Sample records for multi locus sequence

  1. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS (NRRL) Culture Collection using multi-locus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...

  2. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS Culture Collection (NRRL) using multi-locus sequence analysis.

    PubMed

    Labeda, David P

    2016-03-01

    Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.

  3. Evaluation of two multi-locus sequence typing schemes for commensal Escherichia coli from dairy cattle in Washington State.

    PubMed

    Ahmed, Sara; Besser, Thomas E; Call, Douglas R; Weissman, Scott J; Jones, Lisa P; Davis, Margaret A

    2016-05-01

    Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A web-based genomic sequence database for the Streptomycetaceae: a tool for systematics and genome mining

    USDA-ARS?s Scientific Manuscript database

    The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...

  5. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer

    PubMed Central

    Sanz, Yolanda

    2017-01-01

    Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506

  6. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    PubMed

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Taxonomic evaluation of unidentified Streptomyces isolates in the ARS Culture Collection (NRRL) using multi-locus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    The ARS Culture Collection (NRRL) currently contains 7569 strains within the family Streptomycetaceae but 4368 of them have not been characterized to the species level. A gene sequence database using the Bacterial Isolate Genomic Sequence Database package (BIGSdb) (Jolley & Maiden, 2010) is availabl...

  8. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  9. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    The family Streptomycetaceae, notably species in the genus Streptomyces, have long been the subject of investigation due to their well-known ability to produce secondary metabolites. The emergence of drug resistant pathogens and the relative ease of producing genome sequences has renewed the importa...

  10. Unravelling the Molecular Epidemiology and Genetic Diversity among Burkholderia pseudomallei Isolates from South India Using Multi-Locus Sequence Typing.

    PubMed

    Tellapragada, Chaitanya; Kamthan, Aayushi; Shaw, Tushar; Ke, Vandana; Kumar, Subodh; Bhat, Vinod; Mukhopadhyay, Chiranjay

    2016-01-01

    There is a slow but steady rise in the case detection rates of melioidosis from various parts of the Indian sub-continent in the past two decades. However, the epidemiology of the disease in India and the surrounding South Asian countries remains far from well elucidated. Multi-locus sequence typing (MLST) is a useful epidemiological tool to study the genetic relatedness of bacterial isolates both with-in and across the countries. With this background, we studied the molecular epidemiology of 32 Burkholderia pseudomallei isolates (31 clinical and 1 soil isolate) obtained during 2006-2015 from various parts of south India using multi-locus sequencing typing and analysis. Of the 32 isolates included in the analysis, 30 (93.7%) had novel allelic profiles that were not reported previously. Sequence type (ST) 1368 (n = 15, 46.8%) with allelic profile (1, 4, 6, 4, 1, 1, 3) was the most common genotype observed. We did not observe a genotypic association of STs with geographical location, type of infection and year of isolation in the present study. Measure of genetic differentiation (FST) between Indian and the rest of world isolates was 0.14413. Occurrence of the same ST across three adjacent states of south India suggest the dispersion of B.pseudomallei across the south western coastal part of India with limited geographical clustering. However, majority of the STs reported from the present study remained as "outliers" on the eBURST "Population snapshot", suggesting the genetic diversity of Indian isolates from the Australasian and Southeast Asian isolates.

  11. Prolonged and mixed non-O157 Escherichia coli infection in an Australian household.

    PubMed

    Staples, M; Graham, R M A; Doyle, C J; Smith, H V; Jennison, A V

    2012-05-01

    An Australian family was identified through a Public Health follow up on a Shiga-toxigenic Escherichia coli (STEC) positive bloody diarrhoea case, with three of the four family members experiencing either symptomatic or asymptomatic STEC shedding. Bacterial isolates were submitted to stx sequence sub-typing, multi-locus variable number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST) and binary typing. The analysis revealed that there were multiple strains of STEC being shed by the family members, with similar virulence gene profiles and the same serogroup but differing in their MLVA and MLST profiles. This study illustrates the potentially complicated nature of non-O157 STEC infections and the importance of molecular epidemiology in understanding disease clusters. © 2012 QUEENSLAND HEALTH. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  12. Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: geographical segregation and host-adaptation of assemblage B isolates.

    PubMed

    Karim, Md Robiul; Wang, Rongjun; Yu, Fuchang; Li, Tongyi; Dong, Haiju; Li, Dezhong; Zhang, Longxian; Li, Junqiang; Jian, Fuchun; Zhang, Sumei; Rume, Farzana Islam; Ning, Changshen; Xiao, Lihua

    2015-03-01

    Only a few studies based on single locus characterization have been conducted on the molecular epidemiology of Giardia duodenalis in nonhuman primates (NHPs). The present study was conducted to examine the occurrence and genotype identity of G. duodenalis in NHPs based on multi-locus analysis of the small-subunit ribosomal RNA (SSU rRNA), triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and beta-giardin (bg) genes. Fecal specimens were collected from 496 animals of 36 NHP species kept in seven zoos in China and screened for G. duodenalis by tpi-based PCR. G. duodenalis was detected in 92 (18.6%) specimens from 18 NHP species, belonging to assemblage A (n=4) and B (n=88). In positive NHP species, the infection rates ranged from 4.8% to 100%. In tpi sequence analysis, the assemblage A included subtypes A1, A2 and one novel subtype. Multi-locus analysis of the tpi, gdh, and bg genes detected 11 (8 known and 3 new), 6 (3 known and 3 new) and 9 (2 known and 7 new) subtypes in 88, 47 and 35 isolates in assemblage B, respectively. Thirty-two assemblage B isolates with data at all three loci yielded 15 multi-locus genotypes (MLGs), including 2 known and 13 new MLGs. Phylogenetic analysis of concatenated sequences of assemblage B showed that MLGs found here were genetically different from those of humans, NHPs, rabbit and guinea pig in Italy and Sweden. It further indicated that assemblage B isolates in ring-tailed lemurs and squirrel monkeys might be genetically different from those in other NHPs. These data suggest that NHPs are mainly infected with G. duodenalis assemblage B and there might be geographical segregation and host-adaptation in assemblage B in NHPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Real-Time PCR Typing of Escherichia coli Based on Multiple Single Nucleotide Polymorphisms--a Convenient and Rapid Method.

    PubMed

    Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan

    2016-01-01

    Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.

  14. Multi-locus sequence typing of Salmonella enterica serovar Typhimurium isolates from wild birds in northern England suggests host-adapted strain.

    PubMed

    Hughes, L A; Wigley, P; Bennett, M; Chantrey, J; Williams, N

    2010-10-01

    Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi-locus sequence typing (MLST)to investigate evolutionary relationships between them. Multi-locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Host-pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird-feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird-feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host-adapted strain with increased virulence.

  15. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses.

    PubMed

    Li, Xiang; Tambong, James; Yuan, Kat Xiaoli; Chen, Wen; Xu, Huimin; Lévesque, C André; De Boer, Solke H

    2018-01-01

    Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.

  16. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses

    PubMed Central

    Li, Xiang; Tambong, James; Yuan, Kat (Xiaoli); Chen, Wen; Xu, Huimin; Lévesque, C. André; De Boer, Solke H.

    2018-01-01

    Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA–DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov. PMID:29160202

  17. The importance of molecular analyses for understanding the genetic diversity of Histoplasma capsulatum: an overview.

    PubMed

    Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia

    2014-01-01

    Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade

    USDA-ARS?s Scientific Manuscript database

    Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...

  19. Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips

    DTIC Science & Technology

    2010-05-12

    Sequence Types. The evolutionary history of all the B. cereus MLST concatenated Sequence Types (545 taxa, 2,394 nucleotide positions) was inferred using...the Neighbor-Joining method [28]. The bootstrap consensus tree inferred from 100 replicates was taken to represent the evolutionary history of the... Chlamydia (manuscript in preparation) and performed pilot studies on Staphylococcus aureus and Streptoccus pneumoniae (Data S4 and Text S2). Another potential

  20. Infection rate and genetic diversity of Giardia duodenalis in pet and stray dogs in Henan Province, China.

    PubMed

    Qi, Meng; Dong, Haiju; Wang, Rongjun; Li, Junqiang; Zhao, Jinfeng; Zhang, Longxian; Luo, Jianxun

    2016-04-01

    Giardia duodenalis is an important protozoan parasite that is known to be zoonotic. To assess the potential zoonotic transmission of giardiasis from dogs and to identify genetic diversity of G. duodenalis in dog populations, we examined the infection rate and genotypes of G. duodenalis in both pet dogs (from pet dog farms, pet shops, pet hospitals, pet markets) and stray dogs of different ages in Henan Province, China. A total of 940 fresh fecal specimens were collected from 2007 to 2013 in Henan Province. The overall infection rate of G. duodenalis was 14.3% (134/940) as determined by microscopy, with the highest infection rate (17.3%) observed in dogs from shelters. Young dogs were more likely to be infected with G. duodenalis than adult dogs, and G. duodenalis cysts were found more frequently in diarrheic dogs. All G. duodenalis-positive isolates were characterized at the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) loci, and 37, 51, and 48 sequences were obtained, respectively. The dog-specific assemblages C and D were identified using multi-locus sequence analysis. Six novel sequences of the tpi locus, one novel sequence of the gdh locus and two novel sequences of the bg locus were detected among the G. duodenalis assemblage C isolates, while two novel sequences of the gdh locus were found among the G. duodenalis assemblage D isolates. Our data indicate that G. duodenalis is a common parasite and cause of diarrheal disease in dogs in Henan Province. However, there was no evidence for zoonotic G. duodenalis assemblages in the study population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Entomopathogen ID: A multi-locus sequence alignment resource for entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    The ability to correctly identify entomopathogenic fungi is an important step in developing biopesticides and effectively communicating research results. Over the years, identifying entomopathogenic fungi has evolved from a system based on diagnostic morphological and physiological characters to mol...

  2. STBase: one million species trees for comparative biology.

    PubMed

    McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.

  3. Resolving the Mortierellaceae phylogeny through Multi-Locus Sequence Typing (MLST) and phylogenomics

    USDA-ARS?s Scientific Manuscript database

    The Mortierellaceae (Mortierellomycotina) are a diverse family of fungi that are of evolutionary and ecological relevance. They are the closest lineage to the arbuscular mycorrhizae (Glomeromycotina) and include some of the first species to evolve fruiting body production. The Mortierellaceae are es...

  4. Campylobacter multi-locus sequence typing subtypes detected on chicken livers available at retail.

    USDA-ARS?s Scientific Manuscript database

    Foodborne campylobacteriosis has been traced to undercooked chicken liver. It is not known what prevalence of Campylobacter to expect on fresh chicken livers available at retail. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and d...

  5. Sub-typing of extended-spectrum-β-lactamase-producing isolates from a nosocomial outbreak: application of a 10-loci generic Escherichia coli multi-locus variable number tandem repeat analysis.

    PubMed

    Karami, Nahid; Helldal, Lisa; Welinder-Olsson, Christina; Ahrén, Christina; Moore, Edward R B

    2013-01-01

    Extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) were isolated from infants hospitalized in a neonatal, post-surgery ward during a four-month-long nosocomial outbreak and six-month follow-up period. A multi-locus variable number tandem repeat analysis (MLVA), using 10 loci (GECM-10), for 'generic' (i.e., non-STEC) E. coli was applied for sub-species-level (i.e., sub-typing) delineation and characterization of the bacterial isolates. Ten distinct GECM-10 types were detected among 50 isolates, correlating with the types defined by pulsed-field gel electrophoresis (PFGE), which is recognized to be the 'gold-standard' method for clinical epidemiological analyses. Multi-locus sequence typing (MLST), multiplex PCR genotyping of bla CTX-M, bla TEM, bla OXA and bla SHV genes and antibiotic resistance profiling, as well as a PCR assay specific for detecting isolates of the pandemic O25b-ST131 strain, further characterized the outbreak isolates. Two clusters of isolates with distinct GECM-10 types (G06-04 and G07-02), corresponding to two major PFGE types and the MLST-based sequence types (STs) 131 and 1444, respectively, were confirmed to be responsible for the outbreak. The application of GECM-10 sub-typing provided reliable, rapid and cost-effective epidemiological characterizations of the ESBL-producing isolates from a nosocomial outbreak that correlated with and may be used to replace the laborious PFGE protocol for analyzing generic E. coli.

  6. Multi-locus sequence subtypes of Campylobacter detected on the surface and from internal tissue of retail chicken livers

    USDA-ARS?s Scientific Manuscript database

    Foodborne campylobacteriosis has been traced to undercooked chicken liver. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and determine which subtypes are detected on the surface and inner tissue of livers. Fifteen packages of fres...

  7. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  8. Analytical Framework for Identifying and Differentiating Recent Hitchhiking and Severe Bottleneck Effects from Multi-Locus DNA Sequence Data

    DOE PAGES

    Sargsyan, Ori

    2012-05-25

    Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This study develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction withmore » constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast to 10000, and the estimates of the recent homogenization events are agree with the “Out of Africa” hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. Finally, the results show that significant discrepancies can exist between the estimates.« less

  9. Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars.

    PubMed

    De Franceschi, Paolo; Bianco, Luca; Cestaro, Alessandro; Dondini, Luca; Velasco, Riccardo

    2018-06-01

    Data obtained from Illumina resequencing of 63 apple cultivars were used to obtain full-length S-RNase sequences using a strategy based on both alignment and de novo assembly of reads. The reproductive biology of apple is regulated by the S-RNase-based gametophytic self-incompatibility system, that is genetically controlled by the single, multi-genic and multi-allelic S locus. Resequencing of apple cultivars provided a huge amount of genetic data, that can be aligned to the reference genome in order to characterize variation to a genome-wide level. However, this approach is not immediately adaptable to the S-locus, due to some peculiar features such as the high degree of polymorphism, lack of colinearity between haplotypes and extensive presence of repetitive elements. In this study we describe a dedicated procedure aimed at characterizing S-RNase alleles from resequenced cultivars. The S-genotype of 63 apple accessions is reported; the full length coding sequence was determined for the 25 S-RNase alleles present in the 63 resequenced cultivars; these included 10 previously incomplete sequences (S 5 , S 6a , S 6b , S 8 , S 11 , S 23 , S 39 , S 46 , S 50 and S 58 ). Moreover, sequence divergence clearly suggests that alleles S 6a and S 6b , proposed to be neutral variants of the same alleles, should be instead considered different specificities. The promoter sequences have also been analyzed, highlighting regions of homology conserved among all the alleles.

  10. STBase: One Million Species Trees for Comparative Biology

    PubMed Central

    McMahon, Michelle M.; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J.

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees. PMID:25679219

  11. Multi locus sequence analysis and symbiotic characterization of novel Ensifer strains nodulating Tephrosia spp. in the Indian Thar Desert.

    PubMed

    Tak, Nisha; Awasthi, Esha; Bissa, Garima; Meghwal, Raju Ram; James, Euan K; Sprent, Janet S; Gehlot, Hukam S

    2016-12-01

    Phylogenetically diverse Ensifer strains associated with five species of Tephrosia growing in alkaline soils of semi-arid regions of the Thar Desert were characterized using multi locus sequence analysis. Based on 16S rRNA and four protein-coding housekeeping gene (recA, atpD, glnII and dnaK) sequences, the Tephrosia-Ensifer strains were genetically different from the type strains of Ensifer saheli, Ensifer kostiensis, Ensifer terangae (African origin) and Ensifer psoraleae (Asiatic origin). One strain, Ensifer sp. TL4, showed maximum similarity (99%) to Ensifer adhaerens LMG 20216 T and formed a separate lineage close to it. Phylogenetic incongruence between sym and housekeeping genes was observed. The monophyletic origin of symbiotic genes from Asia in the Tephrosia-Ensifer strains from the Thar Desert suggests that they might have been acquired from a common ancestor and horizontally transferred. These novel strains are promiscuous, cross-nodulating some papilionoid crop species, mimosoid trees and the caesalpinioid Chamaecrista pumila. This study improves understanding of the distribution of Ensifer in unexplored and threatened alkaline arid regions of the Thar Desert and how this relates to other similar regions in the world. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Effectiveness of the standard and an alternative set of Streptococcus pneumoniae multi locus sequence typing primers.

    PubMed

    Adamiak, Paul; Vanderkooi, Otto G; Kellner, James D; Schryvers, Anthony B; Bettinger, Julie A; Alcantara, Joenel

    2014-06-03

    Multi-locus sequence typing (MLST) is a portable, broadly applicable method for classifying bacterial isolates at an intra-species level. This methodology provides clinical and scientific investigators with a standardized means of monitoring evolution within bacterial populations. MLST uses the DNA sequences from a set of genes such that each unique combination of sequences defines an isolate's sequence type. In order to reliably determine the sequence of a typing gene, matching sequence reads for both strands of the gene must be obtained. This study assesses the ability of both the standard, and an alternative set of, Streptococcus pneumoniae MLST primers to completely sequence, in both directions, the required typing alleles. The results demonstrated that for five (aroE, recP, spi, xpt, ddl) of the seven S. pneumoniae typing alleles, the standard primers were unable to obtain the complete forward and reverse sequences. This is due to the standard primers annealing too closely to the target regions, and current sequencing technology failing to sequence the bases that are too close to the primer. The alternative primer set described here, which includes a combination of primers proposed by the CDC and several designed as part of this study, addresses this limitation by annealing to highly conserved segments further from the target region. This primer set was subsequently employed to sequence type 105 S. pneumoniae isolates collected by the Canadian Immunization Monitoring Program ACTive (IMPACT) over a period of 18 years. The inability of several of the standard S. pneumoniae MLST primers to fully sequence the required region was consistently observed and is the result of a shift in sequencing technology occurring after the original primers were designed. The results presented here introduce clear documentation describing this phenomenon into the literature, and provide additional guidance, through the introduction of a widely validated set of alternative primers, to research groups seeking to undertake S. pneumoniae MLST based studies.

  13. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus.

    PubMed Central

    Berman, J E; Mellis, S J; Pollock, R; Smith, C L; Suh, H; Heinke, B; Kowal, C; Surti, U; Chess, L; Cantor, C R

    1988-01-01

    We present a detailed analysis of the content and organization of the human immunoglobulin VH locus. Human VH genes representing five distinct families were isolated, including novel members belonging to two out of three of the known VH gene families (VH1 and VH3) as well as members of three new families (VH4, VH5, and VH6). We report the nucleotide sequence of 21 novel human VH genes, many of which belong to the three new VH gene families. In addition, we provide a preliminary analysis of the organization of these gene segments over the full extent of the locus. We find that the five multi-segment families (VH1-5) have members interspersed over nearly the full 1500-2000 kb of the VH locus, and estimate that the entire heavy chain locus covers 2500 kb or less. Finally, we provide the first report of the physical linkage of the variable and constant loci of a human Ig gene family by demonstrating that the most proximal known human VH segments lie within 100 kb of the constant region locus. Images PMID:3396540

  14. Campylobacter multi-locus sequence types and antimicrobial susceptibility of broiler cecal isolates: a two year study of 143 commercial flocks

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to assess genetic diversity and antimicrobial susceptibility of Campylobacter jejuni and coli recovered from broiler ceca at slaughter. Ceca from one broiler were collected from the evisceration line in a commercial processing plant, once or twice weekly for two year...

  15. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes.

    PubMed

    Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F

    2017-08-01

    Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sequence Typing Confirms that a Predominant Listeria monocytogenes Clone Caused Human Listeriosis Cases and Outbreaks in Canada from 1988 to 2010

    PubMed Central

    Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.

    2012-01-01

    Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989

  17. Multi-Locus Sequence Typing of Bartonella henselae Isolates from Three Continents Reveals Hypervirulent and Feline-Associated Clones

    PubMed Central

    Arvand, Mardjan; Feil, Edward J.; Giladi, Michael; Boulouis, Henri-Jean; Viezens, Juliane

    2007-01-01

    Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P≤0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae. PMID:18094753

  18. Inter-laboratory comparison of multi-locus variable-number tandem repeat analysis (MLVA) for verocytotoxin-producing Escherichia coli O157 to facilitate data sharing.

    PubMed

    Holmes, A; Perry, N; Willshaw, G; Hanson, M; Allison, L

    2015-01-01

    Multi-locus variable number tandem repeat analysis (MLVA) is used in clinical and reference laboratories for subtyping verocytotoxin-producing Escherichia coli O157 (VTEC O157). However, as yet there is no common allelic or profile nomenclature to enable laboratories to easily compare data. In this study, we carried out an inter-laboratory comparison of an eight-loci MLVA scheme using a set of 67 isolates of VTEC O157. We found all but two isolates were identical in profile in the two laboratories, and repeat units were homogeneous in size but some were incomplete. A subset of the isolates (n = 17) were sequenced to determine the actual copy number of representative alleles, thereby enabling alleles to be named according to international consensus guidelines. This work has enabled us to realize the potential of MLVA as a portable, highly discriminatory and convenient subtyping method.

  19. Development and evaluation of a multi-locus sequence typing scheme for Mycoplasma synoviae.

    PubMed

    Dijkman, R; Feberwee, A; Landman, W J M

    2016-08-01

    Reproducible molecular Mycoplasma synoviae typing techniques with sufficient discriminatory power may help to expand knowledge on its epidemiology and contribute to the improvement of control and eradication programmes of this mycoplasma species. The present study describes the development and validation of a novel multi-locus sequence typing (MLST) scheme for M. synoviae. Thirteen M. synoviae isolates originating from different poultry categories, farms and lesions, were subjected to whole genome sequencing. Their sequences were compared to that of M. synoviae reference strain MS53. A high number of single nucleotide polymorphisms (SNPs) indicating considerable genetic diversity were identified. SNPs were present in over 40 putative target genes for MLST of which five target genes were selected (nanA, uvrA, lepA, ruvB and ugpA) for the MLST scheme. This scheme was evaluated analysing 209 M. synoviae samples from different countries, categories of poultry, farms and lesions. Eleven clonal clusters and 76 different sequence types (STs) were obtained. Clustering occurred following geographical origin, supporting the hypothesis of regional population evolution. M. synoviae samples obtained from epidemiologically linked outbreaks often harboured the same ST. In contrast, multiple M. synoviae lineages were found in samples originating from swollen joints or oviducts from hens that produce eggs with eggshell apex abnormalities indicating that further research is needed to identify the genetic factors of M. synoviae that may explain its variations in tissue tropism and disease inducing potential. Furthermore, MLST proved to have a higher discriminatory power compared to variable lipoprotein and haemagglutinin A typing, which generated 50 different genotypes on the same database.

  20. Multi-locus sequence typing provides epidemiological insights for diseased sharks infected with fungi belonging to the Fusarium solani species complex.

    PubMed

    Desoubeaux, Guillaume; Debourgogne, Anne; Wiederhold, Nathan P; Zaffino, Marie; Sutton, Deanna; Burns, Rachel E; Frasca, Salvatore; Hyatt, Michael W; Cray, Carolyn

    2018-07-01

    Fusarium spp. are saprobic moulds that are responsible for severe opportunistic infections in humans and animals. However, we need epidemiological tools to reliably trace the circulation of such fungal strains within medical or veterinary facilities, to recognize environmental contaminations that might lead to infection and to improve our understanding of factors responsible for the onset of outbreaks. In this study, we used molecular genotyping to investigate clustered cases of Fusarium solani species complex (FSSC) infection that occurred in eight Sphyrnidae sharks under managed care at a public aquarium. Genetic relationships between fungal strains were determined by multi-locus sequence typing (MLST) analysis based on DNA sequencing at five loci, followed by comparison with sequences of 50 epidemiologically unrelated FSSC strains. Our genotyping approach revealed that F. keratoplasticum and F. solani haplotype 9x were most commonly isolated. In one case, the infection proved to be with another Hypocrealian rare opportunistic pathogen Metarhizium robertsii. Twice, sharks proved to be infected with FSSC strains with the same MLST sequence type, supporting the hypothesis the hypothesis that common environmental populations of fungi existed for these sharks and would suggest the longtime persistence of the two clonal strains within the environment, perhaps in holding pools and life support systems of the aquarium. This study highlights how molecular tools like MLST can be used to investigate outbreaks of microbiological disease. This work reinforces the need for regular controls of water quality to reduce microbiological contamination due to waterborne microorganisms.

  1. Rapid pulsed-field gel electrophoresis protocol for subtyping of Streptococcus suis serotype 2.

    PubMed

    Luey, Cindy K Y; Chu, Yiu Wai; Cheung, Terence K M; Law, Catherine C P; Chu, Man Yu; Cheung, Danny T L; Kam, Kai Man

    2007-03-01

    A rapid pulsed-field gel electrophoresis (PFGE) protocol for subtyping of Streptococcus suis serotype 2 was developed and evaluated using 27 clinical isolates from 22 epidemiologically unrelated patients. Results were matched against antibiogram, virulence genotyping and multi locus sequence typing (MLST). PFGE appeared to be the most discriminatory with numerical index of discrimination (D) equal to 0.87.

  2. Multi-Virulence-Locus Sequence Typing of Staphylococcus lugdunensis Generates Results Consistent with a Clonal Population Structure and Is Reliable for Epidemiological Typing

    PubMed Central

    Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis

    2014-01-01

    Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. PMID:25078912

  3. Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...

  4. Serotypes, antibiotic susceptibilities, and multi-locus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China.

    PubMed

    Wang, Ping; Tong, Jing-jing; Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong

    2015-01-01

    To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB.

  5. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics.

    PubMed

    Chau, John H; Rahfeldt, Wolfgang A; Olmstead, Richard G

    2018-03-01

    Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.

  6. Clinical characteristics and treatment outcomes of pulmonary disease caused by Mycobacterium chimaera.

    PubMed

    Moon, Seong Mi; Kim, Su-Young; Jhun, Byung Woo; Lee, Hyun; Park, Hye Yun; Jeon, Kyeongman; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong; Shin, Sung Jae; Koh, Won-Jung

    2016-12-01

    Mycobacterium chimaera is a recently described species distinct from M. intracellulare. M. chimaera is regarded as less virulent than M. intracellulare. Using multi-locus sequence-based identification, M. chimaera lung disease was diagnosed in 11 patients. Clinical characteristics and outcomes of M. chimaera lung disease were comparable to M. intracellulare lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Novel Multi-Locus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum Species Complexes within the U. S.

    USDA-ARS?s Scientific Manuscript database

    Results of the present study reveal that members of the Fusarium incarnatum-equiseti (FIESC) and F. chlamydosporum species complexes (FCSC) collectively account for approximately 15% of all fusarial infections of humans and other animals within the U. S. Moreover, the diverse toxins these fungi pro...

  8. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing

    PubMed Central

    Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph

    2011-01-01

    Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797

  9. Is the extremely rare Iberian endemic plant species Castrilanthemum debeauxii (Compositae, Anthemideae) a 'living fossil'? Evidence from a multi-locus species tree reconstruction.

    PubMed

    Tomasello, Salvatore; Álvarez, Inés; Vargas, Pablo; Oberprieler, Christoph

    2015-01-01

    The present study provides results of multi-species coalescent species tree analyses of DNA sequences sampled from multiple nuclear and plastid regions to infer the phylogenetic relationships among the members of the subtribe Leucanthemopsidinae (Compositae, Anthemideae), to which besides the annual Castrilanthemum debeauxii (Degen, Hervier & É.Rev.) Vogt & Oberp., one of the rarest flowering plant species of the Iberian Peninsula, two other unispecific genera (Hymenostemma, Prolongoa), and the polyploidy complex of the genus Leucanthemopsis belong. Based on sequence information from two single- to low-copy nuclear regions (C16, D35, characterised by Chapman et al. (2007)), the multi-copy region of the nrDNA internal transcribed spacer regions ITS1 and ITS2, and two intergenic spacer regions of the cpDNA gene trees were reconstructed using Bayesian inference methods. For the reconstruction of a multi-locus species tree we applied three different methods: (a) analysis of concatenated sequences using Bayesian inference (MrBayes), (b) a tree reconciliation approach by minimizing the number of deep coalescences (PhyloNet), and (c) a coalescent-based species-tree method in a Bayesian framework ((∗)BEAST). All three species tree reconstruction methods unequivocally support the close relationship of the subtribe with the hitherto unclassified genus Phalacrocarpum, the sister-group relationship of Castrilanthemum with the three remaining genera of the subtribe, and the further sister-group relationship of the clade of Hymenostemma+Prolongoa with a monophyletic genus Leucanthemopsis. Dating of the (∗)BEAST phylogeny supports the long-lasting (Early Miocene, 15-22Ma) taxonomical independence and the switch from the plesiomorphic perennial to the apomorphic annual life-form assumed for the Castrilanthemum lineage that may have occurred not earlier than in the Pliocene (3Ma) when the establishment of a Mediterranean climate with summer droughts triggered evolution towards annuality. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Molecular epidemiological characteristics of Salmonella enterica serovars Enteritidis, Typhimurium and Livingstone strains isolated in a Tunisian university hospital.

    PubMed

    Ktari, Sonia; Ksibi, Boutheina; Gharsallah, Houda; Mnif, Basma; Maalej, Sonda; Rhimi, Fouzia; Hammami, Adnene

    2016-03-01

    Enteritidis, Typhimurium and Livingstone are the main Salmonella enterica serovars recovered in Tunisia. Here, we aimed to assess the genetic diversity of fifty-seven Salmonella enterica strains from different sampling periods, origins and settings using pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA). Salmonella Enteritidis, isolated from human and food sources from two regions in Sfax in 2007, were grouped into one cluster using PFGE. However, using MLVA these strains were divided into two clusters. Salmonella Typhimurium strains, recovered in 2012 and represent sporadic cases of human clinical isolates, were included in one PFGE cluster. Nevertheless, the MLVA technique, divided Salmonella Typhimurium isolates into six clusters with diversity index reaching (DI = 0.757). For Salmonella Livingstone which was responsible of two nosocomial outbreaks during 2000-2003, the PFGE and MLVA methods showed that these strains were genetically closely related. Salmonella Enteritidis and Salmonella Livingstone populations showed a single ST lineage ST11 and ST543 respectively. For Salmonella Typhimurium, two MLST sequence types ST19 and ST328 were defined. Salmonella Enteritidis and Salmonella Typhimurium strains were clearly differentiated by MLVA which was not the case using PFGE. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  11. The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.

    PubMed

    Abd El Ghany, Moataz; Chander, Jagadish; Mutreja, Ankur; Rashid, Mamoon; Hill-Cawthorne, Grant A; Ali, Shahjahan; Naeem, Raeece; Thomson, Nicholas R; Dougan, Gordon; Pain, Arnab

    2014-07-01

    Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century. Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters. The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.

  12. Serotypes, Antibiotic Susceptibilities, and Multi-Locus Sequence Type Profiles of Streptococcus agalactiae Isolates Circulating in Beijing, China

    PubMed Central

    Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong

    2015-01-01

    Background To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. Methods All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. Results In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. Conclusion S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB. PMID:25781346

  13. Multi-virulence-locus sequence typing of Staphylococcus lugdunensis generates results consistent with a clonal population structure and is reliable for epidemiological typing.

    PubMed

    Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis; Pestel-Caron, Martine

    2014-10-01

    Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE PAGES

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.; ...

    2016-09-20

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  15. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  16. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  17. Pulsed-field gel electrophoresis and multi locus sequence typing for characterizing genotype variability of Yersinia ruckeri isolated from farmed fish in France.

    PubMed

    Calvez, Ségolène; Fournel, Catherine; Douet, Diane-Gaëlle; Daniel, Patrick

    2015-06-23

    Yersinia ruckeri is a pathogen that has an impact on aquaculture worldwide. The disease caused by this bacterial species, yersiniosis or redmouth disease, generates substantial economic losses due to the associated mortality and veterinary costs. For predicting outbreaks and improving control strategies, it is important to characterize the population structure of the bacteria. The phenotypic and genetic homogeneities described previously indicate a clonal population structure as observed in other fish bacteria. In this study, the pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST) methods were used to describe a population of isolates from outbreaks on French fish farms. For the PFGE analysis, two enzymes (NotI and AscI) were used separately and together. Results from combining the enzymes showed the great homogeneity of the outbreak population with a similarity > 80.0% but a high variability within the cluster (cut-off value = 80.0%) with a total of 43 pulsotypes described and an index of diversity = 0.93. The dominant pulsotypes described with NotI (PtN4 and PtN7) have already been described in other European countries (Finland, Germany, Denmark, Spain and Italy). The MLST approach showed two dominant sequence types (ST31 and ST36), an epidemic structure of the French Y. ruckeri population and a preferentially clonal evolution for rainbow trout isolates. Our results point to multiple types of selection pressure on the Y. ruckeri population attributable to geographical origin, ecological niche specialization and movements of farmed fish.

  18. Complex dissemination of the diversified mcr-1-harbouring plasmids in Escherichia coli of different sequence types

    PubMed Central

    Lin, Jingxia; Wang, Xiuna; Deng, Xianbo; Feng, Youjun

    2016-01-01

    The emergence of the mobilized colistin resistance gene, representing a novel mechanism for bacterial drug resistance, challenges the last resort against the severe infections by Gram-negative bacteria with multi-drug resistances. Very recently, we showed the diversity in the mcr-1-carrying plasmid reservoirs from the gut microbiota. Here, we reported that a similar but more complex scenario is present in the healthy swine populations, Southern China, 2016. Amongst the 1026 pieces of Escherichia coli isolates from 3 different pig farms, 302 E. coli isolates were determined to be positive for the mcr-1 gene (30%, 302/1026). Multi-locus sequence typing assigned no less than 11 kinds of sequence types including one novel Sequence Type to these mcr-1-positive strains. PCR analyses combined with the direct DNA sequencing revealed unexpected complexity of the mcr-1-harbouring plasmids whose backbones are at least grouped into 6 types four of which are new. Transcriptional analyses showed that the mcr-1 promoter of different origins exhibits similar activity. It seems likely that complex dissemination of the diversified mcr-1-bearing plasmids occurs amongst the various ST E. coli inhabiting the healthy swine populations, in Southern China. PMID:27741523

  19. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples

    PubMed Central

    Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara

    2017-01-01

    Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743

  20. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples.

    PubMed

    Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther

    2017-10-01

    DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.

  1. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci.

    PubMed

    Chantha, Sier-Ching; Herman, Adam C; Castric, Vincent; Vekemans, Xavier; Marande, William; Schoen, Daniel J

    2017-12-01

    The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Microbiological and molecular characterization of Corynebacterium diphtheriae isolated in Algeria between 1992 and 2015.

    PubMed

    Benamrouche, N; Hasnaoui, S; Badell, E; Guettou, B; Lazri, M; Guiso, N; Rahal, K

    2016-12-01

    The objectives of this study were to undertake the microbiological and molecular characterization of Corynebacterium diphtheriae isolates collected in Algeria during epidemic and post-epidemic periods between 1992 and 2015. Microbiological characterization includes the determination of biotype and toxigenicity status using phenotypic and genotypic methods. Antimicrobial susceptibility was determined by the E-test method. Molecular characterization was performed by multi-locus sequence typing. In total, there were 157 cases of C. diphtheriae isolates, 127 in patients with respiratory diphtheria and 30 with ozena. Isolates with a mitis biotype were predominant (122 out of 157; 77.7%) followed by belfanti (28 out of 157; 17.8%) and gravis biotype (seven out of 157; 4.5%). Toxigenic isolates were predominant in the period 1992-2006 (74 out of 134) whereas in the period 2007-2015, only non-toxigenic isolates circulated (23 out of 23). All 157 isolates were susceptible to erythromycin, gentamicin, vancomycin and cotrimoxazole. Reduced susceptibility to penicillin G, cefotaxime, tetracycline and chloramphenicol was detected in 90 (57.3%), 88 (56.1%), 112 (71.3%) and 90 (57.3%) isolates, respectively. Multi-locus sequence typing analysis indicates that sequence type 116 (ST-116) was the most frequent, with 65 out of 100 isolates analysed, in particular during the epidemic period 1992-1999 (57 out of 65 isolates). In the post-epidemic period, 2000-2015, 13 different sequence types were isolated. All belfanti isolates (ten out of 100 isolates) belonged to closely related sequence types grouped in a phylogenetically distinct eBurst group and were collected exclusively in ozena cases. In conclusion, the epidemic period was associated with ST-116 while the post-epidemic period was characterized by more diversity. Belfanti isolates are grouped in a phylogenetically distinct clonal complex. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1

    PubMed Central

    Jabbari, Neda; Reddy, Panga Jaipal; Hood, Leroy

    2018-01-01

    Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain. PMID:29889842

  4. Population sub-structuring among Trypanosoma evansi stocks.

    PubMed

    Njiru, Z K; Constantine, C C

    2007-10-01

    To investigate the population genetic structure of Trypanosoma evansi from domesticated animals, we have analysed 112 stocks from camels, buffaloes, cattle and horses using the tandemly repeated coding sequence (MORF2) and minisatellite markers 292 and cysteine-rich acidic integral membrane protein (CRAM). We recorded a total of six alleles at the MORF2 locus, seven at 292 and 12 at the CRAM loci. Nei's genetic distance showed reduced allelic diversity between buffaloes and cattle stocks (1.2) as compared to the diversity between camels and buffaloes (3.75) and camels and cattle stock (1.69). The mean index of association (IA=0.92) significantly deviated from zero, and the average number of multilocus genotypes (G/N ratio) was 0.21. Twenty-four multilocus genotypes were defined from the combination of alleles at the three loci. The Kenyan sub-populations showed Fst=0.28 and analysis of molecular variance showed significant divergence (22.7%) between the Laikipia, Kulal and Galana regions. The regional and host distribution of multi-locus genotypes significant population differentiation and high Nei's genetic distances suggest existence of genetic sub-structuring within T. evansi stocks while the few multi-locus genotypes and deviation of association index from zero indicate the lack of recombination. In conclusion, this study reveals that some genetic sub-structuring does occur within T. evansi, which has a clonal population structure.

  5. Reevaluating the serotype II capsular locus of Streptococcus agalactiae.

    PubMed

    Martins, E R; Melo-Cristino, J; Ramirez, M

    2007-10-01

    We report a novel sequence of the serotype II capsular locus of group B streptococcus that resolves inconsistencies among the results of various groups and the sequence in GenBank. This locus was found in diverse lineages and presents genes consistent with the complete synthesis of the type II polysaccharide.

  6. Isolation of Cryptococcus gattii from a Castanopsis argyrophylla tree hollow (Mai-Kaw), Chiang Mai, Thailand.

    PubMed

    Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana

    2017-04-01

    The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.

  7. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  8. Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study.

    PubMed

    López-Causapé, Carla; de Dios-Caballero, Juan; Cobo, Marta; Escribano, Amparo; Asensio, Óscar; Oliver, Antonio; Del Campo, Rosa; Cantón, Rafael; Solé, Amparó; Cortell, Isidoro; Asensio, Oscar; García, Gloria; Martínez, María Teresa; Cols, María; Salcedo, Antonio; Vázquez, Carlos; Baranda, Félix; Girón, Rosa; Quintana, Esther; Delgado, Isabel; de Miguel, María Ángeles; García, Marta; Oliva, Concepción; Prados, María Concepción; Barrio, María Isabel; Pastor, María Dolores; Olveira, Casilda; de Gracia, Javier; Álvarez, Antonio; Escribano, Amparo; Castillo, Silvia; Figuerola, Joan; Togores, Bernat; Oliver, Antonio; López, Carla; de Dios Caballero, Juan; Tato, Marta; Máiz, Luis; Suárez, Lucrecia; Cantón, Rafael

    2017-09-01

    The first Spanish multi-centre study on the microbiology of cystic fibrosis (CF) was conducted from 2013 to 2014. The study involved 24 CF units from 17 hospitals, and recruited 341 patients. The aim of this study was to characterise Pseudomonas aeruginosa isolates, 79 of which were recovered from 75 (22%) patients. The study determined the population structure, antibiotic susceptibility profile and genetic background of the strains. Fifty-five percent of the isolates were multi-drug-resistant, and 16% were extensively-drug-resistant. Defective mutS and mutL genes were observed in mutator isolates (15.2%). Considerable genetic diversity was observed by pulsed-field gel electrophoresis (70 patterns) and multi-locus sequence typing (72 sequence types). International epidemic clones were not detected. Fifty-one new and 14 previously described array tube (AT) genotypes were detected by AT technology. This study found a genetically unrelated and highly diverse CF P. aeruginosa population in Spain, not represented by the epidemic clones widely distributed across Europe, with multiple combinations of virulence factors and high antimicrobial resistance rates (except for colistin). Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode.

    PubMed

    Afzal, Ahmed J; Srour, Ali; Saini, Navinder; Hemmati, Naghmeh; El Shemy, Hany A; Lightfoot, David A

    2012-04-01

    Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.

  10. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars

    PubMed Central

    Shahin, Arwa; Smulders, Marinus J. M.; van Tuyl, Jaap M.; Arens, Paul; Bakker, Freek T.

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  11. Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Dolatabadi, Somayeh; Kolecka, Anna; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    2015-07-01

    This study addresses the usefulness of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS for reliable identification of the two most frequently occurring clinical species of Rhizopus, namely Rhizopus arrhizus with its two varieties, arrhizus and delemar, and Rhizopus microsporus. The test-set comprised 38 isolates of clinical and environmental origin previously identified by internal transcribed spacer (ITS) sequencing of rDNA. Multi-locus sequence data targeting three gene markers (ITS, ACT, TEF ) showed two monophylic clades for Rhizopus arrhizus and Rhizopus microsporus (bootstrap values of 99 %). Cluster analysis confirmed the presence of two distinct clades within Rhizopus arrhizus representing its varieties arrhizus and delemar. The MALDI Biotyper 3.0 Microflex LT platform (Bruker Daltonics) was used to confirm the distinction between Rhizopus arrhizus and Rhizopus microsporus and the presence of two varieties within the species Rhizopus arrhizus. An in-house database of 30 reference main spectra (MSPs) was initially tested for correctness using commercially available databases of Bruker Daltonics. By challenging the database with the same strains of which an in-house database was created, automatic identification runs confirmed that MALDI-TOF MS is able to recognize the strains at the variety level. Based on principal component analysis, two MSP dendrograms were created and showed concordance with the multi-locus tree; thus, MALDI-TOF MS is a useful tool for diagnostics of mucoralean species.

