary artery disease using different artificial neural network models.
Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan
2008-08-01
Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.
Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C
NASA Astrophysics Data System (ADS)
Faulkner, Adam; I&C Group Collaboration
2013-10-01
Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.
Savic, Ivan M.; Nikolic, Vesna D.; Savic-Gajic, Ivana M.; Nikolic, Ljubisa B.; Ibric, Svetlana R.; Gajic, Dragoljub G.
2015-01-01
The process of amygdalin extraction from plum seeds was optimized using central composite design (CCD) and multilayer perceptron (MLP). The effect of time, ethanol concentration, solid-to-liquid ratio, and temperature on the amygdalin content in the extracts was estimated using both mathematical models. The MLP 4-3-1 with exponential function in hidden layer and linear function in output layer was used for describing the extraction process. MLP model was more superior compared with CCD model due to better prediction ability. According to MLP model, the suggested optimal conditions are: time of 120 min, 100% (v/v) ethanol, solid-to liquid ratio of 1:25 (m/v) and temperature of 34.4°C. The predicted value of amygdalin content in the dried extract (25.42 g per 100 g) at these conditions was experimentally confirmed (25.30 g per 100 g of dried extract). Amygdalin (>90%) was isolated from the complex extraction mixture and structurally characterized by FT-IR, UV, and MS methods. PMID:25972881
Yang, Sheng-Sung; Ho, Chia-Lu; Siu, Sammy
2010-12-01
In this paper, we propose an algorithm based on the central limit theorem to compute the sensitivity of the multilayer perceptron (MLP) due to the errors of the inputs and weights. For simplicity and practicality, all inputs and weights studied here are independently identically distributed (i.i.d.). The theoretical results derived from the proposed algorithm show that the sensitivity of the MLP is affected by the number of layers and the number of neurons adopted in each layer. To prove the reliability of the proposed algorithm, some experimental results of the sensitivity are also presented, and they match the theoretical ones. The good agreement between the theoretical results and the experimental results verifies the reliability and feasibility of the proposed algorithm. Furthermore, the proposed algorithm can also be applied to compute precisely the sensitivity of the MLP with any available activation functions and any types of i.i.d. inputs and weights.
Learning Shape Descriptions: Generating and Generalizing Models of Visual Objects.
1985-09-01
Minsky , Marvin and Seymour Papert, [1969], Perceptrons, MIT Press, Cam- bridge, Ma. Mitchell, T. M., [1978], "Version spaces: A candidiate elimination...with respect to a suitable set of affine transformations. This is one area in which classic perceptrons fall short [ Minsky and Papert 19691. The third...Quillian, M. Ross, [1968], "Semantic Memory" (PhD Thesis), in Semantic Infor- mation Processing, M. Minsky (ed.), MIT Press, Cambridge MA. Schlesinger, G
Perceptrons and Pattern Recognition
1967-09-01
invariant ~isual patterns. Rosenblatt, F •. , !t_i~ip_les of Neurodynamics , Spartan Books, 1962. Introg~ces and discusses many parallel-network...classification ;of the patterns -th~selves, and their r~ cognition by per~eptrons. It· would b~ too much to ask for an absolute classification of "patt~’""’ls...function-of the level of existing cognitive structure. 0.5 Seductive Aspects of Perceptro~a, II: Parallel Computation The perceptron was conceived
Cavity approach to noisy learning in nonlinear perceptrons.
Luo, P; Michael Wong, K Y
2001-12-01
We analyze the learning of noisy teacher-generated examples by nonlinear and differentiable student perceptrons using the cavity method. The generic activation of an example is a function of the cavity activation of the example, which is its activation in the perceptron that learns without the example. Mean-field equations for the macroscopic parameters and the stability condition yield results consistent with the replica method. When a single value of the cavity activation maps to multiple values of the generic activation, there is a competition in learning strategy between preferentially learning an example and sacrificing it in favor of the background adjustment. We find parameter regimes in which examples are learned preferentially or sacrificially, leading to a gap in the activation distribution. Full phase diagrams of this complex system are presented, and the theory predicts the existence of a phase transition from poor to good generalization states in the system. Simulation results confirm the theoretical predictions.
Material optimization of multi-layered enhanced nanostructures
NASA Astrophysics Data System (ADS)
Strobbia, Pietro
The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Layered Ensemble Architecture for Time Series Forecasting.
Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin
2016-01-01
Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
Buhusi, Catalin V.; Oprisan, Sorinel A.
2013-01-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
AMS 4.0: consensus prediction of post-translational modifications in protein sequences.
Plewczynski, Dariusz; Basu, Subhadip; Saha, Indrajit
2012-08-01
We present here the 2011 update of the AutoMotif Service (AMS 4.0) that predicts the wide selection of 88 different types of the single amino acid post-translational modifications (PTM) in protein sequences. The selection of experimentally confirmed modifications is acquired from the latest UniProt and Phospho.ELM databases for training. The sequence vicinity of each modified residue is represented using amino acids physico-chemical features encoded using high quality indices (HQI) obtaining by automatic clustering of known indices extracted from AAindex database. For each type of the numerical representation, the method builds the ensemble of Multi-Layer Perceptron (MLP) pattern classifiers, each optimising different objectives during the training (for example the recall, precision or area under the ROC curve (AUC)). The consensus is built using brainstorming technology, which combines multi-objective instances of machine learning algorithm, and the data fusion of different training objects representations, in order to boost the overall prediction accuracy of conserved short sequence motifs. The performance of AMS 4.0 is compared with the accuracy of previous versions, which were constructed using single machine learning methods (artificial neural networks, support vector machine). Our software improves the average AUC score of the earlier version by close to 7 % as calculated on the test datasets of all 88 PTM types. Moreover, for the selected most-difficult sequence motifs types it is able to improve the prediction performance by almost 32 %, when compared with previously used single machine learning methods. Summarising, the brainstorming consensus meta-learning methodology on the average boosts the AUC score up to around 89 %, averaged over all 88 PTM types. Detailed results for single machine learning methods and the consensus methodology are also provided, together with the comparison to previously published methods and state-of-the-art software tools. The source code and precompiled binaries of brainstorming tool are available at http://code.google.com/p/automotifserver/ under Apache 2.0 licensing.
Design of a universal two-layered neural network derived from the PLI theory
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2004-05-01
The if-and-only-if (IFF) condition that a set of M analog-to-digital vector-mapping relations can be learned by a one-layered-feed-forward neural network (OLNN) is that all the input analog vectors dichotomized by the i-th output bit must be positively, linearly independent, or PLI. If they are not PLI, then the OLNN just cannot learn no matter what learning rules is employed because the solution of the connection matrix does not exist mathematically. However, in this case, one can still design a parallel-cascaded, two-layered, perceptron (PCTLP) to acheive this general mapping goal. The design principle of this "universal" neural network is derived from the major mathematical properties of the PLI theory - changing the output bits of the dependent relations existing among the dichotomized input vectors to make the PLD relations PLI. Then with a vector concatenation technique, the required mapping can still be learned by this PCTLP system with very high efficiency. This paper will report in detail the mathematical derivation of the general design principle and the design procedures of the PCTLP neural network system. It then will be verified in general by a practical numerical example.
Multi-layer assemblies with predetermined stress profile and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2003-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Bade, Richard; Bijlsma, Lubertus; Miller, Thomas H; Barron, Leon P; Sancho, Juan Vicente; Hernández, Felix
2015-12-15
The recent development of broad-scope high resolution mass spectrometry (HRMS) screening methods has resulted in a much improved capability for new compound identification in environmental samples. However, positive identifications at the ng/L concentration level rely on analytical reference standards for chromatographic retention time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a role in increasing confidence in suspect screening efforts for new compounds in the environment, especially when standards are not available, but reliable methods are lacking. The current work focuses on the development of artificial neural networks (ANNs) for tR prediction in gradient reversed-phase liquid chromatography and applied along with HRMS data to suspect screening of wastewater and environmental surface water samples. Based on a compound tR dataset of >500 compounds, an optimized 4-layer back-propagation multi-layer perceptron model enabled predictions for 85% of all compounds to within 2min of their measured tR for training (n=344) and verification (n=100) datasets. To evaluate the ANN ability for generalization to new data, the model was further tested using 100 randomly selected compounds and revealed 95% prediction accuracy within the 2-minute elution interval. Given the increasing concern on the presence of drug metabolites and other transformation products (TPs) in the aquatic environment, the model was applied along with HRMS data for preliminary identification of pharmaceutically-related compounds in real samples. Examples of compounds where reference standards were subsequently acquired and later confirmed are also presented. To our knowledge, this work presents for the first time, the successful application of an accurate retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily identify new or emerging contaminants in wastewater and surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimum coagulant forecasting by modeling jar test experiments using ANNs
NASA Astrophysics Data System (ADS)
Haghiri, Sadaf; Daghighi, Amin; Moharramzadeh, Sina
2018-01-01
Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform experimental jar tests but also to predict a proper dosage for coagulant amounts and to project the quality of the output water under real conditions.
Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring
NASA Astrophysics Data System (ADS)
Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha
2018-01-01
Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.
LETTER TO THE EDITOR: Dynamics of interacting neural networks
NASA Astrophysics Data System (ADS)
Kinzel, W.; Metzler, R.; Kanter, I.
2000-04-01
The dynamics of interacting perceptrons is solved analytically. For a directed flow of information the system runs into a state which has a higher symmetry than the topology of the model. A symmetry-breaking phase transition is found with increasing learning rate. In addition, it is shown that a system of interacting perceptrons which is trained on the history of its minority decisions develops a good strategy for the problem of adaptive competition known as the bar problem or minority game.
Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin
2017-01-01
PURPOSE To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. METHODS An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. RESULTS The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. CONCLUSIONS This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process. PMID:28436410
Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin
2017-01-01
To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process.
