Sample records for multi object spectrograph

  1. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  2. SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

    2014-07-01

    The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

  3. Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology

    NASA Astrophysics Data System (ADS)

    Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.

    2017-02-01

    Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.

  4. MEGARA: the new multi-object and integral field spectrograph for GTC

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Izazaga-Pére, R.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.

    2017-07-01

    MEGARA is an optical integral-field unit and multi-object spectrograph for the 10.4m Gran Telescopio Canarias. Both observational modes will provide identical spectral resolutions Rfwhm ˜ 6,000, 12,000 and 18,700. The spectrograph is a collimator-camera system. The unique characteristics of MEGARA in terms of throughput and versatility make this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. The instrument is currently at the telescope for on-sky commissioning. Here we describe the as-built main characteristics the instrument.

  5. Optomechanical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In

    2016-08-01

    We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.

  6. Cosmological surveys with multi-object spectrographs

    NASA Astrophysics Data System (ADS)

    Colless, Matthew

    2016-08-01

    Multi-object spectroscopy has been a key technique contributing to the current era of `precision cosmology.' From the first exploratory surveys of the large-scale structure and evolution of the universe to the current generation of superbly detailed maps spanning a wide range of redshifts, multi-object spectroscopy has been a fundamentally important tool for mapping the rich structure of the cosmic web and extracting cosmological information of increasing variety and precision. This will continue to be true for the foreseeable future, as we seek to map the evolving geometry and structure of the universe over the full extent of cosmic history in order to obtain the most precise and comprehensive measurements of cosmological parameters. Here I briefly summarize the contributions that multi-object spectroscopy has made to cosmology so far, then review the major surveys and instruments currently in play and their prospects for pushing back the cosmological frontier. Finally, I examine some of the next generation of instruments and surveys to explore how the field will develop in coming years, with a particular focus on specialised multi-object spectrographs for cosmology and the capabilities of multi-object spectrographs on the new generation of extremely large telescopes.

  7. A Multi-object Exoplanet Detecting Technique

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.

  8. Optical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey

    2016-08-01

    We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.

  9. Integration, commissioning, and performance of the UK FMOS spectrograph

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin B.; Lewis, Ian J.; Tosh, Ian A. J.; Blackburn, Colin; Bonfield, David G.; Brooks, Charles B.; Holmes, Alan R.; Lee, Hanshin; Froud, Tim R.; Akiyama, Masayuki; Tamura, Naoyuki; Takato, Naruhisa

    2008-07-01

    The UK FMOS spectrograph forms part of Subaru's FMOS multi-object infrared spectroscopy facility. The spectrograph was shipped to Hilo in component form in August of 2007. We describe the integration sequence for the spectrograph, the results of cooldown tests using a new chiller unit fitted to the spectrograph at the telescope, and alignment tests of the spectrograph, gratings and OH-suppression masks. We present the first-light observations for the spectrograph from May 2008.

  10. VizieR Online Data Catalog: The ELM survey. VI. 11 new ELM WD binaries (Gianninas+, 2015)

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Kilic, M.; Brown, W. R.; Canton, P.; Kenyon, S. J.

    2016-02-01

    We used the 6.5m MMT telescope equipped with the Blue Channel spectrograph, the 200 inch Hale telescope equipped with the Double spectrograph, the Kitt Peak National Observatory 4m telescope equipped with the R-C spectrograph, and more recently with Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS), to obtain spectroscopy of our 11 targets in several observing runs. We have also been obtaining radial-velocity measurements for candidates from other sources including the Large Sky Area Multi-Object Spectroscopy Telescope (LAMOST). Those 11 new Extremely low-mass white dwarf (ELM WD) binaries bring the total of ELM WDs identified by the ELM Survey up to 73. (4 data files).

  11. Sky Subtraction with Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  12. Test of multi-object exoplanet search spectral interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further observation correction is equivalent to be +/-50m/s every 20mins.

  13. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  14. An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.

    2018-05-01

    UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.

  15. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less

  16. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  17. MOSAIC: A Multi-Object Spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium

    2016-10-01

    The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.

  18. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    NASA Astrophysics Data System (ADS)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  19. PyEmir: Data Reduction Pipeline for EMIR, the GTC Near-IR Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Pascual, S.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.

    2010-12-01

    EMIR is the near-infrared wide-field camera and multi-slit spectrograph being built for Gran Telescopio Canarias. We present here the work being done on its data processing pipeline. PyEmir is based on Python and it will process automatically data taken in both imaging and spectroscopy mode. PyEmir is begin developed by the UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation.

  20. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  1. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  2. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  3. VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.

    2017-02-01

    To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).

  4. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  5. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  6. COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.

    2017-05-01

    COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

  7. Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    U, Vivian; Dekany, R.; Mobasher, B.

    2013-01-01

    The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.

  8. MEGARA spectrograph optics

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Sánchez-Blanco, E.; García-Vargas, M. L.; Gil de Paz, A.; Páez, G.; Gallego, J.; Sánchez, F. M.; Vílchez, J. M.

    2012-09-01

    MEGARA is the next optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for Gran Telescopio Canarias. The instrument offers two IFUs plus a Multi-Object Spectroscopy (MOS) mode: a large compact bundle covering 12.5 arcsec x 11.3 arcsec on sky with 100 μm fiber-core; a small compact bundle, of 8.5 arcsec x 6.7 arcsec with 70 μm fiber-core and a fiber MOS positioner that allows to place up to 100 mini-bundles, 7 fibers each, with 100 μm fiber-core, within a 3.5 arcmin x 3.5 arcmin field of view, around the two IFUs. The fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrograph. The large IFU and MOS modes will provide intermediate to high spectral resolutions, R=6800-17000. The small IFU mode will provide R=8000-20000. All these resolutions are possible thanks to a spectrograph design based in the used of volume phase holographic gratings in combination with prisms to keep fixed the collimator and camera angle. The MEGARA optics is composed by a total of 53 large optical elements per spectrograph: the field lens, the collimator and the camera lenses plus the complete set of pupil elements including holograms, windows and prisms. INAOE, a partner of the GTC and a partner of MEGARA consortium, is responsible of the optics manufacturing and tests. INAOE will carry out this project working in an alliance with CIO. This paper summarizes the status of MEGARA spectrograph optics at the Preliminary Design Review, held on March 2012.

  9. VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.

    2017-11-01

    The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).

  10. Fireball multi object spectrograph: as-built optic performances

    NASA Astrophysics Data System (ADS)

    Grange, R.; Milliard, B.; Lemaitre, G.; Quiret, S.; Pascal, S.; Origné, A.; Hamden, E.; Schiminovich, D.

    2016-07-01

    Fireball (Faint Intergalactic Redshifted Emission Balloon) is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic medium from the line emissions in the ultraviolet (200 nm) above 37 km flight altitude. Fireball relies on a Multi Object Spectrograph (MOS) that takes full advantage of the new high QE, low noise 13 μm pixels UV EMCCD. The MOS is fed by a 1 meter diameter parabola with an extended field (1000 arcmin2) using a highly aspherized two mirror corrector. All the optical train is working at F/2.5 to maintain a high signal to noise ratio. The spectrograph (R 2200 and 1.5 arcsec FWHM) is based on two identical Schmidt systems acting as collimator and camera sharing a 2400 g/mm aspherized reflective Schmidt grating. This grating is manufactured from active optics methods by double replication technique of a metal deformable matrix whose active clear aperture is built-in to a rigid elliptical contour. The payload and gondola are presently under integration at LAM. We will present the alignment procedure and the as-built optic performances of the Fireball instrument.

  11. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  12. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  13. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  14. The GMT-Consortium Large Earth Finder (G-CLEF) : An Optical Echelle Spectrograph for the Giant Magellan Telescope (GMT) with Multi-Object Spectroscopy (MOS) Capability

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew

    2017-09-01

    "The GMT-Consortium Large Earth Finder (G-CLEF) is an optical band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general purpose, high dispersion instrument that is fiber fed and capable of extremely precise radial velocity (PRV) measurements. G-CLEF will have a novel multi-object spectroscopy (MOS) capability that will be useful for a number of exoplanet science programs. I describe the general properties of G-CLEF and the systems engineering analyses, especially for PRV, that drove the current G-CLEF design. The requirements for calibration of the MOS channel are presented along with several novel approaches for achieving moderate radial velocity precision in the MOS mode."

  15. BATMAN: a DMD-based MOS demonstrator on Galileo Telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Spanò, Paolo; Bon, William; Riva, Marco; Lanzoni, Patrick; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Manetta, Marco; Zerbi, Filippo; Tresoldi, Daniela; Valenziano, Luca

    2012-09-01

    Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. Current object selection systems are limited and/or difficult to implement in next generation MOS for space and groundbased telescopes. A promising solution is the use of MOEMS devices such as micromirror arrays which allow the remote control of the multi-slit configuration in real time. We are developing a Digital Micromirror Device (DMD) - based spectrograph demonstrator called BATMAN. We want to access the largest FOV with the highest contrast. The selected component is a DMD chip from Texas Instruments in 2048 x 1080 mirrors format, with a pitch of 13.68μm. Our optical design is an all-reflective spectrograph design with F/4 on the DMD component. This demonstrator permits the study of key parameters such as throughput, contrast and ability to remove unwanted sources in the FOV (background, spoiler sources), PSF effect, new observational modes. This study will be conducted in the visible with possible extension in the IR. A breadboard on an optical bench, ROBIN, has been developed for a preliminary determination of these parameters. The demonstrator on the sky is then of prime importance for characterizing the actual performance of this new family of instruments, as well as investigating the operational procedures on astronomical objects. BATMAN will be placed on the Nasmyth focus of Telescopio Nazionale Galileo (TNG) during next year.

  16. Report Of The HST Strategy Panel: A Strategy For Recovery

    DTIC Science & Technology

    1991-01-01

    orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected

  17. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  18. Microshutter Array Development for the Multi-Object Spectrograph for the New Generation Space Telescope, and Its Ground-based Demonstrator

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Moseley, Harvey; Fettig, Rainer; Kutyrev, Alexander; Ge, Jian; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The 6.5-m NASA/ESA/Canada New Generation Space Telescope to be operated at the L2 Lagrangian point will require a multi-object spectrograph (MOS) operating from 1 to 5 microns. Up to 3000 targets will be selected for simultaneous spectroscopy using a programmable cryogenic (approx. 35K) aperture array, consisting of a mosaic of arrays of micromirrors or microshutters. We describe the current status of the GSFC microshutter array development. The 100 micron square shutters are opened magnetically and latched open or closed electrostatically. Selection will be by two crossed one-dimensional addressing circuits. We will demonstrate the use of a 512 x 512 unit array on a ground-based IR MOS which will cover 0.6 to 5 microns, and operate rapidly to include spectroscopy of gamma ray burst afterglows.

  19. A mask quality control tool for the OSIRIS multi-object spectrograph

    NASA Astrophysics Data System (ADS)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  20. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd

    2017-09-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  1. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting

    2018-01-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  2. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  3. Focal ratio degradation in lightly fused hexabundles

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Bland-Hawthorn, J.; Fogarty, L. M. R.; Lawrence, J. S.; Croom, S. M.

    2014-02-01

    We are now moving into an era where multi-object wide-field surveys, which traditionally use single fibres to observe many targets simultaneously, can exploit compact integral field units (IFUs) in place of single fibres. Current multi-object integral field instruments such as Sydney-AAO Multi-object Integral field spectrograph have driven the development of new imaging fibre bundles (hexabundles) for multi-object spectrographs. We have characterized the performance of hexabundles with different cladding thicknesses and compared them to that of the same type of bare fibre, across the range of fill fractions and input f-ratios likely in an IFU instrument. Hexabundles with 7-cores and 61-cores were tested for focal ratio degradation (FRD), throughput and cross-talk when fed with inputs from F/3.4 to >F/8. The five 7-core bundles have cladding thickness ranging from 1 to 8 μm, and the 61-core bundles have 5 μm cladding. As expected, the FRD improves as the input focal ratio decreases. We find that the FRD and throughput of the cores in the hexabundles match the performance of single fibres of the same material at low input f-ratios. The performance results presented can be used to set a limit on the f-ratio of a system based on the maximum loss allowable for a planned instrument. Our results confirm that hexabundles are a successful alternative for fibre imaging devices for multi-object spectroscopy on wide-field telescopes and have prompted further development of hexabundle designs with hexagonal packing and square cores.

  4. Thirty Years, One Million Spectra: Public Access to the SAO Spectral Archives

    NASA Astrophysics Data System (ADS)

    Mink, J.; Moran, S.

    2015-09-01

    Over the last 30 years, the SAO Telescope Data Center has reduced and archived over 1,000,000 spectra, consisting of 287,000 spectra from five high dispersion Echelle spectrographs and 717,000 spectra from four low dispersion spectrographs, across three telescopes. 151,000 spectra from six instruments are currently online and publicly available, covering many interesting objects in the northern sky, including most of the galaxies in the Updated Zwicky Catalog which are reachable through NED or Simbad. A majority of the high dispersion spectra will soon be made public, as will more data from the MMT multi-fiber spectrographs. Many objects in the archive have multiple spectra over time, which make them a valuable resource for archival time-domain studies. We are now developing a system to make all of the public spectra more easily searchable and viewable through the Virtual Observatory.

  5. IRMS: Infrared Multi-Slit Spectrograph for TMT

    NASA Astrophysics Data System (ADS)

    U, Vivian; Mobasher, B.

    2014-07-01

    As one of the first-light instruments on the TMT, the IRMS is a near-infrared multi-slit spectrograph and imager designed to sample near the diffraction limit with the help of adaptive optics. Fed by the Narrow-Field Infrared Adaptive Optics Systems (NFIRAOS) on the TMT, the IRMS will provide near-infrared imaging and multi-object spectroscopy at Y, J, H, and K bands (0.9-2.5 microns) with moderate spectral resolution. With a field of view of ~2 arcmin on a side, it has a multiplex capability of up to 46 slits using a slit mask system on a cryogenic configurable slit unit. Here we present a preliminary version of the exposure time calculator for sensitivity comparison with Keck/MOSFIRE. Selected science cases are highlighted to demonstrate the need for IRMS in this upcoming thirty-meter class telescope era.

  6. VizieR Online Data Catalog: Radial velocities in A1914 (Barrena+, 2013)

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Girardi, M.; Boschin, W.

    2014-04-01

    We performed observations of A1914 using Device Optimized for the Low Resolution (DOLORES) multi-object spectrograph at the TNG telescope in 2010 March. We used the LR-B grism, which provides a dispersion of 187Å/mm. DOLORES works with a 2048x2048 pixels E2V CCD. The pixel size is 13.5um. We retrieved a total of four multi-object spectroscopy (MOS) masks containing 146 slits. We exposed 3600s for each mask. (1 data file).

  7. An overview and the current status of instrumentation at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Edwards, Michelle L.; Kuhn, Olga; Thompson, David; Veillet, Christian

    2014-07-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (24' × 24') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectrometer (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front-bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near- infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the LBT utilizing the installed adaptive secondary mirrors in both single-sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2 and MODS2 passed their laboratory acceptance milestones in the summer of 2013 and have been installed on the LBT. LUCI2 is currently being commissioned and the data analysis is well underway. Diffraction-limited commissioning of its adaptive optics modes will begin in the 2014B semester. MODS2 commissioning began in May 2014 and will completed in the 2014B semester as well. Binocular testing and commissioning of both the LUCI and MODS pairs will begin in 2014B with the goal that this capability could be offered sometime in 2015. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  8. Design, development, and performance of the fibres of MOONS

    NASA Astrophysics Data System (ADS)

    Guinouard, Isabelle; Avila, Gerardo; Lee, David; Amans, Jean-Philippe; Rees, Phil; Taylor, William; Oliva, Ernesto

    2016-07-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. Each spectrograph will produce spectra for 500 targets simultaneously, each with its own dedicated sky fibre for optimal sky subtraction. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibres are used to pick off each sub field of 1" and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD).

  9. VizieR Online Data Catalog: WIYN open cluster study. LIX. RVs of NGC 6791 (Tofflemire+, 2014)

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Gosnell, N. M.; Mathieu, R. D.; Platais, I.

    2014-11-01

    Our observations utilize the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope. We use 3.1'' diameter fibers along with the bench spectrograph echelle grating, resulting in a spectral resolution of ~20000 (15km/s). See Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII) for full details about our observing and data reduction procedures. Variations in our methods from previous WIYN Open Cluster Study (WOCS) radial velocity papers are given in Section 3. (3 data files).

  10. Batman flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.

  11. Results and lessons from the GMOS survey of transiting exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen; Desert, Jean-Michel; Huitson, Catherine; Bean, Jacob; Fortney, Jonathan; Bergmann, Marcel; Stevenson, Kevin

    2018-01-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our four-years survey focussed on ten close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. We present the complete analysis of all the targets observed (50 transits, 300 hours), and the challenges to overcome to achieve the best spectrophotometric precision (200-500 ppm / 10 nm). We also present the main results and conclusions from this survey. We show that the precision achieved by this survey permits to distinguish hazy atmospheres from cloud-free ones. We discuss the challenges faced by such an experiment, and the lessons learnt for future MOS survey. We lay out the challenges facing future ground based MOS transit surveys aiming for the atmospheric characterization of habitable worlds, and utilizing the next generation of multi-object spectrographs mounted on extremely large ground based telescopes (ELT, TMT).

  12. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  13. NOAO's next-generation optical spectrograph

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.

    2000-08-01

    The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.

  14. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  15. FRD in optical fibres at low temperatures: investigations for Gemini's Wide-field Fibre Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. C.; de Oliveira, L. S.; Dos Santos, J. B.; Arruda, M. V.; Dos Santos, L. G. C.; Rodrigues, F.; de Castro, F. L. F.

    2011-06-01

    While there is no direct evidence for the deterioration in Focal Ratio Degradation (FRD) of optical fibres in severe temperature gradients, the fibre ends inserted into metallic containment devices such as steel ferrules can be a source of stress, and hence increased FRD at low temperatures. In such conditions, instruments using optical fibres may suffer some increase in FRD and consequent loss of system throughput when they are working in environments with significant thermal gradients, a common characteristic of ground-based observatories. In this paper we present results of experiments with optical fibres inserted in different materials as a part of our prototyping study for Gemini's Wide-field Multi-Object Spectrograph (WFMOS) project. Thermal effects and the use of new holding techniques will be discussed in the context of Integral Field Units and multi-fibres systems. In this work, we have used careful methodologies that give absolute measurements of FRD to quantify the advantages of using epoxy-based composites rather than metals as support structures for the fibre ends. This is shown to be especially important in minimizing thermally induced stresses in the fibre terminations. Not only is this important for optimizing fibre spectrograph performance but the benefits of using such materials are demonstrated in the minimization of positional variations and the avoidance of metal-to-glass delamination. Furthermore, by impregnating the composites with small zirconium oxide particles the composite materials supply their own fine polishing grit which aids significantly to the optical quality of the finished product.

  16. The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept

    NASA Astrophysics Data System (ADS)

    Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking

    2018-01-01

    CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.

  17. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  18. OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release

    DOE PAGES

    Childress, M. J.; Lidman, C.; Davis, T. M.; ...

    2017-07-26

    We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less

  19. OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childress, M. J.; Lidman, C.; Davis, T. M.

    We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less

  20. VizieR Online Data Catalog: SPT-SZ survey galaxy clusters optical spectroscopy (Ruel+, 2014)

    NASA Astrophysics Data System (ADS)

    Ruel, J.; Bazin, G.; Bayliss, M.; Brodwin, M.; Foley, R. J.; Stalder, B.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Suhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Starsk, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2017-04-01

    Most of the galaxy clusters for which we report spectroscopic observations were published as SPT cluster detections (and new discoveries) in Vanderlinde et al. (2010ApJ...722.1180V), Williamson et al. (2011ApJ...738..139W), and Reichardt et al. (2013, J/ApJ/763/127); we refer the reader to those publications for details of the SPT observations. The spectroscopic observations presented in this work are the first of our ongoing follow-up program. The data were taken from 2008 to 2012 using the Gemini Multi Object Spectrograph (GMOS; Hook et al. 2004PASP..116..425H) on Gemini South, the Focal Reducer and low dispersion Spectrograph (FORS2; Appenzeller et al. 1998Msngr..94....1A) on VLT Antu, the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006SPIE.6269E..0FD) on Magellan Baade, and the Low Dispersion Survey Spectrograph (LDSS339; Allington-Smith et al. 1994PASP..106..983A) on Magellan Clay. (2 data files).

  1. MSE spectrograph optical design: a novel pupil slicing technique

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  2. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  3. GIRAFFE Reaches towards the Stars

    NASA Astrophysics Data System (ADS)

    2002-07-01

    "First Light" of New Powerful Spectrograph at the VLT Summary The first observations of stellar spectra have just been performed with the new GIRAFFE multi-object spectrograph on the ESO Very Large Telescope (VLT) at the Paranal Observatory in Chile. This milestone event was achieved in the early morning of July 3, 2002. It signifies another important step towards the full implementation of the extremely powerful Fibre Large Array Multi-Element Spectrograph (FLAMES) , one of the main instruments for the ESO VLT. This project is co-ordinated by ESO and incorporates many complex components that have been constructed at various research institutions in Europe and Australia. The GIRAFFE spectrograph provides unique possibilities for detailed observations of the properties of individual stars located in our Milky Way galaxy ( PR 16b/02 ) as well as in other galaxies of the Local Group. PR Photo 16a/02 : A series of stellar spectra recorded by GIRAFFE during "First Light" . PR Photo 16b/02 : Details of some of these stellar spectra . FLAMES and GIRAFFE ESO PR Photo 16a/02 ESO PR Photo 16a/02 [Preview - JPEG: 756 x 400 pix - 363k] [Normal - JPEG: 1511 x 800 pix - 1.2M] ESO PR Photo 16b/02 ESO PR Photo 16b/02 [Preview - JPEG: 461 x 400 pix - 196k] [Normal - JPEG: 921 x 800 pix - 606k] Caption : PR Photo 16a/02 : "First Light" test observation with the GIRAFFE spectrograph of about 50 high-quality spectra (10 min exposure at spectral resolution 7,000) of stars in the Milky Way disk, in the early morning of July 3, 2002. The stars have magnitudes of 12 - 16 and are all of solar type. The photo shows part of the image recorded with a 2000 x 4000 pixel CCD detector at the focal plane of the spectrograph. Each stellar spectrum is seen as one vertical line - some of the absorption lines can be seen as dark horizontal features. PR Photo 16b/02 shows a small part of this image. The three strong absorption lines that are visible as horizontal, dark lines in the lower part of the photo are due to the common element Magnesium in the atmospheres of these stars (the Mg b triplet at wavelength 517 nm). The different intensity of the spectra is due to the different brightness of the stars. The multi-object GIRAFFE spectrograph , now installed on the 8.2-m KUEYEN Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile), achieved "First Light" in the early morning hours of July 3, 2002. This complex instrument allows to obtain high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. Anticipating already at this early moment the future, highly effective operation of the new facility, the first data were immediately prepared for astronomical interpretation ("reduced") by means of a dedicated software package ("pipeline"). GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector . It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO) . More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. Different observational modes FLAMES has several different modes of operation. Two of these are of the simple "multi-object" type: each fibre collects the light from one star or galaxy - up to 132 objects can be observed simultaneously, cf. PR 16a/02 . In this respect, GIRAFFE provides absolutely unique possibilities for detailed observations of the properties (age, chemical composition, rotation and space velocity) of individual stars located in the main disk, central bulge or halo of our Milky Way galaxy ( PR 16b/02 ), and also of stars in other galaxies of the Local Group. Another observational mode is known as "3-D spectroscopy" or "integrated field". This consists of obtaining simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec 2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. Unique research opportunities opening The FLAMES facility, once in full operation after further testing and fine-tuning later this year, will enormously increase the possibilities to study stellar physics and the evolution of galaxies , two of the cornerstones in our understanding of the structure and evolution of the Universe. With the great light-gathering capacity of the VLT, FLAMES will be able to gather very comprehensive information about even rather faint objects, enabling the astronomers to study them in a degree of detail so far reserved for brighter, nearby stars. The quality of the first spectra from GIRAFFE, although far from exploiting the ultimate potential of the new facility, fully confirm these expectations. Note [1]: This is a joint Press Release of ESO and the Observatoire de Paris.

  4. VizieR Online Data Catalog: PS1 z>5.6 quasars follow-up (Banados+, 2016)

    NASA Astrophysics Data System (ADS)

    Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K. C.; Rix, H.-W.; Jiang, L.; McGreer, I.; Simcoe, R.; Wang, F.; Yang, J.; Morganson, E.; De Rosa, G.; Greiner, J.; Balokovic, M.; Burgett, W. S.; Cooper, T.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Jun, H. D.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Miller, D.; Schindler, J.-T.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Yang, Q.

    2017-01-01

    The photometric follow-up observations were carried out over different observing runs and different instruments. We obtained optical and near-infrared images with the MPG 2.2m/GROND, New Technology Telescope (NTT)/EFOSC2, NTT/SofI, Calar Alto (CAHA) 3.5m/Omega2000, CAHA 2.2m/CAFOS21, MMT/SWIRC), and du Pont/Retrocam; see Table 1 for details of the observations and filters used. A spectroscopic campaign was carried out using several instruments at different telescopes: EFOSC2 at the NTT telescope in La Silla, the Focal Reducer / Low-Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT), the Folded-Port Infrared Echellette (FIRE) spectrometer and the Low-Dispersion Survey Spectrograph (LDSS3) at the Baade and Clay Telescopes at Las Campanas Observatory, the Low-Resolution Imaging Spectrometer (LRIS) at the Keck I 10m Telescope on Mauna Kea, the Double Spectrograph (DBSP) on the 200 inch (5m) Hale Telescope at Palomar Observatory (P200), the Red-Channel Spectrograph on the 6.5m MMT Telescope, the Cassegrain TWIN Spectrograph at the 3.5m Calar Alto Telescope (CAHA 3.5m), and the Multi-object Double Spectrograph (MODS) and LUCI spectrograph at the Large Binocular Telescope (LBT). The details of the spectroscopic observations of the PS1-discovered quasars are shown in Table 5. (10 data files).