  12. Identification and typing of Brucella spp. in stranded harbour porpoises (Phocoena phocoena) on the Dutch coast.

    PubMed

    Maio, Elisa; Begeman, Lineke; Bisselink, Yvette; van Tulden, Peter; Wiersma, Lidewij; Hiemstra, Sjoukje; Ruuls, Robin; Gröne, Andrea; Roest, Hendrik-Ido-Jan; Willemsen, Peter; van der Giessen, Joke

    2014-09-17

    The presence of Brucella (B.) spp. in harbour porpoises stranded between 2008 and 2011 along the Dutch coast was studied. A selection of 265 tissue samples from 112 animals was analysed using conventional and molecular methods. In total, 4.5% (5/112) of the animals corresponding with 2.3% (6/265) Brucella positive tissue samples were Brucella positive by culture and these were all confirmed by real-time polymerase chain reaction (real-time PCR) based on the insertion element 711 (IS711). In addition, two more Brucella-positive tissue samples from two animals collected in 2011 were identified using real-time PCR resulting in an overall Brucella prevalence of 6.3% (7/112 animals). Brucella spp. were obtained from lungs (n=3), pulmonary lymph node (n=3) and lungworms (n=2). Multi Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) typing based on the MLVA-16 showed that the Brucella isolates were B. ceti. Additional in silico Multi Locus Sequence typing (MLST) after whole genome sequencing of the 6 Brucella isolates confirmed B. ceti ST 23. According to the Brucella 2010 MLVA database, the isolated Brucella strains encountered were of five genotypes, in two distinct subclusters divided in two different time periods of harbour porpoises collection. This study is the first population based analyses for Brucella spp. infections in cetaceans stranded along the Dutch coast. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model.

    PubMed

    Chasnov, J R; Ye, Felix Xiaofeng

    2013-02-01

    A fast algorithm for computing multi-locus recombination is extended to include a recombination-modifier locus. This algorithm and a linear stability analysis is used to investigate the evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model for which stable equilibria have recently been determined. When the starting equilibrium is symmetric with two selected loci, we show analytically that modifier alleles that reduce recombination always invade. When the starting equilibrium is monomorphic, and there is a fixed nonzero recombination rate between the modifier locus and the selected loci, we determine analytical conditions for which a modifier allele can invade. In particular, we show that a gap exists between the recombination rates of modifiers that can invade and the recombination rate that specifies the lower stability boundary of the monomorphic equilibrium. A numerical investigation shows that a similar gap exists in a weakened form when the starting equilibrium is fully polymorphic but asymmetric. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications.

    PubMed

    Chaara, Dhekra; Ravel, Christophe; Bañuls, Anne- Laure; Haouas, Najoua; Lami, Patrick; Talignani, Loïc; El Baidouri, Fouad; Jaouadi, Kaouther; Harrat, Zoubir; Dedet, Jean-Pierre; Babba, Hamouda; Pratlong, Francine

    2015-04-01

    The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.

  15. Sequence and Characterization of the Ig Heavy Chain Constant and Partial Variable Region of the Mouse Strain 129S11

    PubMed Central

    Retter, Ida; Chevillard, Christophe; Scharfe, Maren; Conrad, Ansgar; Hafner, Martin; Im, Tschong-Hun; Ludewig, Monika; Nordsiek, Gabriele; Severitt, Simone; Thies, Stephanie; Mauhar, America; Blöcker, Helmut; Müller, Werner; Riblet, Roy

    2009-01-01

    Although the entire mouse genome has been sequenced, there remain challenges concerning the elucidation of particular complex and polymorphic genomic loci. In the murine Igh locus, different haplotypes exist in different inbred mouse strains. For example, the Ighb haplotype sequence of the Mouse Genome Project strain C57BL/6 differs considerably from the Igha haplotype of BALB/c, which has been widely used in the analyses of Ab responses. We have sequenced and annotated the 3′ half of the Igha locus of 129S1/SvImJ, covering the CH region and approximately half of the VH region. This sequence comprises 128 VH genes, of which 49 are judged to be functional. The comparison of the Igha sequence with the homologous Ighb region from C57BL/6 revealed two major expansions in the germline repertoire of Igha. In addition, we found smaller haplotype-specific differences like the duplication of five VH genes in the Igha locus. We generated a VH allele table by comparing the individual VH genes of both haplotypes. Surprisingly, the number and position of DH genes in the 129S1 strain differs not only from the sequence of C57BL/6 but also from the map published for BALB/c. Taken together, the contiguous genomic sequence of the 3′ part of the Igha locus allows a detailed view of the recent evolution of this highly dynamic locus in the mouse. PMID:17675503

  16. Development of ten microsatellite loci in the invasive giant African land snail, Achatina (=Lissachatina) fulica Bowdich, 1822

    USGS Publications Warehouse

    Morrison, Cheryl L.; Springmann, Marcus J.; Iwanowicz, Deborah D.; Wade, Christopher M.

    2015-01-01

    A suite of tetra-nucleotide microsatellite loci were developed for the invasive giant African land snail, Achatina (=Lissachatina) fulica Bowdich, 1822, from Ion Torrent next-generation sequencing data. Ten of the 96 primer sets tested amplified consistently in 30 snails from Miami, Florida, plus 12 individuals representative of their native East Africa, Indian and Pacific Ocean regions. The loci displayed moderate levels of allelic diversity (average 5.6 alleles/locus) and heterozygosity (average 42 %). Levels of genetic diversity were sufficient to produce unique multi-locus genotypes and detect phylogeographic structuring among regional samples. The invasive A. fulica can cause extensive damage to important food crops and natural resources, including native flora and fauna. The loci characterized here will be useful for determining the origins and tracking the spread of invasions, detecting fine-scale spatial structuring and estimating demographic parameters.

  17. Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of Salmonella Isolates Obtained from Integrated Surveillance in Denmark.

    PubMed

    de Knegt, Leonardo V; Pires, Sara M; Löfström, Charlotta; Sørensen, Gitte; Pedersen, Karl; Torpdahl, Mia; Nielsen, Eva M; Hald, Tine

    2016-03-01

    Salmonella is an important cause of bacterial foodborne infections in Denmark. To identify the main animal-food sources of human salmonellosis, risk managers have relied on a routine application of a microbial subtyping-based source attribution model since 1995. In 2013, multiple locus variable number tandem repeat analysis (MLVA) substituted phage typing as the subtyping method for surveillance of S. Enteritidis and S. Typhimurium isolated from animals, food, and humans in Denmark. The purpose of this study was to develop a modeling approach applying a combination of serovars, MLVA types, and antibiotic resistance profiles for the Salmonella source attribution, and assess the utility of the results for the food safety decisionmakers. Full and simplified MLVA schemes from surveillance data were tested, and model fit and consistency of results were assessed using statistical measures. We conclude that loci schemes STTR5/STTR10/STTR3 for S. Typhimurium and SE9/SE5/SE2/SE1/SE3 for S. Enteritidis can be used in microbial subtyping-based source attribution models. Based on the results, we discuss that an adjustment of the discriminatory level of the subtyping method applied often will be required to fit the purpose of the study and the available data. The issues discussed are also considered highly relevant when applying, e.g., extended multi-locus sequence typing or next-generation sequencing techniques. © 2015 Society for Risk Analysis.

  18. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  19. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat.

    PubMed

    Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony

    2016-08-01

    Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. Dogs Leaving the ICU Carry a Very Large Multi-Drug Resistant Enterococcal Population with Capacity for Biofilm Formation and Horizontal Gene Transfer

    PubMed Central

    Ghosh, Anuradha; Dowd, Scot E.; Zurek, Ludek

    2011-01-01

    The enterococcal community from feces of seven dogs treated with antibiotics for 2–9 days in the veterinary intensive care unit (ICU) was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×108 CFU gram−1 of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6%) and Enterococcus faecalis (45.4%). E. faecium was frequently resistant to enrofloxacin (97.3%), ampicillin (96.5%), tetracycline (84.1%), doxycycline (60.2%), erythromycin (53.1%), gentamicin (48.7%), streptomycin (42.5%), and nitrofurantoin (26.5%). In E. faecalis, resistance was common to tetracycline (59.6%), erythromycin (56.4%), doxycycline (53.2%), and enrofloxacin (31.9%). No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST) of nine representative MLVA types revealed that six sequence types (STs) originating from five dogs were identical or closely related to STs of human clinical isolates and isolates from hospital outbreaks. It is recommended to restrict close physical contact between pets released from the ICU and their owners to avoid potential health risks. PMID:21811613

  1. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency.

    PubMed

    Moradi, Sharif; Sharifi-Zarchi, Ali; Ahmadi, Amirhossein; Mollamohammadi, Sepideh; Stubenvoll, Alexander; Günther, Stefan; Salekdeh, Ghasem Hosseini; Asgari, Sassan; Braun, Thomas; Baharvand, Hossein

    2017-12-12

    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-09-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.

  3. Analysis of an "off-ladder" allele at the Penta D short tandem repeat locus.

    PubMed

    Yang, Y L; Wang, J G; Wang, D X; Zhang, W Y; Liu, X J; Cao, J; Yang, S L

    2015-11-25

    Kinship testing of a father and his son from Guangxi, China, the location of the Zhuang minority people, was performed using the PowerPlex® 18D System with a short tandem repeat typing kit. The results indicated that both the father and his son had an off-ladder allele at the Penta D locus, with a genetic size larger than that of the maximal standard allelic ladder. To further identify this locus, monogenic amplification, gene cloning, and genetic sequencing were performed. Sequencing analysis demonstrated that the fragment size of the Penta D-OL locus was 469 bp and the core sequence was [AAAGA]21, also called Penta D-21. The rare Penta D-21 allele was found to be distributed among the Zhuang population from the Guangxi Zhuang Autonomous Region of China; therefore, this study improved the range of DNA data available for this locus and enhanced our ability for individual identification of gene loci.

  4. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  5. Development of a High-Resolution Multi-Locus Microsatellite Typing Method for Colletotrichum gloeosporioides.

    PubMed

    Mehta, Nikita; Hagen, Ferry; Aamir, Sadaf; Singh, Sanjay K; Baghela, Abhishek

    2017-12-01

    Colletotrichum gloeosporioides is an economically important fungal pathogen causing substantial yield losses indifferent host plants. To understand the genetic diversity and molecular epidemiology of this fungus, we have developed a novel, high-resolution multi-locus microsatellite typing (MLMT) method. Bioinformatic analysis of C. gloeosporioides unannotated genome sequence yielded eight potential microsatellite loci, of which five, CG1 (GT) n , CG2 (GT1) n , CG3 (TC) n , CG4 (CT) n , and CG5 (CT1) n were selected for further study based on their universal amplification potential, reproducibility, and repeat number polymorphism. The selected microsatellites were used to analyze 31 strains of C. gloeosporioides isolated from 20 different host plants from India. All microsatellite loci were found to be polymorphic, and the approximate fragment sizes of microsatellite loci CG1, CG2, CG3, CG4, and CG5 were in ranges of 213-241, 197-227, 231-265, 209-275, and 132-188, respectively. Among the 31 isolates, 55 different genotypes were identified. The Simpson's index of diversity (D) values for the individual locus ranged from 0.79 to 0.92, with the D value of all combined five microsatellite loci being 0.99. Microsatellite data analysis revealed that isolates from Ocimum sanctum , Capsicum annuum (chili pepper), and Mangifera indica (mango) formed distinct clusters, therefore exhibited some level of correlation between certain genotypes and host. The developed MLMT method would be a powerful tool for studying the genetic diversity and any possible genotype-host correlation in C. gloeosporioides .

  6. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.

  7. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis.

    PubMed

    Morrison, Cheryl L; Iwanowicz, Luke; Work, Thierry M; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  8. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    USGS Publications Warehouse

    Morrison, Cheryl L.; Iwanowicz, Luke R.; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deborah; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  9. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    PubMed Central

    Iwanowicz, Luke; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants. PMID:29479497

  10. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014).

    PubMed

    Kim, Seon Woo; Haendiges, Julie; Keller, Eric N; Myers, Robert; Kim, Alexander; Lombard, Jason E; Karns, Jeffrey S; Van Kessel, Jo Ann S; Haley, Bradd J

    2018-01-01

    Unpasteurized dairy products are known to occasionally harbor Listeria monocytogenes and have been implicated in recent listeriosis outbreaks and numerous sporadic cases of listeriosis. However, the diversity and virulence profiles of L. monocytogenes isolates recovered from these products have not been fully described. Here we report a genomic analysis of 121 L. monocytogenes isolates recovered from milk, milk filters, and milking equipment collected from bovine dairy farms in 19 states over a 12-year period. In a multi-virulence-locus sequence typing (MVLST) analysis, 59 Virulence Types (VT) were identified, of which 25% were Epidemic Clones I, II, V, VI, VII, VIII, IX, or X, and 31 were novel VT. In a multi-locus sequence typing (MLST) analysis, 60 Sequence Types (ST) of 56 Clonal Complexes (CC) were identified. Within lineage I, CC5 and CC1 were among the most abundant, and within lineage II, CC7 and CC37 were the most abundant. Multiple CCs previously associated with central nervous system and maternal-neonatal infections were identified. A genomic analysis identified variable distribution of virulence markers, Listeria pathogenicity islands (LIPI) -1, -3, and -4, and stress survival island-1 (SSI-1). Of these, 14 virulence markers, including LIPI-3 and -4 were more frequently detected in one lineage (I or II) than the other. LIPI-3 and LIPI-4 were identified in 68% and 28% of lineage I CCs, respectively. Results of this analysis indicate that there is a high level of genetic diversity among the L. monocytogenes present in bulk tank milk in the United States with some strains being more frequently detected than others, and some being similar to those that have been isolated from previous non-dairy related outbreaks. Results of this study also demonstrate significant number of strains isolated from dairy farms encode virulence markers associated with severe human disease.

  11. Minimal and Contributing Sequence Determinants of the cis-Acting Locus of Transfer (clt) of Streptomycete Plasmid pIJ101 Occur within an Intrinsically Curved Plasmid Region

    PubMed Central

    Ducote, Matthew J.; Prakash, Shubha; Pettis, Gregg S.

    2000-01-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3′ end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer. PMID:11073933

  12. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    PubMed

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  13. Distribution and factors associated with Salmonella enterica genotypes in a diverse population of humans and animals in Qatar using multi-locus sequence typing (MLST).

    PubMed

    Chang, Yu C; Scaria, Joy; Ibraham, Mariamma; Doiphode, Sanjay; Chang, Yung-Fu; Sultan, Ali; Mohammed, Hussni O

    2016-01-01

    Salmonella enterica is one of the most commonly reported causes of bacterial foodborne illness around the world. Understanding the sources of this pathogen and the associated factors that exacerbate its risk to humans will help in developing risk mitigation strategies. The genetic relatedness among Salmonella isolates recovered from human gastroenteritis cases and food animals in Qatar were investigated in the hope of shedding light on these sources, their possible transmission routes, and any associated factors. A repeat cross-sectional study was conducted in which the samples and associated data were collected from both populations (gastroenteritis cases and animals). Salmonella isolates were initially analyzed using multi-locus sequence typing (MLST) to investigate the genetic diversity and clonality. The relatedness among the isolates was assessed using the minimum spanning tree (MST). Twenty-seven different sequence types (STs) were identified in this study; among them, seven were novel, including ST1695, ST1696, ST1697, ST1698, ST1699, ST1702, and ST1703. The pattern of overall ST distribution was diverse; in particular, it was revealed that ST11 and ST19 were the most common sequence types, presenting 29.5% and 11.5% within the whole population. In addition, 20 eBurst Groups (eBGs) were identified in our data, which indicates that ST11 and ST19 belonged to eBG4 and eBG1, respectively. In addition, the potential association between the putative risk factors and eBGs were evaluated. There was no significant clustering of these eBGs by season; however, a significant association was identified in terms of nationality in that Qataris were six times more likely to present with eBG1 compared to non-Qataris. In the MST analysis, four major clusters were presented, namely, ST11, ST19, ST16, and ST31. The linkages between the clusters alluded to a possible transmission route. The results of the study have provided insight into the ST distributions of S. enterica and their possible zoonotic associations in Qatar. Published by Elsevier Ltd.

  14. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed Central

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-01-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521

  15. Multi-locus variable number tandem repeat analysis for Escherichia coli causing extraintestinal infections.

    PubMed

    Manges, Amee R; Tellis, Patricia A; Vincent, Caroline; Lifeso, Kimberley; Geneau, Geneviève; Reid-Smith, Richard J; Boerlin, Patrick

    2009-11-01

    Discriminatory genotyping methods for the analysis of Escherichia coli other than O157:H7 are necessary for public health-related activities. A new multi-locus variable number tandem repeat analysis protocol is presented; this method achieves an index of discrimination of 99.5% and is reproducible and valid when tested on a collection of 836 diverse E. coli.

  16. GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures.

    PubMed

    Urbanowicz, Ryan J; Kiralis, Jeff; Sinnott-Armstrong, Nicholas A; Heberling, Tamra; Fisher, Jonathan M; Moore, Jason H

    2012-10-01

    Geneticists who look beyond single locus disease associations require additional strategies for the detection of complex multi-locus effects. Epistasis, a multi-locus masking effect, presents a particular challenge, and has been the target of bioinformatic development. Thorough evaluation of new algorithms calls for simulation studies in which known disease models are sought. To date, the best methods for generating simulated multi-locus epistatic models rely on genetic algorithms. However, such methods are computationally expensive, difficult to adapt to multiple objectives, and unlikely to yield models with a precise form of epistasis which we refer to as pure and strict. Purely and strictly epistatic models constitute the worst-case in terms of detecting disease associations, since such associations may only be observed if all n-loci are included in the disease model. This makes them an attractive gold standard for simulation studies considering complex multi-locus effects. We introduce GAMETES, a user-friendly software package and algorithm which generates complex biallelic single nucleotide polymorphism (SNP) disease models for simulation studies. GAMETES rapidly and precisely generates random, pure, strict n-locus models with specified genetic constraints. These constraints include heritability, minor allele frequencies of the SNPs, and population prevalence. GAMETES also includes a simple dataset simulation strategy which may be utilized to rapidly generate an archive of simulated datasets for given genetic models. We highlight the utility and limitations of GAMETES with an example simulation study using MDR, an algorithm designed to detect epistasis. GAMETES is a fast, flexible, and precise tool for generating complex n-locus models with random architectures. While GAMETES has a limited ability to generate models with higher heritabilities, it is proficient at generating the lower heritability models typically used in simulation studies evaluating new algorithms. In addition, the GAMETES modeling strategy may be flexibly combined with any dataset simulation strategy. Beyond dataset simulation, GAMETES could be employed to pursue theoretical characterization of genetic models and epistasis.

  17. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing.

    PubMed

    Wang, Kui; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Zhang, Jie

    2018-04-30

    The goal of this work was to perform a systematic characterization of Bacillus thuringiensis (Bt) strains from the Bacillus Genetic Stock Center (BGSC) collection using Multi-Locus Sequence Typing (MLST). Different genetic markers of 158 Bacillus thuringiensis (Bt) strains from 73 different serovars stored in the BGSC, that represented 92% of the different Bt serovars of the BGSC were analyzed, the 8% that were not analyzed were not available. In addition, we analyzed 72 Bt strains from 18 serovars available at the pubMLST bcereus database, and Bt strains G03, HBF18 and Bt185, with no H serovars provided by our laboratory. We performed a systematic MLST analysis using seven housekeeping genes (glpF, gmK, ilvD, pta, pur, pycA and tpi) and analyzed correlation of the results of this analysis with strain serovars. The 233 Bt strains analyzed were assigned to 119 STs from which 19 STs were new. Genetic relationships were established by phylogenetic analysis and showed that STs could be grouped in two major Clusters containing 21 sub-groups. We found that a significant number of STs (101 in total) correlated with specific serovars, such as ST13 that corresponded to nine Bt isolates from B. thuringiensis serovar kenyae. However, other serovars showed high genetic variability and correlated with multiple STs; for example, B. thuringiensis serovar morrisoni correlated with 11 different STs. In addition, we found that 16 different STs correlated with multiple serovars (2-4 different serovars); for example, ST12 correlated with B. thuringiensis serovar alesti, dakota, palmanyolensis and sotto/dendrolimus. These data indicated that only partial correspondence between MLST and serotyping can be established. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Chromosomal arrangement of leghemoglobin genes in soybean.

    PubMed Central

    Lee, J S; Brown, G G; Verma, D P

    1983-01-01

    A cluster of four different leghemoglobin (Lb) genes was isolated from AluI-HaeIII and EcoRI genomic libraries of soybean in a set of overlapping clones which together include 45 kilobases (kb) of contiguous DNA. These four genes, including a pseudogene, are present in the same orientation and are arranged in the order: 5'-Lba-Lbc1-Lb psi-Lbc3-3'. The intergenic regions average 2.5 kb. In addition to this main Lb locus, there are other Lb genes which do not appear to be contiguous to this locus. A sequence probably common to the 3' region of Lb loci was found flanking the Lbc3 gene. The 3' flanking region of the main Lb locus also contains a sequence that appears to be expressed more abundantly in root tissue. Another sequence which is primarily expressed in root and leaf is found 5' to two Lb loci. Overall, the main leghemoglobin locus is similar in structure to the mammalian globin gene loci. Images PMID:6310504

  19. Is Racial Attitude Change a Function of Locus of Control?

    ERIC Educational Resources Information Center

    Sharma, Vijay

    1977-01-01

    This study explores the relationship between counselors' locus of control and the degree of change on racial attitudes followed by a structured awareness program and counseling experience on racial and multi-ethnic cultures. (Author)

  20. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1).

    PubMed

    Gupta, A; Morby, A P; Turner, J S; Whitton, B A; Robinson, N J

    1993-01-01

    Genomic rearrangements involving amplification of metallothionein (MT) genes have been reported in metal-tolerant eukaryotes. Similarly, we have recently observed amplification and rearrangement of a prokaryotic MT locus, smt, in cells of Synechococcus PCC 6301 selected for Cd tolerance. Following the characterization of this locus, the altered smt region has now been isolated from a Cd-tolerant cell line, C3.2, and its nucleotide sequence determined. This has identified a deletion within smtB, which encodes a trans-acting repressor of smt transcription. Two identical palindromic octanucleotides (5'-GCGATC-GC-3') traverse both borders of the excised element. This palindromic sequence is highly represented in the smt locus (7 occurrences in 1326 nucleotides) and analysis of the GenBank/EMBL/DDBJ DNA Nucleotide Sequence Data Libraries reveals that this is a highly iterated palindrome (HIP1) in other known sequences from Synechococcus strains (estimated to occur at an average frequency of once every c. 664 bp). HIP1 is also abundant in the genomes of other cyanobacteria. The functional significance of smtB deletion and the possible role of HIP1 in genome plasticity and adaptation in cyanobacteria are discussed.

  1. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain

    PubMed Central

    Donado-Godoy, Pilar; León, Maribel; Clavijo, Viviana; Arevalo, Alejandra; Bernal, Johan F.; Timmerman, Arjen J.; Mevius, Dik J.; Wagenaar, Jaap A.; Hordijk, Joost

    2017-01-01

    Background Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread. Objectives To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars). Methods A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L) were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT), plasmid Multi Locus Sequence Typing (pMLST), plasmid Double Locus Sequence Typing (pDLST) and/or plasmid Replicon Sequence Typing (pRST) was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST) was used for strain characterization. Results In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%), fourteen blaSHV-12 (11%), three blaSHV-5 (2%), five blaCTX-M-2 (4%), one blaCTX-M-15 (1%), one blaCTX-M-8 (1%), four a combination of blaCMY-2 and blaSHV-12 (4%) and two a combination of blaCMY-2 and blaSHV-5 (2%). A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1 plasmids harboured predominantly blaCMY-2 (16/22), and to a lesser extend blaSHV-12 (5/22) and blaCTX-M-8 (1/22). Other plasmid families associated with ESBL/AmpC-genes were IncK (4/33), IncHI2 (3/33), IncA/C (2/33), IncΒ/O (1/33) and a non-typeable replicon (1/33). Subtyping of IncI1 and IncHI2 demonstrated IncI1/ST12 was predominantly associated with blaCMY-2 (12/16) and IncHI2/ST7 with blaCTX-M-2 (2/3). Finally, 31 different STs were detected among the 39 selected isolates. Conclusions Resistance to extended spectrum cephalosporins in E. coli from Colombian poultry is mainly caused by blaCMY-2 and blaSHV-12. The high diversity of strain Sequence Types and the dissemination of homogeneous IncI1/ST12 plasmids suggest that spread of the resistance is mainly mediated by horizontal gene transfer. PMID:28125687

  2. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain.

    PubMed

    Castellanos, Luis Ricardo; Donado-Godoy, Pilar; León, Maribel; Clavijo, Viviana; Arevalo, Alejandra; Bernal, Johan F; Timmerman, Arjen J; Mevius, Dik J; Wagenaar, Jaap A; Hordijk, Joost

    2017-01-01

    Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread. To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars). A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L) were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT), plasmid Multi Locus Sequence Typing (pMLST), plasmid Double Locus Sequence Typing (pDLST) and/or plasmid Replicon Sequence Typing (pRST) was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST) was used for strain characterization. In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%), fourteen blaSHV-12 (11%), three blaSHV-5 (2%), five blaCTX-M-2 (4%), one blaCTX-M-15 (1%), one blaCTX-M-8 (1%), four a combination of blaCMY-2 and blaSHV-12 (4%) and two a combination of blaCMY-2 and blaSHV-5 (2%). A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1 plasmids harboured predominantly blaCMY-2 (16/22), and to a lesser extend blaSHV-12 (5/22) and blaCTX-M-8 (1/22). Other plasmid families associated with ESBL/AmpC-genes were IncK (4/33), IncHI2 (3/33), IncA/C (2/33), IncΒ/O (1/33) and a non-typeable replicon (1/33). Subtyping of IncI1 and IncHI2 demonstrated IncI1/ST12 was predominantly associated with blaCMY-2 (12/16) and IncHI2/ST7 with blaCTX-M-2 (2/3). Finally, 31 different STs were detected among the 39 selected isolates. Resistance to extended spectrum cephalosporins in E. coli from Colombian poultry is mainly caused by blaCMY-2 and blaSHV-12. The high diversity of strain Sequence Types and the dissemination of homogeneous IncI1/ST12 plasmids suggest that spread of the resistance is mainly mediated by horizontal gene transfer.

  3. BILATERAL RETINOCHOROIDITIS CAUSED BY AN ATYPICAL STRAIN OF TOXOPLASMA GONDII

    PubMed Central

    Bottós, Juliana; Miller, Robin H.; Belfort, Rubens N.; Macedo, Ana Carolina; Belfort, Rubens; Grigg, Michael E.

    2012-01-01

    Background A 53-year-old man presented with an acute bilateral posterior uveitis with extensive necrotizing retinochoroiditis but without chorioretinal scarring. A thorough workup did not reveal any underlying disease. The possibilities of atypical ocular toxoplasmosis as well as herpetic retinal necrosis were considered and specific therapy instituted, with little improvement. The patient died within two months as result of an undifferentiated squamous cell carcinoma. Methods Histopathological examination, immunohistochemistry and multi-locus polymerase chain reaction confirmed T. gondii infection of the retina Results Macroscopic examination of enucleated globe showed extensive retinal necrosis and vitreous detachment. Histological examination of retinal tissue identified numerous round–to-elliptical toxoplasmic cysts within the retina, with retinal necrosis and minimal choroidal inflammation. Immunohistochemical analyses confirmed the cysts were due to Toxoplasma gondii. DNA extracted from formalin-fixed, paraffin-embedded tissue sections was subjected to multi-locus PCR analysis at the following typing loci: SAG1, SAG2, SAG3, SAG4, B1, NTS2, GRA6, and GRA7. DNA sequencing of positive PCR products at the NTS2, SAG1, and GRA7 loci confirmed the presence of a non-archetypal strain of T. gondii infecting the eye of the patient experiencing a severe, atypical ocular toxoplasmosis Conclusion A highly divergent, non-archetypal strain of Toxoplasma gondii was responsible for causing a severe, atypical bilateral retinochoroiditis in a patient from Brazil. PMID:19666926

  4. Evolution and homoplasy at the Bem6 microsatellite locus in three sweetpotato whitefly (Bemisia tabaci) cryptic species

    USDA-ARS?s Scientific Manuscript database

    The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within...

  5. Evolution and homoplasy at the bem6 microsatellite locus in three Bemisia tabaci cryptic species

    USDA-ARS?s Scientific Manuscript database

    The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within...

  6. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1–q35.3 susceptibility locus identified by whole-exome sequencing

    PubMed Central

    Karolak, Justyna A; Gambin, Tomasz; Pitarque, Jose A; Molinari, Andrea; Jhangiani, Shalini; Stankiewicz, Pawel; Lupski, James R; Gajecka, Marzena

    2017-01-01

    Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in impairment of visual function. The extreme genetic heterogeneity makes it difficult to discover factors unambiguously influencing the KTCN phenotype. In this study, we used whole-exome sequencing (WES) and Sanger sequencing to reduce the number of candidate genes at the 5q31.1–q35.3 locus and to prioritize other potentially relevant variants in an Ecuadorian family with KTCN. We applied WES in two affected KTCN individuals from the Ecuadorian family that showed a suggestive linkage between the KTCN phenotype and the 5q31.1–q35.3 locus. Putative variants identified by WES were further evaluated in this family using Sanger sequencing. Exome capture discovered a total of 173 rare (minor allele frequency <0.001 in control population) nonsynonymous variants in both affected individuals. Among them, 16 SNVs were selected for further evaluation. Segregation analysis revealed that variants c.475T>G in SKP1, c.671G>A in PROB1, and c.527G>A in IL17B in the 5q31.1–q35.3 linkage region, and c.850G>A in HKDC1 in the 10q22 locus completely segregated with the phenotype in the studied KTCN family. We demonstrate that a combination of various techniques significantly narrowed the studied genomic region and reduced the list of the putative exonic variants. Moreover, since this locus overlapped two other chromosomal regions previously recognized in distinct KTCN studies, our findings suggest that this 5q31.1–q35.3 locus might be linked with KTCN. PMID:27703147

  7. Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp.).

    PubMed

    Woods, Stephanie E; Lieberman, Mia T; Lebreton, Francois; Trowel, Elise; de la Fuente-Núñez, César; Dzink-Fox, Joanne; Gilmore, Michael S; Fox, James G

    2017-01-01

    Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6')-aph(2"), aph(3')-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.

  8. Motor sequencing deficit as an endophenotype of speech sound disorder: a genome-wide linkage analysis in a multigenerational family.

    PubMed

    Peter, Beate; Matsushita, Mark; Raskind, Wendy H

    2012-10-01

    The aim of this pilot study was to investigate a measure of motor sequencing deficit as a potential endophenotype of speech sound disorder (SSD) in a multigenerational family with evidence of familial SSD. In a multigenerational family with evidence of a familial motor-based SSD, affectation status and a measure of motor sequencing during oral motor testing were obtained. To further investigate the role of motor sequencing as an endophenotype for genetic studies, parametric and nonparametric linkage analyses were carried out using a genome-wide panel of 404 microsatellites. In seven of the 10 family members with available data, SSD affectation status and motor sequencing status coincided. Linkage analysis revealed four regions of interest, 6p21, 7q32, 7q36, and 8q24, primarily identified with the measure of motor sequencing ability. The 6p21 region overlaps with a locus implicated in rapid alternating naming in a recent genome-wide dyslexia linkage study. The 7q32 locus contains a locus implicated in dyslexia. The 7q36 locus borders on a gene known to affect the component traits of language impairment. The results are consistent with a motor-based endophenotype of SSD that would be informative for genetic studies. The linkage results in this first genome-wide study in a multigenerational family with SSD warrant follow-up in additional families and with fine mapping or next-generation approaches to gene identification.

  9. Motor sequencing deficit as an endophenotype of speech sound disorder: A genome-wide linkage analysis in a multigenerational family

    PubMed Central

    Peter, Beate; Matsushita, Mark; Raskind, Wendy H.

    2012-01-01

    Objectives The purpose of this pilot study was to investigate a measure of motor sequencing deficit as a potential endophenotype of speech sound disorder (SSD) in a multigenerational family with evidence of familial SSD. Methods In a multigenerational family with evidence of a familial motor-based SSD, affectation status and a measure of motor sequencing during oral motor testing were obtained. To further investigate the role of motor sequencing as an endophenotype for genetic studies, parametric and nonparametric linkage analyses were conducted using a genome-wide panel of 404 microsatellites. Results In seven of the ten family members with available data, SSD affectation status and motor sequencing status coincided. Linkage analysis revealed four regions of interest, 6p21, 7q32, 7q36, and 8q24, primarily identified with the measure of motor sequencing ability. The 6p21 region overlaps with a locus implicated in rapid alternating naming in a recent genome-wide dyslexia linkage study. The 7q32 locus contains a locus implicated in dyslexia. The 7q36 locus borders on a gene known to affect component traits of language impairment. Conclusions Results are consistent with a motor-based endophenotype of SSD that would be informative for genetic studies. The linkage results in this first genome-wide study in a multigenerational family with SSD warrant follow-up in additional families and with fine mapping or next-generation approaches to gene identification. PMID:22517379

  10. Rapid microsatellite marker development using next generation pyrosequencing to inform invasive Burmese python -- Python molurus bivittatus -- management

    USGS Publications Warehouse

    Hunter, Margaret E.; Hart, Kristen M.

    2013-01-01

    Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae.

  11. Rapid Microsatellite Marker Development Using Next Generation Pyrosequencing to Inform Invasive Burmese Python—Python molurus bivittatus—Management

    PubMed Central

    Hunter, Margaret E.; Hart, Kristen M.

    2013-01-01

    Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae. PMID:23449030

  12. The HLA-DRB9 gene and the origin of HLA-DR haplotypes.

    PubMed

    Gongora, R; Figueroa, F; Klein, J

    1996-11-01

    HLA-DRB9 is a gene fragment consisting of exon 2 and flanking intron sequences. It is located at the extreme end of the DRB subregion, whose other end is demarcated by the DRB1 locus. We sequenced approximately 1400 base pairs of the segment encompassing the DRB9 locus from eight human haplotypes (DR1, DR10, DR2, DR3, DR5, DR6, DR8, and DR9, the DR4 and DR7 having been sequenced by others earlier), as well as two chimpanzee, five gorillas, one orangutan and one macaque haplotype. The analysis of these sequences indicates that the DRB9 locus, which we estimate to be more than 58 million years (my) old, has been coevolving with the DRB1 locus for the last 4.2 my. As a consequence of this coevolution, the human DRB9 alleles fall into groups that correlate with the DRB1 allelic groups and with the gene organization of the human haplotypes. This observation implies that the present-day HLA-DR haplotype groups (DR1, DR51, DR52, DR8, and DR53) were founded more than 4 my ago and have remained intact (barring minor internal rearrangements that did not recombine the DRB1 and DRB9 genes) for this period of time. The haplotypes have been transmitted during speciations from ancestral to emerging species just like allelic lineages at the DRB1 locus. Thus not only allelic but also haplotype polymorphism evolves trans-specifically.

  13. Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus.

    PubMed

    Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo

    2012-02-01

    Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.)

    PubMed Central

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-01-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625

  15. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    PubMed

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  16. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively

    PubMed Central

    Mikalová, Lenka; Strouhal, Michal; Oppelt, Jan; Grange, Philippe Alain; Janier, Michel; Benhaddou, Nadjet; Dupin, Nicolas; Šmajs, David

    2017-01-01

    Background Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). An unusual human TEN 11q/j isolate was obtained from a syphilis-like primary genital lesion from a patient that returned to France from Pakistan. Methodology/Principal findings The TEN 11q/j isolate was characterized using nested PCR followed by Sanger sequencing and/or direct Illumina sequencing. Altogether, 44 chromosomal regions were analyzed. Overall, the 11q/j isolate clustered with TEN strains Bosnia A and Iraq B as expected from previous TEN classification of the 11q/j isolate. However, the 11q/j sequence in a 505 bp-long region at the TP0488 locus was similar to Treponema pallidum subsp. pallidum (TPA) strains, but not to TEN Bosnia A and Iraq B sequences, suggesting a recombination event at this locus. Similarly, the 11q/j sequence in a 613 bp-long region at the TP0548 locus was similar to Treponema pallidum subsp. pertenue (TPE) strains, but not to TEN sequences. Conclusions/Significance A detailed analysis of two recombinant loci found in the 11q/j clinical isolate revealed that the recombination event occurred just once, in the TP0488, with the donor sequence originating from a TPA strain. Since TEN Bosnia A and Iraq B were found to contain TPA-like sequences at the TP0548 locus, the recombination at TP0548 took place in a treponeme that was an ancestor to both TEN Bosnia A and Iraq B. The sequence of 11q/j isolate in TP0548 represents an ancestral TEN sequence that is similar to yaws-causing treponemes. In addition to the importance of the 11q/j isolate for reconstruction of the TEN phylogeny, this case emphasizes the possible role of TEN strains in development of syphilis-like lesions. PMID:28263990

  17. A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells.

    PubMed

    Shinkai, Yoichi; Kuramochi, Masahiro; Doi, Motomichi

    2018-05-03

    Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans , by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, "mintbody". We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms. Copyright © 2018, G3: Genes, Genomes, Genetics.

  18. Ancient roots for polymorphism at the HLA-DQ. alpha. locus in primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyllensten, U.B.; Erlich, H.A.

    1989-12-01

    The genes encoding the human histocompatibility antigens (HLA) exhibit a remarkable degree of polymorphism as revealed by immunologic and molecular analyses. This extensive sequence polymorphism either may have been generated during the lifetime of the human species or could have arisen before speciation and been maintained in the contemporary human population by selection or, possibly, by genetic drift. These two hypotheses were examined using the polymerase chain reaction method to amplify polymorphic sequences from the DQ{alpha} locus, as well as the DX{alpha} locus, an homologous but nonexpressed locus, in a series of primates that diverged at known times. In general,more » the amino acid sequence of a specific human DQ{alpha} allelic type is more closely related to its chimpanzee or gorilla counterpart than to other human DQ{alpha} alleles. Phylogenetic analysis of the silent nucleotide position changes shows that the similarity of allelic types between species is due to common ancestry rather than convergent evolution. Thus, most of the polymorphism at the DQ{alpha} locus in the human species was already present at least 5 million years ago in the ancestral species that gave rise to the chimpanzee, gorilla, and human lineages. However, one of the DQ{alpha} alleles may have arisen after speciation by recombination between two ancestral alleles.« less

  19. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.

    PubMed

    Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E

    2017-02-01

    Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.

  20. Characterization of extended-spectrum cephalosporin resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009

    PubMed Central

    Folster, J. P.; Pecic, G.; Singh, A.; Duval, B.; Rickert, R.; Ayers, S.; Abbott, J.; McGlinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; McDermott, P. F.

    2015-01-01

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in extended-spectrum cephalosporin (ESC) resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded blaCMY β-lactamase. In 2009, we identified 47 ESC resistant blaCMY-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of blaCMY, determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the blaCMY plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing. All 47 blaCMY genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred blaCMY associated resistance. Six were IncA/C plasmids that carried additional resistance genes. Plasmid multi-locus sequence typing (pMLST) of the IncI1-blaCMY plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among blaCMY-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of blaCMY on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and likely not the result of clonal expansion. PMID:22755514

  1. Understanding the molecular epidemiology and global relationships of Brachyspira hyodysenteriae from swine herds in the United States: a multi-locus sequence typing approach.

    PubMed

    Mirajkar, Nandita S; Gebhart, Connie J

    2014-01-01

    Outbreaks of mucohemorrhagic diarrhea in pigs caused by Brachyspira hyodysenteriae in the late 2000s indicated the re-emergence of Swine Dysentery (SD) in the U.S. Although the clinical disease was absent in the U.S. since the early 1990s, it continued to cause significant economic losses to other swine rearing countries worldwide. This study aims to fill the gap in knowledge pertaining to the re-emergence and epidemiology of B. hyodysenteriae in the U.S. and its global relationships using a multi-locus sequence typing (MLST) approach. Fifty-nine post re-emergent isolates originating from a variety of sources in the U.S. were characterized by MLST, analyzed for epidemiological relationships (within and between multiple sites of swine systems), and were compared with pre re-emergent isolates from the U.S. Information for an additional 272 global isolates from the MLST database was utilized for international comparisons. Thirteen nucleotide sequence types (STs) including a predominant genotype (ST93) were identified in the post re-emergent U.S. isolates; some of which showed genetic similarity to the pre re-emergent STs thereby suggesting its likely role in the re-emergence of SD. In the U.S., in general, no more than one ST was found on a site; multiple sites of a common system shared a ST; and STs found in the U.S. were distinct from those identified globally. Of the 110 STs characterized from ten countries, only two were found in more than one country. The U.S. and global populations, identified as clonal and heterogeneous based on STs, showed close relatedness based on amino acid types (AATs). One predicted founder type (AAT9) and multiple predicted subgroup founder types identified for both the U.S. and the global population indicate the potential microevolution of this pathogen. This study elucidates the strain diversity and microevolution of B. hyodysenteriae, and highlights the utility of MLST for epidemiological and surveillance studies.

  2. The immunoglobulin heavy chain locus of the duck. Genomic organization and expression of D, J, and C region genes.

    PubMed

    Lundqvist, M L; Middleton, D L; Hazard, S; Warr, G W

    2001-12-14

    The region of the duck IgH locus extending from upstream of the proximal diversity (D) segment to downstream of the constant gene cluster has been cloned and mapped. A sequence contig of 48,796 base pairs established that the organization of the genes is D-J(H)-mu-alpha-upsilon. No evidence for a functional homologue (or remnant) of a delta gene was found. The alpha gene is in inverted transcriptional orientation; class switch to IgA expression thus requires inversion of the approximately 27-kilobase pair region that includes both mu and alpha genes. The secreted forms of duck alpha and mu are each encoded by 4 constant region exons, and the hydrophobic C-terminal regions of the membrane receptor forms of alpha and mu are encoded by one and two transmembrane exons, respectively. Putative switch (S) regions were identified for duck mu and upsilon by comparison with chicken Smu and Supsilon sequences and for duck alpha by comparison with mouse Salpha. The duck IgH locus is rich in complex variable number tandem repeats, which occupy approximately 60% of the sequenced region, and occur at a much higher frequency in the IgH locus than in other sequenced regions of the duck genome.

  3. Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence

    PubMed Central

    Iskow, Rebecca C.; Austermann, Christian; Scharer, Christopher D.; Raj, Towfique; Boss, Jeremy M.; Sunyaev, Shamil; Price, Alkes; Stranger, Barbara; Simon, Viviana; Lee, Charles

    2013-01-01

    Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. PMID:23593015

  4. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types.

    PubMed

    Knudsen, Gitte M; Nielsen, Jesper Boye; Marvig, Rasmus L; Ng, Yin; Worning, Peder; Westh, Henrik; Gram, Lone

    2017-08-01

    Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region.