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
NASA Astrophysics Data System (ADS)
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs
Song, Fucheng; Zhang, Anling; Liang, Hui; Cui, Lianhua; Li, Wenlian; Si, Hongzong; Duan, Yunbo; Zhai, Honglin
2016-01-01
A new analysis strategy was used to classify the carcinogenicity of aromatic amines. The physical-chemical parameters are closely related to the carcinogenicity of compounds. Quantitative structure activity relationship (QSAR) is a method of predicting the carcinogenicity of aromatic amine, which can reveal the relationship between carcinogenicity and physical-chemical parameters. This study accessed gene expression programming by APS software, the multilayer perceptrons by Weka software to predict the carcinogenicity of aromatic amines, respectively. All these methods relied on molecular descriptors calculated by CODESSA software and eight molecular descriptors were selected to build function equations. As a remarkable result, the accuracy of gene expression programming in training and test sets are 0.92 and 0.82, the accuracy of multilayer perceptrons in training and test sets are 0.84 and 0.74 respectively. The precision of the gene expression programming is obviously superior to multilayer perceptrons both in training set and test set. The QSAR application in the identification of carcinogenic compounds is a high efficiency method. PMID:27854309
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-11-16
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-09-14
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Collision avoidance using neural networks
NASA Astrophysics Data System (ADS)
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor
NASA Astrophysics Data System (ADS)
Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku
An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K
A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less
Methods for making a multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2007-05-29
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Amozegar, M; Khorasani, K
2016-04-01
In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio
2017-02-01
Saving resources is a paramount issue for the modern laboratory, and new trainable as well as smart technologies can be used to allow the automated instrumentation to manage samples more efficiently in order to achieve streamlined processes. In this regard the serum free light chain (sFLC) testing represents an interesting challenge, as it usually causes using a number of assays before achieving an acceptable result within the analytical range. An artificial neural network based on the multi-layer perceptron (MLP-ANN) was used to infer the starting dilution status of sFLC samples based on the information available through the laboratory information system (LIS). After the learning phase, the MLP-ANN simulation was applied to the nephelometric testing routinely performed in our laboratory on a BN ProSpec® System analyzer (Siemens Helathcare) using the N Latex FLC kit. The MLP-ANN reduced the serum kappa free light chain (κ-FLC) and serum lambda free light chain (λ-FLC) wasted tests by 69.4% and 70.8% with respect to the naïve stepwise dilution scheme used by the automated analyzer, and by 64.9% and 66.9% compared to a "rational" dilution scheme based on a 4-step dilution. Although it was restricted to follow-up samples, the MLP-ANN showed good predictive performance, which alongside the possibility to implement it in any automated system, made it a suitable solution for achieving streamlined laboratory processes and saving resources.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Neuro-genetic system for optimization of GMI samples sensitivity.
Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E
2016-03-01
Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
Can human experts predict solubility better than computers?
Boobier, Samuel; Osbourn, Anne; Mitchell, John B O
2017-12-13
In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside this, we implement 10 typical machine learning algorithms on the same dataset. The best algorithm, a variety of neural network known as a multi-layer perceptron, gave an RMSE of 0.985 log S units and an R 2 of 0.706. We would not have predicted the relative success of this particular algorithm in advance. We found that the best individual human predictor generated an almost identical prediction quality with an RMSE of 0.942 log S units and an R 2 of 0.723. The collection of algorithms contained a higher proportion of reasonably good predictors, nine out of ten compared with around half of the humans. We found that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median generated excellent predictivity. While our consensus human predictor achieved very slightly better headline figures on various statistical measures, the difference between it and the consensus machine learning predictor was both small and statistically insignificant. We conclude that human experts can predict the aqueous solubility of druglike molecules essentially equally well as machine learning algorithms. We find that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median is a powerful way of benefitting from the wisdom of crowds.
Low-cost autonomous perceptron neural network inspired by quantum computation
NASA Astrophysics Data System (ADS)
Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud
2017-11-01
Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
NASA Astrophysics Data System (ADS)
Na, Jihoon; Noh, Heeso
2018-01-01
We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2001-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
NASA Astrophysics Data System (ADS)
Stenemo, Fredrik; Lindahl, Anna M. L.; Gärdenäs, Annemieke; Jarvis, Nicholas
2007-08-01
Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is mapped for a small field. It was shown that the area of the field that contributes most to leaching depends on the properties of the compound in question. It is concluded that the simulation meta-model of MACRO should prove useful for mapping relative pesticide leaching risks at large scales.
Li, Shuang; Su, Yewang; Li, Rui
2016-06-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.
Li, Shuang; Li, Rui
2016-01-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R; Cleereman, Robert J; Eurich, Gerald
2012-04-24
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald
2013-01-29
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
Multi-Layer E-Textile Circuits
NASA Technical Reports Server (NTRS)
Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory
2012-01-01
Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.
Large area polysilicon films with predetermined stress characteristics and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Multi-layer micro/nanofluid devices with bio-nanovalves
Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.
2013-01-01
A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.
Single-crystal micromachining using multiple fusion-bonded layers
NASA Astrophysics Data System (ADS)
Brown, Alan; O'Neill, Garry; Blackstone, Scott C.
2000-08-01
Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
Xu, Feng; Zhu, Kai; Zhao, Yixin
2016-10-10
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Zhu, Kai; Zhao, Yixin
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
Artificial neural networks using complex numbers and phase encoded weights.
Michel, Howard E; Awwal, Abdul Ahad S
2010-04-01
The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.
NASA Astrophysics Data System (ADS)
Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku
2015-03-01
This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.
Experimental characterization of the perceptron laser rangefinder
NASA Technical Reports Server (NTRS)
Kweon, I. S.; Hoffman, Regis; Krotkov, Eric
1991-01-01
In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.
Neural Network Modeling for Gallium Arsenide IC Fabrication Process and Device Characteristics.
NASA Astrophysics Data System (ADS)
Creech, Gregory Lee, I.
This dissertation presents research focused on the utilization of neurocomputing technology to achieve enhanced yield and effective yield prediction in integrated circuit (IC) manufacturing. Artificial neural networks are employed to model complex relationships between material and device characteristics at critical stages of the semiconductor fabrication process. Whole wafer testing was performed on the starting substrate material and during wafer processing at four critical steps: Ohmic or Post-Contact, Post-Recess, Post-Gate and Final, i.e., at completion of fabrication. Measurements taken and subsequently used in modeling include, among others, doping concentrations, layer thicknesses, planar geometries, layer-to-layer alignments, resistivities, device voltages, and currents. The neural network architecture used in this research is the multilayer perceptron neural network (MLPNN). The MLPNN is trained in the supervised mode using the generalized delta learning rule. It has one hidden layer and uses continuous perceptrons. The research focuses on a number of different aspects. First is the development of inter-process stage models. Intermediate process stage models are created in a progressive fashion. Measurements of material and process/device characteristics taken at a specific processing stage and any previous stages are used as input to the model of the next processing stage characteristics. As the wafer moves through the fabrication process, measurements taken at all previous processing stages are used as input to each subsequent process stage model. Secondly, the development of neural network models for the estimation of IC parametric yield is demonstrated. Measurements of material and/or device characteristics taken at earlier fabrication stages are used to develop models of the final DC parameters. These characteristics are computed with the developed models and compared to acceptance windows to estimate the parametric yield. A sensitivity analysis is performed on the models developed during this yield estimation effort. This is accomplished by analyzing the total disturbance of network outputs due to perturbed inputs. When an input characteristic bears no, or little, statistical or deterministic relationship to the output characteristics, it can be removed as an input. Finally, neural network models are developed in the inverse direction. Characteristics measured after the final processing step are used as the input to model critical in-process characteristics. The modeled characteristics are used for whole wafer mapping and its statistical characterization. It is shown that this characterization can be accomplished with minimal in-process testing. The concepts and methodologies used in the development of the neural network models are presented. The modeling results are provided and compared to the actual measured values of each characteristic. An in-depth discussion of these results and ideas for future research are presented.
High energy PIXE: A tool to characterize multi-layer thick samples
NASA Astrophysics Data System (ADS)
Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.
2018-02-01
High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.
A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yang, Fufeng; Rui, Xiaoting
2017-12-01
The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.
Tailoring graphene layer-to-layer growth
NASA Astrophysics Data System (ADS)
Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi
2017-06-01
A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.
Multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1998-01-01
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.
Corrosion protected, multi-layer fuel cell interface
Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.
1986-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.
NASA Astrophysics Data System (ADS)
Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao
2018-03-01
Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.
Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium
Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing
2017-01-01
The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip. PMID:28384200
Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.
Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing
2017-01-01
The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.
Multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1998-10-13
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.
NASA Astrophysics Data System (ADS)
Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao
2018-02-01
In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64 × 10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q = 0.757 nm with scanning area of 5 × 5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59 × 106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.
Multi-junction solar cell device
Friedman, Daniel J.; Geisz, John F.
2007-12-18
A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.
New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists.
Oliveira, Aline A; Lipinski, Célio F; Pereira, Estevão B; Honorio, Kathia M; Oliveira, Patrícia R; Weber, Karen C; Romero, Roseli A F; de Sousa, Alexsandro G; da Silva, Albérico B F
2017-10-02
The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r 2 training = 0.761, q 2 = 0.656, r 2 test = 0.746, MSE test = 0.132 and MAE test = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSE test values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r 2 test = 0.824, MSE test = 0.088 and MAE test = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r 2 test = 0.811, MSE test = 0.100 and MAE test = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment. Graphical abstract Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
NASA Astrophysics Data System (ADS)
Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui
2017-01-01
Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.
Voukantsis, Dimitris; Karatzas, Kostas; Kukkonen, Jaakko; Räsänen, Teemu; Karppinen, Ari; Kolehmainen, Mikko
2011-03-01
In this paper we propose a methodology consisting of specific computational intelligence methods, i.e. principal component analysis and artificial neural networks, in order to inter-compare air quality and meteorological data, and to forecast the concentration levels for environmental parameters of interest (air pollutants). We demonstrate these methods to data monitored in the urban areas of Thessaloniki and Helsinki in Greece and Finland, respectively. For this purpose, we applied the principal component analysis method in order to inter-compare the patterns of air pollution in the two selected cities. Then, we proceeded with the development of air quality forecasting models for both studied areas. On this basis, we formulated and employed a novel hybrid scheme in the selection process of input variables for the forecasting models, involving a combination of linear regression and artificial neural networks (multi-layer perceptron) models. The latter ones were used for the forecasting of the daily mean concentrations of PM₁₀ and PM₂.₅ for the next day. Results demonstrated an index of agreement between measured and modelled daily averaged PM₁₀ concentrations, between 0.80 and 0.85, while the kappa index for the forecasting of the daily averaged PM₁₀ concentrations reached 60% for both cities. Compared with previous corresponding studies, these statistical parameters indicate an improved performance of air quality parameters forecasting. It was also found that the performance of the models for the forecasting of the daily mean concentrations of PM₁₀ was not substantially different for both cities, despite the major differences of the two urban environments under consideration. Copyright © 2011 Elsevier B.V. All rights reserved.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Altmetric analysis of 2015 dental literature: a cross sectional survey.