  5. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  6. WIYN Open Cluster Study. XXXVI. Spectroscopic Binary Orbits in NGC 188

    DTIC Science & Technology

    2009-04-01

    2000; Pleiades , Mermilliod et al. 1992; M67, Mathieu et al. 1990). Today, the advent of multi-object spectrographs permits surveys of larger stellar...open clusters (e.g., M67, Mathieu et al. (1990); Praesepe, Mermilliod et al. (1994); Pleiades , Bouvier et al. (1997); Hyades, Patience et al. (1998

  7. Slaying Hydra: A Python-Based Reduction Pipeline for the Hydra Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Seifert, Richard; Mann, Andrew

    2018-01-01

    We present a Python-based data reduction pipeline for the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope, an instrument which enables simultaneous spectroscopy of up to 93 targets. The reduction steps carried out include flat-fielding, dynamic fiber tracing, wavelength calibration, optimal fiber extraction, and sky subtraction. The pipeline also supports the use of sky lines to correct for zero-point offsets between fibers. To account for the moving parts on the instrument and telescope, fiber positions and wavelength solutions are derived in real-time for each dataset. The end result is a one-dimensional spectrum for each target fiber. Quick and fully automated, the pipeline enables on-the-fly reduction while observing, and has been known to outperform the IRAF pipeline by more accurately reproducing known RVs. While Hydra has many configurations in both high- and low-resolution, the pipeline was developed and tested with only one high-resolution mode. In the future we plan to expand the pipeline to work in most commonly used modes.

  8. The 4MOST facility control software

    NASA Astrophysics Data System (ADS)

    Pramskiy, Alexander; Mandel, Holger; Rothmaier, Florian; Stilz, Ingo; Winkler, Roland; Hahn, Thomas

    2016-07-01

    The 4-m Multi-Object Spectrographic Telescope (4MOST) is one high-resolution (R 18000) and two lowresolution (R fi 5000) spectrographs covering the wavelength range between 390 and 950 nm. The spectrographs will be installed on ESO VISTA telescope and will be fed by approximately 2400 fibres. The instrument is capable to simultaneously obtain spectra of about 2400 objects distributed over an hexagonal field-of-view of four square degrees. This paper aims at giving an overview of the control software design, which is based on the standard ESO VLT software architecture and customised to fit the needs of the 4MOST instrument. In particular, the facility control software is intended to arrange the precise positioning of the fibres, to schedule and observe many surveys in parallel, and to combine the output from the three spectrographs. Moreover, 4MOST's software will include user-friendly graphical user interfaces that enable users to interact with the facility control system and to monitor all data-taking and calibration tasks of the instrument. A secondary guiding system will be implemented to correct for any fibre exure and thus to improve 4MOST's guiding performance. The large amount of fibres requires the custom design of data exchange to avoid performance issues. The observation sequences are designed to use spectrographs in parallel with synchronous points for data exchange between subsystems. In order to control hardware devices, Programmable Logic Controller (PLC) components will be used, the new standard for future instruments at ESO.

  9. The 1997 HST Calibration Workshop with a New Generation of Instruments

    NASA Technical Reports Server (NTRS)

    Casertano, S. (Editor); Jedrzejewski, R. (Editor); Keyes, T. (Editor); Stevens, M. (Editor)

    1997-01-01

    The Second Servicing mission in early 1997 has brought major changes to the Hubble Space Telescope (HST). Two of the original instruments, Faint Object Spectrograph (FOS) and Goddard High Resolution Spectrograph (GHRS), were taken out, and replaced by completely new instruments, the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera Multi-Object Spectrograph (NICMOS). Two new types of detectors were installed, and for the first time, HST gained infrared capabilities. A new Fine Guidance Sensor (FGS) was installed, with an alignment mechanism that could improve substantially both guiding and astrometric capabilities. With all these changes come new challenges. The characterization of the new instruments has required a major effort, both by their respective Investigation Definition Teams and at the Space Telescope Science Institute. All necessary final calibrations for the retired spectrographs needed to be carried out, and their properties definitively characterized. At the same time, work has continued to improve our understanding of the instruments that have remained on board. The results of these activities were discussed in the 1997 HST (Hubble Space Telescope) Calibration Workshop. The main focus of the Workshop was to provide users with the tools and the understanding they need to use HST's instruments and archival data to the best of their possibilities. This book contains the written record of the Workshop. As such, it should provide a valuable tool to all interested in using existing HST data or in proposing for new observations.

  10. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  11. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  12. An Infrared Multi-Object Spectrograph (IRMS) with adaptive optics for TMT: the science case

    NASA Astrophysics Data System (ADS)

    Mobasher, Bahram; Crampton, David; Simard, Luc

    2010-07-01

    It has been recognized that a Near-Infrared Multi-object Spectrograph (IRMS) as one of the first light instrument on the Thirty Meter Telescope (TMT) would significantly increase the scientific capability of the observatory. The IRMS is planned to be a clone of the MOSFIRE instrument on the Keck telescope. As a result, we use the already available MOSFIRE design and expertise, significantly reducing the total cost and its development time. The IRMS will be a quasi diffraction limited multi-slit spectrograph with moderate resolution (R~4000), fed by Narrow-Field Infrared Adaptive Optics System (NFIRAOS). It images over the 2 arcmin diameter field of view of the NFIRAOS. There are a number of exceedingly important scientific questions, waiting to be addressed by the TMT/IRMS combination. Given its relatively small field of view, it is less affected by the sky background, which is a limiting factor in ground-based observations at near-IR wavelengths. The IRMS is the ideal instrument for studying spectroscopic properties of galaxies at the re-ionization epoch (z > 7), where the Lyman alpha line shifts to the near-ir wavelenghths. It can be used to measure rotation curves of spiral and velocity dispersion of elliptical galaxies at z~2-3 and hence, their spectroscopic mass. It can be used to search for population III stars via their spectroscopic signature and to perform measurement of spectroscopic lines at high redshifts, diagnostic of metallicity. Finally, IRMS allows measurement of the blue shifts in the rest-frame MgII line for high redshift galaxies, used to study the winds, leading to the feedback mechanism, responsible for quenching star formation activity in galaxies.

  13. System engineering at the MEGARA project

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; García-Vargas, María. Luisa; Gil de Paz, A.; Gallego Maestro, J.; Carrasco Licea, E.; Sánchez Moreno, F.; Iglesias-Páramo, J.

    2014-08-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi- Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The MEGARA focal plane subsystems are located at one of the GTC focal stations, while the MEGARA refractive VPH based spectrograph is located at one of the Nasmyth platforms. The fiber bundles conduct the light from the focal plane subsystems to the pseudo-slits at the entrance of the spectrograph. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain) and is developed under contract with GRANTECAN. The project is carried out by a multidisciplinary and geographically distributed team, which includes the in-kind contributions of the project partners and personnel from several private companies. The MEGARA system-engineering plan has been tailored to the project and is being applied to ensure the technical control of the project in order to finally meet the science high-level requirements and GTC constrains.

  14. Spectroscopic Surveys with the ELT: A Gigantic Step into the Deep Universe

    NASA Astrophysics Data System (ADS)

    Evans, C.; Puech, M.; Hammer, F.; Gallego, J.; Sánchez, A.; García, L.; Iglesias, J.

    2018-03-01

    The Phase A design of MOSAIC, a powerful multi-object spectrograph intended for ESO's Extremely Large Telescope, concluded in late 2017. With the design complete, a three-day workshop was held last October in Toledo to discuss the breakthrough spectroscopic surveys that MOSAIC can deliver across a broad range of contemporary astronomy.

  15. Confirmation of 5 SN in the Kepler/K2 C16 Field with Gemini

    NASA Astrophysics Data System (ADS)

    Margheim, S.; Tucker, B. E.; Garnavich, P. M.; Rest, A.; Narayan, G.; Smith, K. W.; Smartt, S.; Kasen, D.; Shaya, E.; Mushotzky, R.; Olling, R.; Villar, A.; Forster, F.; Zenteno, A.; James, D.; Smith, R. Chris

    2018-01-01

    We report new spectroscopic classifications by KEGS of supernova discovered by Pan-STARRS1 during a targeted search of the Kepler/K2 Campaign 16 field using the Gemini Multi-Object Spectrograph (GMOS) on both the Gemini North Observatory on Mauna Kea, and the Gemini South Observatory on Cerro Pachon.

  16. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  17. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  18. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  19. OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.

    2017-11-01

    We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.

  20. VizieR Online Data Catalog: Radial velocities of 7 cataclysmic binaries (Halpern+, 2015)

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Thorstensen, J. R.

    2016-04-01

    Our instrumentation, and reduction and analysis procedures are essentially identical to those described in Paper I (Thorstensen et al. 2013, cat. J/AJ/146/107). All of our optical data are from the MDM Observatory (http://mdm.kpno.noao.edu/index/Instrumentation.html), which comprises the 1.3m McGraw-Hill telescope and the 2.4m Hiltner telescope, both on the southwest ridge of Kitt Peak, Arizona. With a single exception, the radial velocity studies to search for the orbital periods were done on the 2.4m, while high-cadence photometry sensitive to spin periods was carried out on the 1.3m. All of our radial velocity studies used the modular spectrograph, as described in Paper I (Thorstensen et al. 2013, cat. J/AJ/146/107). Most of our velocities are from the the 2.4m telescope. Some spectra of Swift J2124.6+0500, and all the data we used for Swift J0939.7-3224, are from the McGraw-Hill 1.3m telescope, again with the modular spectrograph. For four newly identified objects we have only single spectra that were obtained on two observing runs on the 2.4m. These used the Boller and Chivens CCD spectrograph (CCDS) and the Ohio State Multi-Object Spectrograph (OSMOS). Descriptions of these instruments can be found on the MDM Observatory web page (http://mdm.kpno.noao.edu/index/Instrumentation.html). The objects observed are listed in Table1. Table2 lists the radial velocity data, and Table3 gives parameters of the best-fit sinusoids. (3 data files).

  1. Development of a near-infrared high-resolution spectrograph (WINERED) for a survey of bulge stars

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.; Gouda, N.

    2008-07-01

    We are developing a new near-infrared high-resolution (R[max] = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9 1.35 μm. WINERED employs an innovative optical system; a portable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide precise positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical composition will be measured by WINERED. These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for observations of single objects by the end of 2008 and to attach it to various 4 10m telescopes as a PI-type instrument. We hope to upgrade WINERED with a multi-object feed in the future for efficient survey of the JASMINE bulge stars.

  2. Cosmic Evolution Through UV Spectroscopy (CETUS): A NASA Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; CETUS Team

    2017-01-01

    CETUS is a probe-class mission concept proposed for study to NASA in November 2016. Its overarching objective is to provide access to the ultraviolet (~100-400 nm) after Hubble has died. CETUS will be a major player in the emerging global network of powerful, new telescopes such as E-ROSITA, DESI, Subaru/PFS, GMT, LSST, WFIRST, JWST, and SKA. The CETUS mission concept provisionally features a 1.5-m telescope with a suite of instruments including a near-UV multi-object spectrograph (200-400 nm) complementing Subaru/PFS observations, wide-field far-UV and near-UV cameras, and far-UV and near-UV spectrographs that can be operated in either high-resolution or low-resolution mode. We have derived the scope and specific science requirements for CETUS for understanding the evolutionary history of galaxies, stars, and dust, but other applications are possible.

  3. VizieR Online Data Catalog: Photmetry and spectroscopy of PMS stars in NGC 2264 (Lim+, 2016)

    NASA Astrophysics Data System (ADS)

    Lim, B.; Sung, H.; Kim, J. S.; Bessell, M. S.; Hwang, N.; Park, B.-G.

    2018-04-01

    Queue scheduled observations were carried out on 2015 April 1 and November 24 with the multi-object high resolution echelle spectrograph Hectochelle attached to the 6.5m telescope of the MMT observatory. The resolving power of the spectrograph (R~34,000) is high enough to detect the LiI λ6708 resonance doublet with little blending from adjacent metallic lines. The multi-object capability allowed us to simultaneously obtain 240 target and sky spectra in a single observation. The OB 26 filter transmits the wavelength range 6530-6715Å, and therefore the useful spectral features Hα λ6563 and HeI λ6678 could also be observed along with the LiI λ6708 line. The spectra of a total of 134 PMS stars were taken in two sets of exposure times -8 minutes x3 for bright stars (V<13.6mag) and 30 minutes x3 for fainter stars. Offset sky spectra were also obtained to correct for the contributions of locally variable nebula emission lines to the spectra of the faint stars. Calibration frames, such as dome flat and comparison spectra, were also acquired, just before and after the target exposure. (1 data file).

  4. Optomechanical design concept for GMACS: a wide-field multi-object moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT)

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Prochaska, Travis; Shectman, Stephen A.; Hammond, Randolph P.; Barkhouser, Robert H.; DePoy, D. L.; Marshall, J. L.

    2012-09-01

    We describe the conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). GMACS is a candidate first-light instrument for the GMT and will be one of several instruments housed in the Gregorian Instrument Rotator (GIR) located at the Gregorian focus. The instrument samples a 9 arcminute x 18 arcminute field of view providing two resolution modes (i.e, low resolution, R ~ 2000, and moderate resolution, R ~ 4000) over a 3700 Å to 10200 Å wavelength range. To minimize the size of the optics, four fold mirrors at the GMT focal plane redirect the full field into four individual "arms", that each comprises a double spectrograph with a red and blue channel. Hence, each arm samples a 4.5 arcminute x 9 arcminute field of view. The optical layout naturally leads to three separate optomechanical assemblies: a focal plane assembly, and two identical optics modules. The focal plane assembly contains the last element of the telescope's wide-field corrector, slit-mask, tent-mirror assembly, and slit-mask magazine. Each of the two optics modules supports two of the four instrument arms and houses the aft-optics (i.e. collimators, dichroics, gratings, and cameras). A grating exchange mechanism, and articulated gratings and cameras facilitate multiple resolution modes. In this paper we describe the details of the GMACS optomechanical design, including the requirements and considerations leading to the design, mechanism details, optics mounts, and predicted flexure performance.

  5. UV spectroscopy with the CETUS multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert; Hull, Anthony; Heap, Sara; Kutyrev, Alexander; Purves, Lloyd; Danchi, William

    2018-01-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. The multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime which greatly enhances the scientific yield. The MOS utilizes a next-generation micro-shutter array, an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed for optimizing the UV throughput while minimizing out-of-band signal at the detector.

  6. Multiplexing in astrophysics with a UV multi-object spectrometer on CETUS, a probe-class mission study

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Kutyrev, Alexander; Danchi, William; Purves, Lloyd

    2017-09-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept1,2 is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. It utilizes a next-generation micro-shutter array, an efficient aspheric Offner spectrometer design with a convex grating, and carbon nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed to optimize the UV throughput while minimizing out-of-band signal at the detector. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. With this multiplexing, the scientific yield of both Probe and Great Observatories will be greatly enhanced.

  7. DMDs for multi-object near-infrared spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo

    2018-02-01

    The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.

  8. MEGARA: large pupil element tests and performance

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, I.; Sánchez-Blanco, E.; Pérez-Calpena, A.; García-Vargas, M. L.; Maldonado, X. M.; Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Sánchez-Moreno, F. M.

    2016-07-01

    MEGARA is a third generation spectrograph for the Spanish 10.4m telescope (GTC) providing two observing modes: a large central Integral Field Unit (IFU), called the Large Compact Bundle (LCB), covering a FOV of 12.5 × 11.3 arcsec2, and a Multi-Object Spectrograph (MOS) with a FOV of 3.5 × 3.5 arcmin2. MEGARA will observe the whole visible range from 3650A to 10000A allowing different spectral resolutions (low, medium and high) with R = 6000, 11000 and 18000 respectively. The dispersive elements are placed at the spectrograph pupil position in the path of the collimated beam and they are composed of a set of volume phase hologram gratings (VPHs) sandwiched between two flat windows and coupled in addition to two prisms in the case of the medium- and high-resolution units. We will describe the tests and setups developed to check the requirements of all units, as well as the obtained performance at laboratory

  9. VizieR Online Data Catalog: Palomar Transient Factory SNe IIn photometry (Ofek+, 2014)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Arcavi, I.; Tal, D.; Sullivan, M.; Gal-Yam, A.; Kulkarni, S. R.; Nugent, P. E.; Ben-Ami, S.; Bersier, D.; Cao, Y.; Cenko, S. B.; De Cia, A.; Filippenko, A. V.; Fransson, C.; Kasliwal, M. M.; Laher, R.; Surace, J.; Quimby, R.; Yaron, O.

    2017-07-01

    The Palomar Transient Factory (PTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and its extension the intermediate PTF (iPTF) found over 2200 spectroscopically confirmed SNe. We selected 19 SNe IIn for which PTF/iPTF has good coverage of the light-curve rise and peak; they are listed in Table 1. Optical spectra were obtained with a variety of telescopes and instruments, including the Double Spectrograph (Oke & Gunn 1982PASP...94..586O) at the Palomar 5 m Hale telescope, the Kast spectrograph (Miller & Stone 1993, Lick Observatory Technical Report 66 (Santa Cruz, CA: Lick Observatory)) at the Lick 3 m Shane telescope, the Low Resolution Imaging Spectrometer (Oke et al. 1995PASP..107..375O) on the Keck-1 10 m telescope, and the Deep Extragalactic Imaging Multi-Object Spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck-2 10 m telescope. (2 data files).

  10. Deployment of the Hobby-Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.

    2016-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.

  11. Fiber IFU unit for the second generation VLT spectrograph KMOS

    NASA Astrophysics Data System (ADS)

    Tomono, Daigo; Weisz, Harald; Hofmann, Reiner

    2003-03-01

    KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.

  12. Instrumentation progress at the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.

    2016-08-01

    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.

  13. VizieR Online Data Catalog: Wolf-Rayet population in NGC 5068 (Bibby+, 2012)

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Crowther, P. A.

    2012-10-01

    NGC 5068 has been imaged with the ESO VLT and Focal Reduced Low-dispersion Spectrograph #1 (FORS1) covering a field of view of 6.8x6.8arcmin2 with a plate scale of 0.25arcsec/pixel. Both broad- and narrow-band imaging were obtained on 2008 April 7 under program ID 081.B-0289 (P.I. Crowther). In addition, the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope was used to obtain follow-up spectroscopy in 2009 March-April under program ID GS-2009A-Q-20 (P.I. Crowther). The R150 grating was placed at a central wavelength of 510 and 530nm with a dispersion of ~3.5Å/pix. (2 data files).

  14. Optical fiber systems for the BigBOSS instrument

    NASA Astrophysics Data System (ADS)

    Edelstein, Jerry; Poppett, Claire; Sirk, Martin; Besuner, Robert; Lafever, Robin; Allington-Smith, Jeremy R.; Murray, Graham J.

    2012-09-01

    We describe the fiber optics systems for use in BigBOSS, a proposed massively parallel multi-object spectrograph for the Kitt Peak Mayall 4-m telescope that will measure baryon acoustic oscillations to explore dark energy. BigBOSS will include 5,000 optical fibers each precisely actuator-positioned to collect an astronomical target’s flux at the telescope prime-focus. The fibers are to be routed 40m through the telescope facility to feed ten visible-band imaging spectrographs. We report on our fiber component development and performance measurement program. Results include the numerical modeling of focal ratio degradation (FRD), observations of actual fibers’ collimated and converging beam FRD, and observations of FRD from different types of fiber terminations, mechanical connectors, and fusion-splice connections.

  15. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  16. The deterministic optical alignment of the HERMES spectrograph

    NASA Astrophysics Data System (ADS)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  17. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  18. Calibrations for a MCAO Imaging System

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco

    2017-09-01

    "GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."

  19. Investigating the Lyman photon escape in local starburst galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan

    2018-07-01

    We present a study of seven star-forming galaxies from the Cosmic Evolution Survey observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜ 0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations, we also analyse observations taken with the Visible Multi-object Spectrograph (VIMOS) on the Very Large Telescope (VLT). In our galaxy sample, we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5 per cent and 13 per cent. Given the low flux levels in the individual COS exposures, we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum, we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4} per cent and f_res(LyC) = 1.7^{+15.2}_{-1.7}per cent, respectively. Finally, we find that most of these galaxies have moderate ultraviolet and optical star formation rates (SFRs) (SFRs ≲10 M⊙ yr-1).

  20. MIRADAS control system

    NASA Astrophysics Data System (ADS)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  1. ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enablemore » the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.« less

  2. MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    NASA Astrophysics Data System (ADS)

    Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.; García Vargas, M. L.; Arrillaga, X.; Avilés, J. L.; Cardiel, N.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; de la Cruz García, J. M.; Esteban San Román, S.; Ferrusca, D.; Gómez-Álvarez, P.; Izazaga-Pérez, R.; Lefort, B.; López-Orozco, J. A.; Maldonado, M.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Picazo, P.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Vílchez, J. M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; García-Rojas, J.; Guichard, J.; González-Delgado, R.; Guzmán, R.; Herrero, A.; Huélamo, N.; Hughes, D. H.; Jiménez-Vicente, J.; Kehrig, C.; Marino, R. A.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rodríguez-Muñoz, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.

    2016-08-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM 6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected.

  3. VizieR Online Data Catalog: M6 open cluster: star members properties (Kilicoglu+, 2016)

    NASA Astrophysics Data System (ADS)

    Kilicoglu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2018-03-01

    The spectra of 104 objects in the region of M6 were obtained using the Fibre Large Array Multi Element Spectrograph (FLAMES) instrument with the GIRAFFE spectrograph attached to the Unit 2 Kueyen of the Very Large Telescopes at the European Southern Observatory (ESO) by one of us (L.F.). The instrument settings and target selection were carried out in the same way as described by Fossati et al. (2011MNRAS.413.1132F). We primarily considered 56 targets with Teff>6100 K and spectra with S/N~100, and selected 44 targets to perform a more thorough spectral analysis considering the membership from 3 criteria: (i) proper motions, (ii) radial velocity, and (iii) position of the stars in the Hertzsprung-Russell (HR) diagram (Table 3). (6 data files).

  4. VizieR Online Data Catalog: Spectroscopy of candidate members in Taurus (Luhman+, 2017)

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.; Loutrel, N. P.

    2017-06-01

    We have obtained optical and near-infrared spectra of candidate members of Taurus. The spectra were collected with the Gemini Near-Infrared Imager (NIRI) using the K-band grism and 0.47'' slit (1.9-2.5μm, R=700), the Gemini Multi-Object Spectrograph (GMOS) using the 400line/mm grating and 0.75'' slit (0.56-1μm, R=1500), the Marcario Low-Resolution Spectrograph (LRS) on the Hobby-Eberly Telescope (HET) using the G3 grism and 2'' slit (0.63-0.91μm, R=1100), and SpeX at the NASA Infrared Telescope Facility (IRTF) using either the prism or SXD mode (R=150/750) and 0.8'' slit (0.8-2.5μm). (7 data files).

  5. James Webb Space Telescope (JWST) and Star Formation

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.

    2010-01-01

    The 6.5-m aperture James Webb Space Telescope (JWST) will be a powerful tool for studying and advancing numerous areas of astrophysics. Its Fine Guidance Sensor, Near-Infrared Camera, Near-Infrared Spectrograph, and Mid-Infrared Instrument will be capable of making very sensitive, high angular resolution imaging and spectroscopic observations spanning 0.7 - 28 ?m wavelength. These capabilities are very well suited for probing the conditions of star formation in the distant and local Universe. Indeed, JWST has been designed to detect first light objects as well as to study the fine details of jets, disks, chemistry, envelopes, and the central cores of nearby protostars. We will be able to use its cameras, coronagraphs, and spectrographs (including multi-object and integral field capabilities) to study many aspects of star forming regions throughout the galaxy, the Local Group, and more distant regions. I will describe the basic JWST scientific capabilities and illustrate a few ways how they can be applied to star formation issues and conditions with a focus on Galactic regions.

  6. VizieR Online Data Catalog: GALAH semi-automated classification scheme (Traven+, 2017)

    NASA Astrophysics Data System (ADS)

    Traven, G.; Matijevic, G.; Zwitter, T.; Zerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; de Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.

    2017-04-01

    The GALactic Archaeology with HERMES (GALAH) survey was the main driver for the construction of Hermes (High Efficiency and Resolution Multi-Element Spectrograph), a fiber-fed multi-object spectrograph on the 3.9m Anglo-Australian Telescope. Its spectral resolving power (R) is about 28000, and there is also an R=45000 mode using a slit mask. Hermes has four simultaneous non-contiguous spectral arms centered at 4800, 5761, 6610, and 7740Å, covering about 1000Å in total, including Hα and Hβ lines. About 300000 spectra have been taken to date, including various calibration exposures. However, we concentrate on ~210000 spectra recorded before 2016 January 30. We devise a custom classification procedure which is based on two independently developed methods, the novel dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding; van der Maaten & Hinton 2008, Journal of Machine Learning Research 9, 2579) and the renowned clustering algorithm DBSCAN (Ester+ 1996, Proc. 2nd Int. Conf. on KDD, 226 ed. E. Simoudis, J. Han, and U. Fayyad). (4 data files).

  7. VizieR Online Data Catalog: [NII]/Hα ratio in galaxies with KMOS3D (Wuyts+,

    NASA Astrophysics Data System (ADS)

    Wuyts, E.; Wisnioski, E.; Fossati, M.; Forster Schreiber, N. M.; Genzel, R.; Davies, R.; Mendel, J. T.; Naab, T.; Rottgers, B.; Wilman, D. J.; Wuyts, S.; Bandara, K.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Burkert, A.; Chan, J.; Galametz, A.; Kulkarni, S. K.; Lang, P.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Rosario, D.; Saglia, R. P.; Seitz, S.; Tacconi, L. J.; Tadaki, K.-I.; Ubler, H.; van Dokkum, P.

    2016-11-01

    The galaxies analyzed here are taken from the first 2yr of the KMOS3D survey, which covers observations up to 2015 April. The survey is described in detail by Wisnioski+ (2015ApJ...799..209W). KMOS3D is a 5yr GTO survey with the multi-object near-IR integral field spectrograph KMOS at the Very Large Telescope (VLT). (1 data file).

  8. VizieR Online Data Catalog: R-band light curves of type II supernovae (Rubin+, 2016)

    NASA Astrophysics Data System (ADS)

    Rubin, A.; Gal-Yam, A.; De Cia, A.; Horesh, A.; Khazov, D.; Ofek, E. O.; Kulkarni, S. R.; Arcavi, I.; Manulis, I.; Yaron, O.; Vreeswijk, P.; Kasliwal, M. M.; Ben-Ami, S.; Perley, D. A.; Cao, Y.; Cenko, S. B.; Rebbapragada, U. D.; Wozniak, P. R.; Filippenko, A. V.; Clubb, K. I.; Nugent, P. E.; Pan, Y.-C.; Badenes, C.; Howell, D. A.; Valenti, S.; Sand, D.; Sollerman, J.; Johansson, J.; Leonard, D. C.; Horst, J. C.; Armen, S. F.; Fedrow, J. M.; Quimby, R. M.; Mazzali, P.; Pian, E.; Sternberg, A.; Matheson, T.; Sullivan, M.; Maguire, K.; Lazarevic, S.