    PubMed

    Kress, W John; Erickson, David L

    2007-06-06

    A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

  6. Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR).

    PubMed

    Toomes, Carmel; Downey, Louise M; Bottomley, Helen M; Scott, Sheila; Woodruff, Geoffrey; Trembath, Richard C; Inglehearn, Chris F

    2004-01-15

    Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous inherited blinding disorder of the retinal vascular system. To date three loci have been mapped: EVR1 on chromosome 11q, EVR2 on chromosome Xp, and EVR3 on chromosome 11p. The gene underlying EVR3 remains unidentified whilst the EVR2 gene, which encodes the Norrie disease protein (NDP), was identified over a decade ago. More recently, FZD4, the gene that encodes the Wnt receptor Frizzled-4, was identified as the mutated gene at the EVR1 locus. The purpose of this study was to screen FZD4 in a large family previously proven to be linked to the EVR1 locus. PCR products were generated using genomic DNA from affected family members with primers designed to amplify the coding sequence of FZD4. The PCR products were screened for mutations by direct sequencing. Genotyping was performed in all available family members using fluorescently labeled microsatellite markers from chromosome 11q. Sequencing of the EVR1 gene, FZD4, in this family identified no mutation. To investigate this family further we performed high-resolution genotyping with markers spanning chromosome 11q. Haplotype analysis excluded FZD4 as the mutated gene in this family and identified a candidate region approximately 10 cM centromeric to EVR1. This new FEVR locus is flanked by markers D11S1368 (centromeric) and D11S937 (telomeric) and spans approximately 15 cM. High-resolution genotyping and haplotype analysis excluded FZD4 as the defective gene in a family previously linked to the EVR1 locus. The results indicate that the gene mutated in this family lies centromeric to the EVR1 gene, FZD4, and is also genetically distinct from the EVR3 locus. This new locus has been designated EVR4 and is the fourth FEVR locus to be described.

  7. Rare Sequence Variation in the Genome Flanking a Short Tandem Repeat Locus Can Lead to a Question of “Nonmaternity”

    PubMed Central

    Deucher, Anne; Chiang, Tsoyu; Schrijver, Iris

    2010-01-01

    Typing of STR (short tandem repeat) alleles is used in a variety of applications in clinical molecular pathology, including evaluations for maternal cell contamination. Using a commercially available STR typing assay for maternal cell contamination performed in conjunction with prenatal diagnostic testing, we were posed with apparent nonmaternity when the two fetal samples did not demonstrate the expected maternal allele at one locus. By designing primers external to the region amplified by the primers from the commercial assay and by performing direct sequencing of the resulting amplicon, we were able to determine that a guanine to adenine sequence variation led to primer mismatch and allele dropout. This explained the apparent null allele shared between the maternal and fetal samples. Therefore, although rare, allele dropout must be considered whenever unexplained homozygosity at an STR locus is observed. PMID:20203001

  8. Characterization of 23 polymorphic SSR markers in Salix humboldtiana (Salicaceae) using next-generation sequencing and cross-amplification from related species1

    PubMed Central

    Bozzi, Jorge A.; Liepelt, Sascha; Ohneiser, Sebastian; Gallo, Leonardo A.; Marchelli, Paula; Leyer, Ilona; Ziegenhagen, Birgit; Mengel, Christina

    2015-01-01

    Premise of the study: We present a set of 23 polymorphic nuclear microsatellite loci, 18 of which are identified for the first time within the riparian species Salix humboldtiana (Salicaceae) using next-generation sequencing. Methods and Results To characterize the 23 loci, up to 60 individuals were sampled and genotyped at each locus. The number of alleles ranged from two to eight, with an average of 4.43 alleles per locus. The effective number of alleles ranged from 1.15 to 3.09 per locus, and allelic richness ranged from 2.00 to 7.73 alleles per locus. Conclusions The new marker set will be used for future studies of genetic diversity and differentiation as well as for unraveling spatial genetic structures in S. humboldtiana populations in northern Patagonia, Argentina. PMID:25909042

  9. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells.

    PubMed

    Raynard, Steven J; Baker, Mark D

    2004-01-01

    In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.

  10. Validation of Minim typing for fast and accurate discrimination of extended-spectrum, beta-lactamase-producing Klebsiella pneumoniae isolates in tertiary care hospital.

    PubMed

    Brhelova, Eva; Kocmanova, Iva; Racil, Zdenek; Hanslianova, Marketa; Antonova, Mariya; Mayer, Jiri; Lengerova, Martina

    2016-09-01

    Minim typing is derived from the multi-locus sequence typing (MLST). It targets the same genes, but sequencing is replaced by high resolution melt analysis. Typing can be performed by analysing six loci (6MelT), four loci (4MelT) or using data from four loci plus sequencing the tonB gene (HybridMelT). The aim of this study was to evaluate Minim typing to discriminate extended-spectrum beta-lactamase producing Klebsiella pneumoniae (ESBL-KLPN) isolates at our hospital. In total, 380 isolates were analyzed. The obtained alleles were assigned according to both the 6MelT and 4MelT typing scheme. In 97 isolates, the tonB gene was sequenced to enable HybridMelT typing. We found that the presented method is suitable to quickly monitor isolates of ESBL-KLPN; results are obtained in less than 2 hours and at a lower cost than MLST. We identified a local ESBL-KLPN outbreak and a comparison of colonizing and invasive isolates revealed a long term colonization of patients with the same strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.

    PubMed

    Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko

    2014-11-01

    Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.

  12. Shaking the Tree: Multi-locus Sequence Typing Usurps Current Onchocercid (Filarial Nematode) Phylogeny

    PubMed Central

    Lefoulon, Emilie; Bourret, Jérôme; Junker, Kerstin; Guerrero, Ricardo; Cañizales, Israel; Kuzmin, Yuriy; Satoto, Tri Baskoro T.; Cardenas-Callirgos, Jorge Manuel; de Souza Lima, Sueli; Raccurt, Christian; Mutafchiev, Yasen; Gavotte, Laurent; Martin, Coralie

    2015-01-01

    During the past twenty years, a number of molecular analyses have been performed to determine the evolutionary relationships of Onchocercidae, a family of filarial nematodes encompassing several species of medical or veterinary importance. However, opportunities for broad taxonomic sampling have been scarce, and analyses were based mainly on 12S rDNA and coxI gene sequences. While being suitable for species differentiation, these mitochondrial genes cannot be used to infer phylogenetic hypotheses at higher taxonomic levels. In the present study, 48 species, representing seven of eight subfamilies within the Onchocercidae, were sampled and sequences of seven gene loci (nuclear and mitochondrial) analysed, resulting in the hitherto largest molecular phylogenetic investigation into this family. Although our data support the current hypothesis that the Oswaldofilariinae, Waltonellinae and Icosiellinae subfamilies separated early from the remaining onchocercids, Setariinae was recovered as a well separated clade. Dirofilaria, Loxodontofilaria and Onchocerca constituted a strongly supported clade despite belonging to different subfamilies (Onchocercinae and Dirofilariinae). Finally, the separation between Splendidofilariinae, Dirofilariinae and Onchocercinae will have to be reconsidered. PMID:26588229

  13. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.

    PubMed

    Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.

  14. Multi-locus Analyses Reveal Four Giraffe Species Instead of One.

    PubMed

    Fennessy, Julian; Bidon, Tobias; Reuss, Friederike; Kumar, Vikas; Elkan, Paul; Nilsson, Maria A; Vamberger, Melita; Fritz, Uwe; Janke, Axel

    2016-09-26

    Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird.

    PubMed

    Hawley, Dana M; Fleischer, Robert C

    2012-01-01

    The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.

  16. Colletotrichum caudatum s.l. is a species complex.

    PubMed

    Crouch, Jo Anne

    2014-06-01

    Colletotrichum caudatum sensu lato is a widespread fungal pathogen of warm-season grasses. The fungus is easily differentiated from other Colletotrichum species through the presence of a unique filiform appendage at the apex of the conidium. Multi-locus phylogenetic analysis of four DNA sequence markers from 21 isolates of C. caudatum s.l. from six grass hosts recovered the morphospecies as a well-supported monophyletic group. Although closely related to other Colletotrichum species pathogenic to warm-season grasses (e.g. C. sublineola, C. falcatum, C. navitas, C. graminicola), the sister taxon placement of C. caudatum remained unclear. Four major subgroups and three monotypic lineages were identified from the C. caudatum s.l. isolates. Despite the presence of localized, taxon-specific incongruence between gene trees and evidence for recombination in the dataset, application of genealogical concordance species recognition criteria diagnosed the four subgroups as phylogenetic species. Traditional morphology-based species concept defines C. caudatum as one species with a broad host range; however, multi-locus phylogenetic analyses refuted this model. Instead, isolates from different hosts were mainly segregated into different lineages. In particular, isolates from the type locale and host (USA, Sorghastrum nutans) collected within a 400 km radius were divided into three distinct species that corresponded with the three sampling sites. These data established that traditional morphological and ecological features are not informative for recognition of taxa within C. caudatum s.l., although there is some evidence that some species may be host specific. To stabilize the application of the name C. caudatum, DNA sequence data from the lectotype was generated, an epitype strain consistent with the type was designated and illustrated, and an emended description of C. caudatum sensu stricto is provided. Colletotrichum alcornii, C. baltimorense, C. somersetense, and C. zoysiae are described as new morphologically cryptic species related to C. caudatum s.s.

  17. From Puffins to Plankton: A DNA-Based Analysis of a Seabird Food Chain in the Northern Gulf of Maine

    PubMed Central

    Bowser, A. Kirsten; Diamond, Antony W.; Addison, Jason A.

    2013-01-01

    The predator-prey interactions within food chains are used to both characterize and understand ecosystems. Conventional methods of constructing food chains from visual identification of prey in predator diet can suffer from poor taxonomic resolution, misidentification, and bias against small or completely digestible prey. Next-generation sequencing (NGS) technology has become a powerful tool for diet reconstruction through barcoding of DNA in stomach content or fecal samples. Here we use multi-locus (16S and CO1) next-generation sequencing of DNA barcodes on the feces of Atlantic puffin (Fratercula arctica) chicks (n=65) and adults (n=64) and the stomach contents of their main prey, Atlantic herring (Clupea harengus, n=44) to investigate a previously studied food chain. We compared conventional and molecular-derived chick diet, tested the similarity between the diets of puffin adults and chicks, and determined whether herring prey can be detected in puffin diet samples. There was high variability in the coverage of prey groups between 16S and CO1 markers. We identified more unique prey with our 16S compared to CO1 barcoding markers (51 and 39 taxa respectively) with only 12 taxa identified by both genes. We found no significant difference between the 16S-identified diets of puffin adults (n=17) and chicks (n=41). Our molecular method is more taxonomically resolved and detected chick prey at higher frequencies than conventional field observations. Many likely planktonic prey of herring were detected in feces from puffin adults and chicks, highlighting the impact secondary consumption may have on the interpretation of molecular dietary analysis. This study represents the first simultaneous molecular investigation into the diet of multiple components of a food chain and highlights the utility of a multi-locus approach to diet reconstruction that is broadly applicable to food web analysis. PMID:24358258

  18. The genetic structure of the A mating-type locus of Lentinula edodes.

    PubMed

    Au, Chun Hang; Wong, Man Chun; Bao, Dapeng; Zhang, Meiyan; Song, Chunyan; Song, Wenhua; Law, Patrick Tik Wan; Kües, Ursula; Kwan, Hoi Shan

    2014-02-10

    The Shiitake mushroom, Lentinula edodes (Berk.) Pegler is a tetrapolar basidiomycete with two unlinked mating-type loci, commonly called the A and B loci. Identifying the mating-types in shiitake is important for enhancing the breeding and cultivation of this economically-important edible mushroom. Here, we identified the A mating-type locus from the first draft genome sequence of L. edodes and characterized multiple alleles from different monokaryotic strains. Two intron-length polymorphism markers were developed to facilitate rapid molecular determination of A mating-type. L. edodes sequences were compared with those of known tetrapolar and bipolar basidiomycete species. The A mating-type genes are conserved at the homeodomain region across the order Agaricales. However, we observed unique genomic organization of the locus in L. edodes which exhibits atypical gene order and multiple repetitive elements around its A locus. To our knowledge, this is the first known exception among Homobasidiomycetes, in which the mitochondrial intermediate peptidase (mip) gene is not closely linked to A locus. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity.

    PubMed

    Sahl, Jason W; Johnson, J Kristie; Harris, Anthony D; Phillippy, Adam M; Hsiao, William W; Thom, Kerri A; Rasko, David A

    2011-06-04

    Acinetobacter baumannii has recently emerged as a significant global pathogen, with a surprisingly rapid acquisition of antibiotic resistance and spread within hospitals and health care institutions. This study examines the genomic content of three A. baumannii strains isolated from distinct body sites. Isolates from blood, peri-anal, and wound sources were examined in an attempt to identify genetic features that could be correlated to each isolation source. Pulsed-field gel electrophoresis, multi-locus sequence typing and antibiotic resistance profiles demonstrated genotypic and phenotypic variation. Each isolate was sequenced to high-quality draft status, which allowed for comparative genomic analyses with existing A. baumannii genomes. A high resolution, whole genome alignment method detailed the phylogenetic relationships of sequenced A. baumannii and found no correlation between phylogeny and body site of isolation. This method identified genomic regions unique to both those isolates found on the surface of the skin or in wounds, termed colonization isolates, and those identified from body fluids, termed invasive isolates; these regions may play a role in the pathogenesis and spread of this important pathogen. A PCR-based screen of 74 A. baumanii isolates demonstrated that these unique genes are not exclusive to either phenotype or isolation source; however, a conserved genomic region exclusive to all sequenced A. baumannii was identified and verified. The results of the comparative genome analysis and PCR assay show that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease regardless of the isolation source.

  20. Telomere formation on macronuclear chromosomes of Oxytricha trifallax and O. fallax: alternatively processed regions have multiple telomere addition sites

    PubMed Central

    Williams, Kevin R; Doak, Thomas G; Herrick, Glenn

    2002-01-01

    Background Ciliates employ massive chromatid breakage and de novo telomere formation during generation of the somatic macronucleus. Positions flanking the 81-MAC locus are reproducibly cut. But those flanking the Common Region are proposed to often escape cutting, generating three nested macronuclear chromosomes, two retaining "arms" still appended to the Common Region. Arm-distal positions must differ (in cis) from the Common Region flanks. Results The Common-Region-flanking positions also differ from the arm-distal positions in that they are "multi-TAS" regions: anchored PCR shows heterogeneous patterns of telomere addition sites, but arm-distal sites do not. The multi-TAS patterns are reproducible, but are sensitive to the sequence of the allele being processed. Thus, random degradation following chromatid cutting does not create this heterogeneity; these telomere addition sites also must be dictated by cis-acting sequences. Conclusions Most ciliates show such micro-heterogeneity in the precise positions of telomere addition sites. Telomerase is believed to be tightly associated with, and act in concert with, the chromatid-cutting nuclease: heterogeneity must be the result of intervening erosion activity. Our "weak-sites" hypothesis explains the correlation between alternative chromatid cutting at the Common Region boundaries and their multi-TAS character: when the chromatid-breakage machine encounters either a weak binding site or a weak cut site at these regions, then telomerase dissociates prematurely, leaving the new end subject to erosion by an exonuclease, which pauses at cis-acting sequences; telomerase eventually heals these resected termini. Finally, we observe TAS positioning influenced by trans-allelic interactions, reminiscent of transvection. PMID:12199911

  1. The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.)

    PubMed Central

    2013-01-01

    Background Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification. Findings Here, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars. Conclusion On the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy). PMID:24298902

  2. Sequencing the Unrearranged Human Immunoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Rene

    2010-06-03

    Rene Warren from Canada's Michael Smith Genome Sciences Centre discusses sequencing and finishing the IgH heavy chain locus on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  3. Genetic and molecular characterization of the maize rp3 rust resistance locus.

    PubMed Central

    Webb, Craig A; Richter, Todd E; Collins, Nicholas C; Nicolas, Marie; Trick, Harold N; Pryor, Tony; Hulbert, Scot H

    2002-01-01

    In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb. PMID:12242248

  4. Psychological Factors Linked to Risk Perception

    NASA Astrophysics Data System (ADS)

    Armaş, I.; Creãu, R. Z.; Stǎnciugelu, I.

    2012-04-01

    Risks are mental models, which allow people to cope with dangerous phenomena (Renn, 2008; Jasanoff, 1998). The term "risk" refers to the likelihood of an adverse effect resulting from an event. The aim of the present study is to identify the psychological factors that are most predictive of risk perception in relation with age, gender, educational level and socio-economical status. Earthquake hazard was considered, because it is an emerging danger for Bucharest. 80% of the laypeople sample are waiting for this event to happen in the next three years. By integrating all the research data, it was attempted to build a risk profile of the investigated population, which could be used by institutions responsible for earthquake risk mitigation situations in Bucharest. This research appealed to the social learning Rotter (1966), auto-effectiveness Bandura (1977; 1983), and anxiety and stress theories. We used psychological variables that measured stress, personal effectiveness and the belief in personal control. The multi-modal risk perception questionnaire was structured on a 49 items sequence. The sample was composed of 1.376 participants recruited on a voluntary basis. The characteristics of risk (like probability and magnitude, time scales) are perceived differently according to psychological factors that play a role also in biases in people's ability to draw inferences from probabilistic information (like cognitive dissonance). Since the 1970's, it has been argued that those who perceive life's events as being beyond their locus of control (external locus of control) are significantly more anxious and less adapted. In this research, strongest associations and significant differences were obtained between sex, age and income categories with Stress vulnerability factor and the External Locus of Control factor. The profile of the low risk perceiver is that of a young, more educated, male individual with a higher self- efficacy level and an internal locus of control.

  5. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  6. Detection of Escherichia albertii from chicken meat and giblets.

    PubMed

    Maeda, Eriko; Murakami, Koichi; Sera, Nobuyuki; Ito, Kenitiro; Fujimoto, Shuji

    2015-07-01

    Escherichia albertii occasionally causes food-borne outbreaks of gastroenteritis in humans; however, little is known about the vehicle of transmission. To screen retail chicken products for the presence of E. albertii, 104 retail chicken products were investigated. Portions of enrichment cultures that were PCR-positive for E. albertii (n=3) were sub-cultured on agar medium. Only 2 strains obtained from 2 chicken giblet samples were identified as E. albertii by multi locus sequence typing. Antimicrobial susceptibility testing showed that 1 strain was resistant to streptomycin and sulfisoxazole. Both strains harbored the virulence genes cdt and eae. This study is the first description of E. albertii isolation from retail food, suggesting that chicken products are a potential vehicle of E. albertii transmission.

  7. Allozyme markers in breeding zone designation

    Treesearch

    R. D. Westfall; M. T. Conkle

    1992-01-01

    Early studies of allozyme variation in plant populations suggested that allelic frequencies in some loci vary by geography. Since then, the expectation that allozymes might be useful in describing geographic patterns has generally not been borne out by single locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse: canonical correlation...

  8. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  9. Comparison of double-locus sequence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations.

    PubMed

    Cholley, Pascal; Stojanov, Milos; Hocquet, Didier; Thouverez, Michelle; Bertrand, Xavier; Blanc, Dominique S

    2015-08-01

    Reliable molecular typing methods are necessary to investigate the epidemiology of bacterial pathogens. Reference methods such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) are costly and time consuming. Here, we compared our newly developed double-locus sequence typing (DLST) method for Pseudomonas aeruginosa to MLST and PFGE on a collection of 281 isolates. DLST was as discriminatory as MLST and was able to recognize "high-risk" epidemic clones. Both methods were highly congruent. Not surprisingly, a higher discriminatory power was observed with PFGE. In conclusion, being a simple method (single-strand sequencing of only 2 loci), DLST is valuable as a first-line typing tool for epidemiological investigations of P. aeruginosa. Coupled to a more discriminant method like PFGE or whole genome sequencing, it might represent an efficient typing strategy to investigate or prevent outbreaks. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    PubMed Central

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis. PMID:28222092

  11. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    PubMed

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  12. Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.

    PubMed

    Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko

    2017-12-01

    Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.

  13. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia.

    PubMed

    Dan, Tong; Liu, Wenjun; Sun, Zhihong; Lv, Qiang; Xu, Haiyan; Song, Yuqin; Zhang, Heping

    2014-06-09

    Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.

  14. Antimicrobial Resistance, Virulence Profile, and Molecular Characterization of Listeria monocytogenes Isolated from Ready-to-eat Food in China, 2013-2014.

    PubMed

    Yan, Shao Fei; Wang, Wei; Bai, Li; Hu, Yu Jie; Dong, Yin Ping; Xu, Jin; Li, Feng Qin

    2016-06-01

    We aimed to investigate the potential pathogenic profile and antibiotic resistance of Listeria monocytogenes isolated from ready-to-eat food in China. Antimicrobial resistance was determined by broth microdilution following the Clinical and Laboratory Standards Institute protocol. Molecular serotyping, virulence, and resistance genes were identified using PCR. Multi-locus sequence typing was performed on resistant strains. A total of 11.53% (113/980) isolates were resistant, from which 82.3% (93/113) harbored all the virulence genes tested. The resistant strains were subtyped into 18 sequence types (STs), from which ST2, ST5, ST8, and ST9 were involved in listeriosis. This study indicated that several L. monocytogenes isolates from ready-to-eat foods in China have pathogenic potential and are resistant to antibiotics, including antibiotics used as medicines by humans for listeriosis treatment. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. A rural worker infected with a bovine-prevalent genotype of Campylobacter fetus subsp. fetus supports zoonotic transmission and inconsistency of MLST and whole-genome typing.

    PubMed

    Iraola, G; Betancor, L; Calleros, L; Gadea, P; Algorta, G; Galeano, S; Muxi, P; Greif, G; Pérez, R

    2015-08-01

    Whole-genome characterisation in clinical microbiology enables to detect trends in infection dynamics and disease transmission. Here, we report a case of bacteraemia due to Campylobacter fetus subsp. fetus in a rural worker under cancer treatment that was diagnosed with cellulitis; the patient was treated with antibiotics and recovered. The routine typing methods were not able to identify the microorganism causing the infection, so it was further analysed by molecular methods and whole-genome sequencing. The multi-locus sequence typing (MLST) revealed the presence of the bovine-associated ST-4 genotype. Whole-genome comparisons with other C. fetus strains revealed an inconsistent phylogenetic position based on the core genome, discordant with previous ST-4 strains. To the best of our knowledge, this is the first C. fetus subsp. fetus carrying the ST-4 isolated from humans and represents a probable case of zoonotic transmission from cattle.

  16. Inferring HIV Escape Rates from Multi-Locus Genotype Data

    DOE PAGES

    Kessinger, Taylor A.; Perelson, Alan S.; Neher, Richard A.

    2013-09-03

    Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutationsmore » and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.« less

  17. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants.

    PubMed

    Maloukh, Lina; Kumarappan, Alagappan; Jarrar, Mohammad; Salehi, Jawad; El-Wakil, Houssam; Rajya Lakshmi, T V

    2017-06-01

    DNA barcoding of United Arab Emirates (UAE) native plants is of high practical and scientific value as the plants adapt to very harsh environmental conditions that challenge their identification. Fifty-one plant species belonged to 22 families, 2 monocots, and 20 eudicots; a maximum number of species being legumes and grasses were collected. To authenticate the morphological identification of the wild plant taxa, rbcL and matK regions were used in the study. The primer universality and discriminatory power of rbcL is 100%, while it is 35% for matK locus for these plant species. The sequences were submitted to GenBank; accession numbers were obtained for all the rbcL sequences and for 6 of matK sequences. We suggest rbcL as a promising barcode locus for the tested group of 51 plants. In the present study, an inexpensive, simple method of identification of rare desert plant taxa through rbcL barcode is being reported.

  18. Expression of the Pasteurella haemolytica leukotoxin is inhibited by a locus that encodes an ATP-binding cassette homolog.

    PubMed Central

    Highlander, S K; Wickersham, E A; Garza, O; Weinstock, G M

    1993-01-01

    Multicopy and single-copy chromosomal fusions between the Pasteurella haemolytica leukotoxin regulatory region and the Escherichia coli beta-galactosidase gene have been constructed. These fusions were used as reporters to identify and isolate regulators of leukotoxin expression from a P. haemolytica cosmid library. A cosmid clone, which inhibited leukotoxin expression from multicopy and single-copy protein fusions, was isolated and found to contain the complete leukotoxin gene cluster plus additional upstream sequences. The locus responsible for inhibition of expression from leukotoxin-beta-galactosidase fusions was mapped within these upstream sequences, by transposon mutagenesis with Tn5, and its DNA sequence was determined. The inhibitory activity was found to be associated with a predicted 440-amino-acid reading frame (lapA) that lies within a four-gene arginine transport locus. LapA is predicted to be the nucleotide-binding component of this transport system and shares homology with the Clp family of proteases. Images PMID:8359916

  19. Mechanisms of global diversification in the marine species Madeiran Storm-petrel Oceanodroma castro and Monteiro's Storm-petrel O. monteiroi: Insights from a multi-locus approach.

    PubMed

    Silva, Mauro F; Smith, Andrea L; Friesen, Vicki L; Bried, Joël; Hasegawa, Osamu; Coelho, M Manuela; Silva, Mónica C

    2016-05-01

    The evolutionary mechanisms underlying the geographic distribution of gene lineages in the marine environment are not as well understood as those affecting terrestrial groups. The continuous nature of the pelagic marine environment may limit opportunities for divergence to occur and lineages to spatially segregate, particularly in highly mobile species. Here, we studied the phylogeography and historical demography of two tropically distributed, pelagic seabirds, the Madeiran Storm-petrel Oceanodroma castro, sampled in the Azores, Madeira, Galapagos and Japan, and its sister species Monteiro's Storm-petrel O. monteiroi (endemic to the Azores), using a multi-locus dataset consisting of 12 anonymous nuclear loci and the mitochondrial locus control region. Both marker types support the existence of four significantly differentiated genetic clusters, including the sampled O. monteiroi population and three populations within O. castro, although only the mitochondrial locus suggests complete lineage sorting. Multi-locus coalescent analyses suggest that most divergence events occurred within the last 200,000years. The proximity in divergence times precluded robust inferences of the species tree, in particular of the evolutionary relationships of the Pacific populations. Despite the great potential for dispersal, divergence among populations apparently proceeded in the absence of gene flow, emphasizing the effect of non-physical barriers, such as those driven by the paleo-oceanographical environments, philopatry and local adaptation, as important mechanisms of population divergence and speciation in highly mobile marine species. In view of the predicted climate change impacts, future changes in the demography and evolutionary dynamics of marine populations might be expected. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A trait stacking system via intra-genomic homologous recombination.

    PubMed

    Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F

    2016-11-01

    A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.

  1. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus

    PubMed Central

    Lee, Tong Geon; Kumar, Indrajit; Diers, Brian W; Hudson, Matthew E

    2015-01-01

    The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. PMID:25735447

  2. A new hybrid approach for MHC genotyping: high-throughput NGS and long read MinION nanopore sequencing, with application to the non-model vertebrate Alpine chamois (Rupicapra rupicapra).

    PubMed

    Fuselli, S; Baptista, R P; Panziera, A; Magi, A; Guglielmi, S; Tonin, R; Benazzo, A; Bauzer, L G; Mazzoni, C J; Bertorelle, G

    2018-03-24

    The major histocompatibility complex (MHC) acts as an interface between the immune system and infectious diseases. Accurate characterization and genotyping of the extremely variable MHC loci are challenging especially without a reference sequence. We designed a combination of long-range PCR, Illumina short-reads, and Oxford Nanopore MinION long-reads approaches to capture the genetic variation of the MHC II DRB locus in an Italian population of the Alpine chamois (Rupicapra rupicapra). We utilized long-range PCR to generate a 9 Kb fragment of the DRB locus. Amplicons from six different individuals were fragmented, tagged, and simultaneously sequenced with Illumina MiSeq. One of these amplicons was sequenced with the MinION device, which produced long reads covering the entire amplified fragment. A pipeline that combines short and long reads resolved several short tandem repeats and homopolymers and produced a de novo reference, which was then used to map and genotype the short reads from all individuals. The assembled DRB locus showed a high level of polymorphism and the presence of a recombination breakpoint. Our results suggest that an amplicon-based NGS approach coupled with single-molecule MinION nanopore sequencing can efficiently achieve both the assembly and the genotyping of complex genomic regions in multiple individuals in the absence of a reference sequence.

  3. [Analysis of allele dropout at TH01 locus in paternity testing].

    PubMed

    Lai, Li; Shen, Xiao-li; Xue, Shi-jie; Hu, Jie

    2013-10-01

    To analyze allele dropout at TH01 locus in paternity testing in order to determine the accurate genotype. To use a two STR loci genotyping system to verify an abnormal genotype for the TH01 locus with PCR using specific primers, cloning and DNA sequencing. A rare allele at TH01 locus named 5.2, which was undetectable with PowerPlex 21 system, was detected with an Identifiler system. Genetic variations may result in rare alleles and loci loss. To avoid misjudgment, laboratories should have a variety of methods for detecting loci loss.

  4. The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus

    PubMed Central

    Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku

    1998-01-01

    The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928

  5. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    PubMed

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  6. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  7. Inference from Samples of DNA Sequences Using a Two-Locus Model

    PubMed Central

    Griffiths, Robert C.

    2011-01-01

    Abstract Performing inference on contemporary samples of DNA sequence data is an important and challenging task. Computationally intensive methods such as importance sampling (IS) are attractive because they make full use of the available data, but in the presence of recombination the large state space of genealogies can be prohibitive. In this article, we make progress by developing an efficient IS proposal distribution for a two-locus model of sequence data. We show that the proposal developed here leads to much greater efficiency, outperforming existing IS methods that could be adapted to this model. Among several possible applications, the algorithm can be used to find maximum likelihood estimates for mutation and crossover rates, and to perform ancestral inference. We illustrate the method on previously reported sequence data covering two loci either side of the well-studied TAP2 recombination hotspot. The two loci are themselves largely non-recombining, so we obtain a gene tree at each locus and are able to infer in detail the effect of the hotspot on their joint ancestry. We summarize this joint ancestry by introducing the gene graph, a summary of the well-known ancestral recombination graph. PMID:21210733

  8. Refinement of the X-linked cataract locus (CXN) and gene analysis for CXN and Nance-Horan syndrome (NHS).

    PubMed

    Brooks, Simon; Ebenezer, Neil; Poopalasundaram, Subathra; Maher, Eamonn; Francis, Peter; Moore, Anthony; Hardcastle, Alison

    2004-06-01

    The X-linked congenital cataract (CXN) locus has been mapped to a 3-cM (approximately 3.5 Mb) interval on chromosome Xp22.13, which is syntenic to the mouse cataract disease locus Xcat and encompasses the recently refined Nance-Horan syndrome (NHS) locus. A positional cloning strategy has been adopted to identify the causative gene. In an attempt to refine the CXN locus, seven microsatellites were analysed within 21 individuals of a CXN family. Haplotypes were reconstructed confirming disease segregation with markers on Xp22.13. In addition, a proximal cross-over was observed between markers S3 and S4, thereby refining the CXN disease interval by approximately 400 Kb to 3.2 Mb, flanked by markers DXS9902 and S4. Two known genes (RAI2 and RBBP7) and a novel gene (TL1) were screened for mutations within an affected male from the CXN family and an NHS family by direct sequencing of coding exons and intron- exon splice sites. No mutations or polymorphisms were identified, therefore excluding them as disease-causative in CXN and NHS. In conclusion, the CXN locus has been successfully refined and excludes PPEF1 as a candidate gene. A further three candidates were excluded based on sequence analysis. Future positional cloning efforts will focus on the region of overlap between CXN, Xcat, and NHS.

  9. Identification of the genomic locus for the human Rieske Fe-S Protein gene on Chromosome 19q12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, L.A.

    1994-05-06

    We have identified the chromosomal location of the human Rieske Iron-Sulfur Protein (UQCRFS1) gene. Mapping by hybridization to a panel of monochromosomal hybrid cell lines indicated that the gene was either on chromosome 19 or 22. By screening a human chromosome 19 specific genomic cosmid library with an oligonucleotide probe made from the published Rieske cDNA sequence, we identified a corresponding cosmid. Portions of this cosmid were sequenced directly. The exon, exon:intron junction, and flanking sequences verified that this cosmid contains the genomic locus. Fluorescent in situ hybridization (FISH) was performed to localize this cosmid to chromosome band 19q12.

  10. Sub-inhibitory concentrations of oxacillin modify the expression of agr locus in Staphylococcus aureus clinical strains belonging to different clonal complexes.

    PubMed

    Viedma, Esther; Pérez-Montarelo, Dafne; Villa, Jennifer; Muñoz-Gallego, Irene; Larrosa, Nieves; Fernández-Hidalgo, Nuria; Gavaldà, Joan; Almirante, Benito; Chaves, Fernando

    2018-04-16

    The ability of Staphylococcus aureus to invade tissues and cause an infectious disease is the result of a multi-factorial process supported by the huge number of virulence factors inherent to this microorganism tightly regulated by the accessory gene regulator (agr). During antimicrobial therapy bacteria may be exposed to sub-inhibitory concentrations (subMICs) of antibiotics that may trigger transcriptional changes that may have an impact on the pathogenesis of infection. The objective of this study was to investigate the effect of oxacillin sub-MICs on agr system expression as the key component in the regulation of virulence in methicillin-susceptible (MSSA) and -resistant S. aureus (MRSA) strains. Furthermore, we studied the genetic basis of the agr locus and their potential association with the expression levels. We have examined the expression of RNAIII and agrA mRNA as biomarkers for agr expression in the presence and absence of oxacillin subMICs in 10 MSSA and 4 MRSA clinical strains belonging to 5 clonal complexes (CC45-agrI, CC8-agrI, CC5-agrII, CC15-agrII and CC30-agrIII) causing endovascular complications. The DNA sequences of agr locus were obtained by whole genome sequencing. Our results revealed that exposure to subMICs of oxacillin had an impact on agr locus expression modifying the relative levels of expression with increases in 11 strains and with decreases in 3 strains. Thereby, the exposure to subMICs of oxacillin resulted in higher levels of expression of agr in CC15 and CC45 and lower levels in CC30. We also observed the presence of mutations in agrC and agrA in 13/14 strains with similar mutation profiles among strains within individual CCs except for strains of CC5. Although, agr expression levels differed among strains within CCs, the presence of these mutations was associated with differences in agr expression levels in most cases. Changes in agr expression induced by exposure to oxacillin subMICs should be considered because they could lead to changes in the virulence modulation and have an adverse effect on the course of infection, especially in certain clonal complexes.

  11. Cryptosporidium genotyping in Europe: The current status and processes for a harmonised multi-locus genotyping scheme.

    PubMed

    Chalmers, Rachel M; Pérez-Cordón, Gregorio; Cacció, Simone M; Klotz, Christian; Robertson, Lucy J

    2018-06-13

    Due to the occurrence of genetic recombination, a reliable and discriminatory method to genotype Cryptosporidium isolates at the intra-species level requires the analysis of multiple loci, but a standardised scheme is not currently available. A workshop was held at the Robert Koch Institute, Berlin in 2016 that gathered 23 scientists with appropriate expertise (in either Cryptosporidium genotyping and/or surveillance, epidemiology or outbreaks) to discuss the processes for the development of a robust, standardised, multi-locus genotyping (MLG) scheme and propose an approach. The background evidence and main conclusions were outlined in a previously published report; the objectives of this further report are to describe 1) the current use of Cryptosporidium genotyping, 2) the elicitation and synthesis of the participants' opinions, and 3) the agreed processes and criteria for the development, evaluation and validation of a standardised MLG scheme for Cryptosporidium surveillance and outbreak investigations. Cryptosporidium was characterised to the species level in 7/12 (58%) participating European countries, mostly for human outbreak investigations. Further genotyping was mostly by sequencing the gp60 gene. A ranking exercise of performance and convenience criteria found that portability, biological robustness, typeability, and discriminatory power were considered by participants as the most important attributes in developing a multilocus scheme. The major barrier to implementation was lack of funding. A structured process for marker identification, evaluation, validation, implementation, and maintenance was proposed and outlined for application to Cryptosporidium, with prioritisation of Cryptosporidium parvum to support investigation of transmission in Europe. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  13. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics.

    PubMed

    Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid

    2006-04-04

    A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  14. “Epidemic Clones” of Listeria monocytogenes Are Widespread and Ancient Clonal Groups

    PubMed Central

    Cantinelli, Thomas; Chenal-Francisque, Viviane; Diancourt, Laure; Frezal, Lise; Leclercq, Alexandre; Wirth, Thierry

    2013-01-01

    The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space. PMID:24006010

  15. Genomic insights into the taxonomic status of the Bacillus cereus group

    PubMed Central

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-01-01

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441

  16. Strategies for the Identification and Tracking of Cronobacter Species: An Opportunistic Pathogen of Concern to Neonatal Health

    PubMed Central

    Yan, Qiongqiong; Fanning, Séamus

    2015-01-01

    Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health. PMID:26000266

  17. CRISPR: A Useful Genetic Feature to Follow Vaginal Carriage of Group B Streptococcus

    PubMed Central

    Beauruelle, Clémence; Pastuszka, Adeline; Horvath, Philippe; Perrotin, Franck; Mereghetti, Laurent; Lanotte, Philippe

    2017-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and Cas (CRISPR-associated proteins) play a critical role in adaptive immunity against mobile genetic elements, especially phages, through their ability to acquire novel spacer sequences. Polarized spacer acquisition results in spacer polymorphism and temporal organization of CRISPR loci, making them attractive epidemiological markers. Group B Streptococcus (GBS), a genital commensal for 10 to 30% of healthy women and a major neonatal pathogen, possesses a ubiquitous and functional CRISPR1 locus. Our aim was to assess the CRISPR1 locus as an epidemiological marker to follow vaginal carriage of GBS in women. This study also allowed us to observe the evolution of the CRISPR1 locus in response to probable phage infection occurring in vivo. We followed carriage of GBS among 100 women over an 11-year period, with a median duration of approximately 2 years. The CRISPR1 locus was highly conserved over time. The isolates that show the same CRISPR1 genotype were collected from 83% of women. There was an agreement between CRISPR genotyping and other typing methods [MLVA (multilocus variable number of tandem repeat Analysis) and MLST (multilocus sequence typing)] for 94% of the cases. The CRISPR1 locus of the isolates from 18 women showed modifications, four of which acquired polarized spacer, highlighting the in vivo functionality of the system. The novel spacer of one isolate had sequence similarity with phage, suggesting that phage infection occurred during carriage. These findings improve our understanding of CRISPR-Cas evolution in GBS and provide a glimpse of host-phage dynamics in vivo. PMID:29075246

  18. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility

    PubMed Central

    Cook, James P; Morris, Andrew P

    2016-01-01

    Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10−8) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry. PMID:27189021

  19. Heterozygosity and fitness: No strong association in Great Lakes populations of the zebra mussel, Dreissena Polymorpha (Pallas)

    USGS Publications Warehouse

    Lewis, K.M.; Feder, J.L.; Horvath, T.G.; Lamberti, G.A.

    2000-01-01

    A number of studies have found positive associations between allozyme heterozygosity and fitness surrogates (e.g., body size and growth rate) for marine molluscs. We investigated whether similar relationships exist for freshwater populations of the zebra mussel, Dreissena polymorpha. Only one significant correlation between multi-locus heterozygosity and shell length was observed for a total of 22 D. polymorpha populations surveyed from midwestern U.S.A. lakes and streams, and the result was not significant on a table-wide basis. Meta-analysis revealed a significant common correlation coefficient (effect magnitude) between multi-locus heterozygosity and shell length across all 22 sites (rc = 0.052, P = 0.019, 1557 df). However, the variance in shell length explained by multi-locus heterozygosity was small (rc2 = 0.0027), implying a weak causal relationship if any. Also, we saw no relationship between heterozygosity and growth rate in a one-year field enclosure experiment. A significant heterozygosity-shell length correlation previously reported for a zebra mussel population at Put-in-Bay, Lake Erie, Ohio, may have been the product of unique population dynamics, rather than natural selection. Similar demographic considerations may contribute to inconsistencies in heterozygosity-fitness correlations seen for other molluscs.

  20. Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium

    PubMed Central

    Buultjens, Andrew H.; Lam, Margaret M.C.; Ballard, Susan; Monk, Ian R.; Mahony, Andrew A.; Grabsch, Elizabeth A.; Grayson, M. Lindsay; Pang, Stanley; Coombs, Geoffrey W.; Robinson, J. Owen; Seemann, Torsten; Howden, Benjamin P.

    2017-01-01

    From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments. PMID:28149688

  1. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Al-Agamy, Mohamed Hamed; El-Mahallawy, Hadir Ahmed; Amin, Magdy Aly; El Din Ashour, Seif

    2015-03-12

    Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST). Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done. The bla VIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone. The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.

  2. Genetic affinities of Helicobacter pylori isolates from ethnic Arabs in Kuwait

    PubMed Central

    2010-01-01

    Helicobacter pylori is one of the most genetically diverse of bacterial species, and since the 5'-end of cagA gene and the middle allele of vacA gene of H. pylori from different populations exhibit considerable polymorphisms, these sequence diversities were used to gain insights into the genetic affinities of this gastric pathogen from different populations. Because the genetic affinity of Arab strains from the Arabian Gulf is not known, we carried out genetic analysis based on sequence diversities of the cagA and the vacA genes of H. pylori from 9 ethnic Arabs in Kuwait. The analysis showed that the Kuwaiti isolates are closely related to the Indo-European group of strains, although some strains have a tendency to form a separate cluster close to the Indo- European group, but clearly distinct from East Asian strains. However, these results need to be confirmed by analyses of neutral markers (house-keeping genes in a multi-locus sequence typing [MLST]) platform. The profiling of virulence-associated genes may have resulted from ecologically distinct populations due to human migration and geographical separation over long periods of time. PMID:20602767

  3. Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy

    PubMed Central

    Iacobino, Angelo; Scalfaro, Concetta; Franciosa, Giovanna

    2013-01-01

    We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the CRISPR-cas system remains an open question. PMID:23967192

  4. Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs).

    PubMed

    Liu, Fenyun; Kariyawasam, Subhashinie; Jayarao, Bhushan M; Barrangou, Rodolphe; Gerner-Smidt, Peter; Ribot, Efrain M; Knabel, Stephen J; Dudley, Edward G

    2011-07-01

    Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)-was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.

  5. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    PubMed

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Ram locus is a key regulator to trigger multidrug resistance in Enterobacter aerogenes.