Kolahi, J; Iranmanesh, P; Khazaei, S
2017-05-12
Introduction To report and analyse Altmetric data of all dental articles and journals in 2015.Methods To identify all 2015 dental articles, PubMed was searched via Altmetric platform using the following query: ("2015/1/1"[PDAT]: "2015/12/31"[PDAT]) AND jsubsetd[text] NOT 2016[PDAT] on November 12, 2016. Altmetric data of all 2015 dental articles and journals were extracted and analysed by Microsoft Office Excel 2016 using descriptive statistics, graphs and trend-line analysis. To find the most important and influential Altmetric factors, multi-layered perceptron artificial neural network was employed using SPSS 22.Results A total of 14,884 dental articles published in 2015 using PubMed database were found, from which 5,153 (34.62%) articles had an Altmetric score. The mean Altmetric score was 2.94 ± 9.2 (95% C.I:2.703.22). Mendeley readers (73.19%), Twitter (21.48%), Facebook walls (3.67%), news outlets (0.69%) and bloggers (0.57%) were the most popular Altmetric data resources. At journal level, 147 dental journals with valid Altmetric data were included in the study. The British Dental Journal had the first rank, followed by Journal of Dental Research, Journal of Clinical Periodontology and Journal of the American Dental Association. Sensitivity analysis showed news outlets, tweeters and scientific bloggers were the most important and influential Altmetric data resources.Discussion In comparison with all science subjects and medical and health sciences, 2015 Altmetric scores in dentistry were very low. Uses of new and emerging scholarly tools such as social media, scientific blogs and post-publication peer-review were not common in the dental science. This negligence may be due to lack of knowledge and attitude. An Altmetric score is dynamic and may fluctuate over time.
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-11-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali
2015-01-21
Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ground-based telescope pointing and tracking optimization using a neural controller.
Mancini, D; Brescia, M; Schipani, P
2003-01-01
Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.
Integration of planar transformer and/or planar inductor with power switches in power converter
Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi
2007-10-30
A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.
Acoustics of snoring and automatic snore sound detection in children.
Çavuşoğlu, M; Poets, C F; Urschitz, M S
2017-10-31
Acoustic analyses of snoring sounds have been used to objectively assess snoring and applied in various clinical problems for adult patients. Such studies require highly automatized tools to analyze the sound recordings of the whole night's sleep, in order to extract clinically relevant snore- related statistics. The existing techniques and software used for adults are not efficiently applicable to snoring sounds in children, basically because of different acoustic signal properties. In this paper, we present a broad range of acoustic characteristics of snoring sounds in children (N = 38) in comparison to adult (N = 30) patients. Acoustic characteristics of the signals were calculated, including frequency domain representations, spectrogram-based characteristics, spectral envelope analysis, formant structures and loudness of the snoring sounds. We observed significant differences in spectral features, formant structures and loudness of the snoring signals of children compared to adults that may arise from the diversity of the upper airway anatomy as the principal determinant of the snore sound generation mechanism. Furthermore, based on the specific audio features of snoring children, we proposed a novel algorithm for the automatic detection of snoring sounds from ambient acoustic data specifically in a pediatric population. The respiratory sounds were recorded using a pair of microphones and a multi-channel data acquisition system simultaneously with full-night polysomnography during sleep. Brief sound chunks of 0.5 s were classified as either belonging to a snoring event or not with a multi-layer perceptron, which was trained in a supervised fashion using stochastic gradient descent on a large hand-labeled dataset using frequency domain features. The method proposed here has been used to extract snore-related statistics that can be calculated from the detected snore episodes for the whole night's sleep, including number of snore episodes (total snoring time), ratio of snore to whole sleep time, variation of snoring rate, regularity of snoring episodes in time and amplitude and snore loudness. These statistics will ultimately serve as a clinical tool providing information for the objective evaluation of snoring for several clinical applications.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
An inference method from multi-layered structure of biomedical data.
Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung
2017-05-18
Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.
Assessment of physical server reliability in multi cloud computing system
NASA Astrophysics Data System (ADS)
Kalyani, B. J. D.; Rao, Kolasani Ramchand H.
2018-04-01
Business organizations nowadays functioning with more than one cloud provider. By spreading cloud deployment across multiple service providers, it creates space for competitive prices that minimize the burden on enterprises spending budget. To assess the software reliability of multi cloud application layered software reliability assessment paradigm is considered with three levels of abstractions application layer, virtualization layer, and server layer. The reliability of each layer is assessed separately and is combined to get the reliability of multi-cloud computing application. In this paper, we focused on how to assess the reliability of server layer with required algorithms and explore the steps in the assessment of server reliability.
NASA Astrophysics Data System (ADS)
LaRue, James P.; Luzanov, Yuriy
2013-05-01
A new extension to the way in which the Bidirectional Associative Memory (BAM) algorithms are implemented is presented here. We will show that by utilizing the singular value decomposition (SVD) and integrating principles of independent component analysis (ICA) into the nullspace (NS) we have created a novel approach to mitigating spurious attractors. We demonstrate this with two applications. The first application utilizes a one-layer association while the second application is modeled after the several hierarchal associations of ventral pathways. The first application will detail the way in which we manage the associations in terms of matrices. The second application will take what we have learned from the first example and apply it to a cascade of a convolutional neural network (CNN) and perceptron this being our signal processing model of the ventral pathways, i.e., visual systems.
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Diabetic Rethinopathy Screening by Bright Lesions Extraction from Fundus Images
NASA Astrophysics Data System (ADS)
Hanđsková, Veronika; Pavlovičova, Jarmila; Oravec, Miloš; Blaško, Radoslav
2013-09-01
Retinal images are nowadays widely used to diagnose many diseases, for example diabetic retinopathy. In our work, we propose the algorithm for the screening application, which identifies the patients with such severe diabetic complication as diabetic retinopathy is, in early phase. In the application we use the patient's fundus photography without any additional examination by an ophtalmologist. After this screening identification, other examination methods should be considered and the patient's follow-up by a doctor is necessary. Our application is composed of three principal modules including fundus image preprocessing, feature extraction and feature classification. Image preprocessing module has the role of luminance normalization, contrast enhancement and optical disk masking. Feature extraction module includes two stages: bright lesions candidates localization and candidates feature extraction. We selected 16 statistical and structural features. For feature classification, we use multilayer perceptron (MLP) with one hidden layer. We classify images into two classes. Feature classification efficiency is about 93 percent.
A robot conditioned reflex system modeled after the cerebellum.
NASA Technical Reports Server (NTRS)
Albus, J. S.
1972-01-01
Reduction of a theory of cerebellar function to computer software for the control of a mechanical manipulator. This reduction is achieved by considering the cerebellum, along with the higher-level brain centers which control it, as a type of finite-state machine with input entering the cerebellum via mossy fibers from the periphery and output from the cerebellum occurring via Purkinje cells. It is hypothesized that the cerebellum learns by an error-correction system similar to Perceptron training algorithms. An electromechanical model of the cerebellum is then developed for the control of a mechanical arm. The problem of modeling the granular layer which selects the set of parallel fibers which are active at any instant of time is considered, and a relevance matrix is constructed to model the relative degree of influence which mossy fibers from the various joints have on the sets of granule cells unique to each joint.
The transmission of finite amplitude sound beam in multi-layered biological media
NASA Astrophysics Data System (ADS)
Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui
2007-02-01
Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.
Benchmark data for identifying multi-functional types of membrane proteins.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2016-09-01
Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.
Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains
Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling
2015-01-01
High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less
Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana
2014-06-01
The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less radiation dose using high kVp technique with multi-layer filter compared to the conventional technique, and 25.9% less than using the traditional copper filter 45% of the radiologists who participated in this study reported that the high kVp technique with multi-layer filter was better for diagnosing stenosis, or narrowing of the upper airways. 33% reported that, both techniques were equal, while 22% reported that the traditional copper filter allowed for better details of airway obstruction. These findings showed that the multi-layered filter was comparable to the copper filter in terms of film interpretation. Using the multi-layer filter resulted in patients receiving a lower dose of radiation, as well as similar film interpretation when compared to the traditional copper filter.
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1999-01-01
A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1999-08-10
A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
Energy transfer through a multi-layer liner for shaped charges
Skolnick, Saul; Goodman, Albert
1985-01-01
This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir
2014-01-01
Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263
Single layer multi-color luminescent display and method of making
NASA Technical Reports Server (NTRS)
Robertson, James B. (Inventor)
1992-01-01
The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material, which may be a phosphor deposited thereon that hosts one or more different impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field, thereby forming a multi-color, single layer electroluminescent display. A method of forming a multi-color luminescent display includes the steps of depositing on an insulator substrate a single layer of host material, which itself may be a phosphor, with the properties to host varying quantities of different impurities and introducing one or more of said different impurities into selected areas of the said single layer of host material by thermal diffusion or ion implantation to form a pattern of phosphors of different colors in the said single layer of host material.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Weiyong; Zhu, Jian
2012-04-01
The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.
NASA Astrophysics Data System (ADS)
Yamada, Keisuke
2017-01-01
This paper describes passive technique for suppressing vibration in flexible structures using a multi-layered piezoelectric element, an inductor, and a resistor. The objective of using a multi-layered piezoelectric element is to increase its capacitance. A piezoelectric element with a large capacitance value does not require an active electrical circuit to simulate an inductor with a large inductance value. The effect of multi-layering of piezoelectric elements was theoretically analyzed through an equivalent transformation of a multi-layered piezoelectric element into a single-layered piezoelectric element. The governing equations were derived using this equivalent transformation. The effect of the resistances of the inductor and piezoelectric elements were considered because the sum of these resistances may exceed the optimum resistance. The performance of the passive vibration suppression using an LR circuit was compared to that of the method where a resistive circuit is used assuming that the sum of the resistances of the inductor and piezoelectric elements exceeds the optimum resistance. The effectiveness of the proposed method and theoretical analysis was verified through simulations and experiments.
NASA Astrophysics Data System (ADS)
Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming
2017-05-01
The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.
NASA Astrophysics Data System (ADS)
Viudez-Mora, A.; Kato, S.; Smith, W. L., Jr.; Chang, F. L.