    2016-05-01

    Our sample consists of 57 SNe from the PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and the intermediate Palomar Transient Factory (iPTF; Kulkarni 2013ATel.4807....1K) surveys. Data were routinely collected by the Palomar 48-inch survey telescope in the Mould R-band. Follow-up observations were conducted mainly with the robotic 60-inch telescope using an SDSS r-band filter, with additional telescopes providing supplementary photometry and spectroscopy (see Gal-Yam et al. 2011, J/ApJ/736/159). The full list of SNe, their coordinates, and classification spectra are presented in Table 1. Most of the spectra were obtained with the Double Spectrograph on the 5m Hale telescope at Palomar Observatory, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope. (2 data files).

  9. VizieR Online Data Catalog: Spectroscopy of 104 objects in the ONC (Ingraham+, 2014)

    NASA Astrophysics Data System (ADS)

    Ingraham, P.; Albert, L.; Doyon, R.; Artigau, E.

    2016-03-01

    In 2003 December, we obtained six nights (on CFHT to perform MOS observations of faint objects in the central region of the Orion Trapezium cluster. The observations used the infrared imager and multi-object spectrograph SIMON (Spectrometre Infrarouge de Montreal). The optical design is fully achromatic between 0.8 and 2.5μm and features a HAWAII-I 1024*1024 HgCdTe detector with an image scale of 0.2'' on CFHT. SIMON utilizes a low-dispersion Amici prism enabling multi-object low-resolution (R~30) spectroscopy over the wavelength range of 0.9-2.4μm. The slit width, in the spectral direction, was chosen to be 0.6'' (3pixels) resulting in a spectral resolution of R~30. In total, spectra for 240 point sources were obtained. Here, we present only the 104 objects (see Table5) with low-extinction (AV<8) spectra having well constrained spectral types. (2 data files).

  10. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  11. VizieR Online Data Catalog: Abundances of Population II stars in NGC 6397 (Lind+, 2008)

    NASA Astrophysics Data System (ADS)

    Lind, K.; Korn, A. J.; Barklem, P. S.; Grundahl, F.

    2010-03-01

    The target selection for the spectroscopic study is based on Stroemgren uvby photometry. The photometric observations were collected with the DFOSC instrument on the 1.5m telescope on La Silla, Chile, in 1997. Additional BVI photometric data were obtained in 2005. All spectroscopic data were collected in Service Mode, with the fibre-fed, multi-object, medium-high resolution spectrograph FLAMES/GIRAFFE at ESO-VLT. FLAMES allows for 132 objects to be observed simultaneously, with GIRAFFE in MEDUSA mode, between 2005 Mar 23 and Apr 04. (2 data files).

  12. A tunable laser system for precision wavelength calibration of spectra

    NASA Astrophysics Data System (ADS)

    Cramer, Claire

    2010-02-01

    We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )

  13. The lick-index calibration of the Gemini multi-object spectrographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzia, Thomas H.; Miller, Bryan W.; Trancho, Gelys

    2013-06-01

    We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0.''5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0.''75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, Hγ {sub A}, and Hδ {sub A} alongmore » with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg{sub 2}, and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO{sub 1} and TiO{sub 2}, with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg{sub 1}, as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.« less

  14. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  15. Identification of Interesting Objects in Large Spectral Surveys Using Highly Parallelized Machine Learning

    NASA Astrophysics Data System (ADS)

    Škoda, Petr; Palička, Andrej; Koza, Jakub; Shakurova, Ksenia

    2017-06-01

    The current archives of LAMOST multi-object spectrograph contain millions of fully reduced spectra, from which the automatic pipelines have produced catalogues of many parameters of individual objects, including their approximate spectral classification. This is, however, mostly based on the global shape of the whole spectrum and on integral properties of spectra in given bandpasses, namely presence and equivalent width of prominent spectral lines, while for identification of some interesting object types (e.g. Be stars or quasars) the detailed shape of only a few lines is crucial. Here the machine learning is bringing a new methodology capable of improving the reliability of classification of such objects even in boundary cases. We present results of Spark-based semi-supervised machine learning of LAMOST spectra attempting to automatically identify the single and double-peak emission of Hα line typical for Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature of interesting candidates benefited considerably from cross-matching and visualisation in the Virtual Observatory environment.

  16. VizieR Online Data Catalog: The ELM survey. VII. 15 new ELM white dwarf cand. (Brown+, 2016)

    NASA Astrophysics Data System (ADS)

    Brown, W. R.; Gianninas, A.; Kilic, M.; Kenyon, S. J.; Allende Prieto, C.

    2016-05-01

    We present observations of 15 new extremely low-mass white dwarf (ELM WD) candidates. Ten objects are selected by color for our targeted spectroscopic ELM Survey program as described in Brown et al. (2012ApJ...744..142B). Five objects come from follow-up spectroscopy of the completed Hypervelocity Star survey. We acquire spectra for the 15 ELM WD candidates using the Blue Channel spectrograph on the 6.5m MMT telescope. We configured the Blue Channel spectrograph to obtain 3650-4500Å spectral coverage with 1.0Å spectral resolution. We acquire additional spectra for 5 objects using the KOSMOS spectrograph on the Kitt Peak National Observatory 4m Mayall telescope on program numbers 2014B-0119 and 2015A-0082. We configured the KOSMOS spectrograph to obtain 3500-6200Å spectral coverage with 2.0Å spectral resolution. We also acquire spectra for objects with g<17mag using the FAST spectrograph on the Fred Lawrence Whipple Observatory 1.5m Tillinghast telescope. We configured the FAST spectrograph to obtain 3500-5500Å spectral coverage with 1.7Å spectral resolution. (3 data files).

  17. An Overview of the MOS Capabilities of the 4-10 m Telescopes at La Palma Observatory for Investigating Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Rubiño-Martín, J. A.; Streblyanska, A.; Ferragamo, A.

    2016-10-01

    La Palma Observatory offers four multi-object spectrographs installed on 4 and 10 m class telescopes. We present an overview of these four instruments. As a scientific case for two of them, we present the optical follow-up of Sunyaev-Zeldovich (SZ) sources undertaken by the Planck collaboration, focused on the detection, redshifts determination and mass estimation of the (SZ) galaxies cluster candidates. After three years of observations we have found optical counterparts for 120 candidates confirmed spectroscopically. We have determined dynamical masses for more than 30 systems with redshifts of z<0.85. Our experience demonstrates that DOLORES (TNG) and OSIRIS (GTC) are the ideal multi-object spectroscopy (MOS) instruments to investigate galaxy clusters at z<0.45 and 0.45

  18. The NASA probe-class mission concept, CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy)

    NASA Astrophysics Data System (ADS)

    Heap, Sara; Danchi, William; Burge, James; Dodson, Kelly; Hull, Anthony; Kendrick, Steven; McCandliss, Stephan; Mehle, Gregory; Purves, Lloyd; Sheikh, David; Valente, Martin; Woodruff, Robert A.

    2017-09-01

    We report on the early phases of a NASA-sponsored study of CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), a Probe-class mission concept. By definition, the full lifecycle cost of a Probe mission is greater than 400M (i.e. Explorer missions) and less than 1.00B ("Flagship" missions). The animating idea behind our study is that CETUS can help answer fundamental questions about galaxy evolution by carrying out a massive UV imaging and spectroscopic survey of galaxies and combining its findings with data obtained by other survey telescopes of the 2020's. The CETUS mission concept comprises a 1.5-m wide-field telescope and three scientific instruments: a near-UV multi-object slit spectrograph with a micro-shutter array as the slit device; a near-UV and far-UV camera with angular resolution of 0.42" (near-UV) or 0.55" (far-UV); and a near-UV or far-UV single-object spectrograph aimed at providing access to the UV after Hubble is gone. We describe the scientific rationale for CETUS and the telescope and instruments in their early design phase.

  19. Spectroscopic Classification of ASASSN-13dn

    NASA Astrophysics Data System (ADS)

    Martini, P.; Elias, J.; Points, S.; Prieto, J. L.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Jencson, J.; Basu, U.; Beacom, J. F.; Szczygiel, D.; Pojmanski, G.; Brimacombe, J.; Bersier, D.

    2013-12-01

    We obtained optical spectra of ASASSN-13dn (ATel #5665). The candidate was confirmed with the new KOSMOS instrument (Kitt Peak Ohio State Multi-Object Spectrograph), which is presently being commissioned at the KPNO 4-m Mayall telescope. Observations were obtained with both the blue and red VPH grisms (50 min each) for a combined wavelength range of 380nm to 965nm at R ~ 2000. The spectrum of ASASSN-13dn is characteristic of a Type II SN at the redshift of its host galaxy (z=0.023).

  20. VizieR Online Data Catalog: Abundances of LAMOST giants from APOGEE DR12 (Ho+, 2017)

    NASA Astrophysics Data System (ADS)

    Ho, A. Y. Q.; Ness, M. K.; Hogg, D. W.; Rix, H.-W.; Liu, C.; Yang, F.; Zhang, Y.; Hou, Y.; Wang, Y.

    2017-09-01

    The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is a low-resolution (R~1800) optical (3650-9000Å) spectroscopic survey. APOGEE is a high-resolution (R~22500), high-S/N (S/N~100), H-band (15200-16900Å) spectroscopic survey, part of the Sloan Digital Sky Survey III. Observations are conducted using a 300 fiber spectrograph on the 2.5m Sloan Telescope at the Apache Point Observatory (APO) in Sunspot, New Mexico (USA). (1 data file).

  1. Mapping the Physical and Chemical Conditions of the Ring Nebula

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, Marcelo L.; Aleman, Isabel; Gaughan, Andrea; Ladjal, Djazia; Ueta, Toshiya; Kerber, Samuel; Conn, Blair; Gardiner, Rhiannon; Tielens, Alexander G. G. M.

    2017-10-01

    We observed the Planetary Nebula NGC 6720 with the Gemini Telescope and the Gemini Multi-Object Spectrographs. We obtained spatial maps of 36 emission-lines in the wavelength range between 3600 Å and 9400 Å. We derived maps of c(Hβ), electronic densities, electronic temperatures, ionic and elemental abundances, and Ionization Correction Factors (ICFs) in the source and investigated the mass-loss history of the progenitor. The elemental abundance results indicate the need for ICFs based on three-dimensional photoionization models.

  2. WEAVE an overview and status update

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Dalton, G.; Trager, S.; Aguerri, A. L.; Carrasco, E.; Vallenari, A.; Abrams, D. C.; Middleton, K.; Sayède, F.

    2016-12-01

    The WHT Enhanced Area Velocity Explorer is a high multiplex, multi-object spectrograph that will equip the prime focus of the WHT 4.2m telescope. The instrument is currently in the construction phase and several components have already been procured. I will give a short overview of the instrument and of the project and its status. The French participation is done through CNRS - Institut National des Sciences de l'Univers and the technical activity is carried out, at this stage, at GEPI, Observatoire de Paris.

  3. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  4. Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument

    NASA Technical Reports Server (NTRS)

    Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather; hide

    2011-01-01

    NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.

  5. Miniaturized Environmental Monitoring Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensormore » would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.« less

  6. VizieR Online Data Catalog: NGC5617 and Trumpler 22 stars BV mag and RV (De Silva+, 2015)

    NASA Astrophysics Data System (ADS)

    de Silva, G. M.; Carraro, G.; D'Orazi, V.; Efremova, V.; MacPherson, H.; Martell, S.; Rizzo, L.

    2016-08-01

    The photometry used in this paper comes from two sources. In the case of NGC 5617, modern CCD photometry in the UBVI passbands is available from Carraro (2011, Cat. J/A+A/536/A101). For Trumpler 22, only old photographic data exist (Haug, 1978A&AS...34..417H), and for this reason we exploit here a new data set. Photometry in UBVI was acquired at Las Campanas Observatory on the nights from 2011 June 03 and are published here for the first time. We stress that this setup (telescope/instrument) is the same that Carraro (2011, Cat. J/A+A/536/A101) used for NGC 5617. Spectra were collected on the 3.9 m Anglo-Australian Telescope (AAT) using the UCLES spectrograph (2012 March 5-6) and using the HERMES multi-object spectrograph (2014 August 22) under service observation time. (1 data file).

  7. The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team

    2017-01-01

    LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.

  8. Design, Fabrication, Optical Testing, and Performance of Diamond Machined Aspheric Mirrors for Ground-Based Near-IR Astronomy

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Mink, Ronald; Chambers, V. John; Connelly, Joseph A.; Mentzell, J. Eric; Tveekrem, June L.; Howard, Joseph M.; Preuss, Werner; Schroeder, Mechthild; Sohn, Alex; hide

    2002-01-01

    Challenges in fabrication and testing have historically limited the choice of surfaces available for the design of reflective optical instruments. Spherical and conic mirrors are common, but, for future science instruments, more degrees of freedom are necessary to meet challenging performance and packaging requirements. These instruments will be composed of unusual aspheres located far off-axis with large spherical departure, and some designs will require asymmetric surface profiles. In particular, single-surface astigmatism correction in spectrographs necessitates a toroidal surface, which lacks an axis of rotational symmetry. We describe the design, fabrication, optical testing, and performance of three rotationally symmetric, off-axis, aspheric mirrors and one toroidal, off-axis, biconic camera mirror on aluminum substrates for the Infrared Multi-Object Spectrograph (IRMOS) instrument. IRMOS is a facility instrument for the Kitt Peak National Observatory's Mayall Telescope (3.8 m) and an engineering prototype for a possible design of the Next Generation Space Telescope/Multi-Object Spectrograph. The symmetric mirrors range in aperture from 94x86 mm to 286x269 mm and in f-number from 0.9 to 2.4. They are various off-axis, convex and concave, prolate and oblate ellipsoids. The concave biconic mirror has a 94x76 mm aperture, Rx=377 mm, kx=0.0778, Ry=407 mm, and ky=0.1265 and is decentered. by -2 mm in x and 227 mm in y. The mirrors have an aspect ratio of approximately 4:1. The surface error fabrication tolerances are less than 63.3 nm RMS figure error and less than 10 nm RMS microroughness. The mirrors are attached to the instrument bench via a semi-kinematic, integral flexure mount. We describe mirror design, diamond machining, the results of figure testing using computer-generated holograms, and imaging and scattered light modeling and performance.

  9. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  10. Implementation and performance of the metrology system for the multi-object optical and near-infrared spectrograph MOONS

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Vanzi, Leonardo; Torres-Torriti, Miguel; Dünner, Rolando; Shen, Tzu-Chiang; Belmar, Francisco; Dauvin, Lousie; Staig, Tomás.; Antognini, Jonathan; Flores, Mauricio; Luco, Yerko; Béchet, Clémentine; Boettger, David; Beard, Steven; Montgomery, David; Watson, Stephen; Cabral, Alexandre; Hayati, Mahmoud; Abreu, Manuel; Rees, Phil; Cirasuolo, Michele; Taylor, William; Fairley, Alasdair

    2016-08-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will cover the Very Large Telescope's (VLT) field of view with 1000 fibres. The fibres will be mounted on fibre positioning units (FPU) implemented as two-DOF robot arms to ensure a homogeneous coverage of the 500 square arcmin field of view. To accurately and fast determine the position of the 1000 fibres a metrology system has been designed. This paper presents the hardware and software design and performance of the metrology system. The metrology system is based on the analysis of images taken by a circular array of 12 cameras located close to the VLTs derotator ring around the Nasmyth focus. The system includes 24 individually adjustable lamps. The fibre positions are measured through dedicated metrology targets mounted on top of the FPUs and fiducial markers connected to the FPU support plate which are imaged at the same time. A flexible pipeline based on VLT standards is used to process the images. The position accuracy was determined to 5 μm in the central region of the images. Including the outer regions the overall positioning accuracy is 25 μm. The MOONS metrology system is fully set up with a working prototype. The results in parts of the images are already excellent. By using upcoming hardware and improving the calibration it is expected to fulfil the accuracy requirement over the complete field of view for all metrology cameras.

  11. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  12. Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa

    2016-08-01

    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.

  13. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.

  14. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    NASA Astrophysics Data System (ADS)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  15. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  16. A Quantitative Spectroscopic Comparison of Distant and Nearby Type Ia Supernovae: Tests for Homogeneity and Implications for Cosmology

    DTIC Science & Technology

    2006-11-14

    Spectroscopic Data- Observations Longslit spectra of SNLS SN candidates were taken at the Gemini telescopes with the Gemini Multi-Object Spectrograph [ GMOS ...typical i’ magnitudes ranged from 21.8 to 24.5), and required exposure times of 1 to 2 hours over two to four exposures. The GMOS R400 grating (400 lines...extra 360 seconds. The extra overhead time is often minimised by choosing a small nod distance, or by employing the Electronic N&S mode. The GMOS

  17. VizieR Online Data Catalog: IN-SYNC. III. Radial velocities of IC348 stars (Cottaar+, 2015)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Foster, J. B.; Meyer, M. R.; Tan, J. C.; Nidever, D. L.; Drew Chojnowski, S.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Majewski, S.; Skrutskie, M. F.; Wilson, J. C.; Zasowski, G.

    2015-11-01

    Cottaar et al. (Paper I, 2014, J/ApJ/794/125) describes the analysis of the high-resolution near-infrared spectra obtained by the APOGEE multi-object spectrograph from stars in IC 348, NGC 1333, NGC 2264, and Orion A as part of the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) ancillary program. Using radial velocities determined from APOGEE spectra of 380 likely cluster members, we have measured the radial velocity distribution of the young (2-6Myr) cluster IC 348. (2 data files).

  18. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  19. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  20. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  1. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    NASA Astrophysics Data System (ADS)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  2. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  3. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  4. Improved Radial Velocity Precision with a Tunable Laser Calibrator

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.

    2010-01-01

    We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.

  5. The SED Machine: A Robotic Spectrograph for Fast Transient Classification

    NASA Astrophysics Data System (ADS)

    Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.

    2018-03-01

    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.

  6. Instrument Performance Monitoring at Gemini North

    NASA Astrophysics Data System (ADS)

    Emig, Kimberly; Pohlen, M.; Chene, A.

    2014-01-01

    An instrument performance monitoring (IPM) project at the Gemini North Observatory evaluates the delivered throughput and sensitivity of, among other instruments, the Near-Infrared Integral Field Spectrometer (NIFS), the Gemini Near-Infrared Spectrograph (GNIRS), and the Gemini Multi-Object Spectrograph (GMOS-N). Systematic observations of standard stars allow the quality of the instruments and mirror to be assessed periodically. An automated pipeline has been implemented to process and analyze data obtained with NIFS, GNIRS cross-dispersed (XD) and long slit (LS) modes, and GMOS (photometry and spectroscopy). We focus the discussion of this poster on NIFS and GNIRS. We present the spectroscopic throughput determined for ZJHK bands on NIFS, the XJHKLM band for GNIRS XD mode and the K band for GNIRS LS. Additionally, the sensitivity is available for the JHK bands in NIFS and GNIRS XD, and for the K band in GNIRS LS. We consider data taken as early as March 2011. Furthermore, the pipeline setup and the methods used to determine throughput and sensitivity are described.

  7. KENNEDY SPACE CENTER, FLA. - The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-10

    KENNEDY SPACE CENTER, FLA. - The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  8. Space evaluation of a MOEMs device for space instrumentation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Tangen, Kyrre; Lanzoni, Patrick; Grassi, Emmanuel; Barette, Rudy; Fabron, Christophe; Valenziano, Luca; Marchand, Laurent; Duvet, Ludovic

    2017-11-01

    Large field of view surveys with a high density of objects such as high-z galaxies or stars benefit of multi-object spectroscopy (MOS) technique. This technique is the best approach to eliminate the problem of spectral confusion, to optimize the quality and the SNR of the spectra, to reach fainter limiting fluxes and to maximize the scientific return. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. The European EUCLID mission has also considered a MOS instrument in its early study phase. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multi-slit configuration in real time. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. MSA has been selected to be the multi-slit device for NIRSpec and is under development at NASA's Goddard Space Flight Center. In Europe, an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy [5]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. Visitech is an engineering company experienced in developing DMD solution for industrial customers. The Laboratoire d'Astrophysique de Marseille (LAM) has, over several years, developed different tools for modeling and characterization of MOEMS-based slit masks, especially during the design studies on JWSTNIRSpec [6,7]. ESA has engaged with Visitech and LAM in a technical assessment of using a Digital Micromirror Devices (DMD) from Texas Instruments for space applications (for example in ESA EUCLID mission). The DMD features 2048 x 1080 mirrors on a 13.68μm mirror pitch (left-hand side of Fig. 1). Typical operational parameters of this device are room temperature, atmospheric pressure and mirrors switching thousands of times in a second, while for MOS applications in space, the device should work in vacuum, at low temperature, and each MOS exposure would last for typically 1500s with micromirrors held in a static state (either ON or OFF) during that duration. A specific thermal / vacuum test chamber has been developed for test conditions down to -40°C at 10-5 mbar vacuum. Imaging capability for resolving each micro-mirror has also been developed for determining any single mirror failure. Dedicated electronics and software allows us to hold any pattern on the DMD for duration of up to 1500s. We present the summary of this ESA study, the electronic test vehicle as well as the cold temperature test set-up we have developed. Then, results of tests in vacuum at low temperature, including low temperature stress test, low temperature nominal test, thermal cycling, and life test are presented. Results after radiation (TID and proton), and vibration and shock are also shown.

  9. NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance

    NASA Astrophysics Data System (ADS)

    Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya

    2016-08-01

    SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..

  10. VizieR Online Data Catalog: The VLBA Extragalactic Proper Motion Catalog (Truebenbach+, 2017)

    NASA Astrophysics Data System (ADS)

    Truebenbach, A. E.; Darling, J.

    2017-11-01

    We created our catalog of extragalactic radio proper motions using the 2017a Goddard VLBI global solution. The 2017a solution is computed from more than 30 years of dual-band VLBI observations --1979 August 3 to 2017 March 27. We also observed 28 objects with either no redshift or a "questionable" Optical Characteristic of Astrometric Radio Sources (OCARS; Malkin 2016ARep...60..996M) redshift at the Apache Point Observatory (APO) 3.5m telescope and/or at Gemini North. We conducted observations on the 3.5m telescope at Apache Point Observatory with the Dual Imaging Spectrograph (DIS) from 2015 April 18 to 2016 June 30. We chose two objects for additional observations with the Gemini Multi-Object Spectrograph-North (GMOS-N) at Gemini North Observatory. 2021+317 was observed on 2016 June 26 and 28, while 0420+417 was observed on 2016 November 8 and 26. We also observed 42 radio sources with the Very Long Baseline Array (VLBA) in the X-band (3.6cm/8.3GHz). Our targets had all been previously observed by VLBI. Our VLBA observations were conducted in two campaigns from 2015 September to 2016 January and 2016 October to November. The final extragalactic proper motion catalog (created primarily from archival Goddard VLBI data, with redshifts obtained from OCARS) contains 713 proper motions with average uncertainties of 24μas/yr. (5 data files).

  11. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers

    ERIC Educational Resources Information Center

    Quintana-Lara, Marcela

    2014-01-01

    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  12. Stellar Archaeology and Galaxy Genesis: The Need for Large Area Multi-Object Spectrograph on 8 m-Class Telescopes

    NASA Astrophysics Data System (ADS)

    Irwin, Mike J.; Lewis, Geraint F.

    The origin and evolution of galaxies like the Milky Way and M31 remain among the key questions in astrophysics. The galaxies we see today in and around the Local Group are representatives of the general field population of the Universe and have been evolving for the majority of cosmic time. As our nearest neighbour systems they can be studied in far more detail than their distant counterparts and hence provide our best hope for understanding star formation and prototypical galaxy evolution over the lifetime of the Universe [K. Freeman, J. Bland-Hawthorn in Annu. Rev. Astron. Astrophys. 40, 487 (2002)]. Significant observational progress has been made, but we are still a long way from understanding galaxy genesis. To unravel this formative epoch, detailed large area multi-object spectroscopy of spatial, kinematic and chemical structures on 8 m-class telescopes are required, to provide the link between local near-field cosmology and predictions from the high-redshift Universe.

  13. EMIR electronics AIV and commisioning

    NASA Astrophysics Data System (ADS)

    Núñez, Miguel; Joven, Enrique; Fernandez, Patricia; Garzón, Francisco; Barreto, Carmen M.; Patrón, Jesús; Mato, Ángel; Moreno, Heidy; Tubio, Oscar; Vega, Nauzet

    2016-08-01

    EMIR is the NIR imager and multi-object spectrograph common user instrument for the GTC and it has recently passed its first light on sky. EMIR was built by a Consortium of Spanish and French institutes led by the IAC. EMIR has finished its AIV phase at IAC facilities and it is now in commissioning on sky at GTC telescope, having completed the first run. During previous cool downs the EMIR subsystems have been integrated in the instrument progressively for verifying its functionality and performance. In order to fulfil the requirements, prepare the instrument to be in the best conditions for installation in the telescope and to solve unexpected electronics drawbacks, some changes in the implementation have been accomplished during AIV. In this paper it is described the adjustments, modifications and lessons learned related to electronics along AIV stages and the commissioning in the GTC. This includes actions in different subsystems: Hawaii2 detector and its controller electronics, Detector translation Unit, Multi object slit, wheels for filters and grisms, automatisms, vacuum, cryogenics and general electronics.

  14. VizieR Online Data Catalog: Abell 315 spectroscopic dataset (Biviano+, 2017)

    NASA Astrophysics Data System (ADS)

    Biviano, A.; Popesso, P.; Dietrich, J. P.; Zhang, Y.-Y.; Erfanianfar, G.; Romaniello, M.; Sartoris, B.

    2017-03-01

    Abell 315 was observed at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the VIsible MultiObject Spectrograph (VIMOS). The VIMOS data were acquired using 8 separate pointings, plus 2 additional pointings required to provide the needed redundancy within the central region and to cover the gaps between the VIMOS quadrants. Catalog of galaxies with redshifts in the region of the cluster Abell 315, with flags indicating whether these galaxies are members of the cluster, members of substructures within the cluster, and with probabilities for the cluster members to belong to the main cluster structure. (1 data file).

  15. BATMAN: MOS Spectroscopy on Demand

    NASA Astrophysics Data System (ADS)

    Molinari, E.; Zamkotsian, F.; Moschetti, M.; Spano, P.; Boschin, W.; Cosentino, R.; Ghedina, A.; González, M.; Pérez, H.; Lanzoni, P.; Ramarijaona, H.; Riva, M.; Zerbi, F.; Nicastro, L.; Valenziano, L.; Di Marcantonio, P.; Coretti, I.; Cirami, R.