    PubMed

    Molitor, Alexander; James, Chloë E; Fanning, Séamus; Pagès, Jean-Marie; Davin-Regli, Anne

    2018-02-01

    Several genetic regulators belonging to AraC family are involved in the emergence of MDR isolates of E. aerogenes due to alterations in membrane permeability. Compared with the genetic regulator Mar, RamA may be more relevant towards the emergence of antibiotic resistance. Focusing on the global regulators, Mar and Ram, we compared the amino acid sequences of the Ram repressor in 59 clinical isolates and laboratory strains of E. aerogenes. Sequence types were associated with their corresponding multi-drug resistance phenotypes and membrane protein expression profiles using MIC and immunoblot assays. Quantitative gene expression analysis of the different regulators and their targets (porins and efflux pump components) were performed. In the majority of the MDR isolates tested, ramR and a region upstream of ramA were mutated but marR or marA were unchanged. Expression and cloning experiments highlighted the involvement of the ram locus in the modification of membrane permeability. Overexpression of RamA lead to decreased porin production and increased expression of efflux pump components, whereas overexpression of RamR had the opposite effects. Mutations or deletions in ramR, leading to the overexpression of RamA predominated in clinical MDR E. aerogenes isolates and were associated with a higher-level of expression of efflux pump components. It was hypothesised that mutations in ramR, and the self-regulating region proximal to ramA, probably altered the binding properties of the RamR repressor; thereby producing the MDR phenotype. Consequently, mutability of RamR may play a key role in predisposing E. aerogenes towards the emergence of a MDR phenotype.

  7. A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements.

    PubMed

    Guimond, A; Moss, T

    1999-02-01

    We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.

  8. Enteroaggregative Escherichia coli have evolved independently as distinct complexes within the E. coli population with varying ability to cause disease.

    PubMed

    Chattaway, Marie Anne; Jenkins, Claire; Rajendram, Dunstan; Cravioto, Alejandro; Talukder, Kaisar Ali; Dallman, Tim; Underwood, Anthony; Platt, Steve; Okeke, Iruka N; Wain, John

    2014-01-01

    Enteroaggregative E. coli (EAEC) is an established diarrhoeagenic pathotype. The association with virulence gene content and ability to cause disease has been studied but little is known about the population structure of EAEC and how this pathotype evolved. Analysis by Multi Locus Sequence Typing of 564 EAEC isolates from cases and controls in Bangladesh, Nigeria and the UK spanning the past 29 years, revealed multiple successful lineages of EAEC. The population structure of EAEC indicates some clusters are statistically associated with disease or carriage, further highlighting the heterogeneous nature of this group of organisms. Different clusters have evolved independently as a result of both mutational and recombination events; the EAEC phenotype is distributed throughout the population of E. coli.

  9. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds.

    PubMed

    Liu, Liezhao; Stein, Anna; Wittkop, Benjamin; Sarvari, Pouya; Li, Jiana; Yan, Xingying; Dreyer, Felix; Frauen, Martin; Friedt, Wolfgang; Snowdon, Rod J

    2012-05-01

    Seed coat phenolic compounds represent important antinutritive fibre components that cause a considerable reduction in value of seed meals from oilseed rape (Brassica napus). The nutritionally most important fibre compound is acid detergent lignin (ADL), to which a significant contribution is made by phenylpropanoid-derived lignin precursors. In this study, we used bulked-segregant analysis in a population of recombinant inbred lines (RILs) from a cross of the Chinese oilseed rape lines GH06 (yellow seed, low ADL) and P174 (black seed, high ADL) to identify markers with tight linkage to a major quantitative trait locus (QTL) for seed ADL content. Fine mapping of the QTL was performed in a backcross population comprising 872 BC(1)F(2) plants from a cross of an F(7) RIL from the above-mentioned population, which was heterozygous for this major QTL and P174. A 3:1 phenotypic segregation for seed ADL content indicated that a single, dominant, major locus causes a substantial reduction in ADL. This locus was successively narrowed to 0.75 cM using in silico markers derived from a homologous Brassica rapa sequence contig spanning the QTL. Subsequently, we located a B. rapa orthologue of the key lignin biosynthesis gene CINNAMOYL CO-A REDUCTASE 1 (CCR1) only 600 kbp (0.75 cM) upstream of the nearest linked marker. Sequencing of PCR amplicons, covering the full-length coding sequences of Bna.CCR1 homologues, revealed a locus in P174 whose sequence corresponds to the Brassica oleracea wild-type allele from chromosome C8. In GH06, however, this allele is replaced by a homologue derived from chromosome A9 that contains a loss-of-function frameshift mutation in exon 1. Genetic and physical map data infer that this loss-of-function allele has replaced a functional Bna.CCR1 locus on chromosome C8 in GH06 by homoeologous non-reciprocal translocation.

  10. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  11. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  12. The high-level expression of human tissue plasminogen activator in the milk of transgenic mice with hybrid gene locus strategy.

    PubMed

    Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing

    2012-02-01

    Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.

  13. A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii

    PubMed Central

    Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.

    2004-01-01

    Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793

  14. Monomorphic pathogens: The case of Candidatus Xenohaliotis californiensis from abalone in California, USA and Baja California, Mexico.

    PubMed

    Cicala, Francesco; Moore, James D; Cáceres-Martínez, Jorge; Del Río-Portilla, Miguel A; Hernández-Rodríguez, Mónica; Vásquez-Yeomans, Rebeca; Rocha-Olivares, Axayácatl

    2018-05-01

    Withering syndrome (WS) is a chronic wasting disease affecting abalone species attributed to the pathogen Candidatus Xenohaliotis californiensis (CXc). Wild populations of blue (Haliotis fulgens) and yellow (H. corrugata) abalone have experienced unusual mortality rates since 2009 off the peninsula of Baja California and WS has been hypothesized as a possible cause. Currently, little information is available about the genetic diversity of CXc and particularly the possible existence of strains differing in pathogenicity. In a recent phylogenetic analysis, we characterized five coding genes from this rickettsial pathogen. Here, we analyze those genes and two additional intergenic non-coding regions following multi-locus sequence typing (MLST) and multi-spacer typing (MST) approaches to assess the genetic variability of CXc and its relationship with blue, yellow and red (H. rufescens) abalone. Moreover, we used 16S rRNA pyrosequencing reads from gut microbiomes of blue and yellow abalone to complete the genetic characterization of this prokaryote. The presence of CXc was investigated in more than 150 abalone of the three species; furthermore, a total of 385 DNA sequences and 7117 16S rRNA reads from Candidatus Xenohaliotis californiensis were used to evaluate its population genetic structure. Our findings suggest the absence of polymorphism in the DNA sequences of analyzed loci and the presence of a single lineage of CXc infecting abalone from California (USA) and Baja California (Mexico). We posit that the absence of genetic variably in this marine rickettsia may be the result of evolutionary and ecological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Molecular variation and distribution of Anopheles fluviatilis (Diptera: Culicidae) complex in Iran.

    PubMed

    Naddaf, Saied Reza; Razavi, Mohammad Reza; Bahramali, Golnaz

    2010-09-01

    Anopheles fluviatilis James (Diptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 28S-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 28S-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.

  16. A silent allele in the locus D5S818 contained within the PowerPlex®21 PCR Amplification Kit.

    PubMed

    Chen, Ling; Tai, Yunchun; Qiu, Pingming; Du, Weian; Liu, Chao

    2015-11-01

    Three paternity tests cases were found with a single locus mismatch at the locus D5S818 with PowerPlex®21 PCR Amplification Kit (Promega). Forward and reverse primers were redesigned to type the samples again and to evaluate if there were alleles dropped out. The results showed the existence of a silent allele 12 in all the three families, due to a point mutation that changed cytosine to adenine at 90 nucleotides upstream from the 5' end of the AGAT repeat sequences in all the six individuals. A single locus mismatch due to a silent allele may occur in any locus using any kit. Therefore, we recommend using multiple kits to confirm the results in paternity testing cases with mismatches, especially when there is a single locus mismatch with homozygote involved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A Multiplex PCR assay to differentiate between dog and red fox.

    PubMed

    Weissenberger, M; Reichert, W; Mattern, R

    2011-11-01

    Foxes are frequently the cause of car accidents in Baden-Württemberg (BW, Germany). The domestic dog (Canis familiaris) is in close relation to the red fox (Vulpes vulpes) and the silver fox which is a coat colour variant of the red fox. As insurance claims that involve accidents with animals require authentication, we analyzed frequency distribution and allele sizes in two canine microsatellite loci in 26 dogs (different breeds) and 19 red foxes of the region of BW, Germany. Moreover, sequencing analysis was performed. Red foxes exhibited only 1 allele at each microsatellite locus, whereas in dog 7 alleles at the CPH4 locus and 6 alleles at the CPH12 locus were detected. Sequences of PCR products from the two species revealed several differences between dogs and foxes. We established a sequenced allelic ladder and give population data from dogs and red foxes from the region of BW, Germany. Using microsatellite polymorphisms is efficient in differentiating between dogs and foxes in forensic casework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3

    PubMed Central

    Brewer, Megan H.; Chaudhry, Rabia; Qi, Jessica; Kidambi, Aditi; Drew, Alexander P.; Ryan, Monique M.; Subramanian, Gopinath M.; Young, Helen K.; Zuchner, Stephan; Reddel, Stephen W.; Nicholson, Garth A.; Kennerson, Marina L.

    2016-01-01

    With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations. PMID:27438001

  19. Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus

    PubMed Central

    Glew, Michelle D.; Marenda, Marc; Rosengarten, Renate; Citti, Christine

    2002-01-01

    The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5′ untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5′ untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae. PMID:12374833

  20. The stability of locus equation slopes across stop consonant voicing/aspiration

    NASA Astrophysics Data System (ADS)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  1. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia

    PubMed Central

    2014-01-01

    Background Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Results Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Conclusions Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics. PMID:24912963

  2. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium

    PubMed Central

    2013-01-01

    Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium. PMID:24004955

  3. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain

    PubMed Central

    2010-01-01

    Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426 Survey sequences of TaEXPB11ws and TsEXPB11 are provided request. PMID:20507562

  4. Structure and expression of the attacin genes in Hyalophora cecropia.

    PubMed

    Sun, S C; Lindström, I; Lee, J Y; Faye, I

    1991-02-26

    To study the regulation of the immune genes in insects, we have cloned and sequenced the attacin gene locus of the giant silk moth Hyalophora cecropia. The locus contains one acidic and one basic attacin gene as well as two pseudogenes, which are remnants of basic attacin genes. A small insertion element was found within the locus. The two functional attacin genes are transcribed in opposite directions and have two introns inserted at homologous positions. A common sequence, GGGGATTCCT, is found at nucleotide position -48 in the acidic gene and at nucleotide position -58 in the basic gene. Interestingly, this decanucleotide is similar to the consensus of the NF-k B-binding site. Expression studies revealed that both attacins are strongly induced by phorbol 12-myristate 13-acetate, lipopolysaccharide and bacteria. However, only the acidic attacin gene showed a clear response to injury.

  5. Multidimensional health locus of control and depressive symptoms in the multi-ethnic population of the Netherlands.

    PubMed

    van Dijk, Tobias K; Dijkshoorn, Henriëtte; van Dijk, Ad; Cremer, Stephan; Agyemang, Charles

    2013-12-01

    Ethnic inequalities in health in Western societies are well-documented but poorly understood. We examined associations between health locus of control (HLC) and depressive symptoms among native and non-native Dutch people in the Netherlands. We used hierarchical multiple linear regression analyses on a representative sample of the multi-ethnic population of Amsterdam and The Hague (n = 10,302). HLC was measured with the multidimensional health locus of control scale. Depressive symptoms were measured with the Kessler Psychological Distress scale. Multivariate analyses showed that HLC contributes to ethnic differences in the prevalence of depressive symptoms. Respondents who scored high on external locus of control (PHLC) were more likely to have depressive symptoms than those with a low score on PHLC (β = 0.133, p < 0.001). Conversely, respondents scoring high on internal locus of control (IHLC) were less likely to have depressive symptoms compared to those scoring low on IHLC (β = -0.134, p < 0.001). The associations were most pronounced among Turkish-Dutch and Moroccan-Dutch respondents. Our findings suggest that HLC contributes to ethnic inequalities in depressive symptoms, especially among Turkish and Moroccan ethnic groups. Professionals (e.g. clinicians and policy makers) need to take HLC into account when assessing and treating depression among ethnic minority groups, particularly in Turkish and Moroccan populations. Future research should look further into the associations within these groups.

  6. New development and validation of 50 SSR markers in breadfruit (Artocarpus altilis, Moraceae) by next-generation sequencing.

    PubMed

    De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre

    2016-08-01

    Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.

  7. Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157).

    PubMed

    Hyytiä-Trees, Eija; Smole, Sandra C; Fields, Patricia A; Swaminathan, Bala; Ribot, Efrain M

    2006-01-01

    Most bacterial genomes contain tandem duplications of short DNA sequences, termed "variable-number tandem repeats" (VNTR). A subtyping method targeting these repeats, multiple-locus VNTR analysis (MLVA), has emerged as a powerful tool for characterization of clonal organisms such as Shiga toxin-producing Escherichia coli O157 (STEC O157). We modified and optimized a recently published MLVA scheme targeting 29 polymorphic VNTR regions of STEC O157 to render it suitable for routine use by public health laboratories that participate in PulseNet, the national and international molecular subtyping network for foodborne disease surveillance. Nine VNTR loci were included in the final protocol. They were amplified in three PCR reactions, after which the PCR products were sized using capillary electrophoresis. Two hundred geographically diverse, sporadic and outbreak- related STEC O157 isolates were characterized by MLVA and the results were compared with data obtained by pulsed-field gel electrophoresis (PFGE) using XbaI macrorestriction of genomic DNA. A total of 139 unique XbaI PFGE patterns and 162 MLVA types were identified. A subset of 100 isolates characterized by both XbaI and BlnI macrorestriction had 62 unique PFGE and MLVA types. Although the clustering of isolates by the two subtyping systems was generally in agreement, some discrepancies were observed. Importantly, MLVA was able to discriminate among some epidemiologically unrelated isolates which were indistinguishable by PFGE. However, among strains from three of the eight outbreaks included in the study, two single locus MLVA variants and one double locus variant were detected among epidemiologically implicated isolates that were indistinguishable by PFGE. Conversely, in three other outbreaks, isolates that were indistinguishable by MLVA displayed multiple PFGE types. An additional more extensive multi-laboratory validation of the MLVA protocol is in progress in order to address critical issues such as establishing epidemiologically relevant interpretation guidelines for the MLVA data.

  8. Novel avian oropharyngeal trichomonads isolated from European turtle doves (Streptopelia turtur) and racing pigeons (Columba livia): genetic and morphometric characterisation of clonal cultures.

    PubMed

    Martínez-Herrero, M C; Garijo-Toledo, M M; Liebhart, D; Ganas, P; Martínez-Díaz, R A; Ponce-Gordo, F; Carrero-Ruiz, A; Hess, M; Gómez-Muñoz, M T

    2017-11-01

    Extensive diversity has been described within the avian oropharyngeal trichomonad complex in recent years. In this study we developed clonal cultures from four isolates selected by their different ITS1/5.8S/ITS2 (ITS) genotype and their association with gross lesions of avian trichomonosis. Isolates were obtained from an adult racing pigeon and a nestling of Eurasian eagle owl with macroscopic lesions, and from a juvenile wood pigeon and an European turtle dove without clinical signs. Multi-locus sequence typing analysis of the ITS, small subunit of ribosomal rRNA (SSUrRNA) and Fe-hydrogenase (Fe-hyd) genes together with a morphological study by optical and scanning electron microscopy was performed. No significant differences in the structures were observed with scanning electron microscopy. However, the genetic characterisation revealed novel sequence types for the SSUrRNA region and Fe-hyd gene. Two clones were identified as Trichomonas gallinae in the MLST analysis, but the clones from the racing pigeon and European turtle dove showed higher similarity with Trichomonas tenax and Trichomonas canistomae than with T. gallinae at their ITS region, respectively. SSUrRNA sequences grouped all the clones in a clade that includes T. gallinae, T. tenax and T. canistomae. Further diversity was detected within the Fe-hyd locus, with a clear separation from T. gallinae of the clones obtained from the racing pigeon and the European turtle dove. In addition, morphometric comparison by optical microscopy with clonal cultures of T. gallinae revealed significant statistical differences on axostyle projection length in the clone from the European turtle dove. Morphometric and genetic data indicate that possible new species within the Trichomonas genus were detected. Taking in consideration the diversity in Trichomonas species present in the oral cavity of birds, a proper genetic analysis is highly recommended when outbreaks occur. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products

    PubMed Central

    Moser, Aline; Wüthrich, Daniel; Bruggmann, Rémy; Eugster-Meier, Elisabeth; Meile, Leo; Irmler, Stefan

    2017-01-01

    The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks. PMID:28775722

  10. Inference on the Strength of Balancing Selection for Epistatically Interacting Loci

    PubMed Central

    Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.

    2011-01-01

    Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883

  11. Genetic Locus for Streptolysin S Production by Group A Streptococcus

    PubMed Central

    Nizet, Victor; Beall, Bernard; Bast, Darrin J.; Datta, Vivekananda; Kilburn, Laurie; Low, Donald E.; De Azavedo, Joyce C. S.

    2000-01-01

    Group A streptococcus (GAS) is an important human pathogen that causes pharyngitis and invasive infections, including necrotizing fasciitis. Streptolysin S (SLS) is the cytolytic factor that creates the zone of beta-hemolysis surrounding GAS colonies grown on blood agar. We recently reported the discovery of a potential genetic determinant involved in SLS production, sagA, encoding a small peptide of 53 amino acids (S. D. Betschel, S. M. Borgia, N. L. Barg, D. E. Low, and J. C. De Azavedo, Infect. Immun. 66:1671–1679, 1998). Using transposon mutagenesis, chromosomal walking steps, and data from the GAS genome sequencing project (www.genome.ou.edu/strep.html), we have now identified a contiguous nine-gene locus (sagA to sagI) involved in SLS production. The sag locus is conserved among GAS strains regardless of M protein type. Targeted plasmid integrational mutagenesis of each gene in the sag operon resulted in an SLS-negative phenotype. Targeted integrations (i) upstream of the sagA promoter and (ii) downstream of a terminator sequence after sagI did not affect SLS production, establishing the functional boundaries of the operon. A rho-independent terminator sequence between sagA and sagB appears to regulate the amount of sagA transcript produced versus transcript for the entire operon. Reintroduction of the nine-gene sag locus on a plasmid vector restored SLS activity to the nonhemolytic sagA knockout mutant. Finally, heterologous expression of the intact sag operon conferred the SLS beta-hemolytic phenotype to the nonhemolytic Lactococcus lactis. We conclude that gene products of the GAS sag operon are both necessary and sufficient for SLS production. Sequence homologies of sag operon gene products suggest that SLS is related to the bacteriocin family of microbial toxins. PMID:10858242

  12. Analysis of Sequence Diversity at the Highly Polymorphic Cpgp40/15 Locus among Cryptosporidium Isolates from Human Immunodeficiency Virus-Infected Children in South Africa

    PubMed Central

    Leav, Brett A.; Mackay, Malanie R.; Anyanwu, Akudo; O' Connor, Roberta M.; Cevallos, Ana Maria; Kindra, Gurpreet; Rollins, Nigel C.; Bennish, Michael L.; Nelson, Richard G.; Ward, Honorine D.

    2002-01-01

    Cryptosporidium sp. is a significant cause of diarrheal disease, particularly in human immunodeficiency virus (HIV)-infected patients in developing countries. We recently cloned and sequenced several alleles of the highly polymorphic single-copy Cryptosporidium parvum gene Cpgp40/15. This gene encodes a precursor protein that is proteolytically cleaved to yield mature cell surface glycoproteins gp40 and gp15, which are implicated in zoite attachment to and invasion of enterocytes. The most-striking feature of the Cpgp40/15 alleles and proteins is their unprecedented degree of sequence polymorphism, which is far greater than that observed for any other gene or protein studied in C. parvum to date. In this study we analyzed nucleic acid and amino acid sequence polymorphism at the Cpgp40/15 locus of 20 C. parvum isolates from HIV-infected South African children. Fifteen isolates exhibited one of four previously identified genotype I alleles at the Cpgp40/15 locus (Ia, Ib, Ic, and Id), while five displayed a novel set of polymorphisms that defined a new Cpgp40/15 genotype I allele, designated genotype Ie. Surprisingly, only 15 of these isolates exhibited concordant type I alleles at the thrombospondin-related adhesive protein of Cryptosporidium and Cryptosporidium oocyst wall protein loci, while five isolates (all of which displayed Cpgp40/15 genotype Ic alleles) displayed genotype II alleles at these loci. Furthermore, the last five isolates also manifested chimeric genotype Ic/Ib or Ic/II alleles at the Cpgp40/15 locus, raising the possibility of sexual recombination within and between prototypal parasite genotypes. Lastly, children infected with isolates having genotype Ic alleles were significantly older than those infected with isolates displaying other genotype I alleles. PMID:12065532

  13. Positional cloning of the chromosome 14 Alzheimer`s disease locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.F.; Korenblat, K.M.; Goate, A.M.

    1994-09-01

    Genetic linkage analysis had indicated a locus for familial early-onset Alzheimer`s disease (FAD) on chromosome 14 at q24.3. The FAD locus has been shown previously to lie between the dinucleotide markers D14S61 and D14S63, a genetic distance of approximately 13 cM. We are currently attempting to identify the gene using a positional cloning strategy. The first step towards the isolation and characterization of this locus was the construction of an overlapping YAC contig covering the entire region. Over forty YACs which map to this region have been isolated from the St. Louis and CEPH libraries by a combination of YACmore » end sequence walking and sequence tagged site mapping. Our contig fully spans the complete domain, encompassing all genetic markers non-recombinant with FAD (i.e. D14S76, D14S43, D14S71, D14S77) and the two nearest flanking FAD-recombinant markers. With restriction mapping of the domain, we can determine the exact size of the region. As a second step, the YACs in this contig are currently being inspected for expressed sequences by exon trapping, initially on those YACs known to be nonchimeric. We have currently made exon-trapped libraries from YACs that have the markers D14S76 and D14S43. Sequence analysis of these libraries indicates that a trapped exon is identified on average for each 30 kb of YAC DNA. The trapped exons are being screened to identify likely candidate genes, which will be examined for mutations in FAD families.« less

  14. Comparative genomics of the mimicry switch in Papilio dardanus.

    PubMed

    Timmermans, Martijn J T N; Baxter, Simon W; Clark, Rebecca; Heckel, David G; Vogel, Heiko; Collins, Steve; Papanicolaou, Alexie; Fukova, Iva; Joron, Mathieu; Thompson, Martin J; Jiggins, Chris D; ffrench-Constant, Richard H; Vogler, Alfried P

    2014-07-22

    The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.

  15. Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies.

    PubMed

    Duhoux, Francois P; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Nguyen-Khac, Florence; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A

    2011-01-01

    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.

  16. Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies

    PubMed Central

    Duhoux, Francois P.; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A.

    2011-01-01

    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis. PMID:22039459

  17. Large scale genomic reorganization of topological domains at the HoxD locus.

    PubMed

    Fabre, Pierre J; Leleu, Marion; Mormann, Benjamin H; Lopez-Delisle, Lucille; Noordermeer, Daan; Beccari, Leonardo; Duboule, Denis

    2017-08-07

    The transcriptional activation of HoxD genes during mammalian limb development involves dynamic interactions with two topologically associating domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior HoxD genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. We assessed the robustness of the TAD architecture by using a series of genomic deletions and inversions that impact the integrity of this chromatin domain and that remodel long-range contacts. We report multi-partite associations between HoxD genes and up to three enhancers. We find that the loss of native chromatin topology leads to the remodeling of TAD structure following distinct parameters. Our results reveal that the recomposition of TAD architectures after large genomic re-arrangements is dependent on a boundary-selection mechanism in which CTCF mediates the gating of long-range contacts in combination with genomic distance and sequence specificity. Accordingly, the building of a recomposed TAD at this locus depends on distinct functional and constitutive parameters.

  18. Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains

    PubMed Central

    Hullahalli, Karthik; Rodrigues, Marinelle; Schmidt, Brendan D.; Li, Xiang; Bhardwaj, Pooja; Palmer, Kelli L.

    2015-01-01

    Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs. PMID:26398194

  19. Multi-locus analysis of genomic time series data from experimental evolution.

    PubMed

    Terhorst, Jonathan; Schlötterer, Christian; Song, Yun S

    2015-04-01

    Genomic time series data generated by evolve-and-resequence (E&R) experiments offer a powerful window into the mechanisms that drive evolution. However, standard population genetic inference procedures do not account for sampling serially over time, and new methods are needed to make full use of modern experimental evolution data. To address this problem, we develop a Gaussian process approximation to the multi-locus Wright-Fisher process with selection over a time course of tens of generations. The mean and covariance structure of the Gaussian process are obtained by computing the corresponding moments in discrete-time Wright-Fisher models conditioned on the presence of a linked selected site. This enables our method to account for the effects of linkage and selection, both along the genome and across sampled time points, in an approximate but principled manner. We first use simulated data to demonstrate the power of our method to correctly detect, locate and estimate the fitness of a selected allele from among several linked sites. We study how this power changes for different values of selection strength, initial haplotypic diversity, population size, sampling frequency, experimental duration, number of replicates, and sequencing coverage depth. In addition to providing quantitative estimates of selection parameters from experimental evolution data, our model can be used by practitioners to design E&R experiments with requisite power. We also explore how our likelihood-based approach can be used to infer other model parameters, including effective population size and recombination rate. Then, we apply our method to analyze genome-wide data from a real E&R experiment designed to study the adaptation of D. melanogaster to a new laboratory environment with alternating cold and hot temperatures.

  20. Influence of Molecular Resolution on Sequence-Based Discovery of Ecological Diversity among Synechococcus Populations in an Alkaline Siliceous Hot Spring Microbial Mat ▿ †

    PubMed Central

    Melendrez, Melanie C.; Lange, Rachel K.; Cohan, Frederick M.; Ward, David M.

    2011-01-01

    Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by PCR from 60°C and 65°C sites in the Mushroom Spring mat (Yellowstone National Park, WY). Sequences were analyzed using the ecotype simulation (ES) and AdaptML algorithms to identify putative ecotypes. Between 4 and 14 times more putative ecotypes were predicted from variation in protein-encoding locus sequences than from variation in 16S rRNA and 16S-23S rRNA internal transcribed spacer sequences. The number of putative ecotypes predicted depended on the number of sequences sampled and the molecular resolution of the locus. Chao estimates of diversity indicated that few rare ecotypes were missed. Many ecotypes hypothesized by sequence analyses were different in their habitat specificities, suggesting different adaptations to temperature or other parameters that vary along the flow channel. PMID:21169433

  1. Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling.

    PubMed

    Al-Kaff, Nadia; Knight, Emilie; Bertin, Isabelle; Foote, Tracie; Hart, Nicola; Griffiths, Simon; Moore, Graham

    2008-04-01

    Understanding Ph1, a dominant homoeologous chromosome pairing suppressor locus on the long arm of chromosome 5B in wheat Triticum aestivum L., is the core of the investigation in this article. The Ph1 locus restricts chromosome pairing and recombination at meiosis to true homologues. The importance of wheat as a crop and the need to exploit its wild relatives as donors for economically important traits in wheat breeding programmes is the main drive to uncover the mechanism of the Ph1 locus and regulate its activity. Following the molecular genetic characterization of the Ph1 locus, five additional deletion mutants covering the region have been identified. In addition, more bacterial artificial chromosomes (BACs) were sequenced and analysed to elucidate the complexity of this locus. A semi-quantitative RT-PCR was used to compare the expression profiles of different genes in the 5B region containing the Ph1 locus with their homoeologues on 5A and 5D. PCR products were cloned and sequenced to identify the gene from which they were derived. Deletion mutants and expression profiling of genes in the region containing the Ph1 locus on 5B has further restricted Ph1 to a cluster of cdk-like genes. Bioinformatic analysis of the cdk-like genes revealed their close homology to the checkpoint kinase Cdk2 from humans. Cdk2 is involved in the initiation of replication and is required in early meiosis. Expression profiling has revealed that the cdk-like gene cluster is unique within the region analysed on 5B in that these genes are transcribed. Deletion of the cdk-like locus on 5B results in activation of transcription of functional cdk-like copies on 5A and 5D. Thus the cdk locus on 5B is dominant to those on 5A and 5D in determining the overall activity, which will be dependent on a complex interplay between transcription from non-functional and functional cdk-like genes. The Ph1 locus has been defined to a cdk-like gene cluster related to Cdk2 in humans, a master checkpoint gene involved in the initiation of replication and required for early meiosis.

  2. Physical Mapping in a Triplicated Genome: Mapping the Downy Mildew Resistance Locus Pp523 in Brassica oleracea L.

    PubMed Central

    Carlier, Jorge D.; Alabaça, Claudia S.; Sousa, Nelson H.; Coelho, Paula S.; Monteiro, António A.; Paterson, Andrew H.; Leitão, José M.

    2011-01-01

    We describe the construction of a BAC contig and identification of a minimal tiling path that encompass the dominant and monogenically inherited downy mildew resistance locus Pp523 of Brassica oleracea L. The selection of BAC clones for construction of the physical map was carried out by screening gridded BAC libraries with DNA overgo probes derived from both genetically mapped DNA markers flanking the locus of interest and BAC-end sequences that align to Arabidopsis thaliana sequences within the previously identified syntenic region. The selected BAC clones consistently mapped to three different genomic regions of B. oleracea. Although 83 BAC clones were accurately mapped within a ∼4.6 cM region surrounding the downy mildew resistance locus Pp523, a subset of 33 BAC clones mapped to another region on chromosome C8 that was ∼60 cM away from the resistance gene, and a subset of 63 BAC clones mapped to chromosome C5. These results reflect the triplication of the Brassica genomes since their divergence from a common ancestor shared with A. thaliana, and they are consonant with recent analyses of the C genome of Brassica napus. The assembly of a minimal tiling path constituted by 13 (BoT01) BAC clones that span the Pp523 locus sets the stage for map-based cloning of this resistance gene. PMID:22384370

  3. An improved and validated RNA HLA class I SBT approach for obtaining full length coding sequences.

    PubMed

    Gerritsen, K E H; Olieslagers, T I; Groeneweg, M; Voorter, C E M; Tilanus, M G J

    2014-11-01

    The functional relevance of human leukocyte antigen (HLA) class I allele polymorphism beyond exons 2 and 3 is difficult to address because more than 70% of the HLA class I alleles are defined by exons 2 and 3 sequences only. For routine application on clinical samples we improved and validated the HLA sequence-based typing (SBT) approach based on RNA templates, using either a single locus-specific or two overlapping group-specific polymerase chain reaction (PCR) amplifications, with three forward and three reverse sequencing reactions for full length sequencing. Locus-specific HLA typing with RNA SBT of a reference panel, representing the major antigen groups, showed identical results compared to DNA SBT typing. Alleles encountered with unknown exons in the IMGT/HLA database and three samples, two with Null and one with a Low expressed allele, have been addressed by the group-specific RNA SBT approach to obtain full length coding sequences. This RNA SBT approach has proven its value in our routine full length definition of alleles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. First report on the occurrence of Theileria sp. OT3 in China.

    PubMed

    Tian, Zhancheng; Liu, Guangyuan; Yin, Hong; Xie, Junren; Wang, Suyan; Yuan, Xiaosong; Wang, Fangfang; Luo, Jin

    2014-04-01

    Theileria sp. OT3 was firstly detected and identified from clinically healthy sheep in Xinjiang Uygur Autonomous Region of China (XUAR) through comparing the complete 18S rDNA gene sequences available in GenBank database and the phylogenetic status based on the internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene by the methods of a partitioned multi-locus analysis in BEAST and Maximum likelihood analysis in PhyML. Moreover, the findings were confirmed by the species-specific PCR for Theileria sp. OT3 and the prevalence of Theileria sp. OT3 was 14.9% in the north of XUAR. This study is the first report on the occurrence of Theileria sp. OT3 in China. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Norrie disease: linkage analysis using a 4.2-kb RFLP detected by a human ornithine aminotransferase cDNA probe.

    PubMed

    Ngo, J T; Bateman, J B; Cortessis, V; Sparkes, R S; Mohandas, T; Inana, G; Spence, M A

    1989-05-01

    Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.

  6. The coalescent process in models with selection and recombination.

    PubMed

    Hudson, R R; Kaplan, N L

    1988-11-01

    The statistical properties of the process describing the genealogical history of a random sample of genes at a selectively neutral locus which is linked to a locus at which natural selection operates are investigated. It is found that the equations describing this process are simple modifications of the equations describing the process assuming that the two loci are completely linked. Thus, the statistical properties of the genealogical process for a random sample at a neutral locus linked to a locus with selection follow from the results obtained for the selected locus. Sequence data from the alcohol dehydrogenase (Adh) region of Drosophila melanogaster are examined and compared to predictions based on the theory. It is found that the spatial distribution of nucleotide differences between Fast and Slow alleles of Adh is very similar to the spatial distribution predicted if balancing selection operates to maintain the allozyme variation at the Adh locus. The spatial distribution of nucleotide differences between different Slow alleles of Adh do not match the predictions of this simple model very well.

  7. Vertical transmission of highly similar blaCTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid

    PubMed Central

    Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger

    2014-01-01

    Objectives: The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Methods: Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The blaCTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Results: Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that blaCTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. Conclusions: The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks). PMID:25324838

  8. Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid.

    PubMed

    Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger

    2014-01-01

    The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that bla CTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks).

  9. LS³: A Method for Improving Phylogenomic Inferences When Evolutionary Rates Are Heterogeneous among Taxa

    PubMed Central

    Rivera-Rivera, Carlos J.; Montoya-Burgos, Juan I.

    2016-01-01

    Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. PMID:26912812

  10. Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers

    PubMed Central

    Navarro-Costa, Paulo; Pereira, Luísa; Alves, Cíntia; Gusmão, Leonor; Proença, Carmen; Marques-Vidal, Pedro; Rocha, Tiago; Correia, Sónia C; Jorge, Sónia; Neves, António; Soares, Ana P; Nunes, Joaquim; Calhaz-Jorge, Carlos; Amorim, António; Plancha, Carlos E; Gonçalves, João

    2007-01-01

    Background The AZFc region of the human Y chromosome is a highly recombinogenic locus containing multi-copy male fertility genes located in repeated DNA blocks (amplicons). These AZFc gene families exhibit slight sequence variations between copies which are considered to have functional relevance. Yet, partial AZFc deletions yield phenotypes ranging from normospermia to azoospermia, thwarting definite conclusions on their real impact on fertility. Results The amplicon content of partial AZFc deletion products was characterized with novel amplicon-specific sequence markers. Data indicate that partial AZFc deletions are a male infertility risk [odds ratio: 5.6 (95% CI: 1.6–30.1)] and although high diversity of partial deletion products and sequence conversion profiles were recorded, the AZFc marker profiles detected in fertile men were also observed in infertile men. Additionally, the assessment of rearrangement recurrence by Y-lineage analysis indicated that while partial AZFc deletions occurred in highly diverse samples, haplotype diversity was minimal in fertile men sharing identical marker profiles. Conclusion Although partial AZFc deletion products are highly heterogeneous in terms of amplicon content, this plasticity is not sufficient to account for the observed phenotypical variance. The lack of causative association between the deletion of specific gene copies and infertility suggests that AZFc gene content might be part of a multifactorial network, with Y-lineage evolution emerging as a possible phenotype modulator. PMID:17903263

  11. Genomic V exons from whole genome shotgun data in reptiles.

    PubMed

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  12. A New Perspective on Polyploid Fragaria (Strawberry) Genome Composition Based on Large-Scale, Multi-Locus Phylogenetic Analysis

    PubMed Central

    Yang, Yilong

    2017-01-01

    Abstract The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. PMID:29045639

  13. spa typing for epidemiological surveillance of Staphylococcus aureus.

    PubMed

    Hallin, Marie; Friedrich, Alexander W; Struelens, Marc J

    2009-01-01

    The spa typing method is based on sequencing of the polymorphic X region of the protein A gene (spa), present in all strains of Staphylococcus aureus. The X region is constituted of a variable number of 24-bp repeats flanked by well-conserved regions. This single-locus sequence-based typing method combines a number of technical advantages, such as rapidity, reproducibility, and portability. Moreover, due to its repeat structure, the spa locus simultaneously indexes micro- and macrovariations, enabling the use of spa typing in both local and global epidemiological studies. These studies are facilitated by the establishment of standardized spa type nomenclature and Internet shared databases.

  14. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

    PubMed Central

    Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838

  15. Identification and characterization of the highly polymorphic locus D14S739 in the Han Chinese population

    PubMed Central

    Shao, Chengchen; Zhang, Yaqi; Zhou, Yueqin; Zhu, Wei; Xu, Hongmei; Liu, Zhiping; Tang, Qiqun; Shen, Yiwen; Xie, Jianhui

    2015-01-01

    Aim To systemically select and evaluate short tandem repeats (STRs) on the chromosome 14 and obtain new STR loci as expanded genotyping markers for forensic application. Methods STRs on the chromosome 14 were filtered from Tandem Repeats Database and further selected based on their positions on the chromosome, repeat patterns of the core sequences, sequence homology of the flanking regions, and suitability of flanking regions in primer design. The STR locus with the highest heterozygosity and polymorphism information content (PIC) was selected for further analysis of genetic polymorphism, forensic parameters, and the core sequence. Results Among 26 STR loci selected as candidates, D14S739 had the highest heterozygosity (0.8691) and PIC (0.8432), and showed no deviation from the Hardy-Weinberg equilibrium. 14 alleles were observed, ranging in size from 21 to 34 tetranucleotide units in the core region of (GATA)9-18 (GACA)7-12 GACG (GACA)2 GATA. Paternity testing showed no mutations. Conclusion D14S739 is a highly informative STR locus and could be a suitable genetic marker for forensic applications in the Han Chinese population. PMID:26526885

  16. Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens

    PubMed Central

    Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe

    2016-01-01

    The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131

  17. High-resolution mapping of the x-linked hypohidrotic ectodermal dysplasia (EDA) locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zonana, J.; Jones, M.; Litt, M.

    1992-11-01

    The X-linked hypohidrotic ectodermal dysplasia (EDA) locus has been previously localized to the subchromosomal region Xq11-q21.1. The authors have extended previous linkage studies and analyzed linkage between the EDA locus and 10 marker loci, including five new loci, in 41 families. Four of the marker loci showed no recombination with the EDA locus, and six other loci were also linked to the EDA locus with recombination fractions of .009-.075. Multipoint analysis gave support to the placement of the PGK1P1 locus proximal to the EDA locus and the DXS453 and PGK1 loci distal to EDA. Further ordering of the loci couldmore » be inferred from a human-rodent somatic cell hybrid derived from an affected female with EDA and an X;9 translocation and from studies of an affected male with EDA and a submicroscopic deletion. Three of the proximal marker loci, which showed no recombination with the EDA locus, when used in combination, were informative in 92% of females. The closely linked flanking polymorphic loci DXS339 and DXS453 had heterozygosites of 72% and 76%, respectively, and when used jointly, they were doubly informative in 52% of females. The human DXS732 locus was defined by a conserved mouse probe pcos169E/4 (DXCrc169 locus) that consegregates with the mouse tabby (Ta) locus, a potential homologue to the EDA locus. The absence of recombination between EDA and the DXSA732 locus lends support to the hypothesis that the DXCrc169 locus in the mouse and the DXS732 locus in humans may contain candidate sequences for the Ta and EDA genes, respectively. 36 refs., 1 fig., 5 tabs.« less

  18. Low level of sequence diversity at merozoite surface protein-1 locus of Plasmodium ovale curtisi and P. ovale wallikeri from Thai isolates.

    PubMed

    Putaporntip, Chaturong; Hughes, Austin L; Jongwutiwes, Somchai

    2013-01-01

    The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus.

  19. Low Level of Sequence Diversity at Merozoite Surface Protein-1 Locus of Plasmodium ovale curtisi and P. ovale wallikeri from Thai Isolates

    PubMed Central

    Putaporntip, Chaturong; Hughes, Austin L.; Jongwutiwes, Somchai

    2013-01-01

    Background The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Methodology/Principal Findings Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. Conclusion/Significance The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus. PMID:23536840

  20. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  1. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  2. Population analysis of clinical and environmental Vibrio parahaemolyticus isolated from eastern provinces in China by removing the recombinant SNPs in the MLST loci.

    PubMed

    Lu, Xin; Zhou, Haijian; Du, Xiaoli; Liu, Sha; Xu, Jialiang; Cui, Zhigang; Pang, Bo; Kan, Biao

    2016-11-01

    Vibrio parahaemolyticus is a common seafood-borne pathogenic bacterium which causes gastroenteritis in humans. Continuous surveillance on the molecular characters of the clinical and environmental V. parahaemolyticus strains needs to be conducted for the epidemiological and genetic purposes. To generate a picture of the population distribution of V. parahaemolyticus in eastern China isolated from clinical cases of gastroenteritis and environmental samples, we investigated the genetic and evolutionary relationships of the strains using the commonly used multi-locus sequence typing (MLST, in which seven house-keeping genes are used in the protocol). A highly genetic diversity within the V. parahaemolyticus population was observed but ST3 was still dominant in the clinical strains, and 103 new sequence types (ST) were found in the clinical strains by searching in the global V. parahaemolyticus MLST database. With these genetically diverse strains, we estimated the recombination rates of the loci in MLST analysis. The locus recA was found to be subject to exceptionally high rate of recombination, and the recombinant single nucleotide polymorphisms (SNPs) were also identified within the seven loci. The phylogenetic tree of the strains was re-constructed using the maximum likelihood method by removing the recombination SNPs of the seven loci, and the minimum spanning tree was re-constructed with the six loci without recA. Some changes were observed in comparison with the previously used methods, suggesting that the homologous recombination has roles in shaping the clonal structure of V. parahaemolyticus. We propose the recombination-free SNPs strategy in the clonality analysis of V. parahaemolyticus, especially when using the maximum likelihood method. Copyright © 2016. Published by Elsevier B.V.