2016-12-01
Knowledge of the vertical cloud distribution is important for a variety of climate and weather applications. The cloud overlapping variations greatly influence the atmospheric heating/cooling rates, with implications for the surface-troposphere radiative balance, global circulation and precipitation. Additionally, an accurate knowledge of the multi-layer cloud distribution in real-time can be used in applications such safety condition for aviation through storms and adverse weather conditions. In this study, we evaluate a multi-layered cloud algorithm (Chang et al. 2005) based on MODIS measurements aboard Aqua satellite (MCF). This algorithm uses the CO2-slicing technique combined with cloud properties determined from VIS, IR and NIR channels to locate high thin clouds over low-level clouds, and retrieve the τ of each layer. We use CALIPSO (Winker et. al, 2010) and CloudSat (Stephens et. al, 2002) (CLCS) derived cloud vertical profiles included in the C3M data product (Kato et al. 2010) to evaluate MCF derived multi-layer cloud properties. We focus on 2 layer overlapping and 1-layer clouds identified by the active sensors and investigate how well these systems are identified by the MODIS multi-layer technique. The results show that for these multi-layered clouds identified by CLCS, the MCF correctly identifies about 83% of the cases as multi-layer. However, it is found that the upper CTH is underestimated by about 2.6±0.4 km, because the CO2-slicing technique is not as sensitive to the cloud physical top as the CLCS. The lower CTH agree better with differences found to be about 1.2±0.5 km. Another outstanding issue for the MCF approach is the large number of multi-layer false alarms that occur in single-layer conditions. References: Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62. Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115. Stephens, G. L., et al. (2002), The CloudSat mission and A-Train, Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91.
NASA Astrophysics Data System (ADS)
Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong
2017-08-01
We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.
OLED lighting devices having multi element light extraction and luminescence conversion layer
Krummacher, Benjamin Claus; Antoniadis, Homer
2010-11-16
An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Multi-clad black display panel
Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin
2002-01-01
A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.
Handwritten numeral databases of Indian scripts and multistage recognition of mixed numerals.
Bhattacharya, Ujjwal; Chaudhuri, B B
2009-03-01
This article primarily concerns the problem of isolated handwritten numeral recognition of major Indian scripts. The principal contributions presented here are (a) pioneering development of two databases for handwritten numerals of two most popular Indian scripts, (b) a multistage cascaded recognition scheme using wavelet based multiresolution representations and multilayer perceptron classifiers and (c) application of (b) for the recognition of mixed handwritten numerals of three Indian scripts Devanagari, Bangla and English. The present databases include respectively 22,556 and 23,392 handwritten isolated numeral samples of Devanagari and Bangla collected from real-life situations and these can be made available free of cost to researchers of other academic Institutions. In the proposed scheme, a numeral is subjected to three multilayer perceptron classifiers corresponding to three coarse-to-fine resolution levels in a cascaded manner. If rejection occurred even at the highest resolution, another multilayer perceptron is used as the final attempt to recognize the input numeral by combining the outputs of three classifiers of the previous stages. This scheme has been extended to the situation when the script of a document is not known a priori or the numerals written on a document belong to different scripts. Handwritten numerals in mixed scripts are frequently found in Indian postal mails and table-form documents.
Deep neural mapping support vector machines.
Li, Yujian; Zhang, Ting
2017-09-01
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application
NASA Astrophysics Data System (ADS)
Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran
2017-11-01
A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.
Development of multi-layer plastic fuel tanks for Nissan research vehicle-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurihara, Y.; Nakazawa, K.; Ohashi, K.
1987-01-01
Plastic fuel tanks are light in weight and rustproof, and have good design flexibility. For those currently in use, however, which are made of mono-layer high-density polyethylene, fuel permeability is too high to meet U.S. evaporative emission standards, which are stricter than those in Japan or the EEC. For minimize fuel permeation, the formation of a barrier layer of polyamide resin by multi-layer (three-resin five-layer) blow molding is considered more promising than sulphonation or fluorination treatment of the polyethylene resin. This paper describes the fuel permeation mechanism, then outlines the development of a multi-layer plastic fuel tank, and discusses itsmore » structural features and the development of resins.« less
Forming aspheric optics by controlled deposition
Hawryluk, A.M.
1998-04-28
An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.
Forming aspheric optics by controlled deposition
Hawryluk, Andrew M.
1998-01-01
An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.
Multi-stage robust scheme for citrus identification from high resolution airborne images
NASA Astrophysics Data System (ADS)
Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier
2008-10-01
Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1
In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Towards Optimal Connectivity on Multi-layered Networks.
Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang
2017-10-01
Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung
2014-02-21
Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less
Chemical and morphological characterization of III-V strained layered heterostructures
NASA Astrophysics Data System (ADS)
Gray, Allen Lindsay
This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.
Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE
2008-01-22
An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
On-line determination of transient stability status using multilayer perceptron neural network
NASA Astrophysics Data System (ADS)
Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson
2018-01-01
A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
NASA Astrophysics Data System (ADS)
Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru
2016-09-01
Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.
Multi-Skyrmions on AdS2 × S2, rational maps and popcorn transitions
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Tallarita, Gianni
2017-08-01
By combining two different techniques to construct multi-soliton solutions of the (3 + 1)-dimensional Skyrme model, the generalized hedgehog and the rational map ansatz, we find multi-Skyrmion configurations in AdS2 ×S2. We construct Skyrmionic multi-layered configurations such that the total Baryon charge is the product of the number of kinks along the radial AdS2 direction and the degree of the rational map. We show that, for fixed total Baryon charge, as one increases the charge density on ∂ (AdS2 ×S2) , it becomes increasingly convenient energetically to have configurations with more peaks in the radial AdS2 direction but a lower degree of the rational map. This has a direct relation with the so-called holographic popcorn transitions in which, when the charge density is high, multi-layered configurations with low charge on each layer are favored over configurations with few layers but with higher charge on each layer. The case in which the geometry is M2 ×S2 can also be analyzed.
Multi-domain boundary element method for axi-symmetric layered linear acoustic systems
NASA Astrophysics Data System (ADS)
Reiter, Paul; Ziegelwanger, Harald
2017-12-01
Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Electrochemical cells and methods of manufacturing the same
Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C
2015-11-03
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
From Internationalisation to Education for Global Citizenship: A Multi-Layered History
ERIC Educational Resources Information Center
Haigh, Martin
2014-01-01
The evolving narrative on internationalisation in higher education is complex and multi-layered. This overview explores the evolution of thinking about internationalisation among different stakeholder groups in universities. It parses out eight coexisting layers that progress from concerns based largely upon institutional survival and competition…
Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”
Naguib, Michael; Unocic, Raymond R.; Armstrong, Beth L.; ...
2015-04-17
Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide, and titanium carbonitrides MXenes.
Magnetic and electrical control of engineered materials
Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos
2016-08-16
Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.
A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
Merks, E J W; Borsboom, J M G; Bom, N; van der Steen, A F W; de Jong, N
2006-12-22
In a preceding study a new technique to non-invasively measure the bladder volume on the basis of non-linear wave propagation was validated. It was shown that the harmonic level generated at the posterior bladder wall increases for larger bladder volumes. A dedicated transducer is needed to further verify and implement this approach. This transducer must be capable of both transmission of high-pressure waves at fundamental frequency and reception of up to the third harmonic. For this purpose, a multi-layer transducer was constructed using a single element PZT transducer for transmission and a PVDF top-layer for reception. To determine feasibility of the multi-layer concept for bladder volume measurements, and to ensure optimal performance, an equivalent mathematical model on the basis of KLM-circuit modeling was generated. This model was obtained in two subsequent steps. Firstly, the PZT transducer was modeled without PVDF-layer attached by means of matching the model with the measured electrical input impedance. It was validated using pulse-echo measurements. Secondly, the model was extended with the PVDF-layer. The total model was validated by considering the PVDF-layer as a hydrophone on the PZT transducer surface and comparing the measured and simulated PVDF responses on a wave transmitted by the PZT transducer. The obtained results indicated that a valid model for the multi-layer transducer was constructed. The model showed feasibility of the multi-layer concept for bladder volume measurements. It also allowed for further optimization with respect to electrical matching and transmit waveform. Additionally, the model demonstrated the effect of mechanical loading of the PVDF-layer on the PZT transducer.
Development of Multi-Layered Floating Floor for Cabin Noise Reduction
NASA Astrophysics Data System (ADS)
Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung
2017-12-01
Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.
NASA Technical Reports Server (NTRS)
Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)
2005-01-01
Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.
Multiscale deformation behavior for multilayered steel by in-situ FE-SEM
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.
2010-03-01
The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.
Song, Da Hyun; Kim, Ho-Sub; Suh, Jung Sang; Jun, Bong-Hyun; Rho, Won-Yeop
2017-06-04
The use of dye-sensitized solar cells (DSSCs) is widespread owing to their high power conversion efficiency (PCE) and low cost of manufacturing. We prepared multi-shaped Ag nanoparticles (NPs) and introduced them into DSSCs to further enhance their PCE. The maximum absorption wavelength of the multi-shaped Ag NPs is 420 nm, including the shoulder with a full width at half maximum (FWHM) of 121 nm. This is a broad absorption wavelength compared to spherical Ag NPs, which have a maximum absorption wavelength of 400 nm without the shoulder of 61 nm FWHM. Therefore, when multi-shaped Ag NPs with a broader plasmon-enhanced absorption were coated on a mesoporous TiO₂ layer on a layer-by-layer structure in DSSCs, the PCE increased from 8.44% to 10.22%, equivalent to an improvement of 21.09% compared to DSSCs without a plasmonic layer. To confirm the plasmon-enhanced effect on the composite film structure in DSSCs, the PCE of DSSCs based on the composite film structure with multi-shaped Ag NPs increased from 8.58% to 10.34%, equivalent to an improvement of 20.51% compared to DSSCs without a plasmonic layer. This concept can be applied to perovskite solar cells, hybrid solar cells, and other solar cells devices.
NASA Astrophysics Data System (ADS)
Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf
2016-02-01
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions. PMID:23923035
NASA Astrophysics Data System (ADS)
Abtew, M. A.; Loghin, C.; Cristian, I.; Boussu, F.; Bruniaux, P.; Chen, Y.; Wang, L.