    2016-10-01

    Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. Current object selection systems are limited and/or difficult to implement in next generation MOS for space and ground-based telescopes. A promising solution is the use of MOEMS devices such as micromirror arrays, which allow the remote control of the multi-slit configuration in real time. TNG is hosting a novelty project for real-time, on-demand MOS masks based on MOEMS programmable slits. We are developing a 2048×1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Galileo telescope, called BATMAN. It is a two-arm instrument designed for providing in parallel imaging and spectroscopic capabilities. With a field of view of 6.8×3.6 arcmin and a plate scale of 0.2 arcsec per micromirror, this astronomical setup can be used to investigate the formation and evolution of galaxies. The wavelength range is in the visible and the spectral resolution is R=560 for a 1 arcsec object, and the two arms will have 2k × 4k CCD detectors. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. We plan to have BATMAN first light by mid-2016.

  16. LAMOST Spectrograph Response Curves: Stability and Application to Flux Calibration

    NASA Astrophysics Data System (ADS)

    Du, Bing; Luo, A.-Li; Kong, Xiao; Zhang, Jian-Nan; Guo, Yan-Xin; Cook, Neil James; Hou, Wen; Yang, Hai-Feng; Li, Yin-Bi; Song, Yi-Han; Chen, Jian-Jun; Zuo, Fang; Wu, Ke-Fei; Wang, Meng-Xin; Wu, Yue; Wang, You-Fen; Zhao, Yong-Heng

    2016-12-01

    The task of flux calibration for Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) spectra is difficult due to many factors, such as the lack of standard stars, flat-fielding for large field of view, and variation of reddening between different stars, especially at low Galactic latitudes. Poor selection, bad spectral quality, or extinction uncertainty of standard stars not only might induce errors to the calculated spectral response curve (SRC) but also might lead to failures in producing final 1D spectra. In this paper, we inspected spectra with Galactic latitude | b| ≥slant 60^\\circ and reliable stellar parameters, determined through the LAMOST Stellar Parameter Pipeline (LASP), to study the stability of the spectrograph. To guarantee that the selected stars had been observed by each fiber, we selected 37,931 high-quality exposures of 29,000 stars from LAMOST DR2, and more than seven exposures for each fiber. We calculated the SRCs for each fiber for each exposure and calculated the statistics of SRCs for spectrographs with both the fiber variations and time variations. The result shows that the average response curve of each spectrograph (henceforth ASPSRC) is relatively stable, with statistical errors ≤10%. From the comparison between each ASPSRC and the SRCs for the same spectrograph obtained by the 2D pipeline, we find that the ASPSRCs are good enough to use for the calibration. The ASPSRCs have been applied to spectra that were abandoned by the LAMOST 2D pipeline due to the lack of standard stars, increasing the number of LAMOST spectra by 52,181 in DR2. Comparing those same targets with the Sloan Digital Sky Survey (SDSS), the relative flux differences between SDSS spectra and LAMOST spectra with the ASPSRC method are less than 10%, which underlines that the ASPSRC method is feasible for LAMOST flux calibration.

  17. The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Sagi; Epps, Harland; Evans, Ian; Mueller, Mark; Podgorski, William; Szentgyorgyi, Andrew

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF), the first major light instrument for the GMT, is a fiber-fed, high-resolution echelle spectrograph. In the following paper, we present the optical design of G-CLEF. We emphasize the unique solutions derived for the spectrograph fiber-feed: the Mangin mirror that corrects the cylindrical field curvature, the implementation of VPH grisms as cross dispersers, and our novel solution for a multi-colored exposure meter. We describe the spectrograph blue and red cameras comprised of 7 and 8 elements respectively, with one aspheric surface in each camera, and present the expected echellogram imaged on the instrument focal planes. Finally, we present ghost analysis and mitigation strategy that takes into account both single reflection and double reflection back scattering from various elements in the optical train.

  18. MUSE, the Multi-Slit Solar Explorer

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Tarbell, T. D.; De Pontieu, B.; Wuelser, J. P.

    2017-12-01

    The Multi-Slit Solar Explorer (MUSE) has been selected for a Phase A study for the NASA Heliophysics Small Explorer program. The science objective of MUSE is to make high spatial and temporal resolution imaging and spectral observations of the solar corona and transition region in order to probe the mechanisms responsible for energy release in the corona and understand the dynamics of the solar atmosphere. The physical processes are responsible for heating the corona, accelerating the solar wind, and the rapid release of energy in CMEs and flares. The observations will be tightly coupled to state-of-the-art numerical modeling to provide significantly improved estimates for understanding and anticipating space weather. MUSE contains two instruments: an EUV spectrograph and an EUV context imager. Both have similar spatial resolutions and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE spectrograph employs a novel multi-slit design that enables a 100x improvement in spectral scanning rates, which will reveal crucial information about the dynamics (e.g., temperature, velocities) of the physical processes that are not observable with current instruments. The MUSE investigation builds on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, and ITA Oslo.

  19. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  20. VizieR Online Data Catalog: PTF obs. of a precursor to SNHunt 275 2015 May event (Ofek+, 2016)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Cenko, S. B.; Shaviv, N. J.; Duggan, G.; Strotjohann, N.-L.; Rubin, A.; Kulkarni, S. R.; Gal-Yam, A.; Sullivan, M.; Cao, Y.; Nugent, P. E.; Kasliwal, M. M.; Sollerman, J.; Fransson, C.; Filippenko, A. V.; Perley, D. A.; Yaron, O.; Laher, R.

    2016-08-01

    The Palomar Transient Factory (PTF and iPTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R), using the 48inch Oschin Schmidt telescope, observed the field of SNHunt 275 starting in 2009 March. On 2013 December 12, PTF detected a new source at the location of the event, and the transient was named PTF 13efv (see Figure 1). Three images obtained between 2014 January 23 and April 25 were used as a reference. The PTF R-band photometry is listed in Table1. Most of the optical spectra were obtained with the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, although a few spectra were also taken with the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, and the Gemini-North Multiobject Spectrograph (GMOS) on the 8m Gemini-N telescope. The first spectrum was obtained during the 2013 December outburst. We used the Swift/UVOT observations of SNHunt 275, since 2008, to construct the bolometric light curve of the transient. The log of Swift-XRT observations, along with the source and background X-ray counts in the individual observations, is given in Table 5. (3 data files).

  1. The BigBOSS spectrograph

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael

    2012-09-01

    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  2. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  3. KENNEDY SPACE CENTER, FLA. - The White Room is seen at the upper left where the astronauts enter the Space Shuttle for flight. The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-10

    KENNEDY SPACE CENTER, FLA. - The White Room is seen at the upper left where the astronauts enter the Space Shuttle for flight. The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  4. KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

  5. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  6. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  7. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

  8. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Albareti, Franco D.; Allende Prieto, Carlos; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Basu, Sarbani; Bautista, Julian E.; Beaton, Rachael L.; Beers, Timothy C.; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Bovy, Jo; Shelden Bradley, A.; Brandt, W. N.; Brauer, D. E.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burden, Angela; Burtin, Etienne; Busca, Nicolás G.; Cai, Zheng; Capozzi, Diego; Carnero Rosell, Aurelio; Carr, Michael A.; Carrera, Ricardo; Chambers, K. C.; Chaplin, William James; Chen, Yen-Chi; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Covey, Kevin; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; da Costa, Luiz N.; Da Rio, Nicola; Davenport, James R. A.; Dawson, Kyle S.; De Lee, Nathan; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Dutra-Ferreira, Letícia; Dwelly, Tom; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Ellsworth, Tristan; Elsworth, Yvonne; Epstein, Courtney R.; Eracleous, Michael; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Feuillet, Diane; Filiz Ak, Nurten; Finley, Hayley; Finoguenov, Alexis; Flaherty, Kevin; Fleming, Scott W.; Font-Ribera, Andreu; Foster, Jonathan; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García, Rafael A.; García-Hernández, D. A.; García Pérez, Ana E.; Gaulme, Patrick; Ge, Jian; Génova-Santos, R.; Georgakakis, A.; Ghezzi, Luan; Gillespie, Bruce A.; Girardi, Léo; Goddard, Daniel; Gontcho, Satya Gontcho A.; González Hernández, Jonay I.; Grebel, Eva K.; Green, Paul J.; Grieb, Jan Niklas; Grieves, Nolan; Gunn, James E.; Guo, Hong; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Fred R.; Hekker, Saskia; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Honscheid, Klaus; Huber, Daniel; Huehnerhoff, Joseph; Ivans, Inese I.; Jiang, Linhua; Johnson, Jennifer A.; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Koenig, Xavier P.; Lam, Charles R.; Lan, Ting-Wen; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Licquia, Timothy C.; Liu, Jian; Long, Daniel C.; López-Corredoira, Martín; Lorenzo-Oliveira, Diego; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Mao, Qingqing; Maraston, Claudia; Marchwinski, Robert C.; Margala, Daniel; Martell, Sarah L.; Martig, Marie; Masters, Karen L.; Mathur, Savita; McBride, Cameron K.; McGehee, Peregrine M.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Menzel, Marie-Luise; Merloni, Andrea; Mészáros, Szabolcs; Miller, Adam A.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; More, Surhud; Morganson, Eric; Morice-Atkinson, Xan; Morrison, Heather L.; Mosser, Benôit; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Newman, Jeffrey A.; Neyrinck, Mark; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O'Connell, Julia E.; O'Connell, Robert W.; O'Connell, Ross; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Audrey E.; Oravetz, Daniel J.; Osumi, Keisuke; Owen, Russell; Padgett, Deborah L.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Park, Changbom; Pattarakijwanich, Petchara; Pellejero-Ibanez, M.; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; P´rez-Ra`fols, Ignasi; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc H.; Porto de Mello, Gustavo F.; Prada, Francisco; Prakash, Abhishek; Price-Whelan, Adrian M.; Protopapas, Pavlos; Raddick, M. Jordan; Rahman, Mubdi; Reid, Beth A.; Rich, James; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodrigues, Thaíse S.; Rodríguez-Torres, Sergio; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Ruan, John J.; Rubiño-Martín, J. A.; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Samushia, Lado; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Scott, Caroline; Sellgren, Kris; Seo, Hee-Jong; Serenelli, Aldo; Shane, Neville; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Silva Aguirre, V.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobreira, Flávia; Souto, Diogo; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tan, Jonathan C.; Tayar, Jamie; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thomas, Neil; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vargas-Magaña, Mariana; Vazquez, Jose A.; Verde, Licia; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Ye`che, Christophe; York, Donald G.; Zakamska, Nadia L.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhou, Xu; Zhou, Zhimin; Zou, Hu; Zhu, Guangtun

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

  9. Exploring the Universe with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.

  10. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  11. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  12. VizieR Online Data Catalog: SAMI Galaxy Survey: rotators classification (van de Sande+, 2017)

    NASA Astrophysics Data System (ADS)

    van de Sande, J.; Bland-Hawthorn, J.; Fogarty, L. M. R.; Cortese, L.; D'Eugenio, F.; Croom, S. M.; Scott, N.; Allen, J. T.; Brough, S.; Bryant, J. J.; Cecil, G.; Colless, M.; Couch, W. J.; Davies, R.; Elahi, P. J.; Foster, C.; Goldstein, G.; Goodwin, M.; Groves, B.; Ho, I.-T.; Jeong, H.; Jones, D. H.; Konstantopoulos, I. S.; Lawrence, J. S.; Leslie, S. K.; Lopez-Sanchez, A. R.; McDermid, R. M.; McElroy, R.; Medling, A. M.; Oh, S.; Owers, M. S.; Richards, S. N.; Schaefer, A. L.; Sharp, R.; Sweet, S. M.; Taranu, D.; Tonini, C.; Walcher, C. J.; Yi, S. K.

    2017-08-01

    The SAMI instrument and Galaxy Survey is described in detail in Croom+ (2012MNRAS.421..872C) and Bryant+ (2015MNRAS.447.2857B). SAMI is a multi-object integral field spectrograph on the 3.9m Anglo Australian Telescope (AAT). For the SAMI Galaxy Survey, the 580V grating is used in the blue arm of the spectrograph, which results in a resolution of R~1700 with wavelength coverage of 3700-5700Å. In the red arm, the higher resolution grating 1000R is used, which gives an R~4500 over the range 6300-7400Å. We use 24 unsaturated, unblended CuAr arc lines in the blue arm, and 12 lines in the red arm, from 16 frames between 2013 March 05 and 2015 August 17, for all 819 fibers. The survey has four volume-limited galaxy samples derived from cuts in stellar mass in the Galaxy and Mass Assembly (GAMA) G09, G12, and G15 regions (Driver+ 2011, J/MNRAS/413/971). (2 data files).

  13. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    NASA Astrophysics Data System (ADS)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  14. VizieR Online Data Catalog: Coordinates and photometry of stars in Haffner 16 (Davidge, 2017)

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2017-11-01

    The images and spectra that are the basis of this study were recorded with Gemini Multi-Object Spectrograph (GMOS) on Gemini South as part of program GS-2014A-Q-84 (PI: Davidge). GMOS is the facility visible-light imager and spectrograph. The detector was (the CCDs that make up the GMOS detector have since been replaced) a mosaic of three 2048*4068 EEV CCDs. Each 13.5μm square pixel subtended 0.073arcsec on the sky. The three CCDs covered an area that is larger than that illuminated by the sky so that spectra could be dispersed outside of the sky field. The images and spectra were both recorded with 2*2 pixel binning. The g' (FWHM=0.55) and i' (FWHM=0.45) images of Haffner 16 were recorded on the night of 2013 December 31. The GMOS spectra were recorded during five nights in 2014 March (Mar 19, Mar 27, and Mar 30) and April (Apr 2, and Apr 3). The spectra were dispersed with the R400 grating (λblaze=7640Å, 400lines/mm). (1 data file).

  15. Hubble Space Telescope, Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  16. Development of deployable fibre integral-field-units for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Jahn, Thomas; Neumann, Justus; Roth, Martin M.; Rutowska, Monika; Sandin, Christer; Nicklas, Harald; Anwand, Heiko; Schmidt, C.

    2014-07-01

    The use of deployable fibre-bundles plays an increasing role in the design of future Multi-Object-Spectrographs (MOS). Within a research and development project for "Enabling Technologies for the E-ELT", various miniaturized, fibrebundles were designed, built and tested for their suitability for a proposed ELT-MOS instrument. The paper describes the opto-mechanical designs of the bundles and the different manufacture approaches, using glued, stacked and fused optical fibre bundles. The fibre bundles are characterized for performance, using dedicated testbenches in the laboratory and at a telescope simulator. Their performance is measured with respect to geometric accuracy, throughput, FRD behavior and cross-talk between channels.

  17. Low-metallicity (sub-SMC) massive stars

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam; Herrero, Artemio; Najarro, Francisco; Camacho, Inés; Lennon, Daniel J.; Urbaneja, Miguel A.; Castro, Norberto

    2017-11-01

    The double distance and metallicity frontier marked by the SMC has been finally broken with the aid of powerful multi-object spectrographs installed at 8-10m class telescopes. VLT, GTC and Keck have enabled studies of massive stars in dwarf irregular galaxies of the Local Group with poorer metal-content than the SMC. The community is working to test the predictions of evolutionary models in the low-metallicity regime, set the new standard for the metal-poor high-redshift Universe, and test the extrapolation of the physics of massive stars to environments of decreasing metallicity. In this paper, we review current knowledge on this topic.

  18. First on-sky results with ARGOS at LBT

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, G.; Rabien, S.; Busoni, L.; Gaessler, W.; Bonaglia, M.; Borelli, J.; Deysenroth, M.; Esposito, S.; Gemperlein, H.; Kulas, M.; Lefebvre, M.; Mazzoni, T.; Peter, D.; Puglisi, A.; Raab, W.; Rahmer, G.; Sivitilli, A.; Storm, J.; Ziegleder, J.

    2016-07-01

    One year and an half after ARGOS first light, the Large Binocular Telescope (LBT) laser guided ground-layer adaptive optics (GLAO) system has been operated on both sides of the LBT. The system fulfills the GLAO promise and typically delivers an improvement by a factor of 2 in FWHM over the 4'×4' field of view of both Luci instruments, the two near-infrared imagers and multi-object spectrographs. In this paper, we report on the first on-sky results and analyze the performances based on the data collected so far. We also discuss adaptive optics procedures and the joint operations with Luci for science observations.

  19. FIREBALL-2: Pioneering Space UV Baryon Mapping (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    This is the lead proposal of a multi-institutional submission. The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the Intergalactic Medium (IGM) for low redshift galaxies. This balloon is a modification of FIREBall-1 (FB-1), a path-finding mission built by our team with two successful flights. FB-1 provided the strongest constrains on IGM emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is nearly ready for integration and testing before an anticipated Spring 2016 launch from Ft. Sumner, New Mexico. The spectrograph has been redesigned and an upgraded detector system including a groundbreaking high QE, low-noise, UV CCD detector is under final testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and flight support team, with construction of all components nearly complete. The initial FIREBall-2 launch is now scheduled for Spring 2016. FIREBall-2 combines several innovations: -First ever multi-object UV spectrograph -Arcsecond quality balloon pointing system, developed from scratch, improved from FB-1 -Partnership of national space agencies (NASA & CNES); highly leveraged NASA resources -A Schmidt corrector built into the UV grating for better optical performance and throughput -A total of four women trained in space experimental astrophysics, including 3 Columbia Ph.Ds. and 1 Caltech Ph.D. -A total of 7 graduate students trained on FIREBall-1 (3) and FIREBall-2 (4), with opportunities for more in future flights. FIREBall-2 will test key technologies and science strategies for a future mission to map IGM emission. Its flights will provide important training for the next generation of space astrophysicists working in UV instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and opening a new field of CGM science.

  20. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coil, Alison L.; Moustakas, John; Aird, James

    2011-11-01

    We present the PRIsm MUlti-object Survey (PRIMUS), a spectroscopic faint galaxy redshift survey to z {approx} 1. PRIMUS uses a low-dispersion prism and slitmasks to observe {approx}2500 objects at once in a 0.18 deg{sup 2} field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5 m telescope at Las Campanas Observatory. PRIMUS covers a total of 9.1 deg{sup 2} of sky to a depth of i{sub AB} {approx} 23.5 in seven different deep, multi-wavelength fields that have coverage from the Galaxy Evolution Explorer, Spitzer, and either XMM or Chandra, as well asmore » multiple-band optical and near-IR coverage. PRIMUS includes {approx}130,000 robust redshifts of unique objects with a redshift precision of {sigma}{sub z}/(1 + z) {approx} 0.005. The redshift distribution peaks at z {approx} 0.6 and extends to z = 1.2 for galaxies and z = 5 for broad-line active galactic nuclei. The motivation, observational techniques, fields, target selection, slitmask design, and observations are presented here, with a brief summary of the redshift precision; a forthcoming paper presents the data reduction, redshift fitting, redshift confidence, and survey completeness. PRIMUS is the largest faint galaxy survey undertaken to date. The high targeting fraction ({approx}80%) and large survey size will allow for precise measures of galaxy properties and large-scale structure to z {approx} 1.« less

  1. Transformations in our Understanding of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Bershady, M. A.

    2016-10-01

    A new generation of instruments has launched large surveys now mapping galaxy evolution with single- and multi-object integral-field spectrographs (IFS). These surveys form counterpoints to the mapping of the Milky Way with multi-object stellar spectroscopy and the Gaia satellite. Combined, they allow us to better place the Milky Way in context of the galaxy population at z˜0; to understand if the Milky Way is indeed a normal spiral; and to leverage its unique archaeological record against observations of distant galaxies. These studies illustrate opportunities awaiting next-generation instruments and surveys that push to higher spectral resolution, lower surface-brightness, and into the near and even mid-infrared. Here we focus on the advantages of higher spectral resolution IFS, as enabled by WEAVE. Ground-breaking science opportunities include characterizing and kinematically resolving the ionized gas and stars in dynamically cold galaxies. Such studies will benefit from increased sensitivity both in S/N and line-diagnostics, pushing extragalactic observations in integrated light much closer to where our understanding of Milky Way chemo-dynamics is today.

  2. AN EFFICIENT, COMPACT, AND VERSATILE FIBER DOUBLE SCRAMBLER FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath

    2015-06-10

    We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variationsmore » and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.« less

  3. Chemical study of the metal-rich globular cluster NGC 5927

    NASA Astrophysics Data System (ADS)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  4. The science enabled by the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Babusiaux, C.

    2017-12-01

    With its unique wide-field, multi-object, and dedicated spectroscopic capabilities, the Maunakea Spectroscopic Explorer (MSE) is a powerful facility to shed light on the faint Universe. Built around an upgrade of the Canada-France Hawaii Telescope (CFHT) to a 11.25-meter telescope with a dedicated ˜1.5 deg^2, 4,000-fiber wide-field spectrograph that covers the optical and near-infrared wavelengths at resolutions between 2,500 and 40,000, the MSE is the essential follow-up complement to the current and next generations of multi-wavelength imaging surveys, such as the LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for the extremely large telescopes that are currently being built (E-ELT, GMT, and TMT). The science enabled by the MSE is vast and would have an impact on almost all aspects of astronomy research.

  5. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  6. Argonne - Ring Resonators

    Science.gov Websites

    -- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators

  7. Radial velocity confirmation of Kepler-91 b. Additional evidence of its planetary nature using the Calar Alto/CAFE instrument

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Henning, Th.; Mancini, L.; Ciceri, S.; Figueira, P.; Santos, N. C.; Aceituno, J.; Sánchez, S. F.

    2014-08-01

    The object transiting the star Kepler-91 was recently assessed as being of planetary nature. The confirmation was achieved by analysing the light-curve modulations observed in the Kepler data. However, quasi-simultaneous studies claimed a self-luminous nature for this object, thus rejecting it as a planet. In this work, we apply anindependent approach to confirm the planetary mass of Kepler-91b by using multi-epoch high-resolution spectroscopy obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). We obtain the physical and orbital parameters with the radial velocity technique. In particular, we derive a value of 1.09 ± 0.20 MJup for the mass of Kepler-91b, in excellent agreement with our previous estimate that was based on the orbital brightness modulation.

  8. VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.

    2015-06-01

    The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).

  9. ORAC-DR: One Pipeline for Multiple Telescopes

    NASA Astrophysics Data System (ADS)

    Cavanagh, B.; Hirst, P.; Jenness, T.; Economou, F.; Currie, M. J.; Todd, S.; Ryder, S. D.

    ORAC-DR, a flexible and extensible data reduction pipeline, has been successfully used for real-time data reduction from UFTI and IRCAM (infrared cameras), CGS4 (near-infrared spectrometer), Michelle (mid-infrared imager and echelle spectrometer), at UKIRT; and SCUBA (sub-millimeter bolometer array) at JCMT. We have now added the infrared imaging spectrometers IRIS2 at the Anglo-Australian Telescope and UIST at UKIRT to the list of officially supported instruments. We also present initial integral field unit support for UIST, along with unofficial support for the imager and multi-object spectrograph GMOS at Gemini. This paper briefly describes features of the pipeline along with details of adopting ORAC-DR for other instruments on telescopes around the world.

  10. Fibre positioning algorithms for the WEAVE spectrograph

    NASA Astrophysics Data System (ADS)

    Terrett, David L.; Lewis, Ian J.; Dalton, Gavin; Abrams, Don Carlos; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.

    2014-07-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres, similar in concept to the Australian Astronomical Observatory's 2dF1 instrument with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). This presents additional constraints and complications for the software that determines the optimal path from one configuration to the next, particularly given the large number of fibre crossings implied by the 1000 fibre multiplex. This paper describes the algorithms and programming techniques used in the prototype implementations of the field configuration tool and the fibre positioner robot controller developed to support the detailed design of WEAVE.

  11. Development of the fibre positioning unit of MOONS

    NASA Astrophysics Data System (ADS)

    Montgomery, David; Atkinson, David; Beard, Stephen; Cochrane, William; Drass, Holger; Guinouard, Isabelle; Lee, David; Taylor, William; Rees, Phil; Watson, Steve

    2016-08-01

    The Multi-Object Optical and Near-Infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. This can be configured to produce spectra for chosen targets and have close proximity sky subtraction if required. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibre positioning units are used to position each fibre independently in order to pick off each sub field of 1.0" within a circular patrol area of 85" on sky (50mm physical diameter). The nominal physical separation between FPUs is 25mm allowing a 100% overlap in coverage between adjacent units. The design of the fibre positioning units allows parallel and rapid reconfiguration between observations. The kinematic geometry is such that pupil alignment is maintained over the patrol area. This paper presents the design of the Fibre Positioning Units at the preliminary design review and the results of verification testing of the advanced prototypes.

  12. Spatial distribution of dust in galaxies from the Integral field unit data

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  13. FOCCoS for Subaru PFS

    NASA Astrophysics Data System (ADS)

    Cesar de Oliveira, Antonio; Souza de Oliveira, Ligia; de Arruda, Marcio V.; Bispo dos Santos, Jesulino; Souza Marrara, Lucas; Bawden de Paula Macanhan, Vanessa; Batista de Carvalho Oliveira, João.; de Paiva Vilaça, Rodrigo; Dominici, Tania P.; Sodré, Laerte; Mendes de Oliveira, Claudia; Karoji, Hiroshi; Sugai, Hajime; Shimono, Atsushi; Tamura, Naoyuki; Takato, Naruhisa; Ueda, Akitoshi

    2012-09-01

    The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs by an optical fibers cable as part of Subaru PFS instrument. Each positioner retains one fiber entrance attached at a microlens, which is responsible for the F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. The optical fibers cable will be segmented in 3 parts at long of the way, cable A, cable B and cable C, connected by a set of multi-fibers connectors. Cable B will be permanently attached at the Subaru telescope. The first set of multi-fibers connectors will connect the cable A to the cable C from the spectrograph system at the Nasmith platform. The cable A, is an extension of a pseudo-slit device obtained with the linear disposition of the extremities of the optical fibers and fixed by epoxy at a base of composite substrate. The second set of multi-fibers connectors will connect the other extremity of cable A to the cable B, which is part of the positioner's device structure. The optical fiber under study for this project is the Polymicro FBP120170190, which has shown very encouraging results. The kind of test involves FRD measurements caused by stress induced by rotation and twist of the fiber extremity, similar conditions to those produced by positioners of the PFS instrument. The multi-fibers connector under study is produced by USCONEC Company and may connect 32 optical fibers. The tests involve throughput of light and stability after many connections and disconnections. This paper will review the general design of the FOCCoS subsystem, methods used to fabricate the devices involved and the tests results necessary to evaluate the total efficiency of the set.

  14. VizieR Online Data Catalog: Candidate ICRF flat-spectrum radio sources. III. (Titov+, 2017)

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, H. M.; Stanford, L. M.; Hunstead, R. W.; Jauncey, D. L.; Zenere, K. A.