  3. Disruption of MBD5 contributes to a spectrum of psychopathology and neurodevelopmental abnormalities

    PubMed Central

    Hodge, Jennelle C.; Mitchell, Elyse; Pillalamarri, Vamsee; Toler, Tomi L.; Bartel, Frank; Kearney, Hutton M.; Zou, Ying S.; Tan, Wen-Hann; Hanscom, Carrie; Kirmani, Salman; Hanson, Rae R.; Skinner, Steven A.; Rogers, Curtis; Everman, David B.; Boyd, Ellen; Mullegama, Sureni V.; Keelean-Fuller, Debra; Powell, Cynthia M.; Elsea, Sarah H.; Morton, Cynthia C.; Gusella, James F.; DuPont, Barbara; Chaubey, Alka; Lin, Angela E.; Talkowski, Michael E.

    2016-01-01

    Microdeletions of chromosomal region 2q23.1 that disrupt MBD5 contribute to a spectrum of neurodevelopmental phenotypes, however the impact of this locus in human psychopathology has not been described. To characterize the structural variation landscape of MBD5 disruptions and the associated psychopathology, 22 individuals with genomic disruption of MBD5 (translocation, point mutation, and deletion) were identified through whole-genome sequencing or cytogenomic microarray at 11 molecular diagnostic centers. The genomic impact ranged from a single base pair to 5.4 Mb. Parents were available for 11 cases, all of which confirmed the rearrangement arose de novo. Phenotypes were largely indistinguishable between patients with full-segment 2q23.1 deletions and those with intragenic MBD5 rearrangements, including alterations confined entirely to the 5′UTR, confirming the critical impact of non-coding sequence at this locus. We found heterogeneous, multi-system pathogenic effects of MBD5 disruption and characterized the associated spectrum of psychopathology, which includes sensory integration disorder, anxiety, self-hugging, bipolar disorder and others. Importantly, unique features of the oldest assessed patient were early-onset dementia and behavioral regression. Analyses also revealed phenotypes that distinguish MBD5 disruptions from seven well-established syndromes with significant diagnostic overlap. This study indicates that haploinsufficiency of MBD5 causes diverse phenotypes, yields insight into the spectrum of resulting neurodevelopmental and behavioral psychopathology, and provides clinical context for interpretation of MBD5 structural variations. Empirical evidence also suggests that disruption of non-coding MBD5 regulatory regions is sufficient for clinical manifestation, highlighting the limitations of exon-focused assessments. These results suggest an ongoing perturbation of neurological function throughout the lifespan, including risks for neurobehavioral regression and early-onset dementia. PMID:23587880

  4. Lab on a chip genotyping for Brucella spp. based on 15-loci multi locus VNTR analysis.

    PubMed

    De Santis, Riccardo; Ciammaruconi, Andrea; Faggioni, Giovanni; D'Amelio, Raffaele; Marianelli, Cinzia; Lista, Florigio

    2009-04-07

    Brucellosis is an important zoonosis caused by the genus Brucella. In addition Brucella represents potential biological warfare agents due to the high contagious rates for humans and animals. Therefore, the strain typing epidemiological tool may be crucial for tracing back source of infection in outbreaks and discriminating naturally occurring outbreaks versus bioterroristic event. A Multiple Locus Variable-number tandem repeats (VNTR) Analysis (MLVA) assay based on 15 polymorphic markers was previously described. The obtained MLVA band profiles may be resolved by techniques ranging from low cost manual agarose gels to the more expensive capillary electrophoresis sequencing. In this paper a rapid, accurate and reproducible system, based on the Lab on a chip technology was set up for Brucella spp. genotyping. Seventeen DNA samples of Brucella strains isolated in Sicily, previously genotyped, and twelve DNA samples, provided by MLVA Brucella VNTR ring trial, were analyzed by MLVA-15 on Agilent 2100. The DNA fragment sizes produced by Agilent, compared with those expected, showed discrepancies; therefore, in order to assign the correct alleles to the Agilent DNA fragment sizes, a conversion table was produced. In order to validate the system twelve unknown DNA samples were analyzed by this method obtaining a full concordance with the VNTR ring trial results. In this paper we described a rapid and specific detection method for the characterization of Brucella isolates. The comparison of the MLVA typing data produced by Agilent system with the data obtained by standard sequencing or ethidium bromide slab gel electrophoresis showed a general concordance of the results. Therefore this platform represents a fair compromise among costs, speed and specificity compared to any conventional molecular typing technique.

  5. Retroposition of the AFC family of SINEs (short interspersed repetitive elements) before and during the adaptive radiation of cichlid fishes in Lake Malawi and related inferences about phylogeny.

    PubMed

    Takahashi, K; Nishida, M; Yuma, M; Okada, N

    2001-01-01

    Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis.

  6. Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity.

    PubMed

    Briner, Alexandra E; Barrangou, Rodolphe

    2014-02-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel "spacers" that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5'-AAAA-3'. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri.

  7. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014.

    PubMed

    Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali

    2016-09-15

    Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.

  8. Genetic characterization of Anaplasma marginale strains from Tunisia using single and multiple gene typing reveals novel variants with an extensive genetic diversity.

    PubMed

    Ben Said, Mourad; Ben Asker, Alaa; Belkahia, Hanène; Ghribi, Raoua; Selmi, Rachid; Messadi, Lilia

    2018-05-12

    Anaplasma marginale, which is responsible for bovine anaplasmosis in tropical and subtropical regions, is a tick-borne obligatory intraerythrocytic bacterium of cattle and wild ruminants. In Tunisia, information about the genetic diversity and the phylogeny of A. marginale strains are limited to the msp4 gene analysis. The purpose of this study is to investigate A. marginale isolates infecting 16 cattle located in different bioclimatic areas of northern Tunisia with single gene analysis and multilocus sequence typing methods on the basis of seven partial genes (dnaA, ftsZ, groEL, lipA, secY, recA and sucB). The single gene analysis confirmed the presence of different and novel heterogenic A. marginale strains infecting cattle from the north of Tunisia. The concatenated sequence analysis showed a phylogeographical resolution at the global level and that most of the Tunisian sequence types (STs) formed a separate cluster from a South African isolate and from all New World isolates and strains. By combining the characteristics of each single locus with those of the multi-loci scheme, these results provide a more detailed understanding on the diversity and the evolution of Tunisian A. marginale strains. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Using whole genome sequencing to study American foulbrood epidemiology in honeybees

    PubMed Central

    Ågren, Joakim; Schäfer, Marc Oliver

    2017-01-01

    American foulbrood (AFB), caused by Paenibacillus larvae, is a devastating disease in honeybees. In most countries, the disease is controlled through compulsory burning of symptomatic colonies causing major economic losses in apiculture. The pathogen is endemic to honeybees world-wide and is readily transmitted via the movement of hive equipment or bees. Molecular epidemiology of AFB currently largely relies on placing isolates in one of four ERIC-genotypes. However, a more powerful alternative is multi-locus sequence typing (MLST) using whole-genome sequencing (WGS), which allows for high-resolution studies of disease outbreaks. To evaluate WGS as a tool for AFB-epidemiology, we applied core genome MLST (cgMLST) on isolates from a recent outbreak of AFB in Sweden. The high resolution of the cgMLST allowed different bacterial clones involved in the disease outbreak to be identified and to trace the source of infection. The source was found to be a beekeeper who had sold bees to two other beekeepers, proving the epidemiological link between them. No such conclusion could have been made using conventional MLST or ERIC-typing. This is the first time that WGS has been used to study the epidemiology of AFB. The results show that the technique is very powerful for high-resolution tracing of AFB-outbreaks. PMID:29140998

  10. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    PubMed

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  11. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain

    PubMed Central

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health. PMID:26600205

  12. A DNA barcode for land plants.

    PubMed

    2009-08-04

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  13. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  14. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples.

    PubMed

    Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol

    2016-01-01

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.

  15. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE PAGES

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.; ...

    2016-11-10

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  16. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  17. A conserved interaction that is essential for the biogenesis of histone locus bodies.

    PubMed

    Yang, Xiao-cui; Sabath, Ivan; Kunduru, Lalitha; van Wijnen, Andre J; Marzluff, William F; Dominski, Zbigniew

    2014-12-05

    Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing

    USGS Publications Warehouse

    Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.

    2017-01-01

    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.

  19. Comparative genomic analysis of the false killer whale (Pseudorca crassidens) LMBR1 locus.

    PubMed

    Kim, Dae-Won; Choi, Sang-Haeng; Kim, Ryong Nam; Kim, Sun-Hong; Paik, Sang-Gi; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Aeri; Kang, Aram; Park, Hong-Seog

    2010-09-01

    The sequencing and comparative genomic analysis of LMBR1 loci in mammals or other species, including human, would be very important in understanding evolutionary genetic changes underlying the evolution of limb development. In this regard, comparative genomic annotation of the false killer whale LMBR1 locus could shed new light on the evolution of limb development. We sequenced two false killer whale BAC clones, corresponding to 156 kb and 144 kb, respectively, harboring the tightly linked RNF32, LMBR1, and NOM1 genes. Our annotation of the false killer whale LMBR1 gene showed that it consists of 17 exons (1473 bp), in contrast to 18 exons (1596 bp) in human, and it displays 93.1% and 95.6% nucleotide and amino acid sequence similarity, respectively, compared with the human gene. In particular, we discovered that exon 10, deleted in the false killer whale LMBR1 gene, is present only in primates, and this fact strongly implies that exon 10 might be crucial in determining primate-specific limb development. ZRS and TFBS sequences have been well conserved across 11 species, suggesting that these regions could be involved in an important function of limb development and limb patterning. The neighboring gene RNF32 showed several lineage-conserved exons, such as exons 2 through 9 conserved in eutherian mammals, exons 3 through 9 conserved in mammals, and exons 5 through 9 conserved in vertebrates. The other neighboring gene, NOM1, had undergone a substitution (ATG→GTA) at the start codon, giving rise to a 36 bp shorter N-terminal sequence compared with the human sequence. Our comparative analysis of the false killer whale LMBR1 genomic locus provides important clues regarding the genetic regions that may play crucial roles in limb development and patterning.

  20. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing.

    PubMed

    Mulder, Kevin P; Cortazar-Chinarro, Maria; Harris, D James; Crottini, Angelica; Campbell Grant, Evan H; Fleischer, Robert C; Savage, Anna E

    2017-11-01

    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular Characterization and Phylogenetic Analysis of Pseudomonas aeruginosa Isolates Recovered from Greek Aquatic Habitats Implementing the Double-Locus Sequence Typing Scheme.

    PubMed

    Pappa, Olga; Beloukas, Apostolos; Vantarakis, Apostolos; Mavridou, Athena; Kefala, Anastasia-Maria; Galanis, Alex

    2017-07-01

    The recently described double-locus sequence typing (DLST) scheme implemented to deeply characterize the genetic profiles of 52 resistant environmental Pseudomonas aeruginosa isolates deriving from aquatic habitats of Greece. DLST scheme was able not only to assign an already known allelic profile to the majority of the isolates but also to recognize two new ones (ms217-190, ms217-191) with high discriminatory power. A third locus (oprD) was also used for the molecular typing, which has been found to be fundamental for the phylogenetic analysis of environmental isolates given the resulted increased discrimination between the isolates. Additionally, the circulation of acquired resistant mechanisms in the aquatic habitats according to their genetic profiles was proved to be more extent. Hereby, we suggest that the combination of the DLST to oprD typing can discriminate phenotypically and genetically related environmental P. aeruginosa isolates providing reliable phylogenetic analysis at a local level.

  2. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study.

    PubMed

    Ren, Wen-Long; Wen, Yang-Jun; Dunwell, Jim M; Zhang, Yuan-Ming

    2018-03-01

    Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.

  3. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph19(t).

    PubMed

    Chen, J W; Wang, L; Pang, X F; Pan, Q H

    2006-04-01

    Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F(2) populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F(1) plants and the two F(2) populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F(2) populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning.

  4. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.

    PubMed

    Takahata, Satoshi; Yago, Takumi; Iwabuchi, Keisuke; Hirakawa, Hideki; Suzuki, Yutaka; Onodera, Yasuyuki

    2016-01-01

    Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. New development and validation of 50 SSR markers in breadfruit (Artocarpus altilis, Moraceae) by next-generation sequencing1

    PubMed Central

    De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre

    2016-01-01

    Premise of the study: Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. Methods and Results: A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. Conclusions: The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management. PMID:27610273

  6. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    PubMed

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  7. Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species.

    PubMed

    Gardiner, Laura-Jayne; Gawroński, Piotr; Olohan, Lisa; Schnurbusch, Thorsten; Hall, Neil; Hall, Anthony

    2014-12-01

    Mapping-by-sequencing analyses have largely required a complete reference sequence and employed whole genome re-sequencing. In species such as wheat, no finished genome reference sequence is available. Additionally, because of its large genome size (17 Gb), re-sequencing at sufficient depth of coverage is not practical. Here, we extend the utility of mapping by sequencing, developing a bespoke pipeline and algorithm to map an early-flowering locus in einkorn wheat (Triticum monococcum L.) that is closely related to the bread wheat genome A progenitor. We have developed a genomic enrichment approach using the gene-rich regions of hexaploid bread wheat to design a 110-Mbp NimbleGen SeqCap EZ in solution capture probe set, representing the majority of genes in wheat. Here, we use the capture probe set to enrich and sequence an F2 mapping population of the mutant. The mutant locus was identified in T. monococcum, which lacks a complete genome reference sequence, by mapping the enriched data set onto pseudo-chromosomes derived from the capture probe target sequence, with a long-range order of genes based on synteny of wheat with Brachypodium distachyon. Using this approach we are able to map the region and identify a set of deleted genes within the interval. © 2014 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. DEVELOPMENT OF EPIC GENETIC MARKERS AND THE UTILITY OF A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL APPROACH TO EXAMINING PATTERNS OF GENETIC DIVERSITY

    EPA Science Inventory

    Use of population genetic measures for assessing the structure of natural populations and the condition of biological resources has increased steadily since the 1970's. Traditionally, genetic diversity within and among geographic areas is assessed based on a one-time sampling of...

  9. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F

    2017-04-01

    Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Whole-Genome-Sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374.

    PubMed

    Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Ou, Hong-Yu; Qu, Hongping

    2018-01-01

    Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 10 2 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance.

  11. Whole-Genome-Sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374

    PubMed Central

    Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Qu, Hongping

    2018-01-01

    ABSTRACT Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 102 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance. PMID:29338592

  12. Application of MLST and Pilus Gene Sequence Comparisons to Investigate the Population Structures of Actinomyces naeslundii and Actinomyces oris

    PubMed Central

    Henssge, Uta; Do, Thuy; Gilbert, Steven C.; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A. J. M.; Radford, David R.; Beighton, David

    2011-01-01

    Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established. PMID:21738661

  13. Application of MLST and pilus gene sequence comparisons to investigate the population structures of Actinomyces naeslundii and Actinomyces oris.

    PubMed

    Henssge, Uta; Do, Thuy; Gilbert, Steven C; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A J M; Radford, David R; Beighton, David

    2011-01-01

    Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established.

  14. A RESTful application programming interface for the PubMLST molecular typing and genome databases

    PubMed Central

    Bray, James E.; Maiden, Martin C. J.

    2017-01-01

    Abstract Molecular typing is used to differentiate microorganisms at the subspecies or strain level for epidemiological investigations, infection control, public health and environmental sampling. DNA sequence-based typing methods require authoritative databases that link sequence variants to nomenclature in order to facilitate communication and comparison of identified types in national or global settings. The PubMLST website (https://pubmlst.org/) fulfils this role for over a hundred microorganisms for which it hosts curated molecular sequence typing data, providing sequence and allelic profile definitions for multi-locus sequence typing (MLST) and single-gene typing approaches. In recent years, these have expanded to cover the whole genome with schemes such as core genome MLST (cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity found in hundreds to thousands of genes. These approaches provide a common nomenclature for high-resolution strain characterization and comparison. Molecular typing information is linked to isolate provenance, phenotype, and increasingly genome assemblies, providing a resource for outbreak investigation and research in to population structure, gene association, global epidemiology and vaccine coverage. A Representational State Transfer (REST) Application Programming Interface (API) has been developed for the PubMLST website to make these large quantities of structured molecular typing and whole genome sequence data available for programmatic access by any third party application. The API is an integral component of the Bacterial Isolate Genome Sequence Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all public data within the site. In addition to data browsing, searching and download, the API supports authentication and submission of new data to curator queues. Database URL: http://rest.pubmlst.org/ PMID:29220452

  15. Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum.

    PubMed

    Richman, A D; Herrera, G; Reynoso, V H; Méndez, G; Zambrano, L

    2007-12-01

    The axolotl (Ambystoma mexicanum) has been characterized as immunodeficient, and the absence of major histocompatibility complex (MHC) class II polymorphism has been cited as a possible explanation. Here we present evidence for considerable allelic polymorphism at the MHC class II DAB locus for a sample of wild-caught axolotls. Evidence that these sequences are the product of balancing selection for disease resistance is discussed.

  16. Silver syndrome variant of hereditary spastic paraplegia: A locus to 4p and allelism with SPG4.

    PubMed

    Orlacchio, A; Patrono, C; Gaudiello, F; Rocchi, C; Moschella, V; Floris, R; Bernardi, G; Kawarai, T

    2008-05-20

    To perform a clinical and genetic study of two large Italian families (RM-36 and RM-51) showing the cardinal clinical features of Silver syndrome (SS), a rare dominantly inherited form of hereditary spastic paraplegia (HSP) complicated by amyotrophy of the small hand muscles. Clinical assessment including neurophysiologic, neuropsychological, and neuroimaging evaluations. Genetic studies included linkage and sequence analyses. Using a genome-wide survey in the RM-36 family, a novel locus (SPG38) has been identified and mapped within the 13.1-cM region on chromosome 4p16-p15 between markers D4S432 and D4S1599. The RM-51 family was linked to the SPG4 locus at 2p21-p24 and sequence analysis of SPG4 showed a novel frameshift mutation p.Asp321GlyfsX6. Clinical examination of the affected members carrying the mutation showed high frequency of additional clinical features including decreased vibration sense, pes cavus, temporal lobe epilepsy, and cognitive impairment. This study demonstrates evidence of a novel locus SPG38 for Silver syndrome (SS) and suggests that genetic defects in SPG4 might lead to broad clinical features overlapped with those of SS.

  17. A local duplication of the Melanocortin receptor 1 locus in Astyanax

    PubMed Central

    Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.

    2017-01-01

    In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163

  18. Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics

    PubMed Central

    2013-01-01

    Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome. PMID:23379841

  19. Identifying the seasonal origins of human campylobacteriosis

    PubMed Central

    STRACHAN, N. J. C.; ROTARIU, O.; SMITH-PALMER, A.; COWDEN, J.; SHEPPARD, S. K.; O’BRIEN, S. J.; MAIDEN, M. C. J.; MACRAE, M.; BESSELL, P. R.; MATTHEWS, L.; REID, S. W. J.; INNOCENT, G. T.; OGDEN, I. D.; FORBES, K. J.

    2014-01-01

    SUMMARY Human campylobacteriosis exhibits a distinctive seasonality in temperate regions. This paper aims to identify the origins of this seasonality. Clinical isolates [typed by multi-locus sequence typing (MLST)] and epidemiological data were collected from Scotland. Young rural children were found to have an increased burden of disease in the late spring due to strains of non-chicken origin (e.g. ruminant and wild bird strains from environmental sources). In contrast the adult population had an extended summer peak associated with chicken strains. Travel abroad and UK mainland travel were associated with up to 17% and 18% of cases, respectively. International strains were associated with chicken, had a higher diversity than indigenous strains and a different spectrum of MLST types representative of these countries. Integrating empirical epidemiology and molecular subtyping can successfully elucidate the seasonal components of human campylobacteriosis. The findings will enable public health officials to focus strategies to reduce the disease burden. PMID:22989449

  20. [Paternity study in Chilean families using DNA fingerprints and erythrocyte blood markers].

    PubMed

    Aguirre, R; Blanco, R; Cifuentes, L; Chiffelle, I; Armanet, L; Vargas, J; Jara, L

    1992-10-01

    In the last decade, the electromorphic phenotype corresponding to extremely polymorphic zones of DNA, that include variable number of tandem repeat loci (VNTR) of oligonucleotide sequences, have been added to classical markers to elucidate the problems of parenthood identification and ascription in human beings. Using VNTR of several loci, a band profile practically unique for each individual is obtained (DNA-fingerprints). Since the pattern of VNTR electrophoretic bands is inherited from parents in a proportion of 50% from each one, this system is extremely useful for paternity ascription or exclusion. Nine nuclear families were studied, randomly selected from a group of 170 families that were analyzed using 5 erythrocyte genetic markers and with VNTRs detected using the multi locus probe (CAC)5, aiming to explore the concordance of both methods. Results were similar for both methods; however for VNTR, there is no information available on population frequency of polymorphisms.

  1. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  2. [Observation and analysis on mutation of routine STR locus].

    PubMed

    Li, Qiu-yang; Feng, Wei-jun; Yang, Qin-gen

    2005-05-01

    To observe and analyze the characteristic of mutation at STR locus. 27 mutant genes observed in 1211 paternity testing cases were checked by PAGE-silver stained and PowerPlex 16 System Kit and validated by sequencing. Mutant genes locate on 15 loci. The pattern of mutation was accord with stepwise mutation model. The mutation ratio of male-to-female was 8:1 and correlated to the age of father. Mutation rate is correlated to the geometric mean of the number of homogeneous repeats of locus. The higher the mean, the higher the mutation rate. These loci are not so appropriate for use in paternity testing.

  3. Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to Dehalococcoides strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddaramappa, Shivakumara; Delano, Susana; Green, Lance D.

    2012-01-01

    Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore forming, Gram negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) its unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) its phylogenetic position distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9{sup T} contains 1,720 predicted proteinmore » coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus.« less

  4. Mannosyltransferase is required for cell wall biosynthesis, morphology and control of asexual development in Neurospora crassa.

    PubMed

    Bowman, Shaun M; Piwowar, Amy; Ciocca, Maria; Free, Stephen J

    2005-01-01

    Two Neurospora mutants with a phenotype that includes a tight colonial growth pattern, an inability to form conidia and an inability to form protoperithecia have been isolated and characterized. The relevant mutations were mapped to the same locus on the sequenced Neurospora genome. The mutations responsible for the mutant phenotype then were identified by examining likely candidate genes from the mutant genomes at the mapped locus with PCR amplification and a sequencing assay. The results demonstrate that a map and sequence strategy is a feasible way to identify mutant genes in Neurospora. The gene responsible for the phenotype is a putative alpha-1,2-mannosyltransferase gene. The mutant cell wall has an altered composition demonstrating that the gene functions in cell wall biosynthesis. The results demonstrate that the mnt-1 gene is required for normal cell wall biosynthesis, morphology and for the regulation of asexual development.

  5. Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity

    PubMed Central

    Briner, Alexandra E.

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri. PMID:24271175

  6. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.

    PubMed

    Lu, Ping; Qin, Jinxia; Wang, Guoxin; Wang, Lili; Wang, Zhenzhong; Wu, Qiuhong; Xie, Jingzhong; Liang, Yong; Wang, Yong; Zhang, Deyun; Sun, Qixin; Liu, Zhiyong

    2015-08-01

    By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.

  7. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30) on rat chromosome 12: identification of fry as a candidate Mcs gene.

    PubMed

    Ren, Xuefeng; Graham, Jessica C; Jing, Lichen; Mikheev, Andrei M; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut

    2013-01-01

    Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

  8. The doublesex gene integrates multi-locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi.

    PubMed

    Miyakawa, Misato Okamoto; Tsuchida, Koji; Miyakawa, Hitoshi

    2018-03-01

    A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males. To counter this risk, some of hymenopteran species have evolved a multi-locus CSD (ml-CSD) system, which effectively reduces the proportion of sterile males. However, the mechanism by which these multiple primary signals are integrated and how they affect the terminal sex-differentiation signal of the molecular cascade have not yet been clarified. To resolve these questions, we examined the molecular cascade in the Japanese ant Vollenhovia emeryi, which we previously confirmed has two CSD loci. Here, we showed that the sex-determination gene, doublesex (dsx), which is highly conserved among phylogenetically distant taxa, is responsible for integrating two CSD signals in V. emeryi. After identifying and characterizing dsx, genotypes containing two CSD loci and splicing patterns of dsx were found to correspond to the sexual phenotype, suggesting that two primary signals are integrated into dsx. These findings will facilitate future molecular and functional studies of the sex determination cascade in V. emeryi, and shed light on the evolution and diversification of sex determination systems in insects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs

    PubMed Central

    Fyfe, John C.; Hemker, Shelby L.; Venta, Patrick J.; Fitzgerald, Caitlin A.; Outerbridge, Catherine A.; Myers, Sherry L.; Giger, Urs

    2013-01-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9 Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. PMID:23746554

  10. Evaluating five different loci (rbcL, rpoB, rpoC1, matK, and ITS) for DNA barcoding of Indian orchids.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Malik, Saloni; Raghuvanshi, Saurabh; Babbar, Shashi B

    2017-08-01

    Orchidaceae, one of the largest families of angiosperms, is represented in India by 1600 species distributed in diverse habitats. Orchids are in high demand owing to their beautiful flowers and therapeutic properties. Overexploitation and habitat destruction have made many orchid species endangered. In the absence of effective identification methods, illicit trade of orchids continues unabated. Considering DNA barcoding as a potential identification tool, species discrimination capability of five loci, ITS, matK, rbcL, rpoB, and rpoC1, was tested in 393 accessions of 94 Indian orchid species belonging to 47 genera, including one listed in Appendix I of CITES and 26 medicinal species. ITS provided the highest species discrimination rate of 94.9%. While, among the chloroplast loci, matK provided the highest species discrimination rate of 85.7%. None of the tested loci individually discriminated 100% of the species. Therefore, multi-locus combinations of up to five loci were tested for their species resolution capability. Among two-locus combinations, the maximum species resolution (86.7%) was provided by ITS+matK. ITS and matK sequences of the medicinal orchids were species specific, thus providing unique molecular identification tags for their identification and detection. These observations emphasize the need for the inclusion of ITS in the core barcode for plants, whenever required and available.

  11. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus clonal complexes in bulk tank milk from dairy cattle herds in Lombardy Region (Northern Italy).

    PubMed

    Cortimiglia, C; Luini, M; Bianchini, V; Marzagalli, L; Vezzoli, F; Avisani, D; Bertoletti, M; Ianzano, A; Franco, A; Battisti, A

    2016-10-01

    Staphylococcus aureus is the most important causative agent of subclinical mastitis in cattle resulting in reduced milk production and quality. Methicillin-resistant S. aureus (MRSA) strains has a clear zoonotic relevance, especially in the case of occupational exposure. The aim of the study was to evaluate the prevalence of S. aureus and MRSA in bulk tank milk (BTM) from dairy cattle herds in the Lombardy Region (Northern Italy) and to identify the main MRSA circulating genotypes. MRSA strains were characterized by susceptibility testing, multi-locus sequence typing (MLST), spa typing and SCCmec typing. A total 844 BTM samples were analysed and S. aureus and MRSA were detected in 47·2% and 3·8% of dairy herds, respectively. MLST showed that the majority (28/32) of isolates belonged to the typical livestock-associated lineages: ST398, ST97 and ST1. Interestingly, in this study we report for the first time the new ST3211, a single locus variant of ST(CC)22, with the newly described 462 aroE allele. Our study indicates high diffusion of S. aureus mastitis and low, but not negligible, prevalence of MRSA in the considered area, suggesting the need for planning specific control programmes for bovine mastitis caused by S. aureus, especially when MRSA is implicated.

  12. Complete Genome Sequence of Pigmentation Negative Yersinia Pestis strain Cadman Running head: Complete Genome Sequence of Y. pestis strain Cadman

    DTIC Science & Technology

    2016-10-27

    Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of

  13. An Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections

    USDA-ARS?s Scientific Manuscript database

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated wi...

  14. A locus for isolated cataract on human Xp

    PubMed Central

    Francis, P; Berry, V; Hardcastle, A; Maher, E; Moore, A; Bhattacharya, S

    2002-01-01

    Purpose: To genetically map the gene causing isolated X linked cataract in a large European pedigree. Methods: Using the patient registers at Birmingham Women's Hospital, UK, we identified and examined 23 members of a four generation family with nuclear cataract. Four of six affected males also had complex congenital heart disease. Pedigree data were collated and leucocyte DNA extracted from venous blood. Linkage analysis by PCR based microsatellite marker genotyping was used to identify the disease locus and mutations within candidate genes screened by direct sequencing. Results: The disease locus was genetically refined to chromosome Xp22, within a 3 cM linkage interval flanked by markers DXS9902 and DXS999 (Zmax=3.64 at θ=0 for marker DXS8036). Conclusions: This is the first report of a locus for isolated inherited cataract on the X chromosome. The disease interval lies within the Nance-Horan locus suggesting allelic heterogeneity. The apparent association with congenital cardiac anomalies suggests a possible new oculocardiac syndrome. PMID:11836358

  15. A locus for isolated cataract on human Xp.

    PubMed

    Francis, P J; Berry, V; Hardcastle, A J; Maher, E R; Moore, A T; Bhattacharya, S S

    2002-02-01

    To genetically map the gene causing isolated X linked cataract in a large European pedigree. Using the patient registers at Birmingham Women's Hospital, UK, we identified and examined 23 members of a four generation family with nuclear cataract. Four of six affected males also had complex congenital heart disease. Pedigree data were collated and leucocyte DNA extracted from venous blood. Linkage analysis by PCR based microsatellite marker genotyping was used to identify the disease locus and mutations within candidate genes screened by direct sequencing. The disease locus was genetically refined to chromosome Xp22, within a 3 cM linkage interval flanked by markers DXS9902 and DXS999 (Zmax=3.64 at theta=0 for marker DXS8036). This is the first report of a locus for isolated inherited cataract on the X chromosome. The disease interval lies within the Nance-Horan locus suggesting allelic heterogeneity. The apparent association with congenital cardiac anomalies suggests a possible new oculocardiac syndrome.

  16. Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    PubMed Central

    Vangestel, Carl; Mergeay, Joachim; Dawson, Deborah A.; Vandomme, Viki; Lens, Luc

    2011-01-01

    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed. PMID:21747940

  17. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms

    PubMed Central

    Jones, Daniel S; Schaperdoth, Irene; Macalady, Jennifer L

    2016-01-01

    Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ. PMID:27187796

  18. LS³: A Method for Improving Phylogenomic Inferences When Evolutionary Rates Are Heterogeneous among Taxa.

    PubMed

    Rivera-Rivera, Carlos J; Montoya-Burgos, Juan I

    2016-06-01

    Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. A New Perspective on Polyploid Fragaria (Strawberry) Genome Composition Based on Large-Scale, Multi-Locus Phylogenetic Analysis.

    PubMed

    Yang, Yilong; Davis, Thomas M

    2017-12-01

    The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Analysis of host preference and geographical distribution of Anastrepha suspensa (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data.

    PubMed

    Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A

    2006-10-01

    Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

  1. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    PubMed

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).

    PubMed

    Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal

    2015-10-01

    We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov.

    PubMed

    Khayi, Slimane; Cigna, Jérémy; Chong, Teik Min; Quêtu-Laurent, Angélique; Chan, Kok-Gan; Hélias, Valérie; Faure, Denis

    2016-12-01

    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).

  4. Taxonomic re-evaluation of black koji molds.

    PubMed

    Hong, Seung-Beom; Yamada, Osamu; Samson, Robert A

    2014-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in Okinawa in 1901, many fungal names associated with black koji molds were reported. However, some species are similar and differentiation between species is difficult. Fungal taxonomists tried to arrange a taxonomic system for black koji molds, but the results were not clear. Recently, multi-locus sequence typing has been successfully used to taxonomy of black Aspergillus. According to β-tubulin and calmodulin gene sequences, black koji molds can be subdivided in three species, A. luchuensis, Aspergillus niger, and Aspergillus tubingensis. Aspergillus awamori, Aspergillus kawachii, Aspergillus inuii, Aspergillus nakazawai, and Aspergillus coreanus are synonyms of A. luchuensis, Aspergillus batatae, Aspergillus aureus (or Aspergillus foetidus), Aspergillus miyakoensis, and Aspergillus usamii (including A. usamii mut. shirousamii) are synonyms of A. niger and Aspergillus saitoi and A. saitoi var. kagoshimaensis are synonyms of A. tubingensis. A. luchuensis mut. kawachii was suggested particular names for A. kawachii because of their industrial importance. The history and modern taxonomy of black koji molds is further discussed.

  5. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    PubMed

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  6. Porphyromonas loveana sp. nov., isolated from the oral cavity of Australian marsupials.

    PubMed

    Bird, Philip S; Trott, Darren J; Mikkelsen, Deirdre; Milinovich, Gabriel J; Hillman, Kristine M; Burrell, Paul C; Blackall, Linda L

    2016-10-01

    An obligatory anaerobic, Gram-stain-negative coccobacillus with black-pigmented colonies was isolated from the oral cavity of selected Australian marsupial species. Phenotypic and molecular criteria showed that this bacterium was a distinct species within the genus Porphyromonas, and was closely related to Porphyromonas gingivalis and Porphyromonas gulae. This putative novel species and P. gulae could be differentiated from P. gingivalis by catalase activity. Further characterization by multi-locus enzyme electrophoresis of glutamate dehydrogenase and malate dehydrogenase enzyme mobility and matrix-assisted laser desorption ionization time-of-flight MS showed that this putative novel species could be differentiated phenotypically from P. gingivalis and P. gulae. Definitive identification by 16S rRNA gene sequencing showed that this bacterium belonged to a unique monophyletic lineage, phylogenetically distinct from P. gingivalis (94.9 % similarity) and P. gulae (95.5 %). This also was supported by 16S-23S rRNA intergenic spacer region and glutamate dehydrogenase gene sequencing. A new species epithet, Porphyromonas loveana sp. nov., is proposed for this bacterium, with DSM 28520T (=NCTC 13658T=UQD444T=MRK101T), isolated from a musky rat kangaroo, as the type strain.

  7. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations.

    PubMed

    Doudoumis, V; Blow, F; Saridaki, A; Augustinos, A; Dyer, N A; Goodhead, I; Solano, P; Rayaisse, J-B; Takac, P; Mekonnen, S; Parker, A G; Abd-Alla, A M M; Darby, A; Bourtzis, K; Tsiamis, G

    2017-07-05

    Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.

  8. CoLIde: a bioinformatics tool for CO-expression-based small RNA Loci Identification using high-throughput sequencing data.

    PubMed

    Mohorianu, Irina; Stocks, Matthew Benedict; Wood, John; Dalmay, Tamas; Moulton, Vincent

    2013-07-01

    Small RNAs (sRNAs) are 20-25 nt non-coding RNAs that act as guides for the highly sequence-specific regulatory mechanism known as RNA silencing. Due to the recent increase in sequencing depth, a highly complex and diverse population of sRNAs in both plants and animals has been revealed. However, the exponential increase in sequencing data has also made the identification of individual sRNA transcripts corresponding to biological units (sRNA loci) more challenging when based exclusively on the genomic location of the constituent sRNAs, hindering existing approaches to identify sRNA loci. To infer the location of significant biological units, we propose an approach for sRNA loci detection called CoLIde (Co-expression based sRNA Loci Identification) that combines genomic location with the analysis of other information such as variation in expression levels (expression pattern) and size class distribution. For CoLIde, we define a locus as a union of regions sharing the same pattern and located in close proximity on the genome. Biological relevance, detected through the analysis of size class distribution, is also calculated for each locus. CoLIde can be applied on ordered (e.g., time-dependent) or un-ordered (e.g., organ, mutant) series of samples both with or without biological/technical replicates. The method reliably identifies known types of loci and shows improved performance on sequencing data from both plants (e.g., A. thaliana, S. lycopersicum) and animals (e.g., D. melanogaster) when compared with existing locus detection techniques. CoLIde is available for use within the UEA Small RNA Workbench which can be downloaded from: http://srna-workbench.cmp.uea.ac.uk.

  9. Sequence Elements Upstream of the Core Promoter Are Necessary for Full Transcription of the Capsule Gene Operon in Streptococcus pneumoniae Strain D39

    PubMed Central

    Wen, Zhensong; Sertil, Odeniel; Cheng, Yongxin; Zhang, Shanshan; Liu, Xue; Wang, Wen-Ching

    2015-01-01

    Streptococcus pneumoniae is a major bacterial pathogen in humans. Its polysaccharide capsule is a key virulence factor that promotes bacterial evasion of human phagocytic killing. While S. pneumoniae produces at least 94 antigenically different types of capsule, the genes for biosynthesis of almost all capsular types are arranged in the same locus. The transcription of the capsular polysaccharide (cps) locus is not well understood. This study determined the transcriptional features of the cps locus in the type 2 virulent strain D39. The initial analysis revealed that the cps genes are cotranscribed from a major transcription start site at the −25 nucleotide (G) upstream of cps2A, the first gene in the locus. Using unmarked chromosomal truncations and a luciferase-based transcriptional reporter, we showed that the full transcription of the cps genes not only depends on the core promoter immediately upstream of cps2A, but also requires additional elements upstream of the core promoter, particularly a 59-bp sequence immediately upstream of the core promoter. Unmarked deletions of these promoter elements in the D39 genome also led to significant reduction in CPS production and virulence in mice. Lastly, common cps gene (cps2ABCD) mutants did not show significant abnormality in cps transcription, although they produced significantly less CPS, indicating that the CpsABCD proteins are involved in the encapsulation of S. pneumoniae in a posttranscriptional manner. This study has yielded important information on the transcriptional characteristics of the cps locus in S. pneumoniae. PMID:25733517

  10. Analysis of mutational changes at the HLA locus in single human sperm.

    PubMed

    Huang, M M; Erlich, H A; Goodman, M F; Arnheim, N

    1995-01-01

    Using a simple and efficient single sperm PCR and direct sequencing method, we screened for HLA-DPB1 gene mutations that may give rise to new alleles at this highly polymorphic locus. More than 800 single sperm were studied from a heterozygous individual whose two alleles carried 16 nucleotide sequence differences clustered in six polymorphic regions. A potential microgene conversion event was detected. Unrepaired heteroduplex DNA similar to that which gives rise to postmeiotic segregation events in yeast was observed in three cases. Control experiments also revealed unusual sperm from DPB1 homozygous individuals. The data may help explain allelic diversity in the MHC and suggest that a possible source of human mosaicism may be incomplete DNA mismatch repair during gametogenesis.

  11. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.

    PubMed

    Collery, Mark M; Smyth, Cyril J

    2007-02-01

    The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.

  12. Molecular characterization of a polymorphic 3-Mb deletion at chromosome Yp11.2 containing the AMELY locus in Singapore and Malaysia populations.

    PubMed

    Yong, Rita Y Y; Gan, Linda S H; Chang, Yuet Meng; Yap, Eric P H

    2007-11-01

    Amelogenin paralogs on Chromosome X (AMELX) and Y (AMELY) are commonly used sexing markers. Interstitial deletion of Yp involving the AMELY locus has previously been reported. The combined frequency of the AMELY null allele in Singapore and Malaysia populations is 2.7%, 0.6% in Indian and Malay ethnic groups respectively. It is absent among 541 Chinese screened. The null allele in this study belongs to 3 Y haplogroups; J2e1 (85.7%), F* (9.5%) and D* (4.8%). Low and high-resolution STS mapping, followed by sequence analysis of breakpoint junction confirmed a large deletion of 3 to 3.7-Mb located at the Yp11.2 region. Both breakpoints were located in TSPY repeat arrays, suggesting a non-allelic homologous recombination (NAHR) mechanism of deletion. All regional null samples shared identical breakpoint sequences according to their haplogroup affiliation, providing molecular evidence of a common ancestry origin for each haplogroup, and at least 3 independent deletion events recurred in history. The estimated ages based on Y-SNP and STR analysis were approximately 13.5 +/- 3.1 kyears and approximately 0.9 +/- 0.9 kyears for the J2e1 and F* mutations, respectively. A novel polymorphism G > A at Y-GATA-H4 locus in complete linkage disequilibrium with J2e1 null mutations is a more recent event. This work re-emphasizes the need to include other sexing markers for gender determination in certain regional populations. The frequency difference among global populations suggests it constitutes another structural variation locus of human chromosome Y. The breakpoint sequences provide further information to a better understanding of the NAHR mechanism and DNA rearrangements due to higher order genomic architecture.

  13. The vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity

    PubMed Central

    Norris, Steven J.

    2015-01-01

    Summary Spirochetes that cause Lyme borreliosis (also called Lyme disease) possess the vls locus, encoding an elaborate antigenic variation system. This locus contains the expression site vlsE as well as a contiguous array of vls silent cassettes, which contain variations of the central cassette region of vlsE. The locus is present on one of the many linear plasmids in the organism, e.g. plasmid lp28-1 in the strain B. burgdorferi B31. Changes in the sequence of vlsE occur continuously during mammalian infection and consist of random, segmental, unidirectional recombination events between the silent cassettes and the cassette region of vlsE. These gene conversion events do not occur during in vitro culture or the tick portion of the infection cycle of Borrelia burgdorferi or the other related Borrelia species that cause Lyme disease. The mechanism of recombination is largely unknown, but requires the RuvAB Holliday junction branch migrase. Other features of the vls locus also appear to be required, including cis locations of vlsE and the silent cassettes and high G+C content and GC skew. The vls system is required for long-term survival of Lyme Borrelia in infected mammals and represents an important mechanism of immune evasion. In addition to sequence variation, immune selection also results in significant heterogeneity in the sequence of the surface lipoprotein VlsE. Despite antigenic variation, VlsE generates a robust antibody response, and both full length VlsE and the C6 peptide (corresponding to invariant region 6) are widely used in immunodiagnostic tests for Lyme disease. PMID:26104445

  14. Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics.

    PubMed

    Vitecek, Simon; Kučinić, Mladen; Previšić, Ana; Živić, Ivana; Stojanović, Katarina; Keresztes, Lujza; Bálint, Miklós; Hoppeler, Felicitas; Waringer, Johann; Graf, Wolfram; Pauls, Steffen U

    2017-06-06

    Taxonomy offers precise species identification and delimitation and thus provides basic information for biological research, e.g. through assessment of species richness. The importance of molecular taxonomy, i.e., the identification and delimitation of taxa based on molecular markers, has increased in the past decade. Recently developed exploratory tools now allow estimating species-level diversity in multi-locus molecular datasets. Here we use molecular species delimitation tools that either quantify differences in intra- and interspecific variability of loci, or divergence times within and between species, or perform coalescent species tree inference to estimate species-level entities in molecular genetic datasets. We benchmark results from these methods against 14 morphologically readily differentiable species of a well-defined subgroup of the diverse Drusinae subfamily (Trichoptera, Limnephilidae). Using a 3798 bp (6 loci) molecular data set we aim to corroborate a geographically isolated new species by integrating comparative morphological studies and molecular taxonomy. Our results indicate that only multi-locus species delimitation provides taxonomically relevant information. The data further corroborate the new species Drusus zivici sp. nov. We provide differential diagnostic characters and describe the male, female and larva of this new species and discuss diversity patterns of Drusinae in the Balkans. We further discuss potential and significance of molecular species delimitation. Finally we argue that enhancing collaborative integrative taxonomy will accelerate assessment of global diversity and completion of reference libraries for applied fields, e.g., conservation and biomonitoring.