2018-06-01
In today’s scenario for the various technical applications, from composites to body armour, the material mouldability along with its mechanical property become very important. In the present study, two dimensional (2D) woven fabrics made of para-aramid high performance fibres in multi-layer dry structure were used for investigating different forming characteristics. The different layers were arranged with 0°/90° orientation for deep drawing formability test to analyse the effect of number of layers and blank-holder pressure (BHP) during the test. Specific preforming device with low speed forming process and predefined hemispherical shape of punch has been applied. Using fine photographic analysis, some important 2D multi-layer fabrics forming characteristics i.e., material drawing-in, surface shear angle etc. from the imposed deformation have been observed, measured and analysed for better understanding and co MPa rison. The result revealed that the mouldability behaviour of the multi-layered dry textile fabric preforms is directional, and closely dependent on blank-holding pressure and number of layers. This indicates both parameters should be carefully considered while material deformation to avoid the formation of wrinkling and maintain other mechanical properties on final application.
Lu, S B; Miao, L L; Guo, Z N; Qi, X; Zhao, C J; Zhang, H; Wen, S C; Tang, D Y; Fan, D Y
2015-05-04
Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc.
Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate
Stan, Gheorghe; Adams, George G.
2016-01-01
In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338
Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.
Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud
2016-11-01
Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm 3 /m 2 daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m 2 ) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one T g which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrochemical cells and methods of manufacturing the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
2016-07-26
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
NASA Astrophysics Data System (ADS)
Agrawal, B. P.; Ghosh, P. K.
2017-03-01
Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.
Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.
Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A
2003-08-01
This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.
A nonlinear discriminant algorithm for feature extraction and data classification.
Santa Cruz, C; Dorronsoro, J R
1998-01-01
This paper presents a nonlinear supervised feature extraction algorithm that combines Fisher's criterion function with a preliminary perceptron-like nonlinear projection of vectors in pattern space. Its main motivation is to combine the approximation properties of multilayer perceptrons (MLP's) with the target free nature of Fisher's classical discriminant analysis. In fact, although MLP's provide good classifiers for many problems, there may be some situations, such as unequal class sizes with a high degree of pattern mixing among them, that may make difficult the construction of good MLP classifiers. In these instances, the features extracted by our procedure could be more effective. After the description of its construction and the analysis of its complexity, we will illustrate its use over a synthetic problem with the above characteristics.
NASA Astrophysics Data System (ADS)
Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.
2012-05-01
Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong
2018-01-01
Subsequent thermal cycling (STC), as the unique thermal behavior during the multi-layer manufacturing process of selective laser melting (SLM), brings about unique microstructure of the as-produced parts. A multi-layer finite element (FE) model was proposed to study the STC along with a contrast experiment. The FE simulational results show that as layer increases, the maximum temperature, dimensions and liquid lifetime of the molten pool increase, while the heating and cooling rates decrease. The maximum temperature point shifts into the molten pool, and central of molten pool shifts backward. The neighborly underlying layer can be remelted thoroughly when laser irradiates a powder layer, thus forming an excellent bonding between neighbor layers. The contrast experimental results between the single-layer and triple-layer samples show that grains in of latter become coarsen and tabular along the height direction compared with those of the former. Moreover, this effect become more serious in 2nd and 1st layers in the triple-layer sample. All the above illustrate that the STC has an significant influence on the thermal behavior during SLM process, and thus affects the microstructure of SLMed parts.
The Stability and Interfacial Motion of Multi-layer Radial Porous Media and Hele-Shaw Flows
NASA Astrophysics Data System (ADS)
Gin, Craig; Daripa, Prabir
2017-11-01
In this talk, we will discuss viscous fingering instabilities of multi-layer immiscible porous media flows within the Hele-Shaw model in a radial flow geometry. We study the motion of the interfaces for flows with both constant and variable viscosity fluids. We consider the effects of using a variable injection rate on multi-layer flows. We also present a numerical approach to simulating the interface motion within linear theory using the method of eigenfunction expansion. We compare these results with fully non-linear simulations.
NASA Astrophysics Data System (ADS)
Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng
2002-07-01
A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Neural network classification of myoelectric signal for prosthesis control.
Kelly, M F; Parker, P A; Scott, R N
1991-12-01
An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions. Copyright © 1991. Published by Elsevier Ltd.
BELM: Bayesian extreme learning machine.
Soria-Olivas, Emilio; Gómez-Sanchis, Juan; Martín, José D; Vila-Francés, Joan; Martínez, Marcelino; Magdalena, José R; Serrano, Antonio J
2011-03-01
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E
2015-01-01
To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.
Face recognition: a convolutional neural-network approach.
Lawrence, S; Giles, C L; Tsoi, A C; Back, A D
1997-01-01
We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Artificial Neural Network Based Mission Planning Mechanism for Spacecraft
NASA Astrophysics Data System (ADS)
Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying
2018-04-01
The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.
Hung, Pao Chen; Lo, Wei Chiao; Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been
2011-01-01
A laboratory-scale multi-layer system was developed for the adsorption of PCDD/Fs from gas streams at various operating conditions, including gas flow rate, operating temperature and water vapor content. Excellent PCDD/F removal efficiency (>99.99%) was achieved with the multi-layer design with bead-shaped activated carbons (BACs). The PCDD/F removal efficiency achieved with the first layer adsorption bed decreased as the gas flow rate was increased due to the decrease of the gas retention time. The PCDD/F concentrations measured at the outlet of the third layer adsorption bed were all lower than 0.1 ng I-TEQ Nm⁻³. The PCDD/Fs desorbed from BAC were mainly lowly chlorinated congeners and the PCDD/F outlet concentrations increased as the operating temperature was increased. In addition, the results of pilot-scale experiment (real flue gases of an iron ore sintering plant) indicated that as the gas flow rate was controlled at 15 slpm, the removal efficiencies of PCDD/F congeners achieved with the multi-layer reactor with BAC were better than that in higher gas flow rate condition (20 slpm). Overall, the lab-scale and pilot-scale experiments indicated that PCDD/F removal achieved by multi-layer reactor with BAC strongly depended on the flow rate of the gas stream to be treated. Copyright © 2010 Elsevier Ltd. All rights reserved.
Reactive composite compositions and mat barriers
Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.
2001-01-01
A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.
Ablative Laser Propulsion Using Multi-Layered Material Systems
NASA Technical Reports Server (NTRS)
Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.
2002-01-01
Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.
Distributed Grooming in Multi-Domain IP/MPLS-DWDM Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qing
2009-12-01
This paper studies distributed multi-domain, multilayer provisioning (grooming) in IP/MPLS-DWDM networks. Although many multi-domain studies have emerged over the years, these have primarily considered 'homogeneous' network layers. Meanwhile, most grooming studies have assumed idealized settings with 'global' link state across all layers. Hence there is a critical need to develop practical distributed grooming schemes for real-world networks consisting of multiple domains and technology layers. Along these lines, a detailed hierarchical framework is proposed to implement inter-layer routing, distributed grooming, and setup signaling. The performance of this solution is analyzed in detail using simulation studies and future work directions are alsomore » high-lighted.« less
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The combined radiation/conduction heat transfer in high-temperature multi-layer insulations was modeled using a finite volume numerical model. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements, and by transient thermal tests simulating re-entry aerodynamic heating conditions. A design of experiments technique was used to investigate optimum design of multi-layer insulations for re-entry aerodynamic heating. It was found that use of 2 mm foil spacing and locating the foils near the hot boundary with the top foil 2 mm away from the hot boundary resulted in the most effective insulation design. A 76.2 mm thick multi-layer insulation using 1, 4, or 16 foils resulted in 2.9, 7.2, or 22.2 percent mass per unit area savings compared to a fibrous insulation sample at the same thickness, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Huang, Shu; Gopidi, Rajesh
This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
Global multi-layer network of human mobility
Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo
2017-01-01
ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155
Feature selection for elderly faller classification based on wearable sensors.
Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D
2017-05-30
Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Nitride based quantum well light-emitting devices having improved current injection efficiency
Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald
2014-12-09
A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.
Multi-layer waste containment barrier
Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.
1999-01-01
An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.
Multi-phase back contacts for CIS solar cells
Rockett, A.A.; Yang, L.C.
1995-12-19
Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.
Multi-phase back contacts for CIS solar cells
Rockett, Angus A.; Yang, Li-Chung
1995-01-01
Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.
Origin of the computational hardness for learning with binary synapses.
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release
Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde
2016-01-01
The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138
An artificial neural network to predict resting energy expenditure in obesity.
Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal
2017-09-01
The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m -2 ) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m -2 . External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive equations independent from BMI subgroups. For convenient use in clinical settings, we provide a simple ANN-REE calculator available at: https://www.crnh-rhone-alpes.fr/fr/ANN-REE-Calculator. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Monte Carlo model of light transport in multi-layered tubular organs
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Zhang, Ning
2017-02-01
We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.
Layering, interface and edge effects in multi-layered composite medium
NASA Technical Reports Server (NTRS)
Datta, S. K.; Shah, A. H.; Karunesena, W.
1990-01-01
Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.
Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok
2018-01-01
The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144
Milewski, Robert; Jamiołkowski, Jacek; Milewska Anna, Justyna; Domitrz, Jan; Szamatowicz, Jacek; Wołczyński, Sławomir
2009-12-01
Prognosis of pregnancy for patients treated with IVF ICSI/ET methods, using artificial neural networks. Retrospective study of 1007 cycles of infertility treatment of 899 patients of Department of Reproduction and Gynecological Endocrinology in Bialystok. The subjects were treated with IVF ICSI/ET method from August 2005 to September 2008. Classifying artificial neural network is described in the paper Architecture of the network is three-layered perceptron consisting of 45 neurons in the input layer 14 neurons in the hidden layer and a single output neuron. The source data for the network are 36 variables. 24 of them are nominal variables and the rest are quantitative variables. Among non-pregnancy cases only 59 prognosis of the network were incorrect. The results of treatment were correctly forecast in 68.5% of cases. The pregnancy was accurately confirmed in 49.1% of cases and lack of pregnancy in 86.5% of cases. Treatment of infertility with the use of in vitro fertilization methods continues to have too low efficiency per one treatment cycle. To improve this indicator it is necessary to find dependencies, which describe the model of IVF treatment. The application of advanced methods of bioinformatics allows to predict the result of the treatment more effectively With the help of artificial neural networks, we are able to forecast the failure of the treatment using IFV ICSI/ET procedure with almost 90% probability of certainty These possibilities can be used to predict negative cases.