    2017-08-01

    Spectroscopic observations were carried out at three optical facilities. We had a five-night observing run in Visitor Mode at the ESO 3.58m New Technology Telescope (NTT) in 2013 December (Proposal 092.A-0021 (A)) using the ESO Faint Object Spectrograph and Camera system with grism #13 covering the wavelength range 3685-9315Å. The seeing during observations was typically 0.5''-2.0'', with a spectral resolution of 21Å FWHM. Exposure times varied from 5 to 30 minutes depending on the magnitude of each target and current sky conditions. Wavelength calibration made use of HeNeAr comparison spectra, resulting in an rms accuracy of 0.5Å. A large number of targets were observed in Service Mode at the Gemini North and Gemini South 8.2m telescopes through the Poor Weather Program (Proposals GN-2012B-Q-127, GS-2013A-Q-99, GS-2014A-Q-93) using the Gemini Multi-Object Spectrograph (GMOS) system with grating R400 at each site. This grating covers 4500Å centered at 5200Å. The wavelength resolution was ~15Å FWHM, and an exposure time of 20 minutes was used for all targets. Wavelength calibration used the spectra of a CuAr comparison lamp, giving an rms accuracy of 0.3Å. We present our spectroscopic results in the same format as our previous paper (Titov et al. 2013, Cat. J/AJ/146/10). The redshifts of 112 IVS objects are listed in Table1. Fourteen objects with good S/N and featureless spectra were classified as probable BL Lac objects. These objects are listed in Table2. An additional 23 targets had low S/N spectra that did not permit a confident spectral classification. These are listed in Table3. (5 data files).

  15. The optical design of GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Barkhouser, Robert; Robberto, Massimo; Smee, Stephen A.; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy

    2016-08-01

    We present the optical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph. GMOX was selected as part of the Gemini Instrument Feasibility Study to develop capabilities and requirements for the next facility instrument (Gen4#3) for the observatory. We envision GMOX covering the entire optical/near-IR wavelength range accessible from the ground, from 3500 Å in the U band up to 2.4 μm in the K band, with nominal resolving power R≃5,000. To maximize efficiency, the bandpass is split into three spectrograph arms - blue, red, and near-infrared - with the near-infrared arm further split into three channels covering the Y+J, H, and K bands. At the heart of each arm is a Digital Micromirror Device (DMD) serving as a programmable slit array. This technology will enable GMOX to simultaneously acquire hundreds of spectra of faint sources in crowded fields with unparalleled spatial resolution, optimally adapting to both seeing-limited and diffraction limited conditions provided by ALTAIR and GeMS at Gemini North and South, respectively. Fed by GeMS at f/33, GMOX can synthesize slits as small as 40 mas (corresponding to a single HST/WFC3 CCD pixel) over its entire 85"x45" field of view. With either ALTAIR or the native telescope focal ratio of f/16, both the slit and field sizes double. In this paper we discuss the conceptual optical design of GMOX including, for each arm: the pre-slit optics, DMD slit array, off-axis Schmidt collimator, VPH grating, and refractive spectrograph and slit-viewing cameras.

  16. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  17. The eleventh and twelfth data releases of the Sload Digital Sky Survey: final data from SDSS-III

    DOE PAGES

    Alam, S.; Slosar, A.; Albareti, F. D.; ...

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg 2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg 2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg 2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  18. The eleventh and twelfth data release of the Sloan Digital Sky Survey: Final data from SDSS-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende

    2015-07-20

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg 2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg 2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg 2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  19. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende

    2015-07-15

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg{sup 2} of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg{sup 2} of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg{sup 2}; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  20. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  1. Characterizing Sky Spectra Using SDSS BOSS Data

    NASA Astrophysics Data System (ADS)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  2. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less

  3. GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager

    NASA Astrophysics Data System (ADS)

    Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.

    2016-08-01

    GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.

  4. Target Selection for the SDSS-III MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  5. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin

    2009-01-01

    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  6. The LST scientific instruments

    NASA Technical Reports Server (NTRS)

    Levin, G. M.

    1975-01-01

    Seven scientific instruments are presently being studied for use with the Large Space Telescope (LST). These instruments are the F/24 Field Camera, the F/48-F/96 Planetary Camera, the High Resolution Spectrograph, the Faint Object Spectrograph, the Infrared Photometer, and the Astrometer. These instruments are being designed as facility instruments to be replaceable during the life of the Observatory.

  7. VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.

    2014-11-01

    Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).

  8. VizieR Online Data Catalog: Spectroscopy of the foreground population in Orion A (Fang+, 2017)

    NASA Astrophysics Data System (ADS)

    Fang, M.; Kim, J. S.; Pascucci, I.; Apai, D.; Zhang, L.; Sicilia-Aguilar, A.; Alonso-Martinez, M.; Eiroa, C.; Wang, H.

    2018-05-01

    We performed a low-resolution spectroscopic survey of the stellar population in NGC 1980 with the Hectospec multi-object spectrograph, capable of taking a maximum of 300 spectra simultaneously. We used the 270 groove/mm grating and obtained spectra in the 3700-9000Å range with a spectral resolution of ~5Å. The data were taken in 2016 February. In Table 4, we list the young stars with X-Shooter spectra. These sources are mainly from the {eta} Cha cluster, the TW Hydra Association, the Lupus star-forming region, the σ Ori cluster, and the Cha I star-forming region. We extract the spectra of these sources from the X-Shooter phase III data archive. (3 data files).

  9. Discovery with RSS retracted

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Rotating Service Structure has been retracted at Pad 39A. Discovery, the Space Shuttle for STS-82 Mission is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Which will be installed, the Fine Guidance Sensor #1 (FGS-1) and the Space Telescope Imaging Spectrograph (STIS) which will be installed. STS-82 will launch with a crew of seven at 3:54 a.m. February 11, 1997. The launch window is 65 minutes. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

  10. The KMOS Cluster Survey - KCS: Timing the Formation of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-07-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4

  11. Tracing the Evolution of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-08-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4

  12. Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd

    2014-01-01

    One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.

  13. Kepler-432 b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star

    NASA Astrophysics Data System (ADS)

    Ortiz, Mauricio; Gandolfi, Davide; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J.; Karjalainen, Raine; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric

    2015-01-01

    We study the Kepler object Kepler-432, an evolved star ascending the red giant branch. By deriving precise radial velocities from multi-epoch high-resolution spectra of Kepler-432 taken with the CAFE spectrograph at the 2.2 m telescope of Calar Alto Observatory and the FIES spectrograph at the Nordic Optical Telescope of Roque de Los Muchachos Observatory, we confirm the planetary nature of the object Kepler-432 b, which has a transit period of 52 days. We find a planetary mass of Mp = 5.84 ± 0.05MJup and a high eccentricity of e = 0.478 ± 0.004. With a semi-major axis of a = 0.303 ± 0.007 AU, Kepler-432 b is the first bona fide warm Jupiter detected to transit a giant star. We also find a radial velocity linear trend of γ˙ = 0.44 ± 0.04 m s-1 d-1, which suggests the presence of a third object in the system. Current models of planetary evolution in the post-main-sequence phase predict that Kepler-432 b will be most likely engulfed by its host star before the latter reaches the tip of the red giant branch. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 3 is available in electronic form at http://www.aanda.org

  14. PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

    NASA Astrophysics Data System (ADS)

    Content, Robert; Bland-Hawthorn, Joss; Ellis, Simon; Gers, Luke; Haynes, Roger; Horton, Anthony; Lawrence, Jon; Leon-Saval, Sergio; Lindley, Emma; Min, Seong-Sik; Shortridge, Keith; Staszak, Nick; Trinh, Christopher; Xavier, Pascal; Zhelem, Ross

    2014-07-01

    PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH suppression to be deployed on a telescope. The Bragg gratings reflect the NIR OH lines while being transparent to the light between the lines. This gives in principle a much higher signal-noise ratio at low resolution spectroscopy but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited even with the low sky background levels remaining after OH suppression. The optical and mechanical designs are presented. The optical train starts with fore-optics that image the telescope focal plane on an IFU which has 19 hexagonal microlenses each feeding a multi-mode fibre. Seven of these fibres are attached to a fibre Bragg grating OH suppression system while the others are reference/acquisition fibres. The light from each of the seven OH suppression fibres is then split by a photonic lantern into many single mode fibres where the Bragg gratings are imprinted. Another lantern recombines the light from the single mode fibres into a multi-mode fibre. A trade-off was made in the design of the IFU between field of view and transmission to maximize the signal-noise ratio for observations of faint, compact objects under typical seeing. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1.47 μm to 1.7 μm (it can also be used in the 1.09 μm to 1.26 μm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and optimized for our small bandwidth, and low absorption glasses. The detector noise will also be lower thanks to the use of a current generation HAWAII-2RG detector. Throughout the PRAXIS design, from the fore-optics to the detector enclosure, special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. The spectrograph design itself was particularly challenging in this aspect because practical constraints required that the detector and the spectrograph enclosures be physically separate with air at ambient temperature between them. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow an increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.

  15. Lhires III High Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Thizy, O.

    2007-05-01

    By spreading the light from celestial objects by wavelength, spectroscopists are like detectives looking for clues and identifying guilty phenomena that shape their spectra. We will review some basic principles in spectroscopy that will help, at our amateur level, to understand how spectra are shaped. We will review the Lhires III highresolution spectrograph Mark Three that was designed to reveal line profile details and subtle changes. Then, we will do an overview of educational and scientific projects that are conducted with the Lhires III and detail the COROT Be star program and the BeSS database for which the spectrograph is a key instrument.

  16. First light results from the HERMES spectrograph at the AAT

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew I.

    2016-08-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is a facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the Galactic Archeology with Hermes (GALAH) survey is to reconstruct the mass assembly history of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2- degree field of view. Hermes was commissioned in late 2013, with the GALAH Pilot starting in parallel with the commissioning. The GALAH survey started in early 2014 is currently about 33% complete. We present a description of the motivating science; an overview the instrument; and a status report on GALAH Survey.

  17. Aries x ray objective grating spectrograph

    NASA Technical Reports Server (NTRS)

    Catura, R. C.

    1991-01-01

    This investigation was initiated in June of 1983. An Aries payload involving a single Wolter 1 telescope was developed and flown under a previous contract and the objective of this work was to add two additional mirrors, nested inside of the then existing mirror and add 12 objective reflection gratings to convert the telescope into a spectrograph. A summary of major milestones in the investigation are given. Results of efforts under this contract prior to 1987 are presented in the form of four reprints of published papers attached to this report. Results of the gamma-ray research are also included in the form of an attached reprint. A summary of other work under the contract since 1987 is given.

  18. First results of tests on the WEAVE fibres

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Younes, Youssef; Fasola, Gilles; Dorent, Stéphane; Abrams, Don Carlos; Aguerri, J. Alphonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Dalton, Gavin; Dee, Kevin; Laporte, Philippe; Lewis, Ian; Lhome, Emilie; Middleton, Kevin; Pragt, Johan H.; Rey, Juerg; Stuik, Remko; Trager, Scott C.; Vallenari, Antonella

    2016-07-01

    WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of 5000 or modest wavelength coverage in both arms at a resolution 20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V 17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.

  19. Galaxy evolution spectroscopic explorer: scientific rationale

    NASA Astrophysics Data System (ADS)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-07-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures ( 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  20. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    NASA Technical Reports Server (NTRS)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  1. Wavelength calibration with PMAS at 3.5 m Calar Alto Telescope using a tunable astro-comb

    NASA Astrophysics Data System (ADS)

    Chavez Boggio, J. M.; Fremberg, T.; Bodenmüller, D.; Sandin, C.; Zajnulina, M.; Kelz, A.; Giannone, D.; Rutowska, M.; Moralejo, B.; Roth, M. M.; Wysmolek, M.; Sayinc, H.

    2018-05-01

    On-sky tests conducted with an astro-comb using the Potsdam Multi-Aperture Spectrograph (PMAS) at the 3.5 m Calar Alto Telescope are reported. The proposed astro-comb approach is based on cascaded four-wave mixing between two lasers propagating through dispersion optimized nonlinear fibers. This approach allows for a line spacing that can be continuously tuned over a broad range (from tens of GHz to beyond 1 THz) making it suitable for calibration of low- medium- and high-resolution spectrographs. The astro-comb provides 300 calibration lines and his line-spacing is tracked with a wavemeter having 0.3 pm absolute accuracy. First, we assess the accuracy of Neon calibration by measuring the astro-comb lines with (Neon calibrated) PMAS. The results are compared with expected line positions from wavemeter measurement showing an offset of ∼5-20 pm (4%-16% of one resolution element). This might be the footprint of the accuracy limits from actual Neon calibration. Then, the astro-comb performance as a calibrator is assessed through measurements of the Ca triplet from stellar objects HD3765 and HD219538 as well as with the sky line spectrum, showing the advantage of the proposed astro-comb for wavelength calibration at any resolution.

  2. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  3. DMD-based multi-object spectrograph on Galileo telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  4. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    NASA Astrophysics Data System (ADS)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  5. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    NASA Astrophysics Data System (ADS)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  6. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  7. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  8. VizieR Online Data Catalog: AS1063 and MACS1206-08 datacubes (Girard+, 2018)

    NASA Astrophysics Data System (ADS)

    Girard, M.; Dessauges-Zavadsky, M.; Schaerer, D.; Cirasuolo, M.; Turner, O. J.; Cava, A.; Rodriguez-Munoz, L.; Richard, J.; Perez-Gonzalez, P. G.

    2018-06-01

    We initiated KLENS in 2015 in P95 with the K band Multi Object Spectrograph (KMOS; Sharples et al., 2013Msngr.151...21S). KMOS has 24 arms of 14x14-spaxels. Each spaxel has 0.2"x0.2", which gives a global field of view of 2.8"x2.8" for each arm. Observations were carried out in the H and K bands, which have a typical spectral resolution of R~4000 and R~4200, respectively. Each pointing had an exposure time of 300s and we used an object-object-sky-object-object dither pattern. The sky frames were obtained by applying an offset to a clear sky position. The observations were taken in good conditions with a seeing around 0.6" in the H and K bands. The total on-source exposure time in the H band were 2.3h for both clusters. In the K band, the targets were observed during 8h and 10h on-source for MACS1206-08 and AS1063, respectively. Here are the reduced data fits files of the galaxies presented in the paper. (2 data files).

  9. VizieR Online Data Catalog: Solar-type stars from SDSS-III MARVELS. VI. HD 87646 (Ma+, 2016)

    NASA Astrophysics Data System (ADS)

    Ma, B.; Ge, J.; Wolszczan, A.; Muterspaugh, M. W.; Lee, B.; Henry, G. W.; Schneider, D. P.; Martin, E. L.; Niedzielski, A.; Xie, J.; Fleming, S. W.; Thomas, N.; Williamson, M.; Zhu, Z.; Agol, E.; Bizyaev, D.; da Costa, L. N.; Jiang, P.; Fiorenzano, A. F. M.; Hernandez, J. I. G.; Guo, P.; Grieves, N.; Li, R.; Liu, J.; Mahadevan, S.; Mazeh, T.; Nguyen, D. C.; Paegert, M.; Sithajan, S.; Stassun, K.; Thirupathi, S.; van Eyken, J. C.; Wan, X.; Wang, J.; Wisniewski, J. P.; Zhao, B.; Zucker, S.

    2016-11-01

    We have obtained a total of 16 observations of HD87646 using the W.M. Keck Exoplanet Tracker (KeckET) from 2006 December to 2007 June. The radial velocities obtained are listed in Table1. The KeckET instrument was constructed in 2005 August-2006 February with support from the Keck Foundation. It was coupled with a wide field Sloan Digital Sky Survey telescope (SDSS) and used for the pilot Multi-Object APO RV Exoplanet Large-Area Survey (MARVELS). This is the sixth paper in this series, examining the low-mass companions around solar-type stars from the SDSS-III MARVELS survey (Wisniewski et al. 2012, Cat. J/AJ/143/107; Fleming et al. 2012AJ....144...72F; Ma et al. 2013AJ....145...20M; Jiang et al. 2013AJ....146...65J; De Lee et al. 2013AJ....145..155D). The KeckET instrument consists of eight subsystems-a multi-object fiber feed, an iodine cell, a fixed-delay interferometer system, a slit, a collimator, a grating, a camera, and a 4k*4k CCD detector. In addition, it contains four auxiliary subsystems: the interferometer control, an instrument calibration system, a photon flux monitoring system, and a thermal probe and control system. The instrument is fed with 60 fibers with 200μm core diameters, which are coupled to 180μm core diameter short fibers from the SDSS telescope, corresponding to 3arcsec on the sky at f/5. The resolving power for the spectrograph is R=5100, and the wavelength coverage is ~900Å, centered at 5400Å. KeckET has one spectrograph and one 4k*4k CCD camera that captures one of the two interferometer outputs, and has a 5.5% detection efficiency from the telescope to the detector without the iodine cell under the typical APO seeing conditions (~1.5arcsec seeing). The CCD camera records fringing spectra from 59 objects in a single exposure. Subsequent observations were performed using the Exoplanet Tracker (ET) instrument at Kitt Peak National Observatory (KPNO). Initial follow-up was performed in 2007 November. Additional data points were obtained at KPNO in 2008 January, February, and May. The integration time was 35-40 minutes in 2007 November and 20 minutes in 2008 January, February, and May. A total of 40 data points were obtained from 2007 November to 2008 May and are also listed in Table1. Follow-up observations of HD87646 were conducted with the fiber-fed High Resolution Spectrograph (HRS) of the Hobby Eberley telescope (HET). The observations were executed in queue scheduled mode and used a 2 arcsec fiber, with the HRS slit set, to yield a spectral resolution of R~60000. A total of 29 data points were obtained between 2007 December and 2008 March. The HRS spectra consisted of 46 echelle orders recorded on the blue CCD (407-592nm) and 24 orders on the red one (602-784nm). The spectral data used for RV measurements were extracted from the 17 orders (505-592nm) in which the I2 cell superimposed strong absorption lines. The radial velocities obtained are also provided in Table1. HD87646 was selected as an radial velocity survey target by the Multi-object APO RV Exoplanet Large-area Survey (MARVELS) preselection criterion. The star has been monitored at 23 epochs using the MARVELS instrument mounted on the SDSS 2.5m Telescope at APO between 2009 May and 2011 December. The MARVELS instrument is a fiber-fed dispersed fixed-delay interferometer instrument capable of observing 60 objects simultaneously and covers a wavelength range of 5000-5700Å with a resolution of R~12000. The final differential radial velocity products are included in the SDSS Data Release 12 (Alam et al. 2015ApJS..219...12A) and are presented in Table1. We have obtained additional observations of HD87646 with a fiber-fed echelle spectrograph situated at the 2m Automatic Spectroscopic Telescope (AST) in the Fairborn Observatory. Through 2011 June, the detector was a 2048*4096 SITe ST-002A CCD with 15μm pixels. The AST echelle spectrograph has 21 orders that cover the wavelength range of 4920-7100Å, and has an average resolution of 0.17Å. In the summer of 2011, the SITe CCD detector and dewar were replaced with a Fairchild 486 CCD having 4K*4K 15μm pixels, which required a new readout electronics package, and a new dewar with a Cryotiger refrigeration system. The echelle spectrograms that were obtained with this new detector have 48 orders, covering the wavelength range of 3800-8260Å. A total of 135 data points were obtained from 2009 March through 2013 October and are listed in Table1. (1 data file).

  10. VizieR Online Data Catalog: Reflectance spectra of 12 Trojans and Hildas (Marsset+, 2014)

    NASA Astrophysics Data System (ADS)

    Marsset, M.; Vernazza, P.; Gourgeot, F.; Dumas, C.; Birlan, M.; Lamy, P.; Binzel, R. P.

    2014-07-01

    We present 17 reflectance spectra of 12 high albedo (pv>0.14) Trojans (8 objects) and Hildas (4 objects) obtained with the ESO/VLT Echelle spectrograph X-SHOOTER in the 0.3-2.2um spectral range (14 spectra) and with the NASA/IRTF spectrograph SpeX in the 0.8-2.5um spectral range (3 spectra). X-SHOOTER spectra were normalized to unity at 0.55um and SpeX spectra were normalized to unity at 2.2um . The spectra presented in this work were collected between April and December 2013. (18 data files).

  11. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    NASA Astrophysics Data System (ADS)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  12. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    NASA Astrophysics Data System (ADS)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope. Based also on archival data from the Galactic O-Star Spectroscopic Survey (GOSSS), the Anglo-Australian Telescope (AAT) equipped with the University College London Echelle Spectrograph (UCLES), the ESO/La Silla Observatory with the Fiber-fed Extended Range Optical Spectrograph (FEROS; programmes 70.D-0110, 075.D-0061, 076.C-0431, 081.D-2008, 083.D-0589, 086.D-0997, 087.D-0946, 089.D-0189, 089.D-0975, 179.C-0197, and the High Accuracy Radial velocity Planet Searcher (HARPS; programme 60.A-9036), the Pic du Midi Observatory equipped with the NARVAL spectropolarimeter, the San Pedro Mártir (SPM) observatory with the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO), the OHP with the AURELIE and ELODIE échelle spectrographs, the Nordic Optical Telescope (NOT) with the FIbre-fed Echelle Spectrograph (FIES), the Canada-France-Hawaii Telescope (CFHT), with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph, the Leonhard Euler Telescope with the CORALIE spectrograph.Table F.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A56

  13. MuSICa at GRIS: a prototype image slicer for EST at GREGOR

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Collados, M.; López, R. L.

    2013-05-01

    This communication presents a prototype image slicer for the 4-m European Solar Telescope (EST) designed for the spectrograph of the 1.5-m GREGOR solar telescope (GRIS). The design of this integral field unit has been called MuSICa (Multi-Slit Image slicer based on collimator-Camera). It is a telecentric system developed specifically for the integral field, high resolution spectrograph of EST and presents multi-slit capability, reorganizing a bidimensional field of view of 80 arcsec^{2} into 8 slits, each one of them with 200 arcsec length × 0.05 arcsec width. It minimizes the number of optical components needed to fulfil this multi-slit capability, three arrays of mirrors: slicer, collimator and camera mirror arrays (the first one flat and the other two spherical). The symmetry of the layout makes it possible to overlap the pupil images associated to each part of the sliced entrance field of view. A mask with only one circular aperture is placed at the pupil position. This symmetric characteristic offers some advantages: facilitates the manufacturing process, the alignment and reduces the costs. In addition, it is compatible with two modes of operation: spectroscopic and spectro-polarimetric, offering a great versatility. The optical quality of the system is diffraction-limited. The prototype will improve the performances of GRIS at GREGOR and is part of the feasibility study of the integral field unit for the spectrographs of EST. Although MuSICa has been designed as a solar image slicer, its concept can also be applied to night-time astronomical instruments (Collados et al. 2010, Proc. SPIE, Vol. 7733, 77330H; Collados et al. 2012, AN, 333, 901; Calcines et al. 2010, Proc. SPIE, Vol. 7735, 77351X)

  14. VizieR Online Data Catalog: Abundances & RVs for stars near (or in) NGC6273 (Johnson+, 2017)

    NASA Astrophysics Data System (ADS)

    Johnson, C. I.; Caldwell, N.; Rich, R. M.; Mateo, M.; Bailey, J. I., III; Clarkson, W. I.; Olszewski, E. W.; Walker, M. G.

    2017-09-01

    In order to efficiently obtain a large number of high-resolution spectra, we employed the Michigan/Magellan Fiber System (M2FS) and MSpec multi-object spectrograph mounted on the Magellan-Clay 6.5m telescope (R~27000). We supplemented the M2FS CaT data set with additional observations of 300 RGB stars taken with the VLT FLAMES-GIRAFFE instrument. The data were downloaded from the European Southern Observatory (ESO) Science Archive Facility (R~18000 from 8482 to 9000Å). In support of our spectroscopic observations, we have obtained new HST Wide Field Camera 3 UVIS channel (WFC3/UVIS) data centered on NGC 6273 that includes the F336W, F438W, F555W, and F814W filters. (7 data files).

  15. VizieR Online Data Catalog: Investigating Tully-Fisher relation with KMOS3D (Ubler+,

    NASA Astrophysics Data System (ADS)

    Ubler, H.; Forster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.

    2018-02-01

    This work is based on the first 3yr of observations of KMOS3D multiyear near-infrared (near-IR) IFS survey of more than 600 mass-selected star-forming galaxies (SFGs) at 0.6<~z<~2.6 with the K-band Multi Object Spectrograph (KMOS; Sharples+ 2013Msngr.151...21S) on the Very Large Telescope. The KMOS3D survey and data reduction are described in detail by Wisnioski et al. 2015ApJ...799..209W The results presented in this paper build on the KMOS3D sample as of 2016 January, with 536 observed galaxies. Of these, 316 are detected in, and have spatially resolved, Hα emission free from skyline contamination from which two-dimensional velocity and dispersion maps are produced. (1 data file).

  16. A new optical transmission spectrum of WASP-43b from ACCESS

    NASA Astrophysics Data System (ADS)

    Weaver, Ian; University of Arizona, Católica, Carnegie

    2018-01-01

    We present a new ground-based optical transmission spectrum of the Hot Jupiter WASP--43b obtained with the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on the Baade Telescope at Las Campanas Observatory. These observations were made as part of the Arizona-CfA-Catolica+Carnegie Exoplanet Spectroscopy Survey (ACCESS), which aims at providing a uniform, large sample of visible transmission spectra of gaseous exoplanets that will become key in the era of JWST and comparative exoplanetology. Using multi-object differential spectrophotometry, we produce a high precision spectrum of this planet between 400 and 900 nm, combining three different transit epochs. In this analysis, we search for signals of Na I, H-alpha, and K I, as well as for the presence of hazes/clouds.

  17. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.

  18. The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Hasinger, G.; Capak, P.; Salvato, M.; Barger, A. J.; Cowie, L. L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; Mobasher, B.; Nayyeri, H.; Sanders, D.; Scoville, N. Z.; Suh, H.; Steinhardt, C.; Yang, Fengwei

    2018-05-01

    We present a catalog of 10,718 objects in the COSMOS field, observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ∼5500–9800 Å. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects, we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I AB ∼ 23 and K AB ∼ 21, with a secondary peak at K AB ∼ 24. We sample a broad redshift distribution in the range 0 < z < 6, with one peak at z ∼ 1, and another one around z ∼ 4. We have identified 13 redshift spikes at z > 0.65 with chance probabilities < 4 × 10‑4, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Lyα background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. An optical design of the wide-field imaging and multi-object spectrograph for an Antarctic infrared telescope

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Obata, Tomokazu

    2016-08-01

    A design of the wide-field infrared camera (AIRC) for Antarctic 2.5m infrared telescope (AIRT) is presented. The off-axis design provides a 7'.5 ×7'. 5 field of view with 0".22 pixel-1 in the wavelength range of 1 to 5 μm for the simultaneous three-color bands using cooled optics and three 2048×2048 InSb focal plane arrays. Good image quality is obtained over the entire field of view with practically no chromatic aberration. The image size corresponds to the refraction limited for 2.5 m telescope at 2 μm and longer. To enjoy the stable atmosphere with extremely low perceptible water vapor (PWV), superb seeing quality, and the cadence of the polar winter at Dome Fuji on the Antarctic plateau, the camera will be dedicated to the transit observations of exoplanets. The function of a multi-object spectroscopic mode with low spectra resolution (R 50-100) will be added for the spectroscopic transit observation at 1-5 μm. The spectroscopic capability in the environment of extremely low PWV of Antarctica will be very effective for the study of the existence of water vapor in the atmosphere of super earths.