  15. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS.

    PubMed

    Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M

    2011-06-27

    Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.

  16. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  17. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  18. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    PubMed

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.

  19. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies. PMID:27446025

  20. Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark.

    PubMed

    Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F

    2010-02-01

    Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.

  1. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems.

    PubMed

    Kawabe, Yoshinori; Komatsu, Shinya; Komatsu, Shodai; Murakami, Mai; Ito, Akira; Sakuma, Tetsushi; Nakamura, Takahiro; Yamamoto, Takashi; Kamihira, Masamichi

    2018-05-01

    Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A polymorphic and hypervariable locus in the pseudoautosomal region of the CBA/H mouse sex chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fennelly, J.; Laval, S.; Wright, E.

    1996-04-01

    We have identified a genomic locus (DXYH1) that is polymorphic and hypervariable within the CBA/H colony. Using a panel of C57BL/6 x Mus spretus backcross offspring, it was mapped to the distal end of the X chromosome. Pseudoautosomal inheritance was demonstrated through three generations of CBA/H x CBA/H and CBA/H x C57BL/6 crosses and confirmed through linkage to the Sxr locus in X/Y Sxr x 3H1 crosses. Meiotic recombination frequencies place DXYH1 {approximately}28% into the pseudoautosomal region from the boundary. The de novo generation of CBA/H variant DXYH1 restriction fragment length polymorphisms during spermatogenesis is suggestive of the germline instabilitymore » associated with hypermutable human minisatellites. The absence of DXY1-related sequences in Mus spretus provides DNA sequence evidence to support the observed failure of X-Y pairing during meiosis and consequent hybrid infertility in C57BL/6 x Mus spretus male F1 offspring. 19 refs., 4 figs.« less

  3. DNA Sequence Variation at the Period Locus within and among Species of the Drosophila Melanogaster Complex

    PubMed Central

    Kliman, R. M.; Hey, J.

    1993-01-01

    A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister'' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus. PMID:8436278

  4. Ribosomal DNA, tri- and bi-partite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea.

    PubMed

    Golczyk, Hieronim; Hasterok, Robert; Szklarczyk, Marek

    2010-12-01

    High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A(3)-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.

  5. Comparison of Capsular Genes of Streptococcus pneumoniae Serotype 6A, 6B, 6C, and 6D Isolates▿

    PubMed Central

    Song, Jae-Hoon; Baek, Jin Yang; Ko, Kwan Soo

    2011-01-01

    Recently, Streptococcus pneumoniae serotypes 6C and 6D have been identified. It is thought that they emerged by the replacement of wciNβ in the capsular loci of serotypes 6A and 6B, respectively. However, their evolution has not been unveiled yet. To investigate the evolution of four serotypes of S. pneumoniae serogroup 6, four genes of the capsular polysaccharide synthesis (cps) locus, wchA, wciN, wciO, and wciP, of isolates of S. pneumoniae serotypes 6A, 6B, 6C, and 6D were sequenced. Multilocus sequence typing (MLST) was performed to investigate their genetic backgrounds. The wchA gene of serotype 6C and 6D isolates was distinct from that of serotype 6A and 6B isolates, which may suggest cotransfer of wchA with wciNβ. Otherwise, serotypes 6C and 6D displayed different genetic backgrounds from serotypes 6A and 6B, which was suggested by MLST analysis. In addition, serotype 6C isolates showed distinct wciP polymorphisms from other serotypes, which also indicated that serotype 6C had not recently originated from serotype 6A. Although serotype 6D shared the same amino acid polymorphisms of wciO with serotype 6B, wciP of serotype 6D differed from that of serotype 6B. The data indicate the implausibility of the scenario of a recent emergence of the cps locus of serotype 6D by genetic recombination between serotypes 6B and 6C. In addition, five serotype 6A and 6B isolates (6X group) displayed cps loci distinct from those of other isolates. The cps locus homogeneity and similar sequence types in MLST analysis suggest that most of the 6X group of isolates originated from the same ancestor and that the entire cps locus might have recently been transferred from an unknown origin. Serotype 6B isolates showed two or more cps locus subtypes, indicating a recombination-mediated mosaic structure of the cps locus of serotype 6B. The collective data favor the emergence of cps loci of serotypes 6A, 6B, 6C, and 6D by complicated recombination. PMID:21411593

  6. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple.

    PubMed

    Bai, Yang; Dougherty, Laura; Li, Mingjun; Fazio, Gennaro; Cheng, Lailiang; Xu, Kenong

    2012-08-01

    Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150 kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65-82 kb containing 12-19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R (2) = 0.4543, P = 0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS(1455) that targets the SNP(1455) in Ma1 showed that the CAPS(1455A) allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma for low pH or high acidity in apple.

  7. spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.

    PubMed

    Dellicour, Simon; Mardulyn, Patrick

    2014-05-01

    SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.

  8. LOVD: easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach.

    PubMed

    Fokkema, Ivo F A C; den Dunnen, Johan T; Taschner, Peter E M

    2005-08-01

    The completion of the human genome project has initiated, as well as provided the basis for, the collection and study of all sequence variation between individuals. Direct access to up-to-date information on sequence variation is currently provided most efficiently through web-based, gene-centered, locus-specific databases (LSDBs). We have developed the Leiden Open (source) Variation Database (LOVD) software approaching the "LSDB-in-a-Box" idea for the easy creation and maintenance of a fully web-based gene sequence variation database. LOVD is platform-independent and uses PHP and MySQL open source software only. The basic gene-centered and modular design of the database follows the recommendations of the Human Genome Variation Society (HGVS) and focuses on the collection and display of DNA sequence variations. With minimal effort, the LOVD platform is extendable with clinical data. The open set-up should both facilitate and promote functional extension with scripts written by the community. The LOVD software is freely available from the Leiden Muscular Dystrophy pages (www.DMD.nl/LOVD/). To promote the use of LOVD, we currently offer curators the possibility to set up an LSDB on our Leiden server. (c) 2005 Wiley-Liss, Inc.

  9. Extensive gene conversion at the PMS2 DNA mismatch repair locus.

    PubMed

    Hayward, Bruce E; De Vos, Michel; Valleley, Elizabeth M A; Charlton, Ruth S; Taylor, Graham R; Sheridan, Eamonn; Bonthron, David T

    2007-05-01

    Mutations of the PMS2 DNA repair gene predispose to a characteristic range of malignancies, with either childhood onset (when both alleles are mutated) or a partially penetrant adult onset (if heterozygous). These mutations have been difficult to detect, due to interference from a family of pseudogenes located on chromosome 7. One of these, the PMS2CL pseudogene, lies within a 100-kb inverted duplication (inv dup), 700 kb centromeric to PMS2 itself on 7p22. Here, we show that the reference genomic sequences cannot be relied upon to distinguish PMS2 from PMS2CL, because of sequence transfer between the two loci. The 7p22 inv dup occurred prior to the divergence of modern ape species (15 million years ago [Mya]), but has undergone extensive sequence homogenization. This process appears to be ongoing, since there is considerable allelic diversity within the duplicated region, much of it derived from sequence exchange between PMS2 and PMS2CL. This sequence diversity can result in both false-positive and false-negative mutation analysis at this locus. Great caution is still needed in the design and interpretation of PMS2 mutation screens. 2007 Wiley-Liss, Inc.

  10. New microsatellite loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert

    USGS Publications Warehouse

    Munguia-Vega, Adrian; Klimova, Anastasia; Culver, Melanie

    2013-01-01

    We isolated 16 novel microsatellite loci in two subspecies of endangered desert pronghorns (Antilocapra americana sonoriensis and Antilocapra americana peninsularis) using a shotgun pyrosequencing approach. All and 87.5 % of the loci were polymorphic within each subspecies, respectively. The mean number of alleles per locus was 4.86 (range 2–8) and 2.5 alleles per locus (range 1–4 alleles), and observed heterozygosity ranged from 0.13 to 0.78 (mean 0.48) and 0.00 to 0.61 (mean 0.31), respectively. We did not find significant linkage disequilibrium among loci pairs and only one locus deviated significantly from Hardy–Weinberg equilibrium in peninsularis.

  11. Population Genomics of Francisella tularensis subsp. holarctica and its Implication on the Eco-Epidemiology of Tularemia in Switzerland

    PubMed Central

    Wittwer, Matthias; Altpeter, Ekkehard; Pilo, Paola; Gygli, Sebastian M.; Beuret, Christian; Foucault, Frederic; Ackermann-Gäumann, Rahel; Karrer, Urs; Jacob, Daniela; Grunow, Roland; Schürch, Nadia

    2018-01-01

    Whole genome sequencing (WGS) methods provide new possibilities in the field of molecular epidemiology. This is particularly true for monomorphic organisms where the discriminatory power of traditional methods (e.g., restriction enzyme length polymorphism typing, multi locus sequence typing etc.) is inadequate to elucidate complex disease transmission patterns, as well as resolving the phylogeny at high resolution on a micro-geographic scale. In this study, we present insights into the population structure of Francisella tularensis subsp. holarctica, the causative agent of tularemia in Switzerland. A total of 59 Fth isolates were obtained from castor bean ticks (Ixodes ricinus), animals and humans and a high resolution phylogeny was inferred using WGS methods. The majority of the Fth population in Switzerland belongs to the west European B.11 clade and shows an extraordinary genetic diversity underlining the old evolutionary history of the pathogen in the alpine region. Moreover, a new B.11 subclade was identified which was not described so far. The combined analysis of the epidemiological data of human tularemia cases with the whole genome sequences of the 59 isolates provide evidence that ticks play a pivotal role in transmitting Fth to humans and other vertebrates in Switzerland. This is further underlined by the correlation of disease risk estimates with climatic and ecological factors influencing the survival of ticks. PMID:29623260

  12. Preference for locus of punishment in a response sequence.

    NASA Technical Reports Server (NTRS)

    Dardano, J. F.

    1972-01-01

    Study of differences in the aversiveness of response-dependent shock when scheduled on the first, middle or final response of a sequence of 70 responses of food-deprived pigeons, using a procedure to identify relative preferences. The preferred shock schedule and the strength of the preference were found to vary among the pigeons.

  13. Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics

    PubMed Central

    2013-01-01

    Background Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). Results MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). Conclusions High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda. PMID:23384159

  14. Molecular cloning and sequence analysis of the Anticarsia gemmatalis multicapsid nuclear polyhedrosis virus GP64 glycoprotein.

    PubMed

    Pilloff, Marcela Gabriela; Bilen, Marcos Fabián; Belaich, Mariano Nicolás; Lozano, Mario Enrique; Ghiringhelli, Pablo Daniel

    2003-01-01

    The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate Santa Fe (AgMNPV-SF) was characterised molecularly in our laboratory. To this end, we have located and cloned a AgMNPV-SF genomic DNA fragment containing the gp64 gene and sequenced the complete gp64 locus. Nucleotide sequence analysis indicated that the AgMNPV gp64 gene consists of a 1500 nucleotide open reading frame (ORF), encoding a protein of 499 amino acids. Of the seven gp64 homologues identified to date, the AgMNPV gp64 ORF shared most sequence similarity with the gp64 gene of Orgyia pseudotsugata MNPV. The GP64 from AgMNPV is the smallest baculoviral envelope glycoprotein found to date, differing in 10 or more residues from the other group I nucleopolyhedroviruses. The biological activity of AgMNPV GP64 protein was assessed by cell fusion assays in UFL-AG-286 cells using the obtained recombinant plasmids. In the upstream and downstream regions, relative to the gp64 ORF, we found different conserved transcriptional and post-transcriptional regulatory elements, respectively.

  15. Characterization of genic microsatellite markers derived from expressed sequence tags in Pacific abalone ( Haliotis discus hannai)

    NASA Astrophysics Data System (ADS)

    Li, Qi; Shu, Jing; Zhao, Cui; Liu, Shikai; Kong, Lingfeng; Zheng, Xiaodong

    2010-01-01

    Simple sequence repeat (SSR) markers were developed from the expressed sequence tags (ESTs) of Pacific abalone ( Haliotis discus hannai). Repeat motifs were found in 4.95% of the ESTs at a frequency of one repeat every 10.04 kb of EST sequences, after redundancy elimination. Seventeen polymorphic EST-SSRs were developed. The number of alleles per locus varied from 2-17, with an average of 6.8 alleles per locus. The expected and observed heterozygosities ranged from 0.159 to 0.928 and from 0.132 to 0.922, respectively. Twelve of the 17 loci (70.6%) were successfully amplified in H. diversicolor. Seventeen loci segregated in three families, with three showing the presence of null alleles (17.6%). The adequate level of variability and low frequency of null alleles observed in H. discus hannai, together with the high rate of transportability across Haliotis species, make this set of EST-SSR markers an important tool for comparative mapping, marker-assisted selection, and evolutionary studies, not only in the Pacific abalone, but also in related species.

  16. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide.

    PubMed Central

    Albertini, A M; Caramori, T; Crabb, W D; Scoffone, F; Galizzi, A

    1991-01-01

    We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase. PMID:1828465

  17. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number.

    PubMed

    Sukumaran, Sivakumar; Lopes, Marta; Dreisigacker, Susanne; Reynolds, Matthew

    2018-04-01

    GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight and grain number. Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten environments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci-6A (85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)-were associated with multiple traits. The study identified two loci that showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79-85 cM) harbored a gene TaGW2-6A. We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.

  18. Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker.

    PubMed

    Behnke, Michael S; Khan, Asis; Sibley, L David

    2015-02-01

    Quantitative trait locus (QTL) mapping studies have been integral in identifying and understanding virulence mechanisms in the parasite Toxoplasma gondii. In this study, we interrogated a different phenotype by mapping sinefungin (SNF) resistance in the genetic cross between type 2 ME49-FUDR(r) and type 10 VAND-SNF(r). The genetic map of this cross was generated by whole-genome sequencing of the progeny and subsequent identification of single nucleotide polymorphisms (SNPs) inherited from the parents. Based on this high-density genetic map, we were able to pinpoint the sinefungin resistance phenotype to one significant locus on chromosome IX. Within this locus, a single nonsynonymous SNP (nsSNP) resulting in an early stop codon in the TGVAND_290860 gene was identified, occurring only in the sinefungin-resistant progeny. Using CRISPR/CAS9, we were able to confirm that targeted disruption of TGVAND_290860 renders parasites sinefungin resistant. Because disruption of the SNR1 gene confers resistance, we also show that it can be used as a negative selectable marker to insert either a positive drug selection cassette or a heterologous reporter. These data demonstrate the power of combining classical genetic mapping, whole-genome sequencing, and CRISPR-mediated gene disruption for combined forward and reverse genetic strategies in T. gondii. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Mutations Affecting Expression of the rosy Locus in Drosophila melanogaster

    PubMed Central

    Lee, Chong Sung; Curtis, Daniel; McCarron, Margaret; Love, Carol; Gray, Mark; Bender, Welcome; Chovnick, Arthur

    1987-01-01

    The rosy locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Previous studies defined a "control element" near the 5' end of the gene, where variant sites affected the amount of rosy mRNA and protein produced. We have determined the DNA sequence of this region from both genomic and cDNA clones, and from the ry+10 underproducer strain. This variant strain had many sequence differences, so that the site of the regulatory change could not be fixed. A mutagenesis was also undertaken to isolate new regulatory mutations. We induced 376 new mutations with 1-ethyl-1-nitrosourea (ENU) and screened them to isolate those that reduced the amount of XDH protein produced, but did not change the properties of the enzyme. Genetic mapping was used to find mutations located near the 5' end of the gene. DNA from each of seven mutants was cloned and sequenced through the 5' region. Mutant base changes were identified in all seven; they appear to affect splicing and translation of the rosy mRNA. In a related study (T. P. Keith et al. 1987), the genomic and cDNA sequences are extended through the 3' end of the gene; the combined sequences define the processing pattern of the rosy transcript and predict the amino acid sequence of XDH. PMID:3036645

  20. A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay.

    PubMed

    Bossé, Janine T; Li, Yanwen; Sárközi, Rita; Gottschalk, Marcelo; Angen, Øystein; Nedbalcova, Katerina; Rycroft, Andrew N; Fodor, László; Langford, Paul R

    2017-03-01

    Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar-designated serovar 16-of A. pleuropneumoniae . Copyright © 2017 Bossé et al.

  1. Artemisinin Resistance-Associated Polymorphisms at the K13-Propeller Locus Are Absent in Plasmodium falciparum Isolates from Haiti

    PubMed Central

    Carter, Tamar E.; Boulter, Alexis; Existe, Alexandre; Romain, Jean R.; St. Victor, Jean Yves; Mulligan, Connie J.; Okech, Bernard A.

    2015-01-01

    Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. PMID:25646258

  2. Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench).

    PubMed

    Han, Yucui; Lv, Peng; Hou, Shenglin; Li, Suying; Ji, Guisu; Ma, Xue; Du, Ruiheng; Liu, Guoqing

    2015-01-01

    Sorghum is one of the most promising bioenergy crops. Stem juice yield, together with stem sugar concentration, determines sugar yield in sweet sorghum. Bulked segregant analysis (BSA) is a gene mapping technique for identifying genomic regions containing genetic loci affecting a trait of interest that when combined with deep sequencing could effectively accelerate the gene mapping process. In this study, a dry stem sorghum landrace was characterized and the stem water controlling locus, qSW6, was fine mapped using QTL analysis and the combined BSA and deep sequencing technologies. Results showed that: (i) In sorghum variety Jiliang 2, stem water content was around 80% before flowering stage. It dropped to 75% during grain filling with little difference between different internodes. In landrace G21, stem water content keeps dropping after the flag leaf stage. The drop from 71% at flowering time progressed to 60% at grain filling time. Large differences exist between different internodes with the lowest (51%) at the 7th and 8th internodes at dough stage. (ii) A quantitative trait locus (QTL) controlling stem water content mapped on chromosome 6 between SSR markers Ch6-2 and gpsb069 explained about 34.7-56.9% of the phenotypic variation for the 5th to 10th internodes, respectively. (iii) BSA and deep sequencing analysis narrowed the associated region to 339 kb containing 38 putative genes. The results could help reveal molecular mechanisms underlying juice yield of sorghum and thus to improve total sugar yield.

  3. Characterization of a human X-linked gene from the DXS732E locus in the candidate region for the anhidrotic ectodermal dysplasia (EDA) gene (Xq13.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gault, J.; Zonana, J.; Zeltinger, J.

    A conserved mouse genomic clone was used to identify a homologous human genomic clone (the DXS732E locus), which was subsequently employed to isolate cDNAs from a human fetal brain library. Nine unique overlapping cDNAs were isolated, and sequences analysis of 3.9 kb identified a putative 1 kb ORF. GRAIL analysis of the sequence supported the hypothesis that the putative ORF was coding sequence, and Prosite analysis of the putative ORF identified potential glycosylation and phosphorylation sites. The 5{prime} end of the gene maps within a CpG island, and comparison of cDNA sequences indicate the gene is alternatively spliced at itsmore » 3{prime} end. Northern analysis and RT-PCR indicate that two different sized messages appear to be expressed with the gene expressed in human fetal kidney, intestine, brain, and muscle. The gene is expressed in 77 day human skin, a time when hair follicle formation occurs. Anhidrotic ectodermal dysplasia (EDA) results in the abnormal morphogenesis of hair, teeth and eccrine sweat glands. A positional cloning strategy towards cloning the EDA gene had been used, and deletion and X-autosome translocation patients have been useful in further delimiting the EDA region. The present gene at the DXS732E locus is partially deleted in one EDA patient who does not have other apparent abnormalities. No rearrangements of the gene have been detected in two female X-autosome translocation EDA patients, nor in four additional male patients with submicroscopic molecular deletions.« less

  4. Comparison of ELISA, nested PCR and sequencing and a novel qPCR for detection of Giardia isolates from Jordan.

    PubMed

    Hijjawi, Nawal; Yang, Rongchang; Hatmal, Ma'mon; Yassin, Yasmeen; Mharib, Taghrid; Mukbel, Rami; Mahmoud, Sameer Alhaj; Al-Shudifat, Abdel-Ellah; Ryan, Una

    2018-02-01

    Little is known about the prevalence of Giardia duodenalis in human patients in Jordan and all previous studies have used direct microscopy, which lacks sensitivity. The present study developed a novel quantitative PCR (qPCR) assay at the β-giardin (bg) locus and evaluated its use as a frontline test for the diagnosis of giardiasis in comparison with a commercially available ELISA using nested PCR and sequencing of the glutamate dehydrogenase (gdh) locus (gdh nPCR) as the gold standard. A total of 96 human faecal samples were collected from 96 patients suffering from diarrhoea from 5 regions of Jordan and were screened using the ELISA and qPCR. The analytical specificity of the bg qPCR assay revealed no cross-reactions with other genera and detected all the Giardia isolates tested. Analytical sensitivity was 1 Giardia cyst per μl of DNA extract. The overall prevalence of Giardia was 64.6%. The clinical sensitivity and specificity of the bg qPCR was 89.9% and 82.9% respectively compared to 76.5 and 68.0% for the ELISA. This study is the first to compare three different methods (ELISA, bg qPCR, nested PCR and sequencing at the gdh locus) to diagnose Jordanian patients suffering from giardiasis and to analyze their demographic data. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678

  6. Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with the identification of a unique junctional fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zonana, J.; Gault, J.; Jones, M.

    1993-01-01

    X-linked hypohidrotic ectodermal dysplasia (EDA) has been localized to the Xq12-q13.1. A panel of genomic DNA samples from 80 unrelated males with EDA has been screened for deletions at seven genetic loci within the Xq12-13 region. A single individual was identified with a deletion at the DXS732 locus by hybridization with the mouse genomic probe pcos169E/4. This highly conserved DNA probe is from locus DXCrc169, which is tightly linked to the Ta locus, the putative mouse homologue of EDA. The proband had the classical phenotype of EDA, with no other phenotypic abnormalities, and a normal cytogenetic analysis. A human genomicmore » DNA clone, homologous to pcos169E/4, was isolated from a human X-chromosome cosmid library. On hybridization with the cosmid, the proband was found to be only partially deleted at the DXS732 locus, with a unique junctional fragment identified in the proband and in three of his maternal relatives. This is the first determination of carrier status for EDA in females, by direct mutation analysis. Failure to detect deletion of the other loci tested in the proband suggests that the DXS732 locus is the closest known locus to the EDA gene. Since the DXS732 locus contains a highly conserved sequence, it must be considered to be a candidate locus for the EDA gene itself. 18 refs., 3 figs., 1 tab.« less

  7. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    PubMed

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  8. Beta-globin locus activation regions: conservation of organization, structure, and function.

    PubMed Central

    Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G

    1990-01-01

    The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034

  9. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  10. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine

    2013-08-01

    High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.

  11. Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus

    PubMed Central

    Hamilton, Gillian; Killick, Richard; Lambert, Jean-Charles; Amouyel, Philippe; Carrasquillo, Minerva M.; Pankratz, V. Shane; Graff-Radford, Neill R.; Dickson, Dennis W.; Petersen, Ronald C.; Younkin, Steven G.; Powell, John F.; Wade-Martins, Richard

    2013-01-01

    Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease. PMID:22405046

  12. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development

    PubMed Central

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-01-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans. We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. PMID:28630114

  13. Sequence and Analysis of the Tomato JOINTLESS Locus1

    PubMed Central

    Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.

    2001-01-01

    A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984

  14. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development.

    PubMed

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-08-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae , a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov -3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13 , and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. Copyright © 2017 by the Genetics Society of America.

  15. Morphological and molecular characterization of an uninucleated cyst-producing Entamoeba spp. in captured Rangeland goats in Western Australia.

    PubMed

    Al-Habsi, Khalid; Yang, Rongchang; Ryan, Una; Jacobson, Caroline; Miller, David W

    2017-02-15

    Uninucleated Entamoeba cysts measuring 7.3×7.7μm were detected in faecal samples collected from wild Rangeland goats (Capra hircus) after arrival at a commercial goat depot near Geraldton, Western Australia at a prevalence of 6.4% (8/125). Sequences were obtained at the 18S rRNA (n=8) and actin (n=5) loci following PCR amplification. At the 18S locus, phylogenetic analysis grouped the isolates closest with an E. bovis isolate (FN666250) from a sheep from Sweden with 99% similarity. At the actin locus, no E. bovis sequences were available, and the isolates shared 94.0% genetic similarity with E. suis from a pig in Western Japan. This is the first report to describe the morphology and molecular characterisation of Entamoeba from Rangeland goats in Western Australia and the first study to produce actin sequences from E. bovis-like Entamoeba sp. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition

    PubMed Central

    Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie; Bolt, Edward L; White, Malcolm F

    2015-01-01

    The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process. DOI: http://dx.doi.org/10.7554/eLife.08716.001 PMID:26284603

  17. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1.

    PubMed

    Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis

    2003-11-01

    The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.

  18. Occurrence of Extended Spectrum β-Lactamases, KPC-Type, and MCR-1.2-Producing Enterobacteriaceae from Wells, River Water, and Wastewater Treatment Plants in Oltrepò Pavese Area, Northern Italy

    PubMed Central

    Caltagirone, Mariasofia; Nucleo, Elisabetta; Spalla, Melissa; Zara, Francesca; Novazzi, Federica; Marchetti, Vittoria M.; Piazza, Aurora; Bitar, Ibrahim; De Cicco, Marica; Paolucci, Stefania; Pilla, Giorgio; Migliavacca, Roberta; Pagani, Laura

    2017-01-01

    To evaluate the water compartment antibiotic-resistance contamination rates, 11 wells, five streams, and four treatment plants located in the Oltrepò Pavese area were screened for the presence of third generation cephalosporins resistant Gram-negative bacteria. Enterobacteriaceae were also characterized for the Extended-Spectrum-β-Lactamases (ESBLs), carbapenemases, and mcr-1 genes presence. From December 2014 to November 2015, 246 water samples were filtered, plated on Plate Count Agar, MacConkey Agar, and MacConkey Agar with cefotaxime. Isolates were species identified using AutoSCAN-4-System and ESBLs, carbapenemases, and colistin resistance determinants were characterized by PCR, sequencing, and microarray. Plasmid conjugative transfer experiments, PCR-based Replicon typing, Pulsed-Field Gel Electrophoresis, Multi-Locus-Sequence-Typing, and in-silico plasmid characterization were performed. A total of 132 enterobacteria isolates grew on MacConkey agar with cefotaxime: 82 (62.1%) were obtained from streams, 41 (31.1%) from treatment plants, and 9 (6.8%) from wells. Thirty out of 132 (22.7%) isolates, mainly belonging to Escherichia coli (n = 15) species, showed a synergic effect with piperacillin-tazobactam. A single ESBL gene of blaCTX−M-type was identified in 19/30 isolates. In further two E. coli strains, a blaCTX−M−1 gene co-existed with a blaSHV-type ESBL determinant. A blaSHV−12 gene was detected in two isolates of E. coli (n = 1) and Klebsiella oxytoca (n = 1), while any ESBL determinant was ascertained in seven Yersinia enterocolitica strains. A blaDHA-type gene was detected in a cefoxitin resistant Y. enterocolitica from a stream. Interestingly, two Klebsiella pneumoniae strains of ST307 and ST258, collected from a well and a wastewater treatment plant, resulted KPC-2, and KPC-3 producers, respectively. Moreover, we report the first detection of mcr-1.2 ST10 E. coli on a conjugative IncX4 plasmid (33.303 bp in size) from a stream of Oltrepò Pavese (Northern Italy). Both ESBLs E. coli and ESBLs/carbapenemase-producing K. pneumoniae strains showed clonal heterogeneity by Pulsed-Field Gel Electrophoresis and Multi-Locus-Sequence-Typing. During one-year study and taking in account the whole Gram-negative bacterial population, an average percentage of cefotaxime resistance of 69, 32, and 10.3% has been obtained for the wastewater treatment plants, streams, and wells, respectively. These results, of concern for public health, highlight the need to improve hygienic measures to reduce the load of discharged bacteria with emerging resistance mechanisms. PMID:29176971

  19. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

    PubMed Central

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-01-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608

  20. High-Density SNP Genotyping to Define β-Globin Locus Haplotypes

    PubMed Central

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.

    2014-01-01

    Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352

  1. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios

    In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less

  3. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus.

    PubMed

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-01-01

    Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.

  4. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus

    PubMed Central

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh

    2017-01-01

    Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated. PMID:28604829

  5. Whole genome sequencing for typing and characterisation of Listeria monocytogenes isolated in a rabbit meat processing plant.

    PubMed

    Palma, Federica; Pasquali, Frédérique; Lucchi, Alex; Cesare, Alessandra De; Manfreda, Gerardo

    2017-08-16

    Listeria monocytogenes is a food-borne pathogen able to survive and grow in different environments including food processing plants where it can persist for month or years. In the present study the discriminatory power of Whole Genome Sequencing (WGS)-based analysis (cgMLST) was compared to that of molecular typing methods on 34 L. monocytogenes isolates collected over one year in the same rabbit meat processing plant and belonging to three genotypes (ST14, ST121, ST224). Each genotype included isolates indistinguishable by standard molecular typing methods. The virulence potential of all isolates was assessed by Multi Virulence-Locus Sequence Typing (MVLST) and the investigation of a representative database of virulence determinant genes. The whole genome of each isolate was sequenced on a MiSeq platform. The cgMLST, MVLST, and in silico identification of virulence genes were performed using publicly available tools. Draft genomes included a number of contigs ranging from 13 to 28 and N50 ranging from 456298 to 580604. The coverage ranged from 41 to 187X. The cgMLST showed a significantly superior discriminatory power only in comparison to ribotyping, nevertheless it allows the detection of two singletons belonging to ST14 that were not observed by other molecular methods. All ST14 isolates belonged to VT107, which 7-loci concatenated sequence differs for only 4 nucleotides to VT1 (Epidemic clone III). Analysis of virulence genes showed the presence of a fulllength inlA version in all ST14 isolates and of a mutated version including a premature stop codon (PMSC) associated to attenuated virulence in all ST121 isolates.

  6. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor.

    PubMed

    Dong, Chongmei; Vincent, Kate; Sharp, Peter

    2009-12-04

    TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.

  7. Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon.

    PubMed

    Lukacs, Morten F; Harstad, Håvard; Bakke, Hege G; Beetz-Sargent, Marianne; McKinnel, Linda; Lubieniecki, Krzysztof P; Koop, Ben F; Grimholt, Unni

    2010-03-05

    We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene Sasa-UBA in addition to a soluble MHC class I molecule, Sasa-ULA. A pseudolocus for Sasa-UCA was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region. The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, ZAA. The IB region was extended with 350 kb including three new Z-lineage loci, ZBA, ZCA and ZDA in addition to a UGA locus. An allelic version of the IB region contained a functional UDA locus in addition to the UCA pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus SAA (previously known as UAA) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of UBA being dominantly expressed in gut, spleen and gills, and ZAA with high expression in blood. Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (UBA), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.

  8. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs.

    PubMed

    Fyfe, John C; Hemker, Shelby L; Venta, Patrick J; Fitzgerald, Caitlin A; Outerbridge, Catherine A; Myers, Sherry L; Giger, Urs

    2013-08-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with the disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Emergence of carbapenem non-susceptible multidrug resistant Acinetobacter baumannii strains of clonal complexes 103(B) and 92(B) harboring OXA-type carbapenemases and metallo-β-lactamases in Southern India.

    PubMed

    Saranathan, Rajagopalan; Vasanth, Vaidyanathan; Vasanth, Thamodharan; Shabareesh, Pidathala Raghavendra Venkata; Shashikala, P; Devi, Chandrakesan Sheela; Kalaivani, Ramakrishnan; Asir, Johny; Sudhakar, Pagal; Prashanth, K

    2015-05-01

    The molecular epidemiology and carbapenem resistance mechanisms of clinical isolates of Acinetobacter baumannii obtained from a south Indian tertiary care hospital were investigated by repetitive extragenic palindromic sequence PCR (REP-PCR) and multi-locus sequence typing (MLST). Analysis of resistant determinants was achieved by PCR screening for the presence of genes encoding OXA-carbapenemases, metallo-β-lactamases (MBLs) and efflux pumps. REP-PCR generated around eight clusters of high heterogeneity; of these, two major clusters (I and V) appeared to be clonal in origin. Analysis of representative isolates from different clusters by MLST revealed that most of the isolates belonged to sequence type 103 of CC103(B) . Second most prevalent ST belonged to clonal complex (CC) 92(B) which is also referred to as international clone II. Most of the isolates were multi-drug resistant, being susceptible only to polymyxin-B and newer quinolones. Class D β-lactamases such as blaOXA-51-like (100%), blaOXA-23-like (56.8%) and blaOXA-24-like (14.8%) were found to be predominant, followed by a class B β-lactamase, namely blaIMP-1 (40.7%); none of the isolates had blaOXA-58 like, blaNDM-1 or blaSIM-1 . Genes of efflux-pump adeABC were predominant, most of isolates being biofilm producers that were PCR-positive for autoinducer synthase gene (>94%). Carbapenem non-susceptible isolates were highly diverse and present throughout the hospital irrespective of type of ward or intensive care unit. Although previous reports have documented diverse resistant mechanisms in A. baumannii, production of MBL and OXA-type of carbapenamases were found to be the predominant mechanism(s) of carbapenem resistance identified in strains isolated from Southern India. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  10. vanA-positive multi-drug-resistant Enterococcus spp. isolated from surfaces of a US hospital laundry facility.

    PubMed

    Michael, K E; No, D; Roberts, M C

    2017-02-01

    Enterococcus spp. are a normal part of the gastrointestinal tract of humans and animals. They are also important pathogens, being responsible for 14% of US nosocomial infections from 2007 to 2010. To examine a laundry facility that processes clinical linens for the presence and seasonality of vancomycin-resistant Enterococcus spp. Surface samples were collected four times in 2015 from the dirty and clean areas of the laundry facility. Isolates were confirmed using biochemical assays, and antibiotic susceptibility testing was performed. Further investigations included molecular characterization by multi-locus sequence typing (MLST), detection of acquired vanA and vanB and/or intrinsic vanC1 genes by polymerase chain reaction, and eBURST analysis. Seventy-four vanA-positive multi-drug-resistant Enterococcus spp. were identified: 64/120 (53%) in the dirty area and 10/120 (8%) in the clean area. There were 14 ST types among the E. faecium isolates identified (ST16, 17, 18, 117, 186, 280, 324, 412, 584, 664, 665, 736, 750 and 1038). Both E. faecalis isolates were ST109. Isolation of vancomycin-resistant enterococci (VRE) isolates was significantly higher (53% vs 8%) in the dirty area of the facility compared with the clean area. This is the first study to examine an industrial laundry facility for the presence of VRE, and may be an unrecognized reservoir. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

    PubMed

    Lacey, Jake A; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2016-06-01

    The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.

  12. Diversity and Distribution of Phenol Oxidase Producing Fungi from Soda Lake and Description of Curvularia lonarensis sp. nov.

    PubMed

    Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S; Nimonkar, Yogesh; Golellu, Priyanka B; Sharma, Rohit

    2016-01-01

    Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta ). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU- gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov.

  13. High Diversity of Hepatozoon spp. in Geckos of the Genus Tarentola.

    PubMed

    Tomé, Beatriz; Rato, Catarina; Harris, D James; Perera, Ana

    2016-08-01

    :   Hemogregarines are the most-commonly reported hemoparasites in reptiles. In this work we analyzed samples from 572 individuals of 6 species of the wall gecko genus Tarentola from European and African countries adjacent to the Mediterranean Sea as well as from the Macaronesian islands. Screening was done using hemogregarine-specific primers for the 18S rRNA gene. Positive amplifications were sequenced so that the diversity of the hemogregarines from these hosts could be assessed within a phylogenetic framework. The results from the phylogenetic analysis showed that within Tarentola, the detected parasites are comprised of at least 4 distinct main lineages of Hepatozoon spp. In clades A and B, the new sequences clustered closely together with the ones previously known from individuals of the genus Tarentola and other species of geckos but also with those from other vertebrate host groups including skinks, snakes, iguanids, and rodents. Clade C included a sample from Tarentola angustimentalis of the Canary Islands. This sequence is the first molecular characterization of these hemogregarines in this archipelago. Until now, this lineage had only been found in lacertids, skinks, and snakes, so this infection extends the host range for this clade. Lastly, in the newly detected clade D, the retrieved parasite sequences form a group currently identified as exclusive of geckos. Our results show that geckos of Tarentola spp. harbor a great diversity of hemogregarines but also that further sampling and other tools, including a multi-locus approach using faster-evolving genetic markers, and identification of definitive hosts are needed to better understand the biology, diversity, and distribution of these parasites.

  14. Diversity and Distribution of Phenol Oxidase Producing Fungi from Soda Lake and Description of Curvularia lonarensis sp. nov.

    PubMed Central

    Sharma, Rahul; Prakash, Om; Sonawane, Mahesh S.; Nimonkar, Yogesh; Golellu, Priyanka B.; Sharma, Rohit

    2016-01-01

    Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU-gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov. PMID:27920761

  15. Characterisation of pks15/1 in clinical isolates of Mycobacterium tuberculosis from Mexico

    PubMed Central

    Zenteno-Cuevas, Roberto; Silva-Hernández, Francisco X; Mendoza-Damián, Fabiola; Ramírez-Hernández, Maria Dolores; Vázquez-Medina, Karen; Widrobo-García, Lorena; Cuellar-Sanchez, Aremy; Muñíz-Salazar, Raquel; Enciso-Moreno, Leonor; Pérez-Navarro, Lucia Monserrat; Enciso-Moreno, José Antonio

    2013-01-01

    Tuberculosis (TB) is an infectocontagious respiratory disease caused by members of the Mycobacterium tuberculosis complex. A 7 base pair (bp) deletion in the locus polyketide synthase (pks)15/1 is described as polymorphic among members of the M. tuberculosis complex, enabling the identification of Euro-American, Indo-Oceanic and Asian lineages. The aim of this study was to characterise this locus in TB isolates from Mexico. One hundred twenty clinical isolates were recovered from the states of Veracruz and Estado de Mexico. We determined the nucleotide sequence of a ± 400 bp fragment of the locus pks15/1, while genotypic characterisation was performed by spoligotyping. One hundred and fifty isolates contained the 7 bp deletion, while five had the wild type locus. Lineages X (22%), LAM (18%) and T (17%) were the most frequent; only three (2%) of the isolates were identified as Beijing and two (1%) EAI-Manila. The wild type pks15/1 locus was observed in all Asian lineage isolates tested. Our results confirm the utility of locus pks15/1 as a molecular marker for identifying Asian lineages of the M. tuberculosis complex. This marker could be of great value in the epidemiological surveillance of TB, especially in countries like Mexico, where the prevalence of such lineages is unknown. PMID:24037193

  16. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing.

    PubMed

    Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing

    2017-05-08

    Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.

  17. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences.

    PubMed

    Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer

    2017-09-26

    Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .

  18. Cryptosporidium in fish: alternative sequencing approaches and analyses at multiple loci to resolve mixed infections.

    PubMed

    Paparini, Andrea; Yang, Rongchang; Chen, Linda; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una M

    2017-11-01

    Currently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.

  19. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus

    PubMed Central

    Wei, Yunzhou; Chesne, Megan T.; Terns, Rebecca M.; Terns, Michael P.

    2015-01-01

    CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100–500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems. PMID:25589547

  20. Birth and death of genes linked to chromosomal inversion

    PubMed Central

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  1. Contrasting allelic distribution of CO/ Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago

    DOE PAGES

    Nagano, Hironori; Clark, Lindsay V.; Zhao, Hua; ...