NASA Astrophysics Data System (ADS)
Mashimo, T.; Iguchi, Y.; Bagum, R.; Sano, T.; Sakata, O.; Ono, M.; Okayasu, S.
2008-02-01
Ultra-high gravitational field (Mega-gravity field) can promote sedimentation of atoms (diffusion) even in solids, and is expected to form a compositionally-graded structure and/or nonequilibrium phase in multi-component condensed matter. We had achieved sedimentation of substitutional solute atoms in miscible systems (Bi-Sb, In-Pb, etc.). In this study, a mega-gravity experiment at high temperature was performed on a thin-plate sample (0.7 mm in thickness) of the intermetallic compound Bi3Pb7. A visible four-layer structure was produced, which exhibited different microscopic structures. In the lowest-gravity region layer, Bi phase appeared. In the mid layers, a compositionally-graded structure was formed, with differences observed in the powder X-ray diffraction patterns. Such a multi-layer structure is expected to exhibit unique physical properties such as superconductivity.
3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement
NASA Astrophysics Data System (ADS)
Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald
2016-01-01
Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes
Boostani, R.; Asadi, F.; Mohammadi, N.
2017-01-01
Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. Objective: The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Materials and Methods: Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Results: Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Conclusion: Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers. PMID:28462208
3D gaze tracking method using Purkinje images on eye optical model and pupil
NASA Astrophysics Data System (ADS)
Lee, Ji Woo; Cho, Chul Woo; Shin, Kwang Yong; Lee, Eui Chul; Park, Kang Ryoung
2012-05-01
Gaze tracking is to detect the position a user is looking at. Most research on gaze estimation has focused on calculating the X, Y gaze position on a 2D plane. However, as the importance of stereoscopic displays and 3D applications has increased greatly, research into 3D gaze estimation of not only the X, Y gaze position, but also the Z gaze position has gained attention for the development of next-generation interfaces. In this paper, we propose a new method for estimating the 3D gaze position based on the illuminative reflections (Purkinje images) on the surface of the cornea and lens by considering the 3D optical structure of the human eye model. This research is novel in the following four ways compared with previous work. First, we theoretically analyze the generated models of Purkinje images based on the 3D human eye model for 3D gaze estimation. Second, the relative positions of the first and fourth Purkinje images to the pupil center, inter-distance between these two Purkinje images, and pupil size are used as the features for calculating the Z gaze position. The pupil size is used on the basis of the fact that pupil accommodation happens according to the gaze positions in the Z direction. Third, with these features as inputs, the final Z gaze position is calculated using a multi-layered perceptron (MLP). Fourth, the X, Y gaze position on the 2D plane is calculated by the position of the pupil center based on a geometric transform considering the calculated Z gaze position. Experimental results showed that the average errors of the 3D gaze estimation were about 0.96° (0.48 cm) on the X-axis, 1.60° (0.77 cm) on the Y-axis, and 4.59 cm along the Z-axis in 3D space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.
2010-08-15
The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less
Zhai, Binxu; Chen, Jianguo
2018-04-18
A stacked ensemble model is developed for forecasting and analyzing the daily average concentrations of fine particulate matter (PM 2.5 ) in Beijing, China. Special feature extraction procedures, including those of simplification, polynomial, transformation and combination, are conducted before modeling to identify potentially significant features based on an exploratory data analysis. Stability feature selection and tree-based feature selection methods are applied to select important variables and evaluate the degrees of feature importance. Single models including LASSO, Adaboost, XGBoost and multi-layer perceptron optimized by the genetic algorithm (GA-MLP) are established in the level 0 space and are then integrated by support vector regression (SVR) in the level 1 space via stacked generalization. A feature importance analysis reveals that nitrogen dioxide (NO 2 ) and carbon monoxide (CO) concentrations measured from the city of Zhangjiakou are taken as the most important elements of pollution factors for forecasting PM 2.5 concentrations. Local extreme wind speeds and maximal wind speeds are considered to extend the most effects of meteorological factors to the cross-regional transportation of contaminants. Pollutants found in the cities of Zhangjiakou and Chengde have a stronger impact on air quality in Beijing than other surrounding factors. Our model evaluation shows that the ensemble model generally performs better than a single nonlinear forecasting model when applied to new data with a coefficient of determination (R 2 ) of 0.90 and a root mean squared error (RMSE) of 23.69μg/m 3 . For single pollutant grade recognition, the proposed model performs better when applied to days characterized by good air quality than when applied to days registering high levels of pollution. The overall classification accuracy level is 73.93%, with most misclassifications made among adjacent categories. The results demonstrate the interpretability and generalizability of the stacked ensemble model. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes.
Boostani, R; Asadi, F; Mohammadi, N
2017-03-01
Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers.
Neural network modeling for surgical decisions on traumatic brain injury patients.
Li, Y C; Liu, L; Chiu, W T; Jian, W S
2000-01-01
Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.
Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark
2007-12-01
To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.
Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.
NASA Astrophysics Data System (ADS)
Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.
2003-04-01
The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second geophysical technique, allowing the integration of data from a separate series of measurements.
Hybrid analysis for indicating patients with breast cancer using temperature time series.
Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura
2016-07-01
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dry etching technologies for reflective multilayer
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori
2012-11-01
We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.
Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake
NASA Astrophysics Data System (ADS)
Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin
2018-02-01
This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu
In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less
Knight, Toyin; Basu, Joydeep; Rivera, Elias A; Spencer, Thomas; Jain, Deepak; Payne, Richard
2013-01-01
Various methods can be employed to fabricate scaffolds with characteristics that promote cell-to-material interaction. This report examines the use of a novel technique combining compression molding with particulate leaching to create a unique multi-layered scaffold with differential porosities and pore sizes that provides a high level of control to influence cell behavior. These cell behavioral responses were primarily characterized by bridging and penetration of two cell types (epithelial and smooth muscle cells) on the scaffold in vitro. Larger pore sizes corresponded to an increase in pore penetration, and a decrease in pore bridging. In addition, smaller cells (epithelial) penetrated further into the scaffold than larger cells (smooth muscle cells). In vivo evaluation of a multi-layered scaffold was well tolerated for 75 d in a rodent model. This data shows the ability of the components of multi-layered scaffolds to influence cell behavior, and demonstrates the potential for these scaffolds to promote desired tissue outcomes in vivo.
Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts
NASA Astrophysics Data System (ADS)
Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon
2017-05-01
We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
Optimisation of multi-layer rotationally moulded foamed structures
NASA Astrophysics Data System (ADS)
Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.
2018-05-01
Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.
Analysis of thermal performance of penetrated multi-layer insulation
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Yoo, Chai H.; Barrett, William E.
1988-01-01
Results of research performed for the purpose of studying the sensitivity of multi-layer insulation blanket performance caused by penetrations through the blanket are presented. The work described in this paper presents the experimental data obtained from thermal vacuum tests of various penetration geometries similar to those present on the Hubble Space Telescope. The data obtained from these tests is presented in terms of electrical power required sensitivity factors referenced to a multi-layer blanket without a penetration. The results of these experiments indicate that a significant increase in electrical power is required to overcome the radiation heat losses in the vicinity of the penetrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lereu, Aude L.; Zerrad, M.; Passian, Ali
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
Thin film solar energy collector
Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.
1983-11-22
A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.
1991-05-01
Hall, 1967. 6. Rosenblatt, F., Principles of Neurodynamics , Spartan Books, 1962. 7. Minsky, M. and Papert, S., Perceptrons, MIT Press, Revised Edition...sentations by Error Propagation, Rumelhart and McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition , Vol
NASA Astrophysics Data System (ADS)
Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw
2017-02-01
This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.
Two algorithms for neural-network design and training with application to channel equalization.
Sweatman, C Z; Mulgrew, B; Gibson, G J
1998-01-01
We describe two algorithms for designing and training neural-network classifiers. The first, the linear programming slab algorithm (LPSA), is motivated by the problem of reconstructing digital signals corrupted by passage through a dispersive channel and by additive noise. It constructs a multilayer perceptron (MLP) to separate two disjoint sets by using linear programming methods to identify network parameters. The second, the perceptron learning slab algorithm (PLSA), avoids the computational costs of linear programming by using an error-correction approach to identify parameters. Both algorithms operate in highly constrained parameter spaces and are able to exploit symmetry in the classification problem. Using these algorithms, we develop a number of procedures for the adaptive equalization of a complex linear 4-quadrature amplitude modulation (QAM) channel, and compare their performance in a simulation study. Results are given for both stationary and time-varying channels, the latter based on the COST 207 GSM propagation model.
LeMoyne, Robert; Mastroianni, Timothy
2016-08-01
Natural gait consists of synchronous and rhythmic patterns for both the lower and upper limb. People with hemiplegia can experience reduced arm swing, which can negatively impact the quality of gait. Wearable and wireless sensors, such as through a smartphone, have demonstrated the ability to quantify various features of gait. With a software application the smartphone (iPhone) can function as a wireless gyroscope platform capable of conveying a gyroscope signal recording as an email attachment by wireless connectivity to the Internet. The gyroscope signal recordings of the affected hemiplegic arm with reduced arm swing arm and the unaffected arm are post-processed into a feature set for machine learning. Using a multilayer perceptron neural network a considerable degree of classification accuracy is attained to distinguish between the affected hemiplegic arm with reduced arm swing arm and the unaffected arm.
Multiresolution forecasting for futures trading using wavelet decompositions.
Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B
2001-01-01
We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.
Godino-Llorente, J I; Gómez-Vilda, P
2004-02-01
It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.
The Use of Artificial Neural Network for Prediction of Dissolution Kinetics
Elçiçek, H.; Akdoğan, E.; Karagöz, S.
2014-01-01
Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan
2016-09-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.
NASA Astrophysics Data System (ADS)
Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju
2013-03-01
We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.
Stabilization of solar films against hi temperature deactivation
Jefferson, Clinton F.
1984-03-20
A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.
DOT National Transportation Integrated Search
2009-01-01
Underground pipelines are protected by a combination of cathodic protection and a protective coating. Multi-layer coatings offer protection against corrosion and from mechanical damage during construction or during service. Multi-layer coatings are w...
NASA Astrophysics Data System (ADS)
Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen
2018-01-01
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
NASA Astrophysics Data System (ADS)
Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei
2003-05-01
In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.