  20. First-generation instrumentation for the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Dunham, Edward W.; Massey, Philip; Roe, Henry G.

    2014-07-01

    The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013. The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT instrument. Two low-resolution facility spectrographs are currently under development with first light for each anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction, commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility instrumentation on the DCT.

  1. A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.

    2006-08-01

    We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.

  2. VizieR Online Data Catalog: Imaging observations of iPTF 13ajg (Vreeswijk+, 2014)

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Savaglio, S.; Gal-Yam, A.; De Cia, A.; Quimby, R. M.; Sullivan, M.; Cenko, S. B.; Perley, D. A.; Filippenko, A. V.; Clubb, K. I.; Taddia, F.; Sollerman, J.; Leloudas, G.; Arcavi, I.; Rubin, A.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Ofek, E. O.; Capone, J.; Kutyrev, A. S.; Toy, V.; Nugent, P. E.; Laher, R.; Surace, J.; Kulkarni, S. R.

    2017-08-01

    iPTF 13ajg was imaged with the Palomar 48 inch (P48) Oschin iPTF survey telescope equipped with a 12kx8k CCD mosaic camera (Rahmer et al. 2008SPIE.7014E..4YR) in the Mould R filter, the Palomar 60 inch and CCD camera (Cenko et al. 2006PASP..118.1396C) in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the 2.56 m Nordic Optical Telescope (on La Palma, Canary Islands) with the Andalucia Faint Object Spectrograph and Camera (ALFOSC) in SDSS ugriz, the 4.3 m Discovery Channel Telescope (at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS r, and with LRIS (Oke et al. 1995PASP..107..375O) and the Multi-Object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012SPIE.8446E..0JM), both mounted on the 10 m Keck-I telescope (on Mauna Kea, Hawaii), in g and Rs with LRIS and J and Ks with MOSFIRE. (1 data file).

  3. Estudio fotométrico de candidatos a cúmulos globulares en NGC 1316

    NASA Astrophysics Data System (ADS)

    Sesto, L. A.; Faifer, F. R.; Forte, J. C.

    We present the first results obtained in the context of a photometric study of the globular cluster population associated with the early-type giant galaxy NGC 1316. We analyze here the first of a total of ten fields that form a deep mosaic, which was obtained using the Gemini Multi-Object Spectrograph camera. This field contains the nucleus of the galaxy. As a result of psf photometry, we construct color-magnitude and color-color diagrams, as well as spatial distribution and integrated color diagrams. The analysis shows that there is no clear evidence of bimodality in the studied region. However, we confirm the presence of a probable young subpopulation of clusters in this system. Finally, we present color maps of the galaxy, showing the presence of an interesting structure produced by interstellar dust which is surrounding the nucleus of NGC 1316. Our results indicate that no significant effect is observed due to dust on the objects in the studied region. FULL TEXT IN SPANISH

  4. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  7. VizieR Online Data Catalog: Texas-Oxford NVSS (TONS) radio galaxies (Brand+, 2005)

    NASA Astrophysics Data System (ADS)

    Brand, K.; Rawlings, S.; Hill, G. J.; Tufts, J. R.

    2005-10-01

    Optical spectra were obtained during the period 2000 October-2003 May on the 2.6-m Nordic Optical Telescope (NOT) using the Andalucia faint object spectrograph, the 4.2-m William Herschel telescope (WHT) using ISIS, the 2.7-m Smith reflector at McDonald with the Imaging Grism Instrument (IGI), and the Hobby-Eberly Telescope (HET) using the Marcario low-resolution spectrograph (LRS). (3 data files).

  8. ARGOS: the laser guide star system for the LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.

    2010-07-01

    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.

  9. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  10. BATMAN: a DMD-based multi-object spectrograph on Galileo telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Ramarijaona, Harald; Moschetti, Manuele; Riva, Marco; Bon, William; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Zerbi, Filippo; Valenziano, Luca

    2014-07-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We are developing a 2048x1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The field of view (FOV) is 6.8 arcmin x 3.6 arcmin with a plate scale of 0.2 arcsec per micromirror. The wavelength range is in the visible and the spectral resolution is R=560 for 1 arcsec object (typical slit size). The two arms will have 2k x 4k CCD detectors. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images and spectra have been obtained and measured: typical spot diameters are within 1.5 detector pixels, and spectra generated by one micro-mirror slits are displayed with this optical quality over the whole visible wavelength range. Observation strategies are studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo mid-2015.

  11. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE PAGES

    Nord, B.; Buckley-Geer, E.; Lin, H.; ...

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  12. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  13. VizieR Online Data Catalog: The quasars MMT-BOSS pilot survey (Ross+, 2012)

    NASA Astrophysics Data System (ADS)

    Ross, N. P.; Myers, A. D.; Sheldon, E. S.; Yeche, C.; Strauss, M. A.; Bovy, J.; Kirkpatrick, J. A.; Richards, G. T.; Aubourg, E.; Blanton, M. R.; Brandt, W. N.; Carithers, W. C.; Croft, R. A. C.; da Silva, R.; Dawson, K.; Eisenstein, D. J.; Hennawi, J. F.; Ho, S.; Hogg, D. W.; Lee, K.-G.; Lundgren, B.; McMahon, R. G.; Miralda-Escude, J.; Palanque-Delabrouille, N.; Paris, I.; Petitjean, P.; Pieri, M. M.; Rich, J.; Roe, N. A.; Schiminovich, D.; Schlegel, D. J.; Schneider, D. P.; Slosar, A. Z.; Suzuki, N.; Tinker, J. L.; Weinberg, D. H.; Weyant, A.; White, M.; Wood-Vasey, W. M.

    2012-03-01

    The Sloan Digital Sky Survey is now in its third phase (SDSS-III; Eisenstein et al. 2011AJ....142...72E) and is carrying out a combination of four interleaved surveys that will continue until the summer of 2014. One of those surveys, the Baryon Oscillation Spectroscopic Survey (BOSS), commenced operations in late 2009 and is using essentially all the dark time for SDSS-III. BOSS uses the same 2.5m Sloan Foundation telescope that was used in SDSS-I/II, but since BOSS will observe fainter targets, the fiber-fed spectrographs have been significantly upgraded. These upgrades include: new CCDs with improved blue and red response; 1000 2" instead of 640 3" optical diameter fibers; higher throughput gratings over a spectral range of 3600-10000Å at a resolution of about 2000, and improved optics. Prior to the commencement of BOSS spectroscopy, we carried out spectroscopy of quasar candidates selected from co-added photometry in SDSS Stripe 82. Observations of these candidates were carried out in queue mode between 2008 September and 2009 January using the Hectospec multi-fiber spectrograph on the 6.5m Multiple Mirror Telescope (MMT). In Tables 14 and 15, we provide positions, PSF photometry (as observed, uncorrected for Galactic extinction), and redshifts for confirmed quasars from the MMT survey. Objects that are not flagged Primary in the CAS are listed separately (table 15). (2 data files).

  14. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  15. An Integral-Field Spectrograph for a Terrestrial Planet Finding Mission

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    We describe a conceptual design for an integral field spectrograph for characterizing exoplanets that we developed for NASA's Terrestrial Planet Finder Coronagraph (TPF-C), although it is equally applicable to an external-occulter mission. The spectrograph fulfills all four scientific objectives of a terrestrial planet finding mission by: (1) Spectrally characterizing the atmospheres of detected planets in search of signatures of habitability or even biological activity; (2) Directly detecting terrestrial planets in the habitable zone around nearby stars; (3) Studying all constituents of a planetary system including terrestrial and giant planets, gas and dust around sun-like stars of different ages and metallicities; (4) Enabling simultaneous, high-spatial-resolution, spectroscopy of all astrophysical sources regardless of central source luminosity, such as AGN's, proplyds, etc.

  16. Developments in fiber-positioning technology for the WEAVE instrument at the William Herschel Telescope

    NASA Astrophysics Data System (ADS)

    Schallig, Ellen; Lewis, Ian J.; Gilbert, James; Dalton, Gavin; Brock, Matthew; Abrams, Don Carlos; Middleton, Kevin; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Trager, Scott C.; Vallenari, Antonella

    2016-08-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) on La Palma in the Canary Islands, Spain. It is a multi-object "pick-and-place" fibre-fed spectrograph with a 1000 fibre multiplex behind a new dedicated 2° prime focus corrector. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). In this paper we describe some of the final design decisions arising from the prototyping phase of the instrument design and provide an update on the current manufacturing status of the fibre positioner system.

  17. Status Update on the James Webb Space Telescope Project

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold <50 K), infrared (IR)-optimized space observatory that will be launched in approx.2018. The observatory will have four instruments covering 0.6 to 28 micron, including a multi-object spectrograph, two integral field units, and grisms optimized for exoplanets. I will review JWST's key science themes, as well as exciting new ideas from the recent JWST Frontiers Workshop. I will summarize the technical progress and mission status. Recent highlights: All mirrors have been fabricated, polished, and gold-coated; the mirror is expected to be diffraction-limited down to a wavelength of 2 microns. The MIRI instrument just completed its cryogenic testing. STScI has released exposure time calculators and sensitivity charts to enable scientists to start thinking about how to use JWST for their science.

  18. Cryogenic Volume-Phase Holographic Grisms for MOIRCS

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Ichiyama, Kotaro; Yamada, Toru; Tokoku, Chihiro; Onodera, Masato; Hanesaka, Mai; Kodate, Kashiko; Katsuno Uchimoto, Yuka; Maruyama, Miyoko; Shimasaku, Kazuhiro; Tanaka, Ichi; Yoshikawa, Tomohiro; Kashikawa, Nobunari; Iye, Masanori; Ichikawa, Takashi

    2011-03-01

    We have developed high-dispersion VPH (volume phase holographic) grisms with zinc selenide (ZnSe) prisms for the cryogenic optical system of MOIRCS (Multi-Object near-InfraRed Camera and Spectrograph) for Y-, J-, H-, and K-band observations. We fabricated VPH gratings using a hologram resin. After several heat cycles at between room temperature and 120 K, the VPH gratings were assembled to grisms by gluing with two ZnSe prisms. Several heat cycles were also carried out for the grisms before being installed into MOIRCS. We measured the efficiencies of the VPH grisms in a laboratory, and found them to be 70%-82%. The performances obtained by observations of MOIRCS with the 8.2 m Subaru Telescope have been found to be very consistent with the results in the laboratory test. This is the first astronomical application of cryogenic VPH grisms.

  19. VizieR Online Data Catalog: Cheshire Cat galaxies: redshifts and magnitudes (Irwin+, 2015)

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Dupke, R.; Carrasco, E. R.; Maksym, W. P.; Johnson, L.; White, R. E., III

    2017-09-01

    The optical observations (imaging and spectroscopy) were performed with the Gemini Multi-Object Spectrograph (hereafter GMOS; Hook et al. 2004PASP..116..425H) at the Gemini North Telescope in Hawaii, in queue mode, as part of the program GN-2011A-Q-25. The direct images were recorded through the r' and i' filters during the night of 2011 January 4, in dark time, with seeing median values of 0.8" and 0.9" for the r' and i' filters, respectively. The night was not photometric. Three 300 s exposures (binned by two in both axes, with pixel scale of 0.146") were observed in each filter. Offsets between exposures were used to take into account the gaps between the CCDs (37 un-binned pixels) and for cosmic ray removal. (1 data file).

  20. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  1. The Ultraviolet Spectrograph on NASA's Juno Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François

    2017-11-01

    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  2. First light results from the Hermes spectrograph at the AAT

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew; Barden, Sam; Birchall, Michael; Carollo, Daniela; Bland-Hawthorn, Joss; Brzeski, Jurek; Case, Scott; Cannon, Russell; Churilov, Vladimir; Couch, Warrick; Dean, Robert; De Silva, Gayandhi; D'Orazi, Valentina; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Frost, Gabriella; Gers, Luke; Goodwin, Michael; Gray, Doug; Heald, Ron; Heijmans, Jeroen; Jones, Damien; Keller, Stephan; Klauser, Urs; Kondrat, Yuriy; Lawrence, Jon; Lee, Steve; Mali, Slavko; Martell, Sarah; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Shortridge, Keith; Simpson, Jeffrey; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; Wylie de Boer, Elizabeth; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we present the first-light results from the commissioning run and the beginning of the GALAH Survey, including performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance calculations from the pilot survey to those in the literature.

  3. Study on a multi-delay spectral interferometry for stellar radial velocity measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang

    2014-08-01

    High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).

  4. Development of a slicer integral field unit for the existing optical spectrograph FOCAS: progress

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukushima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Tsuzuki, Toshihiro; Miyazaki, Satoshi; Yamashita, Takuya

    2014-07-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. The slice width is 0.43 arcsec, the slice number is 23, and the field of view is 13.5 × 9.89 arcsec2. Sky spectrum separated by about 5.7 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. Slice mirrors, pupil mirrors and slit mirrors are all glass, and their mirror surfaces are fabricated by polishing. Our IFU is about 200 mm × 300 mm × 80 mm in size and 1 kg in weight. It is installed into a mask storage in FOCAS along with one or two mask plates, and inserted into the optical path by using the existing mask exchange mechanism. This concept allow us flexible operation such as Targets of Opportunity observations. High reflectivity of multilayer dielectric coatings offers high throughput (>80%) of the IFU. In this paper, we will report a final optical layout, its performances, and results of prototyping works.

  5. Multi-wavelength Probes of Obscuration Towards the Narrow Line Region in Seyfert Galaxies (PREPRINT)

    DTIC Science & Technology

    2010-11-01

    in the Seyfert 1 galaxy NGC 4151 (Kraemer et al. 2000), near IR emission detected in Gemini/Near-Infrared Integrated Field Spectrograph ( NIFS ...any case, it points to the presence of a significant amount of material outside the optical NLR, in agreement with results from NIFS spectra of a

  6. The X-ray spectrographic telescope. [for solar corona observation

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Krieger, A. S.; Petrasso, R.; Silk, J. K.; Timothy, A. F.

    1974-01-01

    The S-054 X-ray telescope, which operated successfully throughout the eight-month Skylab mission, is a grazing incidence instrument with a spatial resolution of the order of 2 arc sec on axis. The total wavelength range observed by the instrument is 2 to 60 A. Crude spectral resolution within this range is achieved by means of a series of six X-ray filter materials. A spectrographic mode of operation, employing an objective grating, is used to obtain spectra of flare events and selected coronal features.

  7. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  8. Commissioning the Robert Stobie Spectrograph on the 11-meter Southern African Large Telescope (SALT)

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; Nordsieck, K.; Williams, T.; Buckley, D.; SALT Operations Group; UW-Madison RSS Commissioning Group

    2012-01-01

    The Southern African Large Telescope (SALT) is an 11-meter optical and near-infrared telescope located in South Africa. It is operated by an international consortium led by South Africa and consisting of partners in the U.S., Europe, India, and New Zealand. After some initial telescope image quality problems were fixed, one of the main workhorse instruments called the Robert Stobie Spectrograph began checkout and commissioning in April, 2011. All of the instrument modes have been shown to be operational, and some of them are now in routine use. Shared-risk science observations began in September, 2011, alongside ongoing commissioning of the more unusual modes of this very versatile and complex instrument. The RSS provides numerous capabilities in a compact prime-focus design with an 8 arcminute field of view: • Long-slit spectroscopy. Six gratings provide resolving powers ranging from 800 to 11,000 and wavelength coverage from the blue atmospheric cutoff (320 nm) to around 1000 nm. • Multi-object spectroscopy using laser-cut slit masks. • High speed spectroscopy. By restricting the field of view in a slot mode, spectra can be read out as rapidly as 10 Hz. • Fixed band imaging. In addition to providing help with target acquisition, the RSS imaging mode is a powerful narrow-band imaging system, with a suite of narrow-band filters nearly continuously covering the wavelength range 430 - 900 nm. • Fabry-Perot imaging. The system can operate with either one or two etalons, providing a range in spectral resolving power from 250 to 10,000 over 430- 900 nm. • Polarimetry. All of the modes listed above also support polarimetric modes (linear and circular). Two next-generation instruments are under construction: a high-resolution fiber-fed spectrograph with resolving power reaching 65,000; and a near-infrared sibling of RSS, which will extend the spectral coverage to 1.7 microns.

  9. Development of integrated photonic-dicers for reformatting the point-spread-function of a telescope

    NASA Astrophysics Data System (ADS)

    MacLachlan, David G.; Harris, Robert; Choudhury, Debaditya; Arriola, Alexander; Brown, Graeme; Allington-Smith, Jeremy; Thomson, Robert R.

    2014-07-01

    Spectroscopy is a technique of paramount importance to astronomy, as it enables the chemical composition, distances and velocities of celestial objects to be determined. As the diameter of a ground-based telescope increases, the pointspread- function (PSF) becomes increasingly degraded due to atmospheric seeing. A degraded PSF requires a larger spectrograph slit-width for efficient coupling and current spectrographs for large telescopes are already on the metre scale. This presents numerous issues in terms of manufacturability, cost and stability. As proposed in 2010 by Bland-Hawthorn et al, one approach which may help to improve spectrograph stability is a guided wave transition, known as a "photonic-lantern". These devices enable the low-loss reformatting of a multimode PSF into a diffraction-limited source (in one direction). This pseudo-slit can then be used as the input to a traditional spectrograph operating at the diffraction limit. In essence, this approach may enable the use of diffractionlimited spectrographs on large telescopes without an unacceptable reduction in throughput. We have recently demonstrated that ultrafast laser inscription can be used to realize "integrated" photoniclanterns, by directly writing three-dimensional optical waveguide structures inside a glass substrate. This paper presents our work on developing ultrafast laser inscribed devices capable of reformatting a multimode telescope PSF into a diffraction-limited slit.

  10. Space Telescope maintenance and refurbishment

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  11. VizieR Online Data Catalog: The AllWISE motion survey (AllWISE2) (Kirkpatrick+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Kellogg, K.; Schneider, A. C.; Fajardo-Acosta, S.; Cushing, M. C.; Greco, J.; Mace, G. N.; Gelino, C. R.; Wright, E. L.; Eisenhardt, P. R. M.; Stern, D.; Faherty, J. K.; Sheppard, S. S.; Lansbury, G. B.; Logsdon, S. E.; Martin, E. C.; McLean, I. S.; Schurr, S. D.; Cutri, R. M.; Conrow, T.

    2016-07-01

    Observations for the spectroscopic follow-up of interesting AllWISE sources are listed in Table 4. Optical follow-up was conducted with the Palomar/Double Spectrograph on the Hale 5m telescope on Palomar Mountain, California, as our primary optical spectrograph in the northern hemisphere. It was used during the UT nights of 2014 January 26, February 23/24, April 22, June 25/26, July 21, September 27, October 24, and November 15 as well as 2015 June 08, September 07, and December 10. The Boller & Chivens Spectrograph (BCSpec) on the 2.5m Irenee duPont telescope at Las Campanas Observatory, Chile, served as our primary optical spectrograph in the southern hemisphere and was used on the UT nights of 2014 April 30, May 01-04, and November 16-20. Spectra of 10 objects were obtained on the UT nights of 2014 July 03-04 and 2015 December 07-10 at the European Southern Observatory (ESO) 3.58m New Technology Telescope (NTT) at La Silla, Chile. Spectra of seven objects were obtained on the UT nights of 2014 June 26, 2015 August 13, and 2015 December 05 with the Low Resolution Imaging Spectrometer (LRIS) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. SpeX on the NASA 3m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, served as our primary near-infrared spectrograph in the northern hemisphere. The UT dates of observation were 2014 November 11 and 2015 January 27, May 08-09, June 27, July 03-05, and July 20. The Folded-port Infrared Echellette (FIRE) at the 6.5m Walter Baade Telescope at Las Campanas Observatory, Chile, served as our primary near-infrared spectrograph in the southern hemisphere. The UT dates of observation were 2014 August 07-09, 2015 February 08, and 2015 May 31. Several sources were also observed with the Near-Infrared Spectrometer (NIRSPEC) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. The observation dates were UT 2014 April 12 and December 03, and 2015 July 03 and July 11. (9 data files).

  12. The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1–3

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Zwitter, Tomaz; Horner, Jonathan; Clark, Jake; Kane, Stephen R.; Huber, Daniel; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D’Orazi, Valentina; Freeman, Ken; Martell, Sarah; Simpson, Jeffrey D.; Zucker, Daniel B.; Anguiano, Borja; Casagrande, Luca; Esdaile, James; Hon, Marc; Ireland, Michael; Kafle, Prajwal R.; Khanna, Shourya; Marshall, J. P.; Saddon, Mohd Hafiz Mohd; Traven, Gregor; Wright, Duncan

    2018-02-01

    Accurate and precise radius estimates of transiting exoplanets are critical for understanding their compositions and formation mechanisms. To know the planet, we must know the host star in as much detail as possible. We present first results from the K2-HERMES project, which uses the HERMES multi-object spectrograph on the Anglo-Australian Telescope to obtain R ∼ 28000 spectra of up to 360 stars in one exposure. This ongoing project aims to derive self-consistent spectroscopic parameters for about half of K2 target stars. We present complete stellar parameters and isochrone-derived masses and radii for 46 stars hosting 57 K2 candidate planets in Campaigns 1–3. Our revised host-star radii cast severe doubt on three candidate planets: EPIC 201407812.01, EPIC 203070421.01, and EPIC 202843107.01, all of which now have inferred radii well in excess of the largest known inflated Jovian planets.

  13. VizieR Online Data Catalog: He abundances in M30 and NGC 6397 (Mucciarelli+, 2014)

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R.

    2017-06-01

    In this work we analyzed a set of high-resolution spectra acquired with the multi-object spectrograph FLAMES in the MEDUSA/GIRAFFE mode at the Very Large Telescope of the European Southern Observatory (ESO). The spectra are part of a data set secured within a project aimed at studying the general properties of blue straggler stars (Ferraro et al. 2006ApJ...647L..53F, 2009Natur.462.1028F, 2012Natur.492..393F; Lovisi et al. 2012, J/ApJ/754/91; 2013, J/ApJ/772/148). The employed GIRAFFE grating is HR5A (4340-4587 Å, with a spectral resolution of ~18000), suitable to sample the He I line at 4471.5 Å. Spectra have been reduced with the standard ESO FLAMES pipeline. Six exposures of 45 minutes each have been secured in each cluster. (1 data file).

  14. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  15. Status Update on the James Webb Space Telescope Project

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched in approx.2018. The observatory will have four instruments covering 0.6 to 28 micron, including a multi-object spectrograph, two integral fie ld units, and grisms optimized for exoplanets. I will review JWST's k ey science themes, as well as exciting new ideas from the recent JWST Frontiers Workshop. I will summarize the technical progress and miss ion status. Recent highlights: All mirrors have been fabricated, polished, and gold-coated; the mirror is expected to be diffraction-limite d down to a wavelength of 2 micron. The MIRI instrument just complete d its cryogenic testing. STScI has released exposure time calculators and sensitivity charts to enable scientists to start thinking about how to use JWST for their science.

  16. VizieR Online Data Catalog: Optical spectroscopy toward Orion B fields (Kounkel+, 2017)

    NASA Astrophysics Data System (ADS)

    Kounkel, M.; Hartmann, L.; Mateo, M.; Bailey, J. I., III

    2018-03-01

    We observed a total of four fields toward the Orion B with Michigan/Magellan Fiber System (M2FS), a multi-object spectrograph on the Magellan Clay Telescope. These fields included regions toward NGC2023, 2024, 2068, and L1622 (Table 1). Due to their spatial proximity, we consider NGC 2023 and NGC 2024 together in the analysis presented in this paper. All regions were observed with the Hα and LiI filters, simultaneously spanning two orders, covering the spectral range of 6525-6750Å with a spectral resolution R~20000 between 2014 Dec and 2017 Mar. A maximum of 128 sources can be observed in this configuration, with the field of view of 29' in diameter. NGC 2068 has also been re-observed a second time with the Hα and the LiI filters, as well as the MgI filter, which spans the spectral range of 5100-5210Å. (2 data files).

  17. First planet confirmation with the exoplanet tracker

    NASA Astrophysics Data System (ADS)

    van Eyken, Julian C.; Ge, Jian C.; Mahadevan, Suvrath; DeWitt, Curtis; Ren, Deqing

    2003-11-01

    The Exoplanet Tracker (ET) is a new concept of instrument for measuring stellar radial velocity variations. ET is based on a dispersed fixed-delay interferometer, a combination of Michelson interferometer and medium resolution (R~6700) spectrograph which overlays interferometer fringes on a long-slit stellar spectrum. By measuring shifts in the fringes rather than the Doppler shifts in the absorption lines themselves, we are able to make accurate stellar radial velocity measurements with a high throughput and low cost instrument. The single-order operation of the instrument can also in principle allow multi-object observations. We plan eventually to conduct deep large scale surveys for extra-solar planets using this technique. We present confirmation of the planetary companion to 51Peg from our first stellar observations at the Kitt Peak 2.1m telescope, showing results consistent with previous observations. We outline the fundamentals of the instrument, and summarize our current progress in terms of accuracy and throughput.

  18. VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.

    2018-02-01

    Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).

  19. VizieR Online Data Catalog: Virgo cluster ETGs: GC and galaxy diffuse light (Li+, 2015)

    NASA Astrophysics Data System (ADS)

    Li, B.; Peng, E. W.; Zhang, H.-X.; Blakeslee, J. P.; Cote, P.; Ferrarese, L.; Jordan, A.; Liu, C.; Mei, S.; Puzia, T. H.; Takamiya, M.; Trancho, G.; West, M. J.