    2015-06-18

    The genus Miscanthus is a perennial C 4 grass native to eastern Asia and is a promising candidate bioenergy crop for cool temperate areas. Flowering time is a crucial factor governing regional and seasonal adaptation; in addition, it is also a key target trait for extending the vegetative phase to improve biomass potential. Homologues of CONSTANS (CO)/Heading date 1(Hd1) were cloned from Miscanthus sinensis and named MsiHd1. Sequences of MsiHd1 homologues were compared among 24 wild M. sinensis accessions from Japan, 14 from China, and three from South Korea. Two to five MsiHd1 alleles in each accession were identified, suggestingmore » that MsiHd1 consists of at least three loci in the Miscanthus genome. Verifying the open reading frame in MsiHd1, they were classified as putative functional alleles without mutations or non-functional alleles caused by indels. The Neighbor-Joining tree indicated that one of the multiple MsiHd1 loci is a pseudogene locus without any functional alleles. The pseudogene locus was named MsiHd1b, and the other loci were considered to be part of the MsiHd1a multi-locus family. Interestingly, in most Japanese accessions 50% or more of the MsiHd1a alleles were non-functional, whereas accessions from the East Asian mainland harboured only functional alleles. Five novel miniature inverted transposable elements (MITEs) ( MsiMITE1-MsiMITE5) were observed in MsiHd1a/b. MsiMITE1, detected in exon 1 of MsiHd1a, was only observed in Japanese accessions and its revertant alleles derived from retransposition were predominantly in Chinese accessions. In conclusion, these differences in MsiHd1a show that the dependency on functional MsiHd1a alleles is different between accessions from the East Asian mainland and Japan.« less

  2. Contrasting allelic distribution of CO/Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago

    PubMed Central

    Nagano, Hironori; Clark, Lindsay V.; Zhao, Hua; Peng, Junhua; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Anzoua, Kossonou Guillaume; Matsuo, Tomoaki; Sacks, Erik J.; Yamada, Toshihiko

    2015-01-01

    The genus Miscanthus is a perennial C4 grass native to eastern Asia and is a promising candidate bioenergy crop for cool temperate areas. Flowering time is a crucial factor governing regional and seasonal adaptation; in addition, it is also a key target trait for extending the vegetative phase to improve biomass potential. Homologues of CONSTANS (CO)/Heading date 1(Hd1) were cloned from Miscanthus sinensis and named MsiHd1. Sequences of MsiHd1 homologues were compared among 24 wild M. sinensis accessions from Japan, 14 from China, and three from South Korea. Two to five MsiHd1 alleles in each accession were identified, suggesting that MsiHd1 consists of at least three loci in the Miscanthus genome. Verifying the open reading frame in MsiHd1, they were classified as putative functional alleles without mutations or non-functional alleles caused by indels. The Neighbor–Joining tree indicated that one of the multiple MsiHd1 loci is a pseudogene locus without any functional alleles. The pseudogene locus was named MsiHd1b, and the other loci were considered to be part of the MsiHd1a multi-locus family. Interestingly, in most Japanese accessions 50% or more of the MsiHd1a alleles were non-functional, whereas accessions from the East Asian mainland harboured only functional alleles. Five novel miniature inverted transposable elements (MITEs) (MsiMITE1–MsiMITE5) were observed in MsiHd1a/b. MsiMITE1, detected in exon 1 of MsiHd1a, was only observed in Japanese accessions and its revertant alleles derived from retransposition were predominantly in Chinese accessions. These differences in MsiHd1a show that the dependency on functional MsiHd1a alleles is different between accessions from the East Asian mainland and Japan. PMID:26089536

  3. Contrasting allelic distribution of CO/Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago.

    PubMed

    Nagano, Hironori; Clark, Lindsay V; Zhao, Hua; Peng, Junhua; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Anzoua, Kossonou Guillaume; Matsuo, Tomoaki; Sacks, Erik J; Yamada, Toshihiko

    2015-07-01

    The genus Miscanthus is a perennial C4 grass native to eastern Asia and is a promising candidate bioenergy crop for cool temperate areas. Flowering time is a crucial factor governing regional and seasonal adaptation; in addition, it is also a key target trait for extending the vegetative phase to improve biomass potential. Homologues of CONSTANS (CO)/Heading date 1(Hd1) were cloned from Miscanthus sinensis and named MsiHd1. Sequences of MsiHd1 homologues were compared among 24 wild M. sinensis accessions from Japan, 14 from China, and three from South Korea. Two to five MsiHd1 alleles in each accession were identified, suggesting that MsiHd1 consists of at least three loci in the Miscanthus genome. Verifying the open reading frame in MsiHd1, they were classified as putative functional alleles without mutations or non-functional alleles caused by indels. The Neighbor-Joining tree indicated that one of the multiple MsiHd1 loci is a pseudogene locus without any functional alleles. The pseudogene locus was named MsiHd1b, and the other loci were considered to be part of the MsiHd1a multi-locus family. Interestingly, in most Japanese accessions 50% or more of the MsiHd1a alleles were non-functional, whereas accessions from the East Asian mainland harboured only functional alleles. Five novel miniature inverted transposable elements (MITEs) (MsiMITE1-MsiMITE5) were observed in MsiHd1a/b. MsiMITE1, detected in exon 1 of MsiHd1a, was only observed in Japanese accessions and its revertant alleles derived from retransposition were predominantly in Chinese accessions. These differences in MsiHd1a show that the dependency on functional MsiHd1a alleles is different between accessions from the East Asian mainland and Japan. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Contrasting allelic distribution of CO/ Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagano, Hironori; Clark, Lindsay V.; Zhao, Hua

    The genus Miscanthus is a perennial C 4 grass native to eastern Asia and is a promising candidate bioenergy crop for cool temperate areas. Flowering time is a crucial factor governing regional and seasonal adaptation; in addition, it is also a key target trait for extending the vegetative phase to improve biomass potential. Homologues of CONSTANS (CO)/Heading date 1(Hd1) were cloned from Miscanthus sinensis and named MsiHd1. Sequences of MsiHd1 homologues were compared among 24 wild M. sinensis accessions from Japan, 14 from China, and three from South Korea. Two to five MsiHd1 alleles in each accession were identified, suggestingmore » that MsiHd1 consists of at least three loci in the Miscanthus genome. Verifying the open reading frame in MsiHd1, they were classified as putative functional alleles without mutations or non-functional alleles caused by indels. The Neighbor-Joining tree indicated that one of the multiple MsiHd1 loci is a pseudogene locus without any functional alleles. The pseudogene locus was named MsiHd1b, and the other loci were considered to be part of the MsiHd1a multi-locus family. Interestingly, in most Japanese accessions 50% or more of the MsiHd1a alleles were non-functional, whereas accessions from the East Asian mainland harboured only functional alleles. Five novel miniature inverted transposable elements (MITEs) ( MsiMITE1-MsiMITE5) were observed in MsiHd1a/b. MsiMITE1, detected in exon 1 of MsiHd1a, was only observed in Japanese accessions and its revertant alleles derived from retransposition were predominantly in Chinese accessions. In conclusion, these differences in MsiHd1a show that the dependency on functional MsiHd1a alleles is different between accessions from the East Asian mainland and Japan.« less

  5. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    PubMed

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  6. Marked Phenotypic Heterogeneity Associated with Expansion of a CAG Repeat Sequence at the Spinocerebellar Ataxia 3/Machado-Joseph Disease Locus

    PubMed Central

    Cancel, Géraldine; Abbas, Nacer; Stevanin, Giovanni; Dürr, Alexandra; Chneiweiss, Hervé; Néri, Christian; Duyckaerts, Charles; Penet, Christiane; Cann, Howard M.; Agid, Yves; Brice, Alexis

    1995-01-01

    The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats. ImagesFigure 3Figure 5 PMID:7573040

  7. Correlation between genetic features of the mef(A)-msr(D) locus and erythromycin resistance in Streptococcus pyogenes.

    PubMed

    Vitali, Luca Agostino; Di Luca, Maria Chiara; Prenna, Manuela; Petrelli, Dezemona

    2016-01-01

    We investigated the correlation between the genetic variation within mef(A)-msr(D) determinants of efflux-mediated erythromycin resistance in Streptococcus pyogenes and the level of erythromycin resistance. Twenty-eight mef(A)-positive strains were selected according to erythromycin MIC (4-32 μg/mL), and their mef(A)-msr(D) regions were sequenced. Strains were classified according to the bacteriophage carrying mef(A)-msr(D). A new Φm46.1 genetic variant was found in 8 strains out of 28 and named VP_00501.1. Degree of allelic variation was higher in mef(A) than in msr(D). Hotspots for recombination were mapped within the locus that could have shaped the apparent mosaic structure of the region. There was a general correlation between mef(A)-msr(D) sequence and erythromycin resistance level. However, lysogenic conversion of susceptible strains by mef(A)-msr(D)-carrying Φm46.1 indicated that key determinants may not all reside within the mef(A)-msr(D) locus and that horizontal gene transfer could contribute to changes in the level of antibiotic resistance in S. pyogenes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  9. Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides)

    PubMed Central

    Han, Jun; Zhao, Xiaojie; Cui, Yu; Song, Wei; Huo, Naxin; Liang, Yong; Xie, Jingzhong; Wang, Zhenzhong; Wu, Qiuhong; Chen, Yong-Xing; Lu, Ping; Zhang, De-Yun; Wang, Lili; Sun, Hua; Yang, Tsomin; Keeble-Gagnere, Gabriel; Appels, Rudi; Doležel, Jaroslav; Ling, Hong-Qing; Luo, Mingcheng; Gu, Yongqiang; Sun, Qixin; Liu, Zhiyong

    2014-01-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172. PMID:24955773

  10. Group B Streptococcus Vaginal Carriage in Pregnant Women as Deciphered by Clustered Regularly Interspaced Short Palindromic Repeat Analysis.

    PubMed

    Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe

    2018-06-01

    We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.

  11. rbcL and matK earn two thumbs up as the core DNA barcode for ferns.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D; Pryer, Kathleen M

    2011-01-01

    DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci. Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.

  12. CoLIde

    PubMed Central

    Mohorianu, Irina; Stocks, Matthew Benedict; Wood, John; Dalmay, Tamas; Moulton, Vincent

    2013-01-01

    Small RNAs (sRNAs) are 20–25 nt non-coding RNAs that act as guides for the highly sequence-specific regulatory mechanism known as RNA silencing. Due to the recent increase in sequencing depth, a highly complex and diverse population of sRNAs in both plants and animals has been revealed. However, the exponential increase in sequencing data has also made the identification of individual sRNA transcripts corresponding to biological units (sRNA loci) more challenging when based exclusively on the genomic location of the constituent sRNAs, hindering existing approaches to identify sRNA loci.   To infer the location of significant biological units, we propose an approach for sRNA loci detection called CoLIde (Co-expression based sRNA Loci Identification) that combines genomic location with the analysis of other information such as variation in expression levels (expression pattern) and size class distribution. For CoLIde, we define a locus as a union of regions sharing the same pattern and located in close proximity on the genome. Biological relevance, detected through the analysis of size class distribution, is also calculated for each locus. CoLIde can be applied on ordered (e.g., time-dependent) or un-ordered (e.g., organ, mutant) series of samples both with or without biological/technical replicates. The method reliably identifies known types of loci and shows improved performance on sequencing data from both plants (e.g., A. thaliana, S. lycopersicum) and animals (e.g., D. melanogaster) when compared with existing locus detection techniques. CoLIde is available for use within the UEA Small RNA Workbench which can be downloaded from: http://srna-workbench.cmp.uea.ac.uk. PMID:23851377

  13. Use of Whole-Genome Phylogeny and Comparisons for Development of a Multiplex PCR Assay To Identify Sequence Type 36 Vibrio parahaemolyticus.

    PubMed

    Whistler, Cheryl A; Hall, Jeffrey A; Xu, Feng; Ilyas, Saba; Siwakoti, Puskar; Cooper, Vaughn S; Jones, Stephen H

    2015-06-01

    Vibrio parahaemolyticus sequence type 36 (ST36) strains that are native to the Pacific Ocean have recently caused multistate outbreaks of gastroenteritis linked to shellfish harvested from the Atlantic Ocean. Whole-genome comparisons of 295 genomes of V. parahaemolyticus, including several traced to northeastern U.S. sources, were used to identify diagnostic loci, one putatively encoding an endonuclease (prp), and two others potentially conferring O-antigenic properties (cps and flp). The combination of all three loci was present in only one clade of closely related strains of ST36, ST59, and one additional unknown sequence type. However, each locus was also identified outside this clade, with prp and flp occurring in only two nonclade isolates and cps in four. Based on the distribution of these loci in sequenced genomes, prp identified clade strains with >99% accuracy, but the addition of one more locus increased accuracy to 100%. Oligonucleotide primers targeting prp and cps were combined in a multiplex PCR method that defines species using the tlh locus and determines the presence of both the tdh and trh hemolysin-encoding genes, which are also present in ST36. Application of the method in vitro to a collection of 94 clinical isolates collected over a 4-year period in three northeastern U.S. states and 87 environmental isolates revealed that the prp and cps amplicons were detected only in clinical isolates identified as belonging to the ST36 clade and in no environmental isolates from the region. The assay should improve detection and surveillance, thereby reducing infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map.

    PubMed Central

    Davis, G L; McMullen, M D; Baysdorfer, C; Musket, T; Grant, D; Staebell, M; Xu, G; Polacco, M; Koster, L; Melia-Hancock, S; Houchins, K; Chao, S; Coe, E H

    1999-01-01

    We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits. PMID:10388831

  15. Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus

    PubMed Central

    Mujic, Alija Bajro; Kuo, Alan; Tritt, Andrew; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Sharma, Aditi; Barry, Kerrie; Grigoriev, Igor V.; Spatafora, Joseph W.

    2017-01-01

    Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)—the first genomes available for Basidiomycota truffles—and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus. Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales. PMID:28450370

  16. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae.

    PubMed

    Zuriaga, Elena; Molina, Laura; Badenes, María Luisa; Romero, Carlos

    2012-06-01

    S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.

  17. Genetic mapping of the female mimic morph locus in the ruff

    PubMed Central

    2013-01-01

    Background Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. PMID:24256185

  18. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    NASA Astrophysics Data System (ADS)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1) sequence content of deletion products confirmed the previously unidentified loss of genetic control of mammalian chromosome biology and hybrid dysgenesis.

  19. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493

  20. dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees.

    PubMed

    Wise, Michael J

    2016-01-01

    Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa.

  1. dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees

    PubMed Central

    2016-01-01

    Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa. PMID:27898695

  2. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data.

    PubMed

    Tanabe, Akifumi S

    2011-09-01

    Proportional and separate models able to apply different combination of substitution rate matrix (SRM) and among-site rate variation model (ASRVM) to each locus are frequently used in phylogenetic studies of multilocus data. A proportional model assumes that branch lengths are proportional among partitions and a separate model assumes that each partition has an independent set of branch lengths. However, the selection from among nonpartitioned (i.e., a common combination of models is applied to all-loci concatenated sequences), proportional and separate models is usually based on the researcher's preference rather than on any information criteria. This study describes two programs, 'Kakusan4' (for DNA sequences) and 'Aminosan' (for amino-acid sequences), which allow the selection of evolutionary models based on several types of information criteria. The programs can handle both multilocus and single-locus data, in addition to providing an easy-to-use wizard interface and a noninteractive command line interface. In the case of multilocus data, SRMs and ASRVMs are compared at each locus and at all-loci concatenated sequences, after which nonpartitioned, proportional and separate models are compared based on information criteria. The programs also provide model configuration files for mrbayes, paup*, phyml, raxml and Treefinder to support further phylogenetic analysis using a selected model. When likelihoods are optimized by Treefinder, the best-fit models were found to differ depending on the data set. Furthermore, differences in the information criteria among nonpartitioned, proportional and separate models were much larger than those among the nonpartitioned models. These findings suggest that selecting from nonpartitioned, proportional and separate models results in a better phylogenetic tree. Kakusan4 and Aminosan are available at http://www.fifthdimension.jp/. They are licensed under gnugpl Ver.2, and are able to run on Windows, MacOS X and Linux. © 2011 Blackwell Publishing Ltd.

  3. Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales).

    PubMed

    Yurkov, Andrey; Guerreiro, Marco A; Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro

    2015-01-01

    Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful.

  4. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    PubMed

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  5. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  6. Multigene Assessment of the Species Boundaries and Sexual Status of the Basidiomycetous Yeasts Cryptococcus flavescens and C. terrestris (Tremellales)

    PubMed Central

    Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro

    2015-01-01

    Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful. PMID:25811603

  7. Ancestral Polymorphisms and Sex-Biased Migration Shaped the Demographic History of Brown Bears and Polar Bears

    PubMed Central

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA. PMID:24236053

  8. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  9. Phylogeography and Sex-Biased Dispersal across Riverine Manatee Populations (Trichechus inunguis and Trichechus manatus) in South America

    PubMed Central

    Satizábal, Paula; Mignucci-Giannoni, Antonio A.; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M.; García-Dávila, Carmen R.; Trujillo, Fernando; Caballero, Susana J.

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments. PMID:23285054

  10. Molecular characterization of Mycobacterium tuberculosis isolates from elephants of Nepal.

    PubMed

    Paudel, Sarad; Mikota, Susan K; Nakajima, Chie; Gairhe, Kamal P; Maharjan, Bhagwan; Thapa, Jeewan; Poudel, Ajay; Shimozuru, Michito; Suzuki, Yasuhiko; Tsubota, Toshio

    2014-05-01

    Mycobacterium tuberculosis was cultured from the lung tissues of 3 captive elephants in Nepal that died with extensive lung lesions. Spoligotyping, TbD1 detection and multi-locus variable number of tandem repeat analysis (MLVA) results suggested 3 isolates belonged to a specific lineage of Indo-Oceanic clade, EAI5 SIT 138. One of the elephant isolates had a new synonymous single nucleotide polymorphism (SNP) T231C in the gyrA sequence, and the same SNP was also found in human isolates in Nepal. MLVA results and transfer history of the elephants suggested that 2 of them might be infected with M. tuberculosis from the same source. These findings indicated the source of M. tuberculosis infection of those elephants were local residents, presumably their handlers. Further investigation including detailed genotyping of elephant and human isolates is needed to clarify the infection route and eventually prevent the transmission of tuberculosis to susceptible hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome.

    PubMed

    Ng, Bernard; White, Charles C; Klein, Hans-Ulrich; Sieberts, Solveig K; McCabe, Cristin; Patrick, Ellis; Xu, Jishu; Yu, Lei; Gaiteri, Chris; Bennett, David A; Mostafavi, Sara; De Jager, Philip L

    2017-10-01

    We report a multi-omic resource generated by applying quantitative trait locus (xQTL) analyses to RNA sequence, DNA methylation and histone acetylation data from the dorsolateral prefrontal cortex of 411 older adults who have all three data types. We identify SNPs significantly associated with gene expression, DNA methylation and histone modification levels. Many of these SNPs influence multiple molecular features, and we demonstrate that SNP effects on RNA expression are fully mediated by epigenetic features in 9% of these loci. Further, we illustrate the utility of our new resource, xQTL Serve, by using it to prioritize the cell type(s) most affected by an xQTL. We also reanalyze published genome wide association studies using an xQTL-weighted analysis approach and identify 18 new schizophrenia and 2 new bipolar susceptibility variants, which is more than double the number of loci that can be discovered with a larger blood-based expression eQTL resource.

  12. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation

    USGS Publications Warehouse

    Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.

    2016-01-01

    Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.

  13. Phylogeography and sex-biased dispersal across riverine manatee populations (Trichechus inunguis and Trichechus manatus) in South America.

    PubMed

    Satizábal, Paula; Mignucci-Giannoni, Antonio A; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M; García-Dávila, Carmen R; Trujillo, Fernando; Caballero, Susana J

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.

  14. Artemisinin resistance-associated polymorphisms at the K13-propeller locus are absent in Plasmodium falciparum isolates from Haiti.

    PubMed

    Carter, Tamar E; Boulter, Alexis; Existe, Alexandre; Romain, Jean R; St Victor, Jean Yves; Mulligan, Connie J; Okech, Bernard A

    2015-03-01

    Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. © The American Society of Tropical Medicine and Hygiene.

  15. Ornithine aminotransferase (OAT): recombination between an X-linked OAT sequence (7.5 kb) and the Norrie disease locus.

    PubMed

    Ngo, J T; Bateman, J B; Spence, M A; Cortessis, V; Sparkes, R S; Kivlin, J D; Mohandas, T; Inana, G

    1990-01-01

    A human ornithine aminotransferase (OAT) locus has been mapped to the Xp11.2, as has the Norrie disease locus. We used a cDNA probe to investigate a 3-generation UCLA family with Norrie disease; a 4.2-kb RFLP was detected and a maximum lod score of 0.602 at zero recombination fraction was calculated. We used the same probe to study a second multigeneration family with Norrie disease from Utah. A different RFLP of 7.5 kb in size was identified and a recombinational event between the OAT locus represented by this RFLP and the disease loci was observed. Linkage analysis of these two loci in this family revealed a maximum load score of 1.88 at a recombination fraction of 0.10. Although both families have affected members with the same disease, the lod scores are reported separately because the 4.2- and 7.5-kb RFLPs may represent two different loci for the X-linked OAT.

  16. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China

    PubMed Central

    Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu

    2016-01-01

    The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum. PMID:27609555

  17. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China.

    PubMed

    Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu

    2016-09-09

    The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.

  18. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand.

    PubMed

    Patchanee, Prapas; Tadee, Pakpoom; Arjkumpa, Orapun; Love, David; Chanachai, Karoon; Alter, Thomas; Hinjoy, Soawapak; Tharavichitkul, Prasit

    2014-12-01

    This study was conducted to determine the prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs, farm workers, and the environment in northern Thailand, and to assess LA-MRSA isolate phenotypic characteristics. One hundred and four pig farms were randomly selected from the 21,152 in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from pigs and farm workers. Environmental swabs (pig stable floor, faucet, and feeder) were also collected. MRSA was identified by conventional bacterial culture technique, with results confirmed by multiplex PCR and multi locus sequence typing (MLST). Herd prevalence of MRSA was 9.61% (10 of 104 farms). Among pigs, workers, and farm environments, prevalence was 0.68% (two of 292 samples), 2.53% (seven of 276 samples), and 1.28% (four of 312 samples), respectively. Thirteen MRSA isolates (seven from workers, four from environmental samples, and two from pigs) were identified as Staphylococcal chromosomal cassette mec IV sequences type 9. Antimicrobial sensitivity tests found 100% of the MRSA isolates resistant to clindamycin, oxytetracycline, and tetracycline, while 100% were susceptible to cloxacillin and vancomycin. All possessed a multidrug-resistant phenotype. This is the first evidence of an LA-MRSA interrelationship among pigs, workers, and the farm environment in Thailand.

  19. Analysis of Clonality and Antibiotic Resistance among Early Clinical Isolates of Enterococcus faecium in the United States

    PubMed Central

    Galloway-Peña, Jessica R.; Nallapareddy, Sreedhar R.; Arias, Cesar A.; Eliopoulos, George M.; Murray, Barbara E.

    2009-01-01

    Background The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. Methods Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994 we determined the multi-locus sequence type, the presence of 16 putative virulence genes (hylEfm, espEfm and fms genes), resistance to ampicillin (AMPR), vancomycin (VANR) and high-levels of gentamicin and streptomycin. Results Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the US. The earliest CC17 isolates were part of an outbreak in 1982 in Richmond, VA. Characteristics of CC17 isolates included increases in AMPR, the presence of hylEfm and espEfm, emergence of VANR and the presence of at least 13/14 fms genes. Eight out of forty-one of the early AMPR isolates, however, were not within CC17. Conclusions While not all early US AMPR isolates were clonally related, E. faecium CC17 isolates have been circulating in the US since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment. PMID:19821720

  20. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water

    PubMed Central

    Blyton, Michaela D. J.; Gordon, David M.

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination. PMID:28107364

  1. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    PubMed

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  2. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    PubMed

    Blyton, Michaela D J; Gordon, David M

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  3. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  4. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand

    PubMed Central

    Tadee, Pakpoom; Arjkumpa, Orapun; Love, David; Chanachai, Karoon; Alter, Thomas; Hinjoy, Soawapak; Tharavichitkul, Prasit

    2014-01-01

    This study was conducted to determine the prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs, farm workers, and the environment in northern Thailand, and to assess LA-MRSA isolate phenotypic characteristics. One hundred and four pig farms were randomly selected from the 21,152 in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from pigs and farm workers. Environmental swabs (pig stable floor, faucet, and feeder) were also collected. MRSA was identified by conventional bacterial culture technique, with results confirmed by multiplex PCR and multi locus sequence typing (MLST). Herd prevalence of MRSA was 9.61% (10 of 104 farms). Among pigs, workers, and farm environments, prevalence was 0.68% (two of 292 samples), 2.53% (seven of 276 samples), and 1.28% (four of 312 samples), respectively. Thirteen MRSA isolates (seven from workers, four from environmental samples, and two from pigs) were identified as Staphylococcal chromosomal cassette mec IV sequences type 9. Antimicrobial sensitivity tests found 100% of the MRSA isolates resistant to clindamycin, oxytetracycline, and tetracycline, while 100% were susceptible to cloxacillin and vancomycin. All possessed a multidrug-resistant phenotype. This is the first evidence of an LA-MRSA interrelationship among pigs, workers, and the farm environment in Thailand. PMID:25530702

  5. Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain.

    PubMed

    Porrero, M Concepción; Mentaberre, Gregorio; Sánchez, Sergio; Fernández-Llario, Pedro; Gómez-Barrero, Susana; Navarro-Gonzalez, Nora; Serrano, Emmanuel; Casas-Díaz, Encarna; Marco, Ignasi; Fernández-Garayzabal, José-Francisco; Mateos, Ana; Vidal, Dolors; Lavín, Santiago; Domínguez, Lucas

    2013-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening pathogen in humans and its presence in animals is a public health concern. The aim of this study was to measure the prevalence of MRSA in free-living wild animals. Samples from red deer (n=273), Iberian ibex (n=212), Eurasian Griffon vulture (n=40) and wild boar (n=817) taken from different areas in Spain between June 2008 and November 2011 were analyzed. Characterization of the isolates was performed by spa typing, multi-locus sequence typing (MLST) and antimicrobial susceptibility testing. A low prevalence of MRSA was found with 13 isolates obtained from 12 animals (0.89%; 95% CI: 0.46-1.56). All MRSA sequence types belonged to ST398 (t011 and t1451) and ST1 (t127). Genotypes and antimicrobial susceptibility patterns (tetracycline resistance in ST398 and clindamycin-erythromycin-tetracycline resistance in ST1) suggest that the MRSA found probably originated in livestock (ST398) or humans (ST1). This is the first report of MRSA carriers in free-living wild animals in Europe. Although our data showed that MRSA prevalence is currently low, free-living wild animals might act as reservoir and represent a potential risk for human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Tropism and virulence of Cutibacterium (formerly Propionibacterium) acnes involved in implant-associated infection.

    PubMed

    Aubin, Guillaume Ghislain; Lavigne, Jean-Philippe; Foucher, Yohan; Dellière, Sarah; Lepelletier, Didier; Gouin, François; Corvec, Stéphane

    2017-10-01

    The recognition of the pathogenicity of Cutibacterium acnes in implant-associated infection is not always obvious. In this paper, we aimed to distinguish pathogenic and non-pathogenic C. acnes isolates. To reach this goal, we investigated the clonal complex (CC) of a large collection of C. acnes clinical isolates through Multi-Locus Sequence Typing (MLST), we established a Caenorhabditis elegans model to assess C. acnes virulence and we investigated the presence of virulence factors in our collection. Ours results showed that CC36 and CC53 C. acnes isolates were more frequently observed in prosthetic joint infections (PJI) than CC18 and CC28 C. acnes isolates (p = 0.021). The C. elegans model developed here showed two distinct virulence groups of C. acnes (p < 0.05). These groups were not correlated to CC or clinical origin. Whole genome sequencing allowed us to identify a putative gene linked to low virulent strains. In conclusion, MLST remains a good method to screen pathogenic C. acnes isolates according to their clinical context but mechanisms of C. acnes virulence need to be assess thought transcriptomic analysis to investigate regulatory process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genetic investigation of 93 families with microphthalmia or posterior microphthalmos.

    PubMed

    Patel, N; Khan, A O; Alsahli, S; Abdel-Salam, G; Nowilaty, S R; Mansour, A M; Nabil, A; Al-Owain, M; Sogati, S; Salih, M A; Kamal, A M; Alsharif, H; Alsaif, H S; Alzahrani, S S; Abdulwahab, F; Ibrahim, N; Hashem, M; Faquih, T; Shah, Z A; Abouelhoda, M; Monies, D; Dasouki, M; Shaheen, R; Wakil, S M; Aldahmesh, M A; Alkuraya, F S

    2018-06-01

    Microphthalmia is a developmental eye defect that is highly variable in severity and in its potential for systemic association. Despite the discovery of many disease genes in microphthalmia, at least 50% of patients remain undiagnosed genetically. Here, we describe a cohort of 147 patients (93 families) from our highly consanguineous population with various forms of microphthalmia (including the distinct entity of posterior microphthalmos) that were investigated using a next-generation sequencing multi-gene panel (i-panel) as well as whole exome sequencing and molecular karyotyping. A potentially causal mutation was identified in the majority of the cohort with microphthalmia (61%) and posterior microphthalmos (82%). The identified mutations (55 point mutations, 15 of which are novel) spanned 24 known disease genes, some of which have not or only very rarely been linked to microphthalmia (PAX6, SLC18A2, DSC3 and CNKSR1). Our study has also identified interesting candidate variants in 2 genes that have not been linked to human diseases (MYO10 and ZNF219), which we present here as novel candidates for microphthalmia. In addition to revealing novel phenotypic aspects of microphthalmia, this study expands its allelic and locus heterogeneity and highlights the need for expanded testing of patients with this condition. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Extended-spectrum β-lactamases, transferable quinolone resistance, and virulotyping in extra-intestinal E. coli in Uruguay.

    PubMed

    Vignoli, Rafael; García-Fulgueiras, Virginia; Cordeiro, Nicolás F; Bado, Inés; Seija, Verónica; Aguerrebere, Paula; Laguna, Gabriel; Araújo, Lucía; Bazet, Cristina; Gutkind, Gabriel; Chabalgoity, José

    2016-01-31

    To characterize extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli isolates obtained from extra-intestinal samples in three Uruguayan hospitals. Fifty-five ESBL-producing E. coli isolates were studied. Virulence genes, ESBLs, and PMQR genes were detected by polymerase chain reaction. ESBL-producing isolates were compared by pulsed-field gel electrophoresis. Multi-locus sequence typing was also performed on 13 selected isolates. Thirty-seven isolates harbored blaCTX-M-15 (67.3%), eight blaCTX-M-2 (14.6%), five blaCTX-M-14 (9.1%), three carried both blaCTX-M-2 and blaCTX-M-14, one blaCTX-M-9, and one blaCTX-M-8. Among the CTX-M-15 producers, 92% belonged to sequence types ST131 and ST405, and carried aac(6')Ib-cr as well. Isolates harboring blaCTX-M-2, blaCTX-M-14, blaCTX-M-9, or blaCTX-M-8 were found to be genetically unrelated. The successful dissemination of CTX-M-15-producing E.coli isolates seems to be linked to the spreading of high-risk clones and horizontal gene transfer. A trade-off between carrying more antibiotic resistance and less virulence-related genes could partially account for the evolutionary advantages featured by successful clones.

  9. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.

    PubMed

    Gijzen, M

    1997-11-01

    The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.

  10. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes.

    PubMed

    Zernant, Jana; Lee, Winston; Nagasaki, Takayuki; Collison, Frederick T; Fishman, Gerald A; Bertelsen, Mette; Rosenberg, Thomas; Gouras, Peter; Tsang, Stephen H; Allikmets, Rando

    2018-05-30

    Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ~75% of patients and only one mutation in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF=0.072, compared to MAF=0.013 in all STGD1 cases and MAF=0.006 in the matching general population (P<1x10-7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic "extremely hypomorphic allele" in the ABCA4 locus; i.e., it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late-onset of symptoms and foveal sparing. In ~70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed non-pathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three non-coding variants in STGD1 patients of European descent accounting for ~3% of the disease. Defining disease-associated alleles in the non-coding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses. Cold Spring Harbor Laboratory Press.

  11. Improvements of the Ray-Tracing Based Method Calculating Hypocentral Loci for Earthquake Location

    NASA Astrophysics Data System (ADS)

    Zhao, A. H.

    2014-12-01

    Hypocentral loci are very useful to reliable and visual earthquake location. However, they can hardly be analytically expressed when the velocity model is complex. One of methods numerically calculating them is based on a minimum traveltime tree algorithm for tracing rays: a focal locus is represented in terms of ray paths in its residual field from the minimum point (namely initial point) to low residual points (referred as reference points of the focal locus). The method has no restrictions on the complexity of the velocity model but still lacks the ability of correctly dealing with multi-segment loci. Additionally, it is rather laborious to set calculation parameters for obtaining loci with satisfying completeness and fineness. In this study, we improve the ray-tracing based numerical method to overcome its advantages. (1) Reference points of a hypocentral locus are selected from nodes of the model cells that it goes through, by means of a so-called peeling method. (2) The calculation domain of a hypocentral locus is defined as such a low residual area that its connected regions each include one segment of the locus and hence all the focal locus segments are respectively calculated with the minimum traveltime tree algorithm for tracing rays by repeatedly assigning the minimum residual reference point among those that have not been traced as an initial point. (3) Short ray paths without branching are removed to make the calculated locus finer. Numerical tests show that the improved method becomes capable of efficiently calculating complete and fine hypocentral loci of earthquakes in a complex model.

  12. Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies.

    PubMed

    Nagel, Inga; Szczepanowski, Monika; Martín-Subero, José I; Harder, Lana; Akasaka, Takashi; Ammerpohl, Ole; Callet-Bauchu, Evelyne; Gascoyne, Randy D; Gesk, Stefan; Horsman, Doug; Klapper, Wolfram; Majid, Aneela; Martinez-Climent, José A; Stilgenbauer, Stephan; Tönnies, Holger; Dyer, Martin J S; Siebert, Reiner

    2010-08-26

    Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis.

  13. Three novel polymorphic microsatellite markers for the glaucoma locus GLC1B by datamining tetranucleotide repeats on chromosome 2p12-q12

    PubMed Central

    2009-01-01

    In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers. PMID:21637444

  14. Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels.

    PubMed

    Ries, David; Holtgräwe, Daniela; Viehöver, Prisca; Weisshaar, Bernd

    2016-03-15

    The combination of bulk segregant analysis (BSA) and next generation sequencing (NGS), also known as mapping by sequencing (MBS), has been shown to significantly accelerate the identification of causal mutations for species with a reference genome sequence. The usual approach is to cross homozygous parents that differ for the monogenic trait to address, to perform deep sequencing of DNA from F2 plants pooled according to their phenotype, and subsequently to analyze the allele frequency distribution based on a marker table for the parents studied. The method has been successfully applied for EMS induced mutations as well as natural variation. Here, we show that pooling genetically diverse breeding lines according to a contrasting phenotype also allows high resolution mapping of the causal gene in a crop species. The test case was the monogenic locus causing red vs. green hypocotyl color in Beta vulgaris (R locus). We determined the allele frequencies of polymorphic sequences using sequence data from two diverging phenotypic pools of 180 B. vulgaris accessions each. A single interval of about 31 kbp among the nine chromosomes was identified which indeed contained the causative mutation. By applying a variation of the mapping by sequencing approach, we demonstrated that phenotype-based pooling of diverse accessions from breeding panels and subsequent direct determination of the allele frequency distribution can be successfully applied for gene identification in a crop species. Our approach made it possible to identify a small interval around the causative gene. Sequencing of parents or individual lines was not necessary. Whenever the appropriate plant material is available, the approach described saves time compared to the generation of an F2 population. In addition, we provide clues for planning similar experiments with regard to pool size and the sequencing depth required.

  15. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance

    PubMed Central

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence. PMID:26565976

  16. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    PubMed Central

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  17. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review.

    PubMed

    Tagini, F; Greub, G

    2017-11-01

    In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.

  18. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain.

    PubMed

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Eshuis-de Ruiter, Talitha; Booij-Veurink, Janine; de Vries, Ynte P; Ali, Furqan

    2016-04-01

    Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.

  19. Cryptic speciation and community structure of Herpotrichia juniperi, the causal agent of brown felt blight of conifers.

    PubMed

    Schneider, Miriam; Grünig, Christoph R; Holdenrieder, Ottmar; Sieber, Thomas N

    2009-08-01

    Conifer twigs showing brown felt blight were collected along 100-m long transects at the timberline in the Swiss Alps and single-hyphal-tip cultures were prepared. Forty-seven of the sequenced 48 strains were Herpotrichia juniperi based on sequence comparisons of the internal transcribed spacers (ITS). A non-sporulating strain was tentatively identified as another, undescribed Herpotrichia species. Herpotrichia coulteri was not isolated. Most strains were from Juniperus communis var. saxatilis, the rest from Picea abies and Pinus mugo. Each twig was colonized by a different genotype as revealed by ISSR-PCR fingerprinting. More than one clone was present on some needles and twigs. Thus, importance of vegetative mycelial growth for dispersal seems to be limited to the spread of the disease to twigs of the same tree or of immediately adjacent trees, and, consequently, dispersal occurs mainly by ascospores. The H. juniperi strains could be assigned to five distinct groups based on the ISSR-PCR data. The strains from P. abies formed one of these groups but the other groups did not correlate with either host, transect or position along the transects. Multi-locus analysis based on beta-tubulin, elongation factor 1-alpha and ITS sequences confirmed the subdivision into five groups. Population differentiation among groups was distinct with N(ST) values varying between 0.545 and 0.895. H. juniperi seems to be composed of several cryptic species, one of them specific to P. abies.

  20. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees.

    PubMed

    Rezzonico, Fabio; Smits, Theo H M; Born, Yannick; Blom, Jochen; Frey, Jürg E; Goesmann, Alexander; Cleenwerck, Ilse; de Vos, Paul; Bonaterra, Anna; Duffy, Brion; Montesinos, Emilio

    2016-03-01

    A survey to obtain potential antagonists of pome fruit tree diseases yielded two yellow epiphytic bacterial isolates morphologically similar to Pantoea agglomerans , but showing no biocontrol activity. Whole-cell MALDI-TOF mass spectrometry and analysis of 16S rRNA gene and gyrB sequences suggested the possibility of a novel species with a phylogenetic position in either the genus Pantoea or the genus Erwinia . Multi-locus sequence analysis (MLSA) placed the two strains in the genus Erwinia and supported their classification as a novel species. The strains showed general phenotypic characteristics typical of this genus and results of DNA-DNA hybridizations confirmed that they represent a single novel species. Both strains showed a DNA G+C content, as determined by HPLC, of 54.5 mol% and could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, potassium 2-ketogluconate, maltose, melibiose and raffinose. Whole-genome sequencing of strain EM595 T revealed the presence of a chromosomal carotenoid biosynthesis gene cluster similar to those found in species of the genera Cronobacter and Pantoea that explains the pigmentation of the strain, which is atypical for the genus Erwinia . Additional strains belonging to the same species were recovered from different plant hosts in three different continents, revealing the cosmopolitan nature of this epiphyte. The name Erwinia gerundensis sp. nov. is proposed, with EM595 T ( = LMG 28990 T  = CCOS 903 T ) as the designated type strain.

  1. Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity

    PubMed Central

    Jalali, Ali; Aldinger, Kimberly A.; Chary, Ajit; Mclone, David G.; Bowman, Robin M.; Le, Luan Cong; Jardine, Phillip; Newbury-Ecob, Ruth; Mallick, Andrew; Jafari, Nadereh; Russell, Eric J.; Curran, John; Nguyen, Pam; Ouahchi, Karim; Lee, Charles; Dobyns, William B.; Millen, Kathleen J.; Pina-Neto, Joao M.; Kessler, John A.; Bassuk, Alexander G.

    2010-01-01

    We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC. PMID:18204864

  2. Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics.

    PubMed

    Vatanparast, Mohammad; Powell, Adrian; Doyle, Jeff J; Egan, Ashley N

    2018-03-01

    The development of pipelines for locus discovery has spurred the use of target enrichment for plant phylogenomics. However, few studies have compared pipelines from locus discovery and bait design, through validation, to tree inference. We compared three methods within Leguminosae (Fabaceae) and present a workflow for future efforts. Using 30 transcriptomes, we compared Hyb-Seq, MarkerMiner, and the Yang and Smith (Y&S) pipelines for locus discovery, validated 7501 baits targeting 507 loci across 25 genera via Illumina sequencing, and inferred gene and species trees via concatenation- and coalescent-based methods. Hyb-Seq discovered loci with the longest mean length. MarkerMiner discovered the most conserved loci with the least flagged as paralogous. Y&S offered the most parsimony-informative sites and putative orthologs. Target recovery averaged 93% across taxa. We optimized our targeted locus set based on a workflow designed to minimize paralog/ortholog conflation and thus present 423 loci for legume phylogenomics. Methods differed across criteria important for phylogenetic marker development. We recommend Hyb-Seq as a method that may be useful for most phylogenomic projects. Our targeted locus set is a resource for future, community-driven efforts to reconstruct the legume tree of life.

  3. Genetic and Molecular Characterization of the I Locus of Phaseolus vulgaris

    PubMed Central

    Vallejos, C. Eduardo; Astua-Monge, Gustavo; Jones, Valerie; Plyler, Tammy R.; Sakiyama, Ney S.; Mackenzie, Sally A.

    2006-01-01

    The I locus of the common bean, Phaseolus vulgaris, controls the development of four different phenotypes in response to inoculation with Bean common mosaic virus, Bean common mosaic necrosis virus, several other related potyviruses, and one comovirus. We have generated a high-resolution linkage map around this locus and have aligned it with a physical map constructed with BAC clones. These clones were obtained from a library of the cultivar “Sprite,” which carries the dominant allele at the I locus. We have identified a large cluster of TIR–NBS–LRR sequences associated within this locus, which extends over a distance >425 kb. Bean cultivars from the Andean or Mesoamerican gene pool that contain the dominant allele share the same haplotypes as revealed by gel blot hybridizations with a TIR probe. In contrast, beans with a recessive allele display simpler and variable haplotypes. A survey of wild accessions from Argentina to Mexico showed that this multigene family has expanded significantly during evolution and domestication. RNA gel blot analysis indicated that the TIR family of genes plays a role in the response to inoculations with BCMV or BCMNV. PMID:16322513

  4. Instructional Strategies for Videodisc Courseware: The McGraw Hill Disc.

    ERIC Educational Resources Information Center

    Bunderson, C. Victor

    1979-01-01

    Describes instructional strategies available for videodisc courseware in terms of the amount of processing intelligence available and locus of sequencing control. The consumer videodisc is compared and contrasted to intelligent videodisc systems. (JEG)

  5. The role of the hok/sok locus in bacterial response to stressful growth conditions.

    PubMed

    Chukwudi, Chinwe U; Good, Liam

    2015-02-01

    The hok/sok locus is renowned for its plasmid stabilization effect via post-segregational killing of plasmid-free daughter cells. However, the function(s) of the chromosome-encoded loci, which are more abundant in pathogenic strains of a broad range of enteric bacteria, are yet to be understood. Also, the frequent occurrence of this toxin/antitoxin addiction system in multi-drug resistance plasmids suggests additional roles. In this study, the effects of the hok/sok locus on the growth of bacteria in stressful growth-limiting conditions such as high temperature and antibiotic burden were investigated using hok/sok plasmids. The results showed that the hok/sok locus prolonged the lag phase of host cell cultures, thereby enabling the cells to adapt, respond to the stress and eventually thrive in these growth-limiting conditions by increasing the growth rate at exponential phase. The hok/sok locus also enhanced the survival and growth of cells in low cell density cultures irrespective of unfavourable growth conditions, and may complement existing or defective SOS mechanism. In addition to the plasmid stabilization function, these effects would enhance the ability of pathogenic bacteria to establish infections and propagate the antibiotic resistance elements carried on these plasmids, thereby contributing to the virulence of such bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22.