Electrochromic window with high reflectivity modulation
Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.
2000-01-01
A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.
Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander
2016-03-28
The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.
Deep Visual Attention Prediction
NASA Astrophysics Data System (ADS)
Wang, Wenguan; Shen, Jianbing
2018-05-01
In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.
Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.
Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing
2017-08-01
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
NASA Astrophysics Data System (ADS)
Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi
2017-02-01
Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.
Optically transduced MEMS gyro device
Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat
2014-05-20
A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.
Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors
Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...
2017-07-07
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J
2013-01-01
Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.
ERIC Educational Resources Information Center
Hiller, Patrick T.
2011-01-01
This paper outlines the theoretical reasoning and technical implementation of a particular approach to creating multi-layered chronological charts in qualitative biographical studies. The discussed method elucidates the interpretation of traditional life chronologies where the individual's "objective" life facts are reconstructed free from…
A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER
We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...
NASA Astrophysics Data System (ADS)
Abtew, Mulat Alubel; Boussu, François; Bruniaux, Pascal; Loghin, Carmen; Cristian, Irina; Chen, Yan; Wang, Lichuan
2018-05-01
In many textile applications stitching process is one of the widely used methods to join the multi-layer fabric plies not only due to its easy applicability and flexible production but also provide structural integrity throughout-the-thickness of materials. In this research, the influences of stitching pattern on various molding characteristics of multi-layer 2D para-aramid plain woven fabrics while deformation was investigated. The fabrics were made of high performance fiber with 930dtex yarn linear density and fabric areal density of 200gm/m2. First, different stitch pattern (orientation) was applied for joining the mentioned multi-layered fabrics keeping other stitching parameters such as stitch gap, stitch thread tension, stitch length, stitch type, stitch thread type etc. constant throughout the study. Then, a pneumatic based molding device with a low speed forming process specially designed for preforming of textile with a predefined hemispherical shape of punch. The result shows that stitching pattern is one of the parameter that influences the different molding behavior and should be consider while molding stitched multi-layer fabrics.
Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo
2014-12-05
Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.
NASA Astrophysics Data System (ADS)
Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali
2017-06-01
We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.
NASA Astrophysics Data System (ADS)
Tu, Yiyou; Tong, Zhen; Jiang, Jianqing
2013-04-01
The effect of microstructure on clad/core interactions during the brazing of 4343/3005/4343 multi-layer aluminum brazing sheet was investigated employing differential scanning calorimetry (DSC) and electron back-scattering diffraction (EBSD). The thickness of the melted clad layer gradually decreased during the brazing operation. It could be completely removed isothermally as a result of diffusional solidification at the brazing temperature. During the brazing cycle, the rate of loss of the melt in the brazing sheet, with small equiaxed grains' core layer, was higher than that with the core layer consisting of elongated large grains. The difference in microstructure affected the amount of liquid formed during brazing.
Multi-layer light-weight protective coating and method for application
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)
1992-01-01
A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.
Function Prediction Using Recurrent Neural Networks
1991-12-01
of Neurodynamics : Perceptrons and the Theory of Brain Mechanisms. Washington: Spartan Books, 1959. 16. Ruck, Dennis W. Characterization of Multilayer...Computing, 2(2) (Fall 1990). 18. Rumelhart, David E., et al. Parallel Distributed Processing: Explorations in the Microstructure of Cognition , Volume 1
Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam
2016-10-11
In this study, a trifunctional separator fabricated by using a light-weight layer-by-layer multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG) coating has been explored in lithium–sulfur (Li–S) batteries. The conductive MWCNT/PEG coating serves as (i) an upper current collector for accelerating the electron transport and benefiting the electrochemical reaction kinetics of the cell, (ii) a net-like filter for blocking and intercepting the migrating polysulfides through a synergistic effect including physical and chemical interactions, and (iii) a layered barrier for inhibiting the continuous diffusion and alleviating the volume change of the trapped active material by introducing a “buffer zone” in between the coated layers.more » The multi-layered MWCNT/PEG coating allows the use of the conventional pure sulfur cathode with a high sulfur content (78 wt%) and high sulfur loading (up to 6.5 mg cm -2) to achieve a high initial discharge capacity of 1206 mA h g -1 at C/5 rate, retaining a superior capacity of 630 mA h g -1 after 300 cycles. Lastly, the MWCNT/PEG-coated separator optimized by the facile layer-by-layer coating method provides a promising and feasible option for advanced Li–S batteries with high energy density.« less
Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc
2013-12-01
We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.
Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction
NASA Astrophysics Data System (ADS)
Cheggaga, Nawal
2017-11-01
Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.
Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks
NASA Astrophysics Data System (ADS)
Giang, Pham Thanh; Nakagawa, Kenji
The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.
2017-12-01
Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.
Reconfigurable and non-volatile vertical magnetic logic gates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J., E-mail: jbutl001@ucr.edu; Lee, B.; Shachar, M.
2014-04-28
In this paper, we discuss the concept and prototype fabrication of reconfigurable and non-volatile vertical magnetic logic gates. These gates consist of two input layers and a RESET layer. The RESET layer allows the structure to be used as either an AND or an OR gate, depending on its magnetization state. To prove this concept, the gates were fabricated using a multi-layered patterned magnetic media, in which three magnetic layers are stacked and exchange-decoupled via non-magnetic interlayers. We demonstrate the functionality of these logic gates by conducting atomic force microscopy and magnetic force microscopy (MFM) analysis of the multi-layered patternedmore » magnetic media. The logic gates operation mechanism and fabrication feasibility are both validated by the MFM imaging results.« less
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; François, S.; Schevenels, M.; Hunt, H. E. M.; Talbot, J. P.; Degrande, G.
2014-12-01
This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel-soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel-soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green's functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element-boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Multi-responsive hydrogels for drug delivery and tissue engineering applications
Knipe, Jennifer M.; Peppas, Nicholas A.
2014-01-01
Multi-responsive hydrogels, or ‘intelligent’ hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering. PMID:26816625
2001-06-01
Setup and Initiation ........................................................ 83 2. Simulation 1 (19 Hz, Y-axis of Node 18, Piezo #2...175 INITIAL DISTRIBUTION LIST ................................................................................... 187 ix...system for the sake of testing and simplicity. The Adaptive Multi-Layered LMS Controller was developed one piece at a time. After initial experimental
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-13
... Subtitle C barrier, a multi-layer barrier designed to provide 500-year protection. \\2\\ Under Tank Closure..., which means the tanks, ancillary equipment, and contaminated soil would be removed, and the remaining... Hanford barrier, a multi- layer barrier designed to provide 1,000-year protection. Alternative 6: All...
Advances in Artificial Neural Networks - Methodological Development and Application
USDA-ARS?s Scientific Manuscript database
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
A Conceptual Derivation of Einstein's Postulates of Special Relativity.
ERIC Educational Resources Information Center
Bearden, Thomas E.
This document presents a discussion and conceptual derivation of Einstein's postulates of special relativity. The perceptron approach appears to be a fundamentally new manner of regarding physical phenomena and it is hoped that physicists will interest themselves in the concept. (Author)
Universal LD50 predictions using deep learning
NICEATM Predictive Models for Acute Oral Systemic Toxicity LD50 entry Risa R. Sayre (sayre.risa@epa.gov) & Christopher M. Grulke Our approach uses an ensemble of multilayer perceptron regressions to predict rat acute oral LD50 values from chemical features. Features were genera...
Investigating Digital Optical Computing with Spatial Light Rebroadcasters
1991-10-31
3303, 1991 5 5: I 66. F. Rosenblatt, Principles of neurodynamics : Perceptrons and the theory of brain mechanism, Spartan, Washington, 1961. 67. D. E...eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition , Vol-I : Foundations, MIT Press, 1986. 68. A. Ayyalusamy
Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.
2010-01-01
The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.
Distributed Multihoming Routing Method by Crossing Control MIPv6 with SCTP
NASA Astrophysics Data System (ADS)
Shi, Hongbo; Hamagami, Tomoki
There are various wireless communication technologies, such as 3G, WiFi, used widely in the world. Recently, not only the laptop but also the smart phones can be equipped with multiple wireless devices. The communication terminals which are implemented with multiple interfaces are usually called multi-homed nodes. Meanwhile, a multi-homed node with multiple interfaces can also be regarded as multiple single-homed nodes. For example, when a person who is using smart phone and laptop to connect to the Internet concurrently, we may regard the person as a multi-homed node in the Internet. This paper proposes a new routing method, Multi-homed Mobile Cross-layer Control to handle multi-homed mobile nodes. Our suggestion can provide a distributed end-to-end routing method for handling the communications among multi-homed nodes at the fundamental network layer.
Burning Graphene Layer-by-Layer
Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.
2015-01-01
Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466
Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2005-01-01
Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.
Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth
NASA Astrophysics Data System (ADS)
Fartookzadeh, Mahdi
2017-10-01
In this paper, bandwidth improvement of reflection-mode linear to circular polarization converters (RMCPs) is studied. The proposed RMCP is based on multi-layer rectangular patches. Equivalent transmission line circuit of multi-layer reflection-mode polarization converters is used for designing the proposed metamirror. In addition, the approximate equation of axial ratio (AR) of the reflected wave is obtained from the structures containing rectangular patches on each layer. Polarization converters containing multi-layer rectangular patches can be utilized for different ranges of frequencies. However, the frequency range of 2-8 THz is considered in this paper without losing generality. The incident wave is assumed to be linearly polarized with 45° polarization angle. AR equation is used for initial optimization of the dimensions of rectangular patches to obtain the widest possible bandwidth of RMCPs with two- and three-layer patches. Secondary optimization is applied after specifying largest dimensions of the unit cell and excluding them from the variables of optimization. Finally, modified dimensions of the three-layer RMCP are obtained using parametrical study in simulations. The proposed three-layer polarization converter has the 3 dB axial ratio bandwidth of more than 116% and the permitted incident angle of higher than 25°.
Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.
Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish
2016-08-01
The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Voss, A. W.
1973-01-01
Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.
NASA Astrophysics Data System (ADS)
Alan, G.; Tercan, M.