    2017-09-01

    We selected four intermediate-luminosity ETGs from the ACS Virgo Cluster Survey (ACSVCS; Cote et al. 2004, J/ApJS/153/223), a homogeneous Hubble Space Telescope survey of 100 ETGs in the nearby Virgo cluster of galaxies using the Advanced Camera for Surveys (ACS; Ford et al. 1998SPIE.3356..234F). We observed these galaxies with the Gemini Multi-Object Spectrographs (GMOS, Hook et al. 2004PASP..116..425H), twin instruments on the Gemini North and Gemini South telescopes. Our target galaxies have sizes (Re~10-18") that fit well within the GMOS field of view (5.5 arcmin2), providing coverage out to 10-16Re. Each galaxy contained ~50 targetable GCs with V<23 mag. VCC 1231, VCC 1062, and VCC 2000 data were taken with GMOS-South, whereas data for VCC 685 was taken with GMOS-North. (3 data files).

  20. Gemini Follow-up of Two Massive H I Clouds Discovered with the Australian Square Kilometer Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Madrid, Juan P.; Lee-Waddell, Karen; Serra, Paolo; Koribalski, Bärbel S.; Schirmer, Mischa; Spekkens, Kristine; Wang, Jing

    2018-02-01

    Using the Gemini Multi Object Spectrograph (GMOS) we search for optical counterparts of two massive (∼109 M ⊙) neutral hydrogen clouds near the spiral galaxy IC 5270, located in the outskirts of the IC 1459 group. These two H I clouds were recently discovered using the Australian Square Kilometer Array Pathfinder (ASKAP). Two low surface brightness optical counterparts to one of these H I clouds are identified in the new Gemini data that reaches down to magnitudes of ∼27.5 mag in the g-band. The observed H I mass-to-light ratio derived with these new data, {M}{{H}{{I}}}/{L}g=242, is among the highest reported to date. We are also able to rule out that the two H I clouds are dwarf companions of IC 5270. Tidal interactions and ram pressure stripping are plausible explanations for the physical origin of these two clouds.

  1. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  2. The Abundance of Lithium in an ABG Star in the Globular Cluster M3 (NGC 5272)

    NASA Astrophysics Data System (ADS)

    Givens, R. A.; Pilachowski, C. A.

    2016-12-01

    A survey of red giants in the globular cluster M3 with the Hydra multi-object spectrograph on the WIYN 3.5 m telescope indicated a prominent Li i 6707 Å feature in the red giant vZ 1050. Followup spectroscopy with the ARC 3.5 m telescope confirmed this observation and yielded a derived abundance of A(Li)NLTE = 1.6 ± 0.05. In addition, the high oxygen and low sodium abundances measured from the same spectrum suggest that vZ 1050 is a first generation cluster star. The location of vZ 1050 above the horizontal branch and blueward of the red giant branch in the cluster’s color-magnitude diagram places vZ 1050 on M3's asymptotic giant branch. The likely source for the enhanced lithium abundance is the Cameron-Fowler mechanism operating in vZ 1050 itself.

  3. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells

    NASA Astrophysics Data System (ADS)

    Chadha, S.; Nelson, W. H.; Sperry, J. F.

    1993-11-01

    The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.

  4. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  5. Simulating the WFIRST coronagraph integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime J.; Groff, Tyler D.; Zimmermann, Neil T.; Gong, Qian; Mandell, Avi M.; Saxena, Prabal; McElwain, Michael W.; Roberge, Aki; Krist, John; Riggs, A. J. Eldorado; Cady, Eric J.; Mejia Prada, Camilo; Brandt, Timothy; Douglas, Ewan; Cahoy, Kerri

    2017-09-01

    A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.

  6. Multi-fibers connectors systems for FOCCoS-PFS-Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Vital de Arruda, Marcio; dos Santos, Jesulino Bispo; Ferreira, Décio; Rosa, Josimar Aparecido; de Paiva Vilaça, Rodrigo; Sodré, Laerte; de Oliveira, Claudia Mendes; Gunn, James E.

    2014-07-01

    The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs through optical fibers cables as part of PFS instrument for Subaru telescope. The optical fiber cable will be segmented in 3 parts along the route, cable A, cable B and cable C, connected by a set of multi-fiber connectors. The company USCONEC produces the multi-fiber connector under study. The USCONEC 32F model can connect 32 optical fibers in a 4 x 8 matrix arrangement. The ferrules are made of a durable composite, Polyphenylene Sulfide (PPS) based thermoplastic. The connections are held in place by a push-on/pull-off latch, and the connector can also be distinguished by a pair of metal guide pins that protrude from the front of the connector. Two fibers per connector will be used for monitoring the connection procedure. It was found to be easy to polish and it is small enough to be mounted in groups. Highly multiplexed instruments like PFS require a fiber connector system that can deliver excellent optical performance and reliability. PFS requires two different types of structures to organize the connectors. The Tower Connector system, with 80 multi-fiber connectors, will be a group of connectors for connecting cable B (Telescope Structure) with cable C (Positioners Plate). The Gang Connector system is a group of 8 gang connectors, each one with 12 multi-fibers connectors, for connecting cable B (Telescope Structure) with cable A (Spectrograph). The bench tests with these connector systems and the chosen fibers should measure the throughput of light and the stability after many connections and disconnections. In this paper we describe tests and procedures to evaluate the throughput and FRD increment. The lifetime of the ferrules is also in evaluation.

  7. MARVELS 1D Pipeline Development, Optimization, and Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Grieves, Nolan; Li, Rui; Sithajan, Sirinrat

    2016-04-01

    We describe the processing pipeline of one-dimensional spectra from the SDSS III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). This medium-resolution interferometric spectroscopic survey observed over 3300 stars over the course of four years with the primary goal of detecting and characterizing giant planets (>0.5 M Jup) from within a large, homogeneous sample of FGK stars. The successful extraction of radial velocities (RVs) from MARVELS is complicated by several instrument effects. The wide field nature of this multi-object spectrograph provides spectra that are initially distorted and require conditioning of the raw images for precise RV extraction. Also, the simultaneous observation of sixty stars per exposure leads to several effects not typically seen in a single-object instrument. For instance, fiber illumination changes over time can easily create the dominant source of RV measurement error when these changes are different for the stellar and calibration optical paths. We present a method for statistically quantifying these instrument effects to combat the difficulty of giant planet detection due to systematic RV errors. We also present an overview of the performance of the entire survey as it stands for the SDSS III DR 12 as well as key results from the very latest improvements. This includes a novel technique, called lucky RV, by which stable regions of spectra can be statistically determined and emphasized during RV extraction, leading to a large reduction of the long-term RV offsets in the MARVELS data. These improved RV data are to be released via NASA Exoplanet Archive in the fall of 2015.

  8. Ambient and Cryogenic Alignment Verification and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mink, Ronald G.; Mentzell, J. Eric; Saha, Timo T.; Tveekrem, June L.; Hylan, Jason E.; Sparr, Leroy M.; Chambers, V. John; Hagopian, John G.

    2003-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.

  9. The Extremely Metal-Poor Dwarf Galaxy AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John Joseph; Cannon, John M.; Skillman, Evan D.; SHIELD II Team

    2016-01-01

    We present spectroscopic observations of the nearby dwarf irregular galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) sample, which consists of ultra-low HI mass galaxies discovered by the Arecibo Legacy Fast-Acting ALFA (ALFALFA) survey. SHIELD is a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas content and dynamics of galaxies with HI masses in the range of 106-107 M⊙. Our spectral data were obtained using the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m telescope as part of a systematic study of the nebular abundances in the SHIELD galaxy sample. These observations enable measurement of the temperature sensitive [OIII]λ4363 line and hence the determination of a "direct" oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) galaxy with an oxygen abundance comparable to such objects as I Zw 18, SBS 0335-052W, Leo P, and DDO 68 - the lowest metallicity star-forming systems known. It is worth noting that two of the five lowest-abundance galaxies currently recognized were discovered via the ALFALFA blind HI survey. These XMD galaxies are potential analogues to the first star-forming systems, which through hierarchical accretion processes built up the large galaxies we observe today in the local Universe. Detailed analysis of such XMD systems offers observational constraint to models of galactic evolution and star formation histories to allow a better understanding of the processes that govern the chemical evolution of low-mass galaxies.

  10. KSC-98pc1086

    NASA Image and Video Library

    1998-09-14

    KENNEDY SPACE CENTER, FLA. The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay

  11. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    NASA Astrophysics Data System (ADS)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  12. OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ∼ 0.80–3.2 and in i -band surface brightness i {sub SB} ∼ 23–25 mag arcsec{sup −2} (2″ aperture). For each of the six systems, we estimate the Einstein radius θ {sub E} and the enclosed mass M {sub enc}, which have ranges θ {sub E} ∼ 5″–9″ and M {sub enc} ∼ 8 × 10{sup 12} to 6 × 10{sup 13} M {sub ⊙}, respectively.« less

  13. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in I-band surface brightness I SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. A new Cassegrain calibration lamp unit for the Blanco Telescope

    NASA Astrophysics Data System (ADS)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  15. New Window on the Universe.

    ERIC Educational Resources Information Center

    Reynolds, Ronald F.

    1984-01-01

    Describes the basic components of a space telescope that will be launched during a 1986 space shuttle mission. These components include a wide field/planetary camera, faint object spectroscope, high-resolution spectrograph, high-speed photometer, faint object camera, and fine guidance sensors. Data to be collected from these instruments are…

  16. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  17. ZTF Bright Transient Survey classifications

    NASA Astrophysics Data System (ADS)

    Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.

    2018-06-01

    The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).

  18. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  19. The Dark Energy Spectroscopic Instrument (DESI)

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna; Bebek, Chris

    2014-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).

  20. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds.

    In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system.

    There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature.

    This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005.

  1. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09197

  2. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09198

  3. An automated performance budget estimator: a process for use in instrumentation

    NASA Astrophysics Data System (ADS)

    Laporte, Philippe; Schnetler, Hermine; Rees, Phil

    2016-08-01

    Current day astronomy projects continue to increase in size and are increasingly becoming more complex, regardless of the wavelength domain, while risks in terms of safety, cost and operability have to be reduced to ensure an affordable total cost of ownership. All of these drivers have to be considered carefully during the development process of an astronomy project at the same time as there is a big drive to shorten the development life-cycle. From the systems engineering point of view, this evolution is a significant challenge. Big instruments imply management of interfaces within large consortia and dealing with tight design phase schedules which necessitate efficient and rapid interactions between all the stakeholders to firstly ensure that the system is defined correctly and secondly that the designs will meet all the requirements. It is essential that team members respond quickly such that the time available for the design team is maximised. In this context, performance prediction tools can be very helpful during the concept phase of a project to help selecting the best design solution. In the first section of this paper we present the development of such a prediction tool that can be used by the system engineer to determine the overall performance of the system and to evaluate the impact on the science based on the proposed design. This tool can also be used in "what-if" design analysis to assess the impact on the overall performance of the system based on the simulated numbers calculated by the automated system performance prediction tool. Having such a tool available from the beginning of a project can allow firstly for a faster turn-around between the design engineers and the systems engineer and secondly, between the systems engineer and the instrument scientist. Following the first section we described the process for constructing a performance estimator tool, followed by describing three projects in which such a tool has been utilised to illustrate how such a tool have been used in astronomy projects. The three use-cases are; EAGLE, one of the European Extremely Large Telescope (E-ELT) Multi-Object Spectrograph (MOS) instruments that was studied from 2007 to 2009, the Multi-Object Optical and Near-Infrared Spectrograph (MOONS) for the European Southern Observatory's Very Large Telescope (VLT), currently under development and SST-GATE.

  4. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  5. CAFE: Calar Alto Fiber-fed Échelle spectrograph

    NASA Astrophysics Data System (ADS)

    Aceituno, J.; Sánchez, S. F.; Grupp, F.; Lillo, J.; Hernán-Obispo, M.; Benitez, D.; Montoya, L. M.; Thiele, U.; Pedraz, S.; Barrado, D.; Dreizler, S.; Bean, J.

    2013-04-01

    We present here CAFE, the Calar Alto Fiber-fed Échelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alemán (CAHA). CAFE is a single-fiber, high-resolution (R ~ 70 000) spectrograph, covering the wavelength range between 3650-9800 Å. It was built on the basis of the common design for Échelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to V ~ 13-14 mag with a precision as good as a few tens of m s-1. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, as is the wavelength coverage; there is no filter wheel, etc. Particular care was taken with the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2 m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfills the specifications and can achieve the planned goals. In particular, the results show that the instrument is more efficient than anticipated, reaching a signal-to-noise of ~20 for a stellar object as faint as V ~ 14.5 mag in ~2700 s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (highly precise radial velocities in moving groups or stellar associations), or astrochemistry.

  6. Observations of hydrogen-rich supernovae in the first days after explosion and new instruments to study them

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; PTF

    2018-01-01

    I will discuss our results studying light curves of hydrogen-rich supernovae during the first few days after explosion. The first days of emission encode important information about the physical system, and it is possible to relate the early-time light curve to the radius of the progenitor star by using shock-cooling models. I will show the first systematic application of these models to data from the Palomar Transient Factory (PTF). We found that R-band data alone at PTF cadence cannot constrain the radius but can constrain the energy per unit mass of the explosion, uncovering new correlations with other supernova observables. We constrained the radii for events with multi-wavelength observations, and for two events observed with the Kepler mission at 30 min cadence. I will discuss improved observing strategies to obtain more constraining results in the future. Some tensions have arisen between our results and the expected radii from identified progenitors of hydrogen-rich supernovae. The resolution of these tensions may be related to the effect of circumstellar material on the light curves, motivating future systematic spectroscopic sequencing of these events. To this end, we have designed a new medium resolution UV-VIS spectrograph. The Multi-Imaging Transient Spectrograph (MITS) is the R~4500 UV-VIS arm of the Son Of X-Shooter (SOXS) spectrograph proposed for ESO’s 3.6 m New Technology Telescope. Our design divides the spectrum into several sub-bands, allowing optimization for each narrow part of the spectrum. We estimate a 50-100% improvement in throughput relative to a classical 4-C echelle design. Our design has passed a preliminary design review and is expected on the telescope in early 2021.

  7. IEH-3 is prepared for launch on STS-95 in the MPPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay.

  8. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use the inversion to study the time evolution of a bi-directional jet. The inverted line profiles show fast doppler shifted components and no measurable line core emission. The blue and red wings of the jet show increasing spatial separation with time.

  9. NIRPS: an adaptive-optics assisted radial velocity spectrograph to chase exoplanets around M-stars

    NASA Astrophysics Data System (ADS)

    Wildi, F.; Blind, N.; Reshetov, V.; Hernandez, O.; Genolet, L.; Conod, U.; Sordet, M.; Segovilla, A.; Rasilla, J. L.; Brousseau, D.; Thibault, S.; Delabre, B.; Bandy, T.; Sarajlic, M.; Cabral, A.; Bovay, S.; Vallée, Ph.; Bouchy, F.; Doyon, R.; Artigau, E.; Pepe, F.; Hagelberg, J.; Melo, C.; Delfosse, X.; Figueira, P.; Santos, N. C.; González Hernández, J. I.; de Medeiros, J. R.; Rebolo, R.; Broeg, Ch.; Benz, W.; Boisse, I.; Malo, L.; Käufl, U.; Saddlemyer, L.

    2017-09-01

    Since 1st light in 2002, HARPS has been setting the standard in the exo-planet detection by radial velocity (RV) measurements[1]. Based on this experience, our consortium is developing a high accuracy near-infrared RV spectrograph covering YJH bands to detect and characterize low-mass planets in the habitable zone of M dwarfs. It will allow RV measurements at the 1-m/s level and will look for habitable planets around M- type stars by following up the candidates found by the upcoming space missions TESS, CHEOPS and later PLATO. NIRPS and HARPS, working simultaneously on the ESO 3.6m are bound to become a single powerful high-resolution, high-fidelity spectrograph covering from 0.4 to 1.8 micron. NIRPS will complement HARPS in validating earth-like planets found around G and K-type stars whose signal is at the same order of magnitude than the stellar noise. Because at equal resolving power the overall dimensions of a spectrograph vary linearly with the input beam étendue, spectrograph designed for seeing-limited observations are large and expensive. NIRPS will use a high order adaptive optics system to couple the starlight into a fiber corresponding to 0.4" on the sky as efficiently or better than HARPS or ESPRESSO couple the light 0.9" fiber. This allows the spectrograph to be very compact, more thermally stable and less costly. Using a custom tan(θ)=4 dispersion grating in combination with a start-of-the-art Hawaii4RG detector makes NIRPS very efficient with complete coverage of the YJH bands at 110'000 resolution. NIRPS works in a regime that is in-between the usual multi-mode (MM) where 1000's of modes propagates in the fiber and the single mode well suited for perfect optical systems. This regime called few-modes regime is prone to modal noise- Results from a significant R and D effort made to characterize and circumvent the modal noise show that this contribution to the performance budget shall not preclude the RV performance to be achieved.

  10. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca

    2017-06-01

    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  11. Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    NASA Technical Reports Server (NTRS)

    Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John

    2006-01-01

    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.

  12. WUVS simulator: detectability of spectral lines with the WSO-UV spectrographs

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, Pablo; de Castro, Ana I. Gómez; Abarca, Belén Perea; Sachkov, Mikhail

    2017-04-01

    The World Space Observatory Ultraviolet telescope is equipped with high dispersion (55,000) spectrographs working in the 1150 to 3100 Å spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission and it is designed to generate synthetic time-series of images by including models of all important noise sources. We describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.

  13. The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR

    NASA Astrophysics Data System (ADS)

    Hammer, François; Sayède, Frédéric; Gendron, Eric; Fusco, Thierry; Burgarella, Denis; Cayatte, Véronique; Conan, Jean-Marc; Courbin, Frédéric; Flores, Hector; Guinouard, Isabelle; Jocou, Laurent; Lançon, Ariane; Monnet, Guy; Mouhcine, Mustapha; Rigaud, François; Rouan, Daniel; Rousset, Gérard; Buat, Véronique; Zamkotsian, Frédéric

    A large fraction of the present-day stellar mass was formed between z=0.5 and z˜ 3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously obtain images of objects with typical sizes as small as 1-2 kpc (˜ 0".1), while achieving 20-50 km/s (R≥ 5000) spectral resolution. In addition, the redshift range to be considered implies that most important spectral features are redshifted in the near-infrared. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A very promising way to achieve such a technically challenging goal is to relax the conditions of the traditional full adaptive optics correction. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec 2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60 th Zernike modes. Simulations on real extragalactic fields, show that for most sources (> 80%), the recovered resolution could reach 0".15-0".25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to ≥10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equipped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes. Galaxy formation in the early Universe is certainly a main science driver. We describe here how FALCON shall allow to answer puzzling questions in this area, although the science cases naturally accessible to the instrument concept makes it of interest for most areas of astrophysics.

  14. VizieR Online Data Catalog: NIR spectroscopy of new L and T dwarf candidates (Kellogg+, 2017)

    NASA Astrophysics Data System (ADS)

    Kellogg, K.; Metchev, S.; Miles-Paez, P. A.; Tannock, M. E.

    2018-02-01

    We implemented a photometric search for peculiar L and T dwarfs using combined optical (SDSS), near-infrared (2MASS) and mid-infrared (WISE) fluxes. In Paper I (Kellogg et al. 2015AJ....150..182K), we reported a sample of 314 objects that passed all of our selection criteria and visual verification. After refining our visual verification, our total candidate L and T dwarf list was cut to 156 objects including 104 new candidates. We obtained near-infrared spectroscopic observations of the remaining 104 objects in our survey (66 peculiarly red, 13 candidate binary, and 25 general ultra-cool dwarf candidates) using the SpeX instrument on the NASA Infrared Telescope Facility (IRTF) and the Gemini Near-Infrared Spectrograph (GNIRS) instrument on the Gemini North telescope. We obtained the majority of our follow-up observations (91 of 104) with the SpeX spectrograph on the IRTF in prism mode (0.75-2.5μm; R~75-150), between 2014 October and 2016 April. The observing sequences and instrument settings were the same as those in Paper I (Kellogg et al. 2015AJ....150..182K). Table1 gives observation epochs and SpeX instrument settings for each science target. We followed-up the remaining 13 objects in our candidate list using the Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North (0.9-2.5μm). We observed these objects in queue mode between 2015 October and 2017 May. We took the observations in cross-dispersed mode with the short-blue camera with 32l/mm grating and a 1.0''*7.0'' slit, resulting in a resolution of R~500. We used a standard A-B-B-A nodding sequence along the slit to record object and sky spectra. Individual exposure times were 120s per pointing. Table2 gives Gemini/GNIRS observation epochs for each science target. (4 data files).

  15. VizieR Online Data Catalog: Spectra of 13 lensed quasars (Sluse+, 2012)

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemekers, D.; Courbin, F.; Meylan, G.; Wambsganss, J.

    2012-05-01

    Extracted flux calibrated spectra of 13 lensed quasars following the methodology described in Sect. 2.1. of the oaoer. The data were obtained with the FORS spectrograph at VLT in multi-object spectroscopy mode. The typical wavelength coverage is from 4200 to 8200Å. The data concern the following objects: HE0047-1756 (HE0047), Q0142-100 (Q0142), SDSSJ0246-0825 (SDSS0246), HE0435-1223 (HE0435), SDSSJ0806+2006 (SDSS0806), FBQ0951+2635 (FBQ0951), BRI0952-0115 (BRI0952), SDSSJ1138+0314 (J1138), J1226-0006 (J1226), SDSSJ1335+0118 (J1335), Q1355-2257 (Q1355), WFI2033-4723 (WFI2033), and HE2149-2745 (HE2149). For each object, we provide the 1D flux calibrated spectrum of the 2 individual images in the slit. In addition, we also provide the 2D reduced spectrum and corresponding 1σ error frame (corresponding files are named "objectnamedata" and "objectnameerr"), and the 2D processed spectra associated to the deconvolution, as shown in Fig.1 of the paper. These processed 2D spectra are the deconvolved frame ("dec"), the extended component of the flux emission ("ext") and the residual frame in σ units ("_res") corresponding to panel (b), (c) and (d) of Fig.1. A pdf file file similar to Fig.1 is also provided for each object. (4 data files).

  16. Alignment and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mentzell, J. Eric; Madison, Timothy J.; Hylan, Jason E.; Mink, Ronald G.; Saha, Timo T.; Tveekrem, June L.; Sparr, Leroy M.; Chambers, V. John; hide

    2004-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nanometers, a blackbody source provides a line at 1550 nanometers, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.

  17. Latest Results from the Multi-Object Keck Exoplanet Tracker

    NASA Astrophysics Data System (ADS)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  18. OPTIMOS-EVE optical design of a very efficient, high-multiplex, large spectral coverage, fiber-fed spectrograph at EELT

    NASA Astrophysics Data System (ADS)

    Spanò, P.; Tosh, I.; Chemla, F.

    2010-07-01

    OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.

  19. Development of a slicer integral field unit for the existing optical imaging spectrograph FOCAS

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukusima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Miyazaki, Satoshi; Yamashita, Takuya

    2012-09-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical imaging spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. Basic optical design has already finished. The slice width is 0.4 arcsec, slice number is 24, and field of view is 13.5x 9.6 arcsec. Sky spectra separated by about 3 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. The IFU will be installed as a mask plate and set by the mask exchanger mechanism of FOCAS. Slice mirrors, pupil mirrors and slit mirrors are all made of glass, and their mirror surfaces are fabricated by polishing. Multilayer dielectric reflective coating with high reflectivity (< 98%) is made on each mirror surface. Slicer IFU consists of many mirrors which need to be arraigned with high accuracy. For such alignment, we will make alignment jigs and mirror holders made with high accuracy. Some pupil mirrors need off-axis ellipsoidal surfaces to reduce aberration. We are conducting some prototyping works including slice mirrors, an off-axis ellipsoidal surface, alignment jigs and a mirror support. In this paper, we will introduce our project and show those prototyping works.

  20. VizieR Online Data Catalog: Bgri light curves of PTF11kmb and PTF12bho (Lunnan+, 2017)

    NASA Astrophysics Data System (ADS)

    Lunnan, R.; Kasliwal, M. M.; Cao, Y.; Hangard, L.; Yaron, O.; Parrent, J. T.; McCully, C.; Gal-Yam, A.; Mulchaey, J. S.; Ben-Ami, S.; Filippenko, A. V.; Fremling, C.; Fruchter, A. S.; Howell, D. A.; Koda, J.; Kupfer, T.; Kulkarni, S. R.; Laher, R.; Masci, F.; Nugent, P. E.; Ofek, E. O.; Yagi, M.; Yan, L.

    2017-09-01

    The objects PTF11kmb and PTF12bho were found as part of the Palomar Transient Factory (PTF). PTF11kmb was discovered in data taken with the 48 inch Samuel Oschin Telescope at Palomar Observatory (P48) on 2011 August 16.25 at a magnitude r=19.8mag. A spectrum was taken with the Low Resolution Imaging Spectrometer (LRIS) on the 10m Keck I telescope on 2011 August 28, showing SN features consistent with a SN Ib at a redshift z=0.017. The source PTF12bho was discovered in P48 data on 2012 February 25.25 at a magnitude of r=20.52mag. A spectrum taken with LRIS on 2012 March 15 yields z=0.023 based on the SN features. We obtained R- and g-band photometry of PTF11kmb and PTF12bho with the P48 CFH12K camera. Additional follow-up photometry was conducted with the automated 60-inch telescope at Palomar (P60) in the Bgri bands, and with the Las Cumbres Observatory (LCO) Faulkes Telescope North in gri. PTF12bho was also observed with the Swift Ultra-Violet/Optical Telescope (UVOT) and the Swift X-ray telescope (XRT) on 2012 March 17.8 for 3ks. We obtained a sequence of spectra for both PTF11kmb and PTF12bho using LRIS on Keck I, the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the 10m Keck II telescope, and the Double Spectrograph (DPSP) on the 200-inch Hale telescope at Palomar Observatory (P200) spanning 2011 Aug 28.5 to 2014 Jul 2.5. We obtained deep imaging of the fields of PTF11kmb using WFC3/UVIS on the Hubble Space Telescope (HST) through program GO-13864 (PI Kasliwal) in 2015 Jul 12. This program also covered the field of SN 2005E (2014 Dec 10). (1 data file).