    PubMed Central

    Wu, D A; Bu, X; Warden, C H; Shen, D D; Jeng, C Y; Sheu, W H; Fuh, M M; Katsuya, T; Dzau, V J; Reaven, G M; Lusis, A J; Rotter, J I; Chen, Y D

    1996-01-01

    Resistance to insulin-mediated glucose disposal is a common finding in patients with non-insulin-dependent diabetes mellitus (NIDDM), as well as in nondiabetic individuals with hypertension. In an effort to identify the generic loci responsible for variations in blood pressure in individuals at increased risk of insulin resistance, we studied the distribution of blood pressure in 48 Taiwanese families with NIDDM and conducted quantitative sib-pair linkage analysis with candidate loci for insulin resistance, lipid metabolism, and blood pressure control. We found no evidence for linkage of the angiotensin converting enzyme locus on chromosome 17, nor the angiotensinogen and renin loci on chromosome 1, with either systolic or diastolic blood pressures. In contrast, we obtained significant evidence for linkage or systolic blood pressure, but not diastolic blood pressure, to a genetic region at or near the lipoprotein lipase (LPL) locus on the short arm of chromosome 8 (P = 0.002, n = 125 sib-pairs, for the haplotype generated from two simple sequence repeat markers within the LPL gene). Further strengthening this linkage observation, two flanking marker loci for LPL locus, D8S261 (9 cM telomeric to LPL locus) and D8S282 (3 cM centromeric to LPL locus), also showed evidence for linkage with systolic blood pressure (P = 0.02 and 0.0002 for D8S261 and D8S282, respectively). Two additional centromeric markers (D8S133, 5 cM from LPL locus, and NEFL, 11 cM from LPL locus) yielded significant P values of 0.01 and 0.001, respectively. Allelic variation around the LPL gene locus accounted for as much as 52-73% of the total interindividual variation in systolic blood pressure levels in this data set. Thus, we have identified a genetic locus at or near the LPL gene locus which contributes to the variation of systolic blood pressure levels in nondiabetic family members at high risk for insulin resistance and NIDDM. PMID:8621801

  7. Cholera outbreaks (2012) in three districts of Nepal reveal clonal transmission of multi-drug resistant Vibrio cholerae O1

    PubMed Central

    2014-01-01

    Background Although endemic cholera causes significant morbidity and mortality each year in Nepal, lack of information about the causal bacterium often hinders cholera intervention and prevention. In 2012, diarrheal outbreaks affected three districts of Nepal with confirmed cases of mortality. This study was designed to understand the drug response patterns, source, and transmission of Vibrio cholerae associated with 2012 cholera outbreaks in Nepal. Methods V. cholerae (n = 28) isolated from 2012 diarrhea outbreaks {n = 22; Kathmandu (n = 12), Doti (n = 9), Bajhang (n = 1)}, and surface water (n = 6; Kathmandu) were tested for antimicrobial response. Virulence properties and DNA fingerprinting of the strains were determined by multi-locus genetic screening employing polymerase chain reaction, DNA sequencing, and pulsed-field gel electrophoresis (PFGE). Results All V. cholerae strains isolated from patients and surface water were confirmed to be toxigenic, belonging to serogroup O1, Ogawa serotype, biotype El Tor, and possessed classical biotype cholera toxin (CTX). Double-mismatch amplification mutation assay (DMAMA)-PCR revealed the V. cholerae strains to possess the B-7 allele of ctx subunit B. DNA sequencing of tcpA revealed a point mutation at amino acid position 64 (N → S) while the ctxAB promoter revealed four copies of the tandem heptamer repeat sequence 5'-TTTTGAT-3'. V. cholerae possessed all the ORFs of the Vibrio seventh pandemic island (VSP)-I but lacked the ORFs 498–511 of VSP-II. All strains were multidrug resistant with resistance to trimethoprim-sulfamethoxazole (SXT), nalidixic acid (NA), and streptomycin (S); all carried the SXT genetic element. DNA sequencing and deduced amino acid sequence of gyrA and parC of the NAR strains (n = 4) revealed point mutations at amino acid positions 83 (S → I), and 85 (S → L), respectively. Similar PFGE (NotI) pattern revealed the Nepalese V. cholerae to be clonal, and related closely with V. cholerae associated with cholera in Bangladesh and Haiti. Conclusions In 2012, diarrhea outbreaks in three districts of Nepal were due to transmission of multidrug resistant V. cholerae El Tor possessing cholera toxin (ctx) B-7 allele, which is clonal and related closely with V. cholerae associated with cholera in Bangladesh and Haiti. PMID:25022982

  8. Large-scale chromatin remodeling at the immunoglobulin heavy chain locus: a paradigm for multigene regulation.

    PubMed

    Bolland, Daniel J; Wood, Andrew L; Corcoran, Anne E

    2009-01-01

    V(D)J recombination in lymphocytes is the cutting and pasting together of antigen receptor genes in cis to generate the enormous variety of coding sequences required to produce diverse antigen receptor proteins. It is the key role of the adaptive immune response, which must potentially combat millions of different foreign antigens. Most antigen receptor loci have evolved to be extremely large and contain multiple individual V, D and J genes. The immunoglobulin heavy chain (Igh) and immunoglobulin kappa light chain (Igk) loci are the largest multigene loci in the mammalian genome and V(D)J recombination is one of the most complicated genetic processes in the nucleus. The challenge for the appropriate lymphocyte is one of macro-management-to make all of the antigen receptor genes in a particular locus available for recombination at the appropriate developmental time-point. Conversely, these large loci must be kept closed in lymphocytes in which they do not normally recombine, to guard against genomic instability generated by the DNA double strand breaks inherent to the V(D)J recombination process. To manage all of these demanding criteria, V(D)J recombination is regulated at numerous levels. It is restricted to lymphocytes since the Rag genes which control the DNA double-strand break step of recombination are only expressed in these cells. Within the lymphocyte lineage, immunoglobulin recombination is restricted to B-lymphocytes and TCR recombination to T-lymphocytes by regulation of locus accessibility, which occurs at multiple levels. Accessibility of recombination signal sequences (RSSs) flanking individual V, D and J genes at the nucleosomal level is the key micro-management mechanism, which is discussed in greater detail in other chapters. This chapter will explore how the antigen receptor loci are regulated as a whole, focussing on the Igh locus as a paradigm for the mechanisms involved. Numerous recent studies have begun to unravel the complex and complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.

  9. Multi-Locus Candidate Gene Analyses of Lipid Levels in a Pediatric Turkish Cohort: Lessons Learned on LPL, CETP, LIPC, ABCA1, and SHBG

    PubMed Central

    Eren, Fatih; Agirbasli, Deniz; White, Marquitta J.; Williams, Scott M

    2013-01-01

    Abstract Cardiovascular risk factors and atherosclerosis precursors were examined in 365 Turkish children and adolescents. Study participants were recruited at five different state schools. We tested single and multi-locus effects of six polymorphisms from five candidate genes, chosen based on prior known association with lipid levels in adults, for association with low (≤10th percentile) high density lipoprotein cholesterol (HDL-C) and high (≥90th percentile) triglycerides (TG), and the related continuous outcomes. We observed an association between CETP variant rs708272 and low HDL-C (allelic p=0.020, genotypic p=0.046), which was supported by an independent analysis, PRAT (PRAT control p=0.027). Sex-stratified logistic regression analysis showed that the B2 allele of rs708272 decreased odds of being in the lower tenth percentile of HDL-C measurements (OR=0.36, p=0.02) in girls; this direction of effect was also seen in boys but was not significant (OR=0.64, p=0.21). Logistic regression analysis also revealed that the T allele of rs6257 (SHBG) decreased odds of being in the top tenth percentile of TG measurements in boys (OR=0.43, p=0.03). Analysis of lipid levels as a continuous trait revealed a significant association between rs708272 (CETP) and LDL-C levels in males (p=0.02) with the B2B2 genotype group having the lowest mean LDL-C; the same direction of effect was also seen in females (p=0.05). An effect was also seen between rs708272 and HDL-C levels in girls (p=0.01), with the B2B2 genotype having the highest mean HDL-C levels. Multi-locus analysis, using quantitative multifactor dimensionality reduction (qMDR) identified the previously mentioned CETP variant as the best single locus model, and overall model, for predicting HDL-C levels in children. This study provides evidence for association between CETP and low HDL-C phenotype in children, but the results appear to be weaker in children than previous results in adults and may also be subject to gender effects. PMID:23988150

  10. Match probabilities in a finite, subdivided population

    PubMed Central

    Malaspinas, Anna-Sapfo; Slatkin, Montgomery; Song, Yun S.

    2011-01-01

    We generalize a recently introduced graphical framework to compute the probability that haplotypes or genotypes of two individuals drawn from a finite, subdivided population match. As in the previous work, we assume an infinite-alleles model. We focus on the case of a population divided into two subpopulations, but the underlying framework can be applied to a general model of population subdivision. We examine the effect of population subdivision on the match probabilities and the accuracy of the product rule which approximates multi-locus match probabilities as a product of one-locus match probabilities. We quantify the deviation from predictions of the product rule by R, the ratio of the multi-locus match probability to the product of the one-locus match probabilities.We carry out the computation for two loci and find that ignoring subdivision can lead to underestimation of the match probabilities if the population under consideration actually has subdivision structure and the individuals originate from the same subpopulation. On the other hand, under a given model of population subdivision, we find that the ratio R for two loci is only slightly greater than 1 for a large range of symmetric and asymmetric migration rates. Keeping in mind that the infinite-alleles model is not the appropriate mutation model for STR loci, we conclude that, for two loci and biologically reasonable parameter values, population subdivision may lead to results that disfavor innocent suspects because of an increase in identity-by-descent in finite populations. On the other hand, for the same range of parameters, population subdivision does not lead to a substantial increase in linkage disequilibrium between loci. Those results are consistent with established practice. PMID:21266180

  11. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.

    PubMed

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John

    2014-07-21

    The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.

  12. Knowledge-Driven Analysis Identifies a Gene–Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Populations

    PubMed Central

    Ma, Li; Brautbar, Ariel; Boerwinkle, Eric; Sing, Charles F.

    2012-01-01

    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene–gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein–protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected P c = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene–gene interaction in the European American cohorts from the Framingham Heart Study (P c = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; P c = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (P c = 0.004) and in the Hispanic American sample from MESA (P c = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene–gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations. PMID:22654671

  13. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley

    USDA-ARS?s Scientific Manuscript database

    We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait...

  14. Genome Sequence of the Shiga Toxin-Producing Escherichia coli Strain NCCP15657

    PubMed Central

    Kim, Byung Kwon; Song, Geun Cheol; Hong, Gun Hyong; Seong, Won-Keun; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kwon, Soon-Kyeong; Lee, Choong Hoon; Song, Ju Yeon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Shiga toxin-producing Escherichia coli causes bloody diarrhea and hemolytic-uremic syndrome and serious outbreaks worldwide. Here, we report the draft genome sequence of E. coli NCCP15657 isolated from a patient. The genome has virulence genes, many in the locus of enterocyte effacement (LEE) island, encoding a metalloprotease, the Shiga toxin, and constituents of type III secretion. PMID:22740674

  15. Extension of the root-locus method to a certain class of fractional-order systems.

    PubMed

    Merrikh-Bayat, Farshad; Afshar, Mahdi; Karimi-Ghartemani, Masoud

    2009-01-01

    In this paper, the well-known root-locus method is developed for the special subset of linear time-invariant systems commonly known as fractional-order systems. Transfer functions of these systems are rational functions with polynomials of rational powers of the Laplace variable s. Such systems are defined on a Riemann surface because of their multi-valued nature. A set of rules for plotting the root loci on the first Riemann sheet is presented. The important features of the classical root-locus method such as asymptotes, roots condition on the real axis and breakaway points are extended to the fractional case. It is also shown that the proposed method can assess the closed-loop stability of fractional-order systems in the presence of a varying gain in the loop. Moreover, the effect of perturbation on the root loci is discussed. Three illustrative examples are presented to confirm the effectiveness of the proposed algorithm.

  16. Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy

    PubMed Central

    Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2012-01-01

    The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793

  17. BAT-25 polymorphism in Chinese from Jiangsu province and its implication for locus microsatellite instability screening.

    PubMed

    Zheng, Yan Ying; Xie, Ling; Liu, Li; Zhang, Shu Peng; Wu, Xiao Bin; Zhu, Chang Le; Lai, Ren Sheng

    2012-10-08

    Colorectal cancer is one of the most common tumors with high mortality in China. Microsatellite instability (MSI) analysis is important for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) and for the prediction of 5-FU chemotherapy efficiency of colorectal tumors, especially in terms of therapeutic response and overall survival rates. Among the MSI markers recommended by the NIH/NCI, BAT-25 has been extensively studied for its major role in MSI. BAT-25 presents different polymorphisms in different ethnic populations and studies of its polymorphisms in the Chinese population are still very limited. To analyze the frequency of constitutive polymorphic variation at the BAT-25 locus in Chinese from Jiangsu Province and its implication for locus MSI screening. The frequency of allelic variation at the BAT-25 locus of cervical cells from 500 healthy women and blood from 16 healthy males was assessed by direct sequencing. Twenty samples were also analyzed by fragment analysis. DNA extracted from blood of 94 patients with gastrointestinal cancer or endometrial cancer was analyzed by fragment analysis. After comparison with the sequencing results, the more frequent allele lengths were 126-127 bp, 128-129 bp, 129-130 bp, respectively consistent with the 24 poly(T) (T24), T25 and T26 alleles. At the BAT-25 locus, 516 healthy individuals had respectively 1.36%, 97.28% and 1.36% of the T24, T25 and T26. Whereas for the 94 cancer patients allelic frequencies were 0.53%, 1.06%, 96.8%, 1.6% for T15, T24, T25 and T26 alleles respectively. Sixteen healthy males had only the T25 allele and heterozygous T15 was only found in 1 male patient with colon cancer. We established the relation between fragment length and thymine repeats in BAT-25. The results showed that the BAT-25 locus is quasimonomorphic in Chinese from Jiangsu province. Moreover we showed that variant alleles of BAT-25 were found more likely in blood from cancer patients than in healthy individuals, suggesting the need to perform comparative studies between tumor and blood, or normal tissue, as to obtain a correct MSI identification.

  18. Population Structure and History in Developing Core Sets in Wild Germplasm

    USDA-ARS?s Scientific Manuscript database

    Accurate inference of genetic discontinuities between populations is an essential component in studies of intraspecific biodiversity and evolution, as well as associative genetics. Multi-locus genotypes were amplified from 949 individuals representing seedling trees from 88 half-sib families from ei...

  19. Population Structure And History In Developing Core Sets In Wild Germplasm.

    USDA-ARS?s Scientific Manuscript database

    Accurate inference of genetic discontinuities between populations is an essential component in studies of intraspecific biodiversity and evolution, as well as associative genetics. Multi-locus genotypes were amplified from 949 individuals representing seedling trees from 88 half-sib families from ei...

  20. In-depth Investigation of Genetic Region Identifies Mechanism that Contributes to Cancer Risk

    Cancer.gov

    Investigators in the Laboratory of Translational Genomics have identified a genetic variant in a multi-cancer risk locus at chromosome 5p15.33 that explains, at least in part, the molecular mechanism through which this variant influences cancer risk.

  1. On measures of association among genetic variables

    PubMed Central

    Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner

    2012-01-01

    Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500

  2. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae.

    PubMed

    Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R

    2010-11-01

    The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.

  3. Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data.

    PubMed

    King, Leandra; Wakeley, John

    2016-09-01

    We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate. Copyright © 2016 by the Genetics Society of America.

  4. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body

    PubMed Central

    Terzo, Esteban A.; Lyons, Shawn M.; Poulton, John S.; Temple, Brenda R. S.; Marzluff, William F.; Duronio, Robert J.

    2015-01-01

    Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis. PMID:25694448

  5. DXYS156: a multi-purpose short tandem repeat locus for determination of sex, paternal and maternal geographic origins and DNA fingerprinting.

    PubMed

    Calì, Francesco; Forster, P; Kersting, Christian; Mirisola, Mario G; D'Anna, Rosalba; De Leo, Giacomo; Romano, Valentino

    2002-06-01

    In forensic science and in legal medicine Y chromosomal typing is indispensable for sex determination, for paternity testing in the absence of the father and for distinguishing males in multiple rape cases. Another potential application is the estimation of paternal geographic origin or family name from a crime stain to narrow down the range of suspects and thus reduce costs of mass screenings. However, Y typing alone cannot provide a sufficiently resolved DNA fingerprint as required for court convictions. Thus, there is a dilemma whether or not to sacrifice valuable material for the sake of extensive Y chromosomal investigations when stain DNA is limited (typically allowing only few PCR amplifications). We here describe a Y-chromosome-specific nucleotide insertion in the duplicate short tandem repeat (STR) locus DXYS156 which allows us to distinguish males from females as does the commonly used amelogenin system, but with the advantage that this locus is multi-allelic, thus substantially contributing towards DNA fingerprinting of a sample and furthermore enabling the detection of sample contamination. Yet another bonus is that both the X and the Y copies of DXYS156 have alleles specific to different parts of the world, offering separate estimates of maternal and paternal descent of that sample. We therefore recommend the inclusion of DXYS156 in standard multiplexing kits for forensic, archaeological and genealogical applications.

  6. Investigation of Salmonella Enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013-2015.

    PubMed

    Muvhali, Munyadziwa; Smith, Anthony Marius; Rakgantso, Andronica Moipone; Keddy, Karen Helena

    2017-10-02

    Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) has become a significant pathogen in South Africa, and the need for improved molecular surveillance of this pathogen has become important. Over the years, multi-locus variable-number tandem-repeats analysis (MLVA) has become a valuable molecular subtyping technique for Salmonella, particularly for highly homogenic serotypes such as Salmonella Enteritidis. This study describes the use of MLVA in the molecular epidemiological investigation of outbreak isolates in South Africa. Between the years 2013 and 2015, the Centre for Enteric Diseases (CED) received 39 Salmonella Enteritidis isolates from seven foodborne illness outbreaks, which occurred in six provinces. MLVA was performed on all isolates. Three MLVA profiles (MLVA profiles 21, 22 and 28) were identified among the 39 isolates. MLVA profile 28 accounted for 77% (30/39) of the isolates. Isolates from a single outbreak were grouped into a single MLVA profile. A minimum spanning tree (MST) created from the MLVA data showed a close relationship between MLVA profiles 21, 22 and 28, with a single VNTR locus difference between them. MLVA has proven to be a reliable method for the molecular epidemiological investigation of Salmonella Enteritidis outbreaks in South Africa. These foodborne outbreaks emphasize the importance of the One Health approach as an essential component for combating the spread of zoonotic pathogens such as Salmonella Enteritidis.

  7. Sequence Diversity of Pan troglodytes Subspecies and the Impact of WFDC6 Selective Constraints in Reproductive Immunity

    PubMed Central

    Ferreira, Zélia; Hurle, Belen; Andrés, Aida M.; Kretzschmar, Warren W.; Mullikin, James C.; Cherukuri, Praveen F.; Cruz, Pedro; Gonder, Mary Katherine; Stone, Anne C.; Tishkoff, Sarah; Swanson, Willie J.; Green, Eric D.; Clark, Andrew G.; Seixas, Susana

    2013-01-01

    Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology. PMID:24356879

  8. Simple Sequence Repeat and S-locus Genotyping to Explore Genetic Variability in Polyploid Prunus spinosa and P. insititia.

    PubMed

    Halász, Júlia; Makovics-Zsohár, Noémi; Szőke, Ferenc; Ercisli, Sezai; Hegedűs, Attila

    2017-02-01

    Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.

  9. Photoreceptor dysplasia (pd) in miniature schnauzer dogs: evaluation of candidate genes by molecular genetic analysis.

    PubMed

    Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K

    1999-01-01

    Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.

  10. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  11. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  12. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete.

    PubMed

    Pöggeler, S; Risch, S; Kück, U; Osiewacz, H D

    1997-10-01

    Homokaryons from the homothallic ascomycte Sordaria macrospora are able to enter the sexual pathway and to form fertile fruiting bodies. To analyze the molecular basis of homothallism and to elucidate the role of mating-products during fruiting body development, we cloned and sequenced the entire S. macrospora mating-type locus. Comparison of the Sordaria mating-type locus with mating-type idiomorphs from the heterothallic ascomycetes Neurospora crassa and Podospora anserina revealed that sequences from both idiomorphs (A/a and mat-/mat+, respectively) are contiguous in S. macrospora. DNA sequencing of the S. macrospora mating-type region allowed the identification of four open reading frames (ORFs), which were termed Smt-a1, SmtA-1, SmtA-2 and SmtA-3. While Smt-a1, SmtA-1, and SmtA-2 show strong sequence similarities with the corresponding N. crassa mating-type ORFs, SmtA-3 has a chimeric character. It comprises sequences that are similar to the A and a mating-type idiomorph from N. crassa. To determine functionality of the S. macrospora mating-type genes, we show that all ORFs are transcriptionally expressed. Furthermore, we transformed the S. macrospora mating-type genes into mat- and mat+ strains of the closely related heterothallic fungus P. anserina. The transformation experiments show that mating-type genes from S. macrospora induce fruiting body formation in P. anserina.

  13. Isolation and molecular characterization of Chikungunya virus from the Andaman and Nicobar archipelago, India: evidence of an East, Central, and South African genotype.

    PubMed

    Muruganandam, N; Chaaithanya, I K; Senthil, G S; Shriram, A N; Bhattacharya, D; Jeevabharathi, G S; Sudeep, A B; Pradeepkumar, N; Vijayachari, P

    2011-12-01

    Chikungunya virus (CHIKV) is an Alphavirus belonging to the family Togaviridae. In 2006, CHIKV infection struck the Andaman and Nicobar archipelago, with an attack rate of 60%. There were more than 10 cases with acute flaccid paralysis simulating the Guillian Barre Syndrome. The majority of the patients presented severe joint pain. The cause for such an explosive nature of the outbreak with increased morbidity was not known. The isolation of CHIKV was attempted and succeeded from nine subjects presenting clinical symptoms of Chikungunya fever. The cDNA of all the isolates was sequenced for partial E1 and nsP1 genes. Sequences were aligned based on the double locus sequence typing concept. The phylogenetic analysis shows that sequences of Andaman isolates grouped with the East, Central, and South African genotype of virus isolates from India, Sri Lanka, and Réunion. The genetic distance between Andaman isolates and the Réunion isolates was very small. The phylogenetic analysis confirmed the origin of the isolates responsible for the first ever confirmed CHIKV outbreak in these islands to be the East, Central, and South African genotype. In this manuscript, we discuss the involvement of the East, Central, and South African strain with the Chikungunya fever outbreak in this archipelago and double locus sequence typing as a first time approach.

  14. Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.).

    PubMed

    Blair, Matthew W; Prieto, Sergio; Díaz, Lucy M; Buendía, Héctor F; Cardona, César

    2010-04-29

    An interesting seed protein family with a role in preventing insect herbivory is the multi-gene, APA family encoding the alpha-amylase inhibitor, phytohemagglutinin and arcelin proteins of common bean (Phaseolus vulgaris). Variability for this gene family exists and has been exploited to breed for insect resistance. For example, the arcelin locus has been successfully transferred from wild to cultivated common bean genotypes to provide resistance against the bruchid species Zabrotes subfasciatus although the process has been hampered by a lack of genetic tools for and understanding about the locus. In this study, we analyzed linkage disequilibrium (LD) between microsatellite markers at the APA locus and bruchid resistance in a germplasm survey of 105 resistant and susceptible genotypes and compared this with LD in other parts of the genome. Microsatellite allele diversity was found to vary with each of the eight APA-linked markers analyzed, and two markers within the APA locus were found to be diagnostic for bruchid resistance or susceptibility and for the different arcelin alleles inherited from the wild accessions. Arc1 was found to provide higher levels of resistance than Arc5 and the markers in the APA locus were highly associated with resistance showing that introgression of this gene-family from wild beans provides resistance in cultivated beans. LD around the APA locus was found to be intermediate compared to other regions of the genome and the highest LD was found within the APA locus itself for example between the markers PV-atct001 and PV-ag004. We found the APA locus to be an important genetic determinant of bruchid resistance and also found that LD existed mostly within the APA locus but not beyond it. Moderate LD was also found for some other regions of the genome perhaps related to domestication genes. The LD pattern may reflect the introgression of arcelin from the wild into the cultivated background through breeding. LD and association studies for the arcelin gene, linked genes and other members of the APA family are essential for breaking linkage drag while maintaining high levels of bruchid resistance in common bean.

  15. Identification of a Latin American-specific BabA adhesin variant through whole genome sequencing of Helicobacter pylori patient isolates from Nicaragua

    DOE PAGES

    Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios; ...

    2016-02-29

    In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less

  16. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies.

    PubMed

    Yoshida, Catherine E; Kruczkiewicz, Peter; Laing, Chad R; Lingohr, Erika J; Gannon, Victor P J; Nash, John H E; Taboada, Eduardo N

    2016-01-01

    For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/.

  17. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS

    PubMed Central

    2011-01-01

    Background Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. Results The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. Conclusion The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar. PMID:21708021

  18. Genetic distance of Malaysian mousedeer based on mitochondrial DNA cytochrome oxidase I (COI) and D-loop region sequences

    NASA Astrophysics Data System (ADS)

    Bakar, Mohamad-Azam Akmal Abu; Rovie-Ryan, Jeffrine Japning; Ampeng, Ahmad; Yaakop, Salmah; Nor, Shukor Md; Md-Zain, Badrul Munir

    2018-04-01

    Mousedeer is one of the primitive mammals that can be found mainly in Southeast-Asia region. There are two species of mousedeer in Malaysia which are Tragulus kanchil and Tragulus napu. Both species can be distinguish by size, coat coloration, and throat pattern but clear diagnosis still cannot be found. The objective of the study is to show the genetic distance relationship between T. kanchil and T. napu and their population based on mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and D-loop region. There are 42 sample of mousedeer were used in this study collected by PERHILITAN from different locality. Another 29 D-loop sequence were retrieved from Genbank for comparative analysis. All sample were amplified using universal primer and species-specific primer for COI and D-loop genes via PCR process. The amplified sequences were analyzed to determine genetic distance of T. kanchil and T. napu. From the analysis, the average genetic distance between T. kanchil and T. napu based on locus COI and D-loop were 0.145 and 0.128 respectively. The genetic distance between populations of T. kanchil based on locus COI was between 0.003-0.013. For locus D-loop, genetic distance analysis showed distance in relationship between west-coast populations to east-coast population of T. kanchil. COI and D-loop mtDNA region provided a clear picture on the relationship within the mousedeer species. Last but not least, conservation effort toward protecting this species can be done by study the molecular genetics and prevent the extinction of this species.

  19. Genetic characterization of the partial mitochondrial cytochrome oxidase c subunit I (cox 1) gene of the zoonotic parasitic nematode, Ancylostoma ceylanicum from humans, dogs and cats.

    PubMed

    Ngui, Romano; Mahdy, Mohammed A K; Chua, Kek Heng; Traub, Rebecca; Lim, Yvonne A L

    2013-10-01

    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice

    PubMed

    Nagano; Wu; Kawasaki; Kishima; Sano

    1999-12-01

    The present study was carried out to characterize the molecular organization in the vicinity of the waxy locus in rice. To determine the structural organization of the region surrounding waxy, contiguous clones covering a total of 260 kb were constructed using a bacterial artificial chromosome (BAC) library from the Shimokita variety of Japonica rice. This map also contains 200 overlapping subclones, which allowed construction of a fine physical map with a total of 64 HindIII sites. During the course of constructing the map, we noticed the presence of some repeated regions which might be related to transposable elements. We divided the 260-kb region into 60 segments (average size of 5.7 kb) to use as probes to determine their genomic organization. Hybridization patterns obtained by probing with these segments were classified into four types: class 1, a single or a few bands without a smeared background; class 2, a single or a few bands with a smeared background; class 3, multiple discrete bands without a smeared background; and class 4, only a smeared background. These classes constituted 6.5%, 20.9%, 3.7%, and 68.9% of the 260-kb region, respectively. The distribution of each class revealed that repetitive sequences are a major component in this region, as expected, and that unique sequence regions were mostly no longer than 6 kb due to interruption by repetitive sequences. We discuss how the map constructed here might be a powerful tool for characterization and comparison of the genome structures and the genes around the waxy locus in the Oryza species.

  1. Linkage analysis of Norrie disease with an X-chromosomal ornithine aminotransferase locus.

    PubMed

    Bateman, J B; Kojis, T L; Cantor, R M; Heinzmann, C; Ngo, J T; Spence, M A; Inana, G; Kivlin, J D; Curtis, D; Sparkes, R S

    1993-01-01

    Norrie disease is a rare disease of newborn males caused by prenatal or perinatal retinal detachment, which may be associated with mental retardation, psychosis, and/or hearing loss. DXS7 (L1.28) and MAO A and B loci have been linked to the ND locus on the short arm of the X chromosome. Sequences homologous to OAT also have been mapped to the short arm of the X chromosome. We performed linkage analyses between the ND locus and one of the OAT-like clusters of sequences on the X chromosome (OATL1), using a ScaI RFLP in a ND family, and increased the previously calculated lod score (z) to over 3 (3.38; theta = 0.05). Similarly, we calculated a lod score of 4.06 (theta = 0.01) between the OATL1 and DXS7 loci. Alone, the OATL1 ScaI RFLP system is expected to be informative in 48% of females. If this system were used in combination with the DXS7 TaqI polymorphism, 71% of females would be informative for at least one of the markers and 21% would be informative for both. Because the OATL1 ScaI RFLP is a relatively common polymorphism, this system should be useful for the identification of ND carriers and affected male fetuses and newborns.

  2. Population structure of the giant garter snake, Thamnophis gigas

    USGS Publications Warehouse

    Paquin, M.M.; Wylie, G.D.; Routman, E.J.

    2006-01-01

    The giant garter snake, Thamnophis gigas, is a threatened species endemic to California's Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high F ST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low F ST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas. ?? Springer 2006.

  3. Investigation of genetic diversity and epidemiological characteristics of Pasteurella multocida isolates from poultry in southwest China by population structure, multi-locus sequence typing and virulence-associated gene profile analysis.

    PubMed

    Li, Zhangcheng; Cheng, Fangjun; Lan, Shimei; Guo, Jianhua; Liu, Wei; Li, Xiaoyan; Luo, Zeli; Zhang, Manli; Wu, Juan; Shi, Yang

    2018-04-25

    Fowl cholera caused by Pasteurella multocida has always been a disease of global importance for poultry production. The aim of this study was to obtain more information about the epidemiology of avian P. multocida infection in southwest China and the genetic characteristics of clinical isolates. P. multocida isolates were characterized by biochemical and molecular-biological methods. The distributions of the capsular serogroups, the phenotypic antimicrobial resistance profiles, lipopolysaccharide (LPS) genotyping and the presence of 19 virulence genes were investigated in 45 isolates of P. multocida that were associated with clinical disease in poultry. The genetic diversity of P. multocida strains was performed by 16S rRNA and rpoB gene sequence analysis as well as multilocus sequence typing (MLST). The results showed that most (80.0%) of the P. multocida isolates in this study represented special P. multocida subspecies, and 71.1% of the isolates showed multiple-drug resistance. 45 isolates belonged to capsular types: A (100%) and two LPS genotypes: L1 (95.6%) and L3 (4.4%). MLST revealed two new alleles (pmi77 and gdh57) and one new sequence type (ST342). ST129 types dominated in 45 P. multocida isolates. Isolates belonging to ST129 were with the genes ompH+plpB+ptfA+tonB, whereas ST342 included isolates with fur+hgbA+tonB genes. Population genetic analysis and the MLST results revealed that at least one new ST genotype was present in the avian P. multocida in China. These findings provide novel insights into the epidemiological characteristics of avian P. multocida isolates in southwest China.

  4. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    PubMed

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012-2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis.

    PubMed

    Haendiges, Julie; Timme, Ruth; Allard, Marc W; Myers, Robert A; Brown, Eric W; Gonzalez-Escalona, Narjol

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012-2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.

  6. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis

    PubMed Central

    Haendiges, Julie; Timme, Ruth; Allard, Marc W.; Myers, Robert A.; Brown, Eric W.; Gonzalez-Escalona, Narjol

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012–2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control. PMID:25745421

  7. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species.

    PubMed

    Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand

    2009-12-29

    Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  8. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway

    PubMed Central

    Muñoz-Ramírez, Zilia Y.; Mendez-Tenorio, Alfonso; Kato, Ikuko; Bravo, Maria M.; Rizzato, Cosmeri; Thorell, Kaisa; Torres, Roberto; Aviles-Jimenez, Francisco; Camorlinga, Margarita; Canzian, Federico; Torres, Javier

    2017-01-01

    Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk. PMID:28293542

  9. Long-range comparison of human and mouse Sprr loci to identify conserved noncoding sequences involved in coordinate regulation

    PubMed Central

    Martin, Natalia; Patel, Satyakam; Segre, Julia A.

    2004-01-01

    Mammalian epidermis provides a permeability barrier between an organism and its environment. Under homeostatic conditions, epidermal cells produce structural proteins, which are cross-linked in an orderly fashion to form a cornified envelope (CE). However, under genetic or environmental stress, specific genes are induced to rapidly build a temporary barrier. Small proline-rich (SPRR) proteins are the primary constituents of the CE. Under stress the entire family of 14 Sprr genes is upregulated. The Sprr genes are clustered within the larger epidermal differentiation complex on mouse chromosome 3, human chromosome 1q21. The clustering of the Sprr genes and their upregulation under stress suggest that these genes may be coordinately regulated. To identify enhancer elements that regulate this stress response activation of the Sprr locus, we utilized bioinformatic tools and classical biochemical dissection. Long-range comparative sequence analysis identified conserved noncoding sequences (CNSs). Clusters of epidermal-specific DNaseI-hypersensitive sites (HSs) mapped to specific CNSs. Increased prevalence of these HSs in barrier-deficient epidermis provides in vivo evidence of the regulation of the Sprr locus by these conserved sequences. Individual components of these HSs were cloned, and one was shown to have strong enhancer activity specific to conditions when the Sprr genes are coordinately upregulated. PMID:15574822

  10. Transcript map of the Ovum mutant (Om) locus: isolation by exon trapping of new candidate genes for the DDK syndrome.

    PubMed

    Le Bras, Stéphanie; Cohen-Tannoudji, Michel; Guyot, Valérie; Vandormael-Pournin, Sandrine; Coumailleau, Franck; Babinet, Charles; Baldacci, Patricia

    2002-08-21

    The DDK syndrome is defined as the embryonic lethality of F1 mouse embryos from crosses between DDK females and males from other strains (named hereafter as non-DDK strains). Genetically controlled by the Ovum mutant (Om) locus, it is due to a deleterious interaction between a maternal factor present in DDK oocytes and the non-DDK paternal pronucleus. Therefore, the DDK syndrome constitutes a unique genetic tool to study the crucial interactions that take place between the parental genomes and the egg cytoplasm during mammalian development. In this paper, we present an extensive analysis performed by exon trapping on the Om region. Twenty-seven trapped sequences were from genes in the databases: beta-adaptin, CCT zeta2, DNA LigaseIII, Notchless, Rad51l3 and Scya1. Twenty-eight other sequences presented similarities with expressed sequence tags and genomic sequences whereas 57 did not. The pattern of expression of 37 of these markers was established. Importantly, five of them are expressed in DDK oocytes and are candidate genes for the maternal factor, and 20 are candidate genes for the paternal factor since they are expressed in testis. This data is an important step towards identifying the genes responsible for the DDK syndrome.

  11. The novel fusion transcript NR5A2-KLHL29FT is generated by an insertion at the KLHL29 locus.

    PubMed

    Sun, Zhenguo; Ke, Xiquan; Salzberg, Steven L; Kim, Daehwan; Antonescu, Valentin; Cheng, Yulan; Huang, Binbin; Song, Jee Hoon; Abraham, John M; Ibrahim, Sariat; Tian, Hui; Meltzer, Stephen J

    2017-05-01

    Novel fusion transcripts (FTs) caused by chromosomal rearrangement are common factors in the development of cancers. In the current study, the authors used massively parallel RNA sequencing to identify new FTs in colon cancers. RNA sequencing (RNA-Seq) and TopHat-Fusion were used to identify new FTs in colon cancers. The authors then investigated whether the novel FT nuclear receptor subfamily 5, group A, member 2 (NR5A2)-Kelch-like family member 29 FT (KLHL29FT) was transcribed from a genomic chromosomal rearrangement. Next, the expression of NR5A2-KLHL29FT was measured by quantitative real-time polymerase chain reaction in colon cancers and matched corresponding normal epithelia. The authors identified the FT NR5A2-KLHL29FT in normal and cancerous epithelia. While investigating this transcript, it was unexpectedly found that it was due to an uncharacterized polymorphic germline insertion of the NR5A2 sequence from chromosome 1 into the KLHL29 locus at chromosome 2, rather than a chromosomal rearrangement. This germline insertion, which occurred at a population frequency of 0.40, appeared to bear no relationship to cancer development. Moreover, expression of NR5A2-KLHL29FT was validated in RNA specimens from samples with insertions of NR5A2 at the KLHL29 gene locus, but not from samples without this insertion. It is interesting to note that NR5A2-KLH29FT expression levels were significantly lower in colon cancers than in matched normal colonic epithelia (P =.029), suggesting the potential participation of NR5A2-KLHL29FT in the origin or progression of this tumor type. NR5A2-KLHL29FT was generated from a polymorphism insertion of the NR5A2 sequence into the KLHL29 locus. NR5A2-KLHL29FT may influence the origin or progression of colon cancer. Moreover, researchers should be aware that similar FTs may occur due to transchromosomal insertions that are not correctly annotated in genome databases, especially with current assembly algorithms. Cancer 2017;123:1507-1515. © 2017 American Cancer Society. © 2016 American Cancer Society.

  12. Bovine Polledness – An Autosomal Dominant Trait with Allelic Heterogeneity

    PubMed Central

    Medugorac, Ivica; Seichter, Doris; Graf, Alexander; Russ, Ingolf; Blum, Helmut; Göpel, Karl Heinrich; Rothammer, Sophie; Förster, Martin; Krebs, Stefan

    2012-01-01

    The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ∼381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations. PMID:22737241

  13. Biallelic Germline Transcription at the κ Immunoglobulin Locus

    PubMed Central

    Singh, Nandita; Bergman, Yehudit; Cedar, Howard; Chess, Andrew

    2003-01-01

    Rearrangement of antigen receptor genes generates a vast array of antigen receptors on lymphocytes. The establishment of allelic exclusion in immunoglobulin genes requires differential treatment of the two sequence identical alleles. In the case of the κ immunoglobulin locus, changes in chromatin structure, methylation, and replication timing of the two alleles are all potentially involved in regulating rearrangement. Additionally, germline transcription of the κ locus which precedes rearrangement has been proposed to reflect an opening of the chromatin structure rendering it available for rearrangement. As the initial restriction of rearrangement to one allele is critical to the establishment of allelic exclusion, a key question is whether or not germline transcription at the κ locus is monoallelic or biallelic. We have used a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay and an RNA–fluorescence in situ hybridization (FISH) to show that germline transcription of the κ locus is biallelic in wild-type immature B cells and in recombination activating gene (RAG)−/−, μ+ B cells. Therefore, germline transcription is unlikely to dictate which allele will be rearranged first and rather reflects a general opening on both alleles that must be accompanied by a mechanism allowing one of the two alleles to be rearranged first. PMID:12629064

  14. [Molecular characteristics of Clustered Regularly Interspaced Short Palindromic Repeat in Shigella].

    PubMed

    Xue, Zerun; Wang, Yingfang; Duan, Guangcai; Yang, Haiyan; Xi, Yuanlin; Wang, Pengfei; Wang, Linlin; Guo, Xiangjiao

    2015-08-01

    To detect the molecular characteristics of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) in Shigella and to analyze the distribution of CRISPR related to the time of isolation. Of the 52 Shigella strains, 41 were isolated from Henan, 6 from Jiangxi and 5 isolated from Beijing. Both CRISPR locus of S1, S2, S3 and S4 in Shigella were detected by polymerase chain reaction (PCR). The PCR products were sequenced and compared. The positive rates of CRISPR locus in Shigella were 33.69% (S1), 50.00% (S2), 82.69% (S3) and 73.08% (S4), respectively. Two subtypes were discovered in S1 and S3 locus. Three subtypes were discovered in S2 locus. Four different subtypes were discovered in S4 locus. The isolates from Henan strains were divided into two groups by the time of isolation. Distributions of S1 were different, before or after 2004, on Shigella. S1 could not be detected after 2004. There were no statistical differences of S2, S3 and S4 in two groups. Different CRISPR subtypes or Shigella were discovered. A significant correlation was noticed between the CRISPR S1 related to the time of isolation but not between S2, S3 or S4 on the time of isolation.

  15. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data

    USDA-ARS?s Scientific Manuscript database

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multi-locus data sets has greatly advanced our understanding ...

  16. Multi-locus mixed model analysis of stem rust resistance in a worldwide collection of winter wheat

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method to mine populations for favorable allele...

  17. Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome.

    PubMed

    González, Víctor M; Aventín, Núria; Centeno, Emilio; Puigdomènech, Pere

    2014-12-17

    Plant NBS-LRR -resistance genes tend to be found in clusters, which have been shown to be hot spots of genome variability. In melon, half of the 81 predicted NBS-LRR genes group in nine clusters, and a 1 Mb region on linkage group V contains the highest density of R-genes and presence/absence gene polymorphisms found in the melon genome. This region is known to contain the locus of Vat, an agronomically important gene that confers resistance to aphids. However, the presence of duplications makes the sequencing and annotation of R-gene clusters difficult, usually resulting in multi-gapped sequences with higher than average errors. A 1-Mb sequence that contains the largest NBS-LRR gene cluster found in melon was improved using a strategy that combines Illumina paired-end mapping and PCR-based gap closing. Unknown sequence was decreased by 70% while about 3,000 SNPs and small indels were corrected. As a result, the annotations of 18 of a total of 23 NBS-LRR genes found in this region were modified, including additional coding sequences, amino acid changes, correction of splicing boundaries, or fussion of ORFs in common transcription units. A phylogeny analysis of the R-genes and their comparison with syntenic sequences in other cucurbits point to a pattern of local gene amplifications since the diversification of cucurbits from other families, and through speciation within the family. A candidate Vat gene is proposed based on the sequence similarity between a reported Vat gene from a Korean melon cultivar and a sequence fragment previously absent in the unrefined sequence. A sequence refinement strategy allowed substantial improvement of a 1 Mb fragment of the melon genome and the re-annotation of the largest cluster of NBS-LRR gene homologues found in melon. Analysis of the cluster revealed that resistance genes have been produced by sequence duplication in adjacent genome locations since the divergence of cucurbits from other close families, and through the process of speciation within the family a candidate Vat gene was also identified using sequence previously unavailable, which demonstrates the advantages of genome assembly refinements when analyzing complex regions such as those containing clusters of highly similar genes.

  18. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

    PubMed

    den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K

    2013-09-01

    Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.

  19. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat

    PubMed Central

    Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015–2016 and 2016–2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm’s length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding. PMID:29137188

  20. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat.

    PubMed

    Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-11-13

    Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.

Top