2017-10-01
Needlepunched nonwoven textiles are commonly used as geotextiles for various applications. Considering both environmental and economical benefits, utilization of recycled fibres in nonwoven geotextiles has become an attractive issue. Within this scope, the aim of this study is to evaluate the puncture resistance performances of top and bottom layers of multi-layered needle punched nonwovens made of recycled fibres to be used as membrane protective geotextiles by comparing them with those of made from polypropylene and polyester fibres. Puncture resistance results indicated that nonwovens made of recycled fibres demonstrated good performances at this preliminary stage.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David
2015-10-27
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
The cell engineering construction and function evaluation of multi-layer biochip dialyzer.
Zhu, Wen; Li, Jiwei; Liu, Jianfeng
2013-10-01
We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.
Method for sealing an ultracapacitor, and related articles
Day, James; Shapiro, Andrew Philip; Jerabek, Elihu Calvin
2000-08-29
An improved process for sealing at least one ultracapacitor which includes a multi-layer structure is disclosed. The process includes the step of applying a substantial vacuum to press together an uppermost layer of the structure and a lowermost layer of the structure and to evacuate ambient gasses, wherein a sealant situated in a peripheral area between the facing surfaces of the layers forms a liquid-impermeable seal for the structure under the vacuum. In some embodiments, a press is used to apply pressure to the peripheral area on which the sealant is disposed. Usually, the ultracapacitor would be situated within an enclosable region of the press, and a collapsible membrane would be fastened over the ultracapacitor to fully enclose the region and transmit the vacuum force to the multi-layer structure. The force applied by the press itself causes the sealant to flow, thereby ensuring a complete seal upon curing of the sealant. This process can be employed to seal one ultracapacitor or a stack of at least two ultracapacitors. Another embodiment of this invention is directed to an apparatus for sealing a multi-layer ultracapacitor, comprising the elements described above.
Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2014-01-01
The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535
NASA Astrophysics Data System (ADS)
Altieri, Ada
2018-01-01
In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301], 10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
Altieri, Ada
2018-01-01
In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301]10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
Carr, Elliot J; Pontrelli, Giuseppe
2018-04-12
We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2013-10-22
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2015-04-28
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo
2014-09-16
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Strengthening of surface layer of material by wave deformation multi-contact loading
NASA Astrophysics Data System (ADS)
Kirichek, A. V.; Barinov, S. V.; Aborkin, A. V.; Yashin, A. V.; Zaicev, A. A.
2018-03-01
It has been experimentally established that the possibility of multi-contact shock systems can transmit large total energy of the impact pulse to the deformation center. Thus, an increase in the number of instruments in a shock system from two to four, with the constant energy of the shock pulse, made it possible to increase the depth and the degree of hardening in the surface layer. The performance of multi-contact impact systems can be increased by 50% without degrading the hardening parameters by increasing the distance between the tools.
Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping
This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...
20180411 - Universal LD50 predictions using deep learning (ICCVAM)
NICEATM Predictive Models for Acute Oral Systemic Toxicity LD50 entry Risa R. Sayre (sayre.risa@epa.gov) & Christopher M. Grulke Our approach uses an ensemble of multilayer perceptron regressions to predict rat acute oral LD50 values from chemical features. Features were gene...
Numerical Analysis for Relevant Features in Intrusion Detection (NARFid)
2009-03-01
Rosenblatt, Frank. Principles of Neurodynamics : Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961. 74. Rossey, Lee M., Robert...editors), Parallel distributed process- ing: Explorations in the microstructure of cognition , Volume 1: Foundations. MIT Press, 1986. 76. Russel, Stuart and
Implementation of a spike-based perceptron learning rule using TiO2-x memristors.
Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis
2015-01-01
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
Smart Grid as Multi-layer Interacting System for Complex Decision Makings
NASA Astrophysics Data System (ADS)
Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico
This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.
Smith, Kassiopeia; Parrish, Riley; Wei, Wei; Liu, Yuzi; Li, Tao; Hu, Yun Hang; Xiong, Hui
2016-06-22
We report the application of disordered 3 D multi-layer graphene, synthesized directly from CO2 gas through a reaction with Li at 550 °C, as an anode for Na-ion batteries (SIBs) toward a sustainable and greener future. The material exhibited a reversible capacity of ∼190 mA h g(-1) with a Coulombic efficiency of 98.5 % at a current density of 15 mA g(-1) . The discharge capacity at higher potentials (>0.2 V vs. Na/Na(+) ) is ascribed to Na-ion adsorption at defect sites, whereas the capacity at low potentials (<0.2 V) is ascribed to intercalation between graphene sheets through electrochemical characterization, Raman spectroscopy, and small-angle X-ray scattering experiments. The disordered multi-layer graphene electrode demonstrated a great rate capability and cyclability. This novel approach to synthesize disordered 3 D multi-layer graphene from CO2 gas makes it attractive not only as an anode material for SIBs but also to mitigate CO2 emission. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inter-layer synchronization in non-identical multi-layer networks
NASA Astrophysics Data System (ADS)
Leyva, I.; Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S.
2017-04-01
Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.
Multi-layered Poly-Dimethylsiloxane As A Non-Hermetic Packaging Material For Medical MEMS
Lachhman, S.; Zorman, C.A.; Ko, W.H.
2012-01-01
Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer. This paper describes an effort to improve the performance of PDMS as packaging material by constructing the encapsulant from multiple, thin layers of PDMS as a part of a polymeric multi-material package PMID:23366225
Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2009-01-01
Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.
Shin, E J; Seong, B S; Choi, Y; Lee, J K
2011-01-01
Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.
Review of multi-layered magnetoelectric composite materials and devices applications
NASA Astrophysics Data System (ADS)
Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang
2018-06-01
Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.
Roehl, Edwin A.; Conrads, Paul; Bernhardt, Christopher
2012-01-01
Soil cores provide valuable data on historical changes in vegetation and hydrologic conditions. Empirical models were developed to quantify the effect of meteorological and hydrologic forcing on plant species distributions over a 110-year period in Water Conservation Area 1 (WCA1) in the Florida Everglades, also known as the Arthur R. Marshall Loxahatchee National Wildlife Refuge. Empirical models that predict plant species distributions at sites within WCA1 were developed by linking temporally sparse seed bank data from soil cores with continuous multi-decadal daily meteorological and hydrologic time series data. The meteorological data included rainfall and maximum daily temperatures that spanned the entire study period of 110 years. The hydrologic data included stage data from two gages in WCA1 established in 1954. These stage data were hindcasted to be concurrent with the meteorological data by using correlation models that fit measured stages as a function of the meteorological parameters. The historical plant species data came from seven peat cores from WCA1. Different depths from each core were carbon-dated and assayed for relative percentages of 83 plant species using pollen counts. The oldest dates were more than 1,000 years old; however, only core data that overlapped the study period were used, for a total of 67 assays among the seven cores. Twenty-three of the species had ratios of at least 5 percent for one or more of the 67 assays, hereafter referred to as the "top23". Using the assays as input vectors, the top23 were grouped using the k-means clustering into four plant classes that represented the extent to which the various species have historically appeared together. This reduced the modeling problem to one of predicting the relative ratios of the four plant classes from the hindcasted stage time-series data. A separate empirical model was developed for each class using a multi-layer perceptron artificial neural network, which provides multivariate, nonlinear curve fitting. The models predicted the relative ratios of the classes, and the sums of the predictions are near 1. The coefficient of determination (R2) of the models varied from 0.87 to 0.96, indicating that the relative ratios of the plant classes are predictable, and therefore controllable, from stage forcing. Similar soil cores are available for the Coastal Plain of North Carolina and are planned for the Congaree National Park in South Carolina.
NASA Astrophysics Data System (ADS)
ShuXiang, Zhang; Hong, Yang; Bo, Tang; Zhaoyun, Tang; Yefeng, Xu; Jing, Xu; Jiang, Yan
2014-10-01
ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are investigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a significant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be responsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.
Outdoor flocking of quadcopter drones with decentralized model predictive control.
Yuan, Quan; Zhan, Jingyuan; Li, Xiang
2017-11-01
In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multiresonant layered plasmonic films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.
Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical responsemore » ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.« less
A Complex Systems Approach to More Resilient Multi-Layered Security Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nathanael J. K.; Jones, Katherine A.; Bandlow, Alisa
In July 2012, protestors cut through security fences and gained access to the Y-12 National Security Complex. This was believed to be a highly reliable, multi-layered security system. This report documents the results of a Laboratory Directed Research and Development (LDRD) project that created a consistent, robust mathematical framework using complex systems analysis algorithms and techniques to better understand the emergent behavior, vulnerabilities and resiliency of multi-layered security systems subject to budget constraints and competing security priorities. Because there are several dimensions to security system performance and a range of attacks that might occur, the framework is multi-objective for amore » performance frontier to be estimated. This research explicitly uses probability of intruder interruption given detection (P I) as the primary resilience metric. We demonstrate the utility of this framework with both notional as well as real-world examples of Physical Protection Systems (PPSs) and validate using a well-established force-on-force simulation tool, Umbra.« less
A multi-layer steganographic method based on audio time domain segmented and network steganography
NASA Astrophysics Data System (ADS)
Xue, Pengfei; Liu, Hanlin; Hu, Jingsong; Hu, Ronggui
2018-05-01
Both audio steganography and network steganography are belong to modern steganography. Audio steganography has a large capacity. Network steganography is difficult to detect or track. In this paper, a multi-layer steganographic method based on the collaboration of them (MLS-ATDSS&NS) is proposed. MLS-ATDSS&NS is realized in two covert layers (audio steganography layer and network steganography layer) by two steps. A new audio time domain segmented steganography (ATDSS) method is proposed in step 1, and the collaboration method of ATDSS and NS is proposed in step 2. The experimental results showed that the advantage of MLS-ATDSS&NS over others is better trade-off between capacity, anti-detectability and robustness, that means higher steganographic capacity, better anti-detectability and stronger robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
Intermediate coating layer for high temperature rubbing seals for rotary regenerators
Schienle, James L.; Strangman, Thomas E.
1995-01-01
A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.
Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh
2009-03-30
Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.
NASA Astrophysics Data System (ADS)
Grzejda, R.
2017-12-01
The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.
Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies
NASA Astrophysics Data System (ADS)
Yan, D.; Sun, Z. Y.; Yue, K.; Wang, S. T.; Zhang, X. H.; Yu, Y. H.; Chen, J. L.; Tang, S. W.; Fang, F.; Zhou, Y.; Sun, Y.; Wang, Z. M.; Sun, Y. Z.
2017-01-01
A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of 14O and 15O isotopes was achieved using the range information.