  1. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  2. Time-resolved infrared spectrophotometric observations of high area to mass ratio (HAMR) objects in GEO

    NASA Astrophysics Data System (ADS)

    Skinner, Mark A.; Russell, Ray W.; Rudy, Richard J.; Gutierrez, David J.; Kim, Daryl L.; Crawford, Kirk; Gregory, Steve; Kelecy, Tom

    2011-12-01

    Optical surveys have identified a class of high area-to-mass ratio (HAMR) objects in the vicinity of the Geostationary Earth Orbit (GEO) ring [1]. The exact origin and nature of these objects are not well known, although their proximity to the GEO ring poses a hazard to active GEO satellites. Due to their high area-to-mass ratios, solar radiation pressure perturbs their orbits in ways that makes it difficult to predict their orbital trajectories over periods of time exceeding a week. To better understand these objects and their origins, observations that allow us to derive physical characteristics are required in order to improve the non-conservative force modeling for orbit determination and prediction. Information on their temperatures, areas, emissivities, and albedos may be obtained from thermal infrared, mid-wave infrared (MWIR), and visible measurements. Spectral features may help to identify the composition of the material, and thus possible origins for these objects. We have collected observational data on various HAMR objects from the AMOS observatory 3.6 m AEOS telescope. The thermal-IR spectra of these low-earth orbit objects acquired by the Broadband Array Spectrograph System (BASS) span wavelengths 3-13 μm and constitute a unique data set, providing a means of measuring, as a function of time, object fluxes. These, in turn, allow temperatures and emissivity-area products to be calculated. In some instances we have also collected simultaneous filtered visible photometric data on the observed objects. The multi-wavelength observations of the objects provide possible clues as to the nature of the observed objects. We describe briefly the nature and status of the instrumental programs used to acquire the data, our data of record, our data analysis techniques, and our current results, as well as future plans.

  3. An optimal method for producing low-stress fibre optic cables for astronomy

    NASA Astrophysics Data System (ADS)

    Murray, Graham; Tamura, Naoyuki; Takato, Naruhisa; Ekpenyong, Paul; Jenkins, Daniel; Leeson, Kim; Trezise, Shaun; Butterley, Timothy; Gunn, James; Ferreira, Decio; Oliveira, Ligia; Sodre, Laerte

    2017-09-01

    An increasing number of astronomical spectrographs employ optical fibres to collect and deliver light. For integral-field and high multiplex multi-object survey instruments, fibres offer unique flexibility in instrument design by enabling spectrographs to be located remotely from the telescope focal plane where the fibre inputs are deployed. Photon-starved astronomical observations demand optimum efficiency from the fibre system. In addition to intrinsic absorption loss in optical fibres, another loss mechanism, so-called focal ratio degradation (FRD) must be considered. A fundamental cause of FRD is stress, therefore low stress fibre cables that impart minimum FRD are essential. The FMOS fibre instrument for Subaru Telescope employed a highly effective cable solution developed at Durham University. The method has been applied again for the PFS project, this time in collaboration with a company, PPC Broadband Ltd. The process, planetary stranding, is adapted from the manufacture of large fibre-count, large diameter marine telecommunications cables. Fibre bundles describe helical paths through the cable, incorporating additional fibre per unit length. As a consequence fibre stress from tension and bend-induced `race-tracking' is minimised. In this paper stranding principles are explained, covering the fundamentals of stranded cable design. The authors describe the evolution of the stranding production line and the numerous steps in the manufacture of the PFS prototype cable. The results of optical verification tests are presented for each stage of cable production, confirming that the PFS prototype performs exceptionally well. The paper concludes with an outline of future on-telescope test plans.

  4. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    NASA Astrophysics Data System (ADS)

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; Ballester, Otger; Baltay, Charles; Besuner, Robert; Buckley-Geer, Elizabeth; Butler, Karen; Cardiel, Laia; Dey, Arjun; Duan, Yutong; Elliott, Ann; Emmet, William; Gershkovich, Irena; Honscheid, Klaus; Illa, Jose M.; Jimenez, Jorge; Joyce, Richard; Karcher, Armin; Kent, Stephen; Lambert, Andrew; Lampton, Michael; Levi, Michael; Manser, Christopher; Marshall, Robert; Martini, Paul; Paat, Anthony; Probst, Ronald; Rabinowitz, David; Reil, Kevin; Robertson, Amy; Rockosi, Connie; Schlegel, David; Schubnell, Michael; Serrano, Santiago; Silber, Joseph; Soto, Christian; Sprayberry, David; Summers, David; Tarlé, Greg; Weaver, Benjamin A.

    2018-02-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.

  5. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral carbon and molecules. I have also pushed forward this study by using HST IR grism to link the absorber and the host galaxy.

  6. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-08-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.

  7. KSC-08pd2333

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd2336

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd2332

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd2334

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd2335

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd2338

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, into a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd2337

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, into a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd2339

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Cosmic Origins Spectrograph, or COS, in a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  15. Calibration and operation of the Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    Harms, R.; Beaver, E.; Burbidge, E.; Hier, R.; Allen, R.; Angel, R.; Bartko, F.; Bohlin, R.; Ford, H.; Davidson, A.

    1984-01-01

    The design and basic performance characteristics of the Faint Object Spectrograph (FOS), one of five instruments built for use on the Space Telescope observatory, is summarized briefly. The results of the recently completed instrument-level calibration are presented with special emphasis on issues affecting plans for FOS astronomical observations. Examples include such fundamental characteristics as: limiting magnitudes (system sensitivity and noise figures), spectral coverage and resolution, scattered light properties, and instrumental polarization and modulation efficiencies. Also gated toward intended users, a rather detailed description of FOS operating modes is given. The discussion begins with the difficulties anticipated during target acquisition and their hoped-for resolution. Both the 'normal' spectroscopic operating modes of the FOS and its 'exotic' features (e.g. spectropolarimetric, time-tagged, and time-resolved modes) are presented. The paper concludes with an overview of the activities to assure proper alignment and operation of the FOS within the entire Space Telescope system (orbital and ground-based).

  16. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  17. A TRANSITION REGION EXPLOSIVE EVENT OBSERVED IN He II WITH THE MOSES SOUNDING ROCKET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, J. Lewis; Kankelborg, Charles C.; Thomas, Roger J., E-mail: fox@physics.montana.ed, E-mail: kankel@solar.physics.montana.ed, E-mail: Roger.J.Thomas@nasa.go

    2010-08-20

    Transition region explosive events (EEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548 A, 1550 A) and Si IV (1393 A, 1402 A). We report what we believe to be the first observation of a transition region EE in He II 304 A. With the Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket, a novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel. The jets have sky-planemore » velocities of order 75 km s{sup -1} and line-of-sight velocities of +75 km s{sup -1} (blue) and -30 km s{sup -1} (red). The core is a region of high non-thermal Doppler broadening, characteristic of EEs, with maximal broadening 380 km s{sup -1} FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum Doppler velocities +160 km s{sup -1} and -220 km s{sup -1}. The event lasts more than 150 s. Its properties correspond to the larger, long-lived, and more energetic EEs observed in other wavelengths.« less

  18. Developments of a multi-wavelength spectro-polarimeter on the Domeless Solar Telescope at Hida Observatory

    NASA Astrophysics Data System (ADS)

    Anan, Tetsu; Huang, Yu-Wei; Nakatani, Yoshikazu; Ichimoto, Kiyoshi; UeNo, Satoru; Kimura, Goichi; Ninomiya, Shota; Okada, Sanetaka; Kaneda, Naoki

    2018-05-01

    To obtain full Stokes spectra in multi-wavelength windows simultaneously, we developed a new spectro-polarimeter on the Domeless Solar Telescope at Hida Observatory. The new polarimeter consists of a 60 cm aperture vacuum telescope on an altazimuth mounting, an image rotator, a high-dispersion spectrograph, and a polarization modulator and an analyzer composed of a continuously rotating waveplate with a retardation that is nearly constant at around 127° in 500-1100 nm. There are also a polarizing beam splitter located close behind the focus of the telescope, fast and large format CMOS cameras, and an infrared camera. A slit spectrograph allows us to obtain spectra in as many wavelength windows as the number of cameras. We characterized the instrumental polarization of the entire system and established a polarization calibration procedure. The cross-talks among the Stokes Q, U, and V have been evaluated to be about 0.06%-1.2%, depending on the degree of the intrinsic polarizations. In a typical observing setup, a sensitivity of 0.03% can be achieved in 20-60 seconds for 500-1100 nm. The new polarimeter is expected to provide a powerful tool for diagnosing the 3D magnetic field and other vector physical quantities in the solar atmosphere.

  19. The instrument development status of hyper-spectral imager suite (HISUI)

    NASA Astrophysics Data System (ADS)

    Itoh, Yoshiyuki; Kawashima, Takahiro; Inada, Hitomi; Tanii, Jun; Iwasaki, Akira

    2012-11-01

    The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation project. This project is the follow up mission of the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) and Advanced Land Imager (ALDS). HISUI is composed of hyperspectral radiometer with higher spectral resolution and multi-spectral radiometer with higher spatial resolution. The development of functional evaluation model was carried out to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler for SWIR, signal processing circuit and on-board calibration source.

  20. Evidence of the presence of a Be circumstelar disk in the Be/X-ray binaries KS 1947+ 300 and Cep X-4

    NASA Astrophysics Data System (ADS)

    Ozbey-Arabaci, M.; Camero-Arranz, A.; Fabregat, J.; Ozcan, H. Bilal; Peris, V.

    2014-06-01

    We report on photometric and spectroscopic optical observations of the Be/X-ray binaries KS 1947+300 and Cep X-4, obtained with the TUG Faint Object Spectrograph and Camera (TFOSC) mounted on the focal plane of the 1.5-m Russian-Turkish Telescope (RTT150) at T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) between 2014 June 18-20 (MJD 56826.933-56828.067), and with the spectrograph located at the 51-cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014 June 3 (MJD 56811.097). ...

  1. A Spectroscopic Survey of Lensed Dwarf Galaxies at 1

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi

    2018-01-01

    High-redshift dwarf galaxies (M<109 M⊙) are one of the primary targets of the James Web Space Telescope. Recent studies have suggested that these galaxies are different than their bright counterparts, as they follow a divergent evolutionary history of star formation. In our previous study, utilizing the magnification from massive clusters of galaxies (Hubble Frontier Fields), we found a large sample of dwarf star-forming galaxies at the peak epoch of star formation (1

  2. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: KMOS OBSERVATIONS IN NGC 6822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, L. R.; Evans, C. J.; Ferguson, A. M. N.

    2015-04-10

    We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new K-band Multi-Object Spectrograph Very Large Telescope, Chile. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = −0.52 ± 0.21, which agrees well with previous abundance studies of young stars and H ii regions. We also find an indication for a low-significance abundance gradient within the central 1 kpc. We compare our results with those derived from older stellar populations and investigate the difference using a simple chemical evolution model. By comparingmore » the physical properties determined for RSGs in NGC 6822 with those derived using the same technique in the Galaxy and the Magellanic Clouds, we show that there appears to be no significant temperature variation of RSGs with respect to metallicity, in contrast to recent evolutionary models.« less

  3. VizieR Online Data Catalog: Radial velocities of TYC 4110-01037-1 (Wisniewski+, 2012)

    NASA Astrophysics Data System (ADS)

    Wisniewski, J. P.; Ge, J.; Crepp, J. R.; de, Lee N.; Eastman, J.; Esposito, M.; Fleming, S. W.; Gaudi, B. S.; Ghezzi, L.; Gonzalez Hernandez, J. I.; Lee, B. L.; Stassun, K. G.; Agol, E.; Prieto, C. A.; Barnes, R.; Bizyaev, D.; Cargile, P.; Chang, L.; da Costa, L. N.; Porto de Mello, G. F.; Femenia, B.; Ferreira, L. D.; Gary, B.; Hebb, L.; Holtzman, J.; Liu, J.; Ma, B.; Mack, C. E.; Mahadevan, S.; Maia, M. A. G.; Nguyen, D. C.; Ogando, R. L. C.; Oravetz, D. J.; Paegert, M.; Pan, K.; Pepper, J.; Rebolo, R.; Santiago, B.; Schneider, D. P.; Shelden, A. C.; Simmons, A.; Tofflemire, B. M.; Wan, X.; Wang, J.; Zhao, B.

    2013-06-01

    The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS), one of the three surveys being executed during the Sloan Digital Sky Survey (SDSS) III (Eisenstein et al., 2011AJ....142...72E), is a four-year program which is monitoring the radial velocities of ~3300 V=7.6-12 FGK-type dwarfs and subgiants. Our primary RV observations of TYC 4110-01037-1 were obtained during the first two years of the SDSS-III MARVELS survey, which uses a dispersed fixed-delay interferometer on the SDSS 2.5m telescope. A total of 32 observations were obtained over the course of ~2 years. Each 50minute observation yielded two fringing spectra from the interferometer spanning the wavelength regime ~500-570nm with R~12000. Supporting RV observations were obtained with the 3.6m Telescopio Nazionale Galileo (TNG) using its SARG spectrograph. The 0.8"*5.3" slit provided R~57000 spectroscopy between 462-792nm. (1 data file).

  4. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  5. VizieR Online Data Catalog: Activity and rotation in Praesepe and the Hyades (Douglas+, 2014)

    NASA Astrophysics Data System (ADS)

    Douglas, S. T.; Agueros, M. A.; Covey, K. R.; Bowsher, E. C.; Bochanski, J. J.; Cargile, P. A.; Kraus, A.; Law, N. M.; Lemonias, J. J.; Arce, H. G.; Fierroz, D. F.; Kundert, A.

    2017-05-01

    Kraus & Hillenbrand (2007, J/AJ/134/2340) calculated proper motions and photometry for several million objects within 7° of the center of Praesepe. The resulting catalog includes 1128 candidate cluster members with membership probabilities Pmem>50%. As in Paper I (Agueros et al. 2011ApJ...740..110A), we supplement this catalog with 41 known members that are too bright to be identified as members by Kraus & Hillenbrand (2007, J/AJ/134/2340). For the Hyades, we adopt the Roser et al. (2011, J/A+A/531/A92) membership catalog. These authors identified candidate Hyades members via the convergent point method and confirmed membership using photometry. We used the MDM Observatory Modular Spectrograph (ModSpec) on the Hiltner 2.4 m telescope to obtain spectra of stars in Praesepe and the Hyades over the course of five multi-night runs between 2010 December 2 and 2012 November 14. (2 data files).

  6. The faint intergalactic-medium red-shifted emission balloon: future UV observations with EMCCDs

    NASA Astrophysics Data System (ADS)

    Kyne, Gillian; Hamden, Erika T.; Lingner, Nicole; Morrissey, Patrick; Nikzad, Shouleh; Martin, D. Christopher

    2016-08-01

    We present the latest developments in our joint NASA/CNES suborbital project. This project is a balloon-borne UV multi-object spectrograph, which has been designed to detect faint emission from the circumgalactic medium (CGM) around low redshift galaxies. One major change from FIREBall-1 has been the use of a delta-doped Electron Multiplying CCD (EMCCD). EMCCDs can be used in photon-counting (PC) mode to achieve extremely low readout noise (¡ 1e-). Our testing initially focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimisation with the CCD Controller for Counting Photons (CCCP) from Nüvü. This optimisation also includes methods for reducing dark current, via cooling and substrate voltage adjustment. We present result of laboratory noise measurements including dark current. Furthermore, we will briefly present some initial results from our first set of on-sky observations using a delta-doped EMCCD on the 200 inch telescope at Palomar using the Palomar Cosmic Web Imager (PCWI).

  7. VizieR Online Data Catalog: WOCS. LXXV. Hyades&Praesepe stellar lithium data (Cummings+, 2017)

    NASA Astrophysics Data System (ADS)

    Cummings, J. D.; Deliyannis, C. P.; Maderak, R. M.; Steinhauer, A.

    2018-05-01

    The Hyades and Praesepe open star clusters were both observed using the Hydra multi-object spectrograph on the WIYN 3.5-meter telescope using the 316@63.4 echelle grating in order 8 with the X19 filter. The spectra span from 6450 to 6850 Å. All Hyades stars and a majority of Praesepe stars were observed with blue cable, which yielded R~13600. The remaining Praesepe stars were observed with the red cable, which yielded a moderately higher R~17600. The Hyades data were acquired over seven nights from 2009 February 2 to 23. Using two red-cable configurations, we obtained spectra of 34 Praesepe candidate cluster members on 1997 November 16 and 18. Using seven blue cable configurations, we obtained spectra of 66 candidate cluster members during seven nights on 2001 December 2; 2005 May 1 and 2; 2006 January 25 and 26; and 2006 February 2 and 3. (2 data files).

  8. Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.

    2011-11-01

    We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.

  9. Second Announcement - ESO/ST-ECF Workshop on NICMOS and the VLT: A New Era of High-Resolution Near-Infrared Imaging and Spectroscopy - May 26-27, 1998 - Hotel Baia di Nora, Pula, Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    1998-03-01

    ST-ECF and ESO are organising in collaboration with the NICMOS IDT and STScI a workshop on near infrared imaging from space and ground. The purpose of the workshop is to review what has been achieved with the Near Infrared and Multi Object Spectrograph (NICMOS) on board of HST, what can be achieved in the remaining lifetime of the instrument, and how NICMOS observations can be optimised taking into account the availability of IR imaging and spectroscopy on ESO's Very large Telescope (VLT) in the near future. The meeting will be held in May 1998, about one year after science observations started with NICMOS, and about half a year before the Infrared Spectrometer and Array Camera (ISAAC) starts to operate on the VLT. Currently, it is expected that NICMOS will operate until the end of 1998.

  10. Service-oriented architecture for the ARGOS instrument control software

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  11. VizieR Online Data Catalog: Accurate astrometry & RVs of 4 multiple systems (Tokovinin+, 2017)

    NASA Astrophysics Data System (ADS)

    Tokovinin, A.; Latham, D. W.

    2017-10-01

    The outer subsystems are classical visual binaries. Historic micrometric measurements and modern speckle interferometric data have been obtained from the WDS database on our request. Additionally, we secured new speckle astrometry and relative photometry of two systems at the 4.1m SOAR telescope. Published radial velocities (RVs) are used here together with the new data. The RVs were measured with the CfA Digital Speedometers, initially using the 1.5m Wyeth Reflector at the Oak Ridge Observatory in the town of Harvard, Massachusetts, and subsequently with the 1.5m Tillinghast Reflector at the Whipple Observatory on Mount Hopkins, Arizona. Starting in 2009, the new fiber-fed Tillinghast Reflector Echelle Spectrograph (TRES) was used. The spectral resolution was 44000 for all three spectrographs. Two objects, HIP 101955 and 103987, were observed in 2015 with the CHIRON echelle spectrograph at the 1.5m telescope at CTIO with a spectral resolution of 80000. (4 data files).

  12. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.

    2017-02-01

    The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  13. PRAXIS: a near infrared spectrograph optimised for OH suppression

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bauer, S.; Bland-Hawthorn, J.; Case, S.; Content, R.; Fechner, T.; Giannone, D.; Haynes, R.; Hernandez, E.; Horton, A. J.; Klauser, U.; Lawrence, J. S.; Leon-Saval, S. G.; Lindley, E.; Löhmannsröben, H.-G.; Min, S.-S.; Pai, N.; Roth, M.; Shortridge, K.; Staszak, Nicholas F.; Tims, Julia; Xavier, Pascal; Zhelem, Ross

    2016-08-01

    Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of 9 with the GNOSIS gratings and a factor of 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.

  14. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  15. Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; O'Neill, J. F.

    2013-12-01

    Spectrographs provide a unique window into plasma parameters in the solar atmosphere. In fact spectrographs provide the most accurate measurements of plasma parameters such as density, temperature, and flow speed. However, traditionally spectrographic instruments have suffered from the inability to cover large spatial regions of the Sun quickly. To cover an active region sized spatial region, the slit must be rastered over the area of interest with an exposure taken at each pointing location. Because of this long cycle time, the spectra of dynamic events like flares, CME initiations, or transient brightening are obtained only rarely. And even if spectra are obtained they are either taken over an extremely small spatial region, or the spectra are not co-temporal across the raster. Either of these complicates the interpretation of the spectral raster results. Imagers are able to provide high time and spatial resolution images of the full Sun but with limited spectral resolution. The telescopes onboard the Solar Dynamics Observatory (SDO) normally take a full disk solar image every 10 seconds with roughly 1 arcsec spatial resolution. However the spectral resolution of the multilayer imagers on SDO is of order 100 times less than a typical spectrograph. Because of this it is difficult to interpret multilayer imaging data to accurately obtain plasma parameters like temperature and density from these data, and there is no direct measure of plasma flow velocity. SERTS and EIS partially addressed this problem by using a wide slit to produce monochromatic images with limited FOV to limit overlapping. However dispersion within the wide slit image remained a problem which prevented the determination of intensity, Doppler shift, and line width in the wide slit. Kankelborg and Thomas introduced the idea of using multiple images -1, 0, and +1 spectral orders of a single emission line. This scheme provided three independent images to measure the three spectral line parameters in each pixel with the Multi-Order Solar EUV Spectrograph (MOSES) instrument. We suggest a reconstruction approach based on tomographic methods with regularization. Preliminary results show that the typical Doppler shift and line width error introduced by the reconstruction method is of order a few km/s at 300 A. This is on the order of the error obtained in narrow slit spectrographs but with data obtained over a two-dimensional field of view.

  16. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  17. Discovery of Associated Absorption Lines in an X-Ray Warm Absorber: Hubble Space Telescope Faint Object Spectrograph Observations of MR 2251-178

    NASA Technical Reports Server (NTRS)

    Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin

    2001-01-01

    The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.

  18. Exploring the Faint End of the Luminosity-Metallicity Relation with Hα Dots

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.

    2015-01-01

    The well-known correlation between a galaxy's luminosity and its gas-phase oxygen abundance (the luminosity-metallicity (L-Z) relation) offers clues toward our understanding of chemical enrichment histories and evolution. Bright galaxies are comparatively better studied than faint ones, leaving a relative dearth of observational data points to constrain the L-Z relation in the low-luminosity regime. We present high S/N nebular spectroscopy of low-luminosity star-forming galaxies observed with the KPNO 4m using the new KOSMOS spectrograph to derive direct-method metallicities. Our targets are strong point-like emission-line sources discovered serendipitously in continuum-subtracted narrowband images from the ALFALFA Hα survey. Follow-up spectroscopy of these "Hα dots" shows that these objects represent some of the lowest luminosity star-forming systems in the local Universe. Our KOSMOS spectra cover the full optical region and include detection of [O III] λ4363 in roughly a dozen objects. This paper presents some of the first scientific results obtained using this new spectrograph, and demonstrates its capabilities and effectiveness in deriving direct-method metallicities of faint objects.

  19. THE AGES, METALLICITIES, AND ALPHA ELEMENT ENHANCEMENTS OF GLOBULAR CLUSTERS IN THE ELLIPTICAL NGC 5128: A HOMOGENEOUS SPECTROSCOPIC STUDY WITH GEMINI/GEMINI MULTI-OBJECT SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Kristin A.; Harris, William E.; Puzia, Thomas H.

    2010-01-10

    We present new integrated light spectroscopy of globular clusters (GCs) in NGC 5128, a nearby giant elliptical galaxy less than 4 Mpc away, in order to measure radial velocities and derive ages, metallicities, and alpha-element abundance ratios. Using the Gemini South 8 meter telescope with the instrument Gemini Multi-Object Spectrograph, we obtained spectroscopy in the range of approx3400-5700 A for 72 GCs with a signal-to-noise ratio greater than 30 A{sup -1}; and we have also discovered 35 new GCs within NGC 5128 from our radial velocity measurements. We measured and compared the Lick indices from Hdelta{sub A} through Fe5406 withmore » the single stellar population models of Thomas et al. in order to derive age, metallicity, and [alpha/Fe] values. We also measure Lick indices for 41 Milky Way GCs from Puzia et al. and Schiavon et al. with the same methodology for direct comparison. Our results show that 68% of the NGC 5128 GCs have old ages (>8 Gyr), 14% have intermediate ages (5-8 Gyr), and 18% have young ages (<5 Gyr). However, when we look at the metallicity of the GCs as a function of age, we find 92% of metal-poor GCs and 56% of metal-rich GCs in NGC 5128 have ages >8 Gyr, indicating that the majority of both metallicity subpopulations of GCs formed earlier, with a significant population of young and metal-rich GCs forming later. Our metallicity distribution function generated directly from spectroscopic Lick indices is clearly bimodal, as is the color distribution of the same set of GCs. Thus, the metallicity bimodality is real and not an artifact of the color to metallicity conversion. However, the metallicity distribution function obtained from comparison with the single stellar population models is consistent with a unimodal, bimodal, or multimodal shape. The [alpha/Fe] values are supersolar with a mean value of 0.14 +- 0.04, indicating a fast formation timescale. However, the GCs in NGC 5128 are not as [alpha/Fe] enhanced as the Milky Way GCs also examined in this study. Our measured indices also indicate that the GCs in NGC 5128 may have a slight overabundance in nitrogen and a wider range of calcium strength compared to the Milky Way GCs. Our results support a rapid, early formation of the GC system in NGC 5128, with subsequent major accretion and/or GC and star-forming events in more recent times.« less

  20. Completing the census of young stars near the Sun with the FunnelWeb spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Lawson, Warrick; Murphy, Simon; Tinney, Christopher G.; Ireland, Michael; Bessell, Michael S.

    2016-06-01

    From late 2016, the Australian FunnelWeb survey will obtain medium-resolution (R~2000) spectra covering the full optical range for 2 million of the brightest stars (I<12) in the southern sky. It will do so using an upgraded UK Schmidt Telescope at Siding Spring Observatory, equipped with a revolutionary, parallelizable optical fibre positioner ("Starbugs") and spectrograph. The ability to reconfigure a multi-fibre plate in less than 5 minutes allows FunnelWeb to observe more stars per night than any other competing multi-fibre spectrograph and enables a range of previously inefficient bright star science not attempted since the completion of the HD catalogues in the 1940s. Among its key science aims, FunnelWeb will obtain spectra for thousands of young and adolescent (<1 Gyr) stars near the Sun (<200 pc) across a wide range of spectral types. These spectra will include well-studied youth and activity indicators such as H-alpha, Li I 6708A, Ca II H&K, as well as surface gravity diagnostics (e.g. Na I, K I). In addition, FunnelWeb will obtain stellar parameters (Teff, logg, vsini), abundances (Fe/H, alpha/Fe) and radial velocities to 1-2 km/s for every star in the survey. When combined with high precision parallaxes and proper motions from the Gaia mission expected from 2017, this dataset will provide a near-complete census of adolescent stars in the solar neighbourhood. It will help reveal the typical formation environments of young solar-type stars, how such stars move from their stellar nurseries to their adult lives in the field, and identifying thousands of high-priority targets for follow-up direct imaging (GPI, SPHERE), transit (including TESS) and radial velocity exoplanet studies. In this poster contribution we introduce the FunnelWeb survey, its science goals and input catalogue, as well as provide an update on the status of the fibre positioner and spectrograph commissioning at Siding Spring.

  1. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  2. Spectrometric Characterization of Active Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Bedard, D.; Monin, D.; Scott, R.; Wade, G.

    2012-09-01

    Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.

  3. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  4. The Contributions of the WIYN Observatory to Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Hooper, Eric; Consortium, WIYN

    2014-01-01

    Over its nearly 20 year history the WIYN Observatory has provided crucial data for numerous undergraduate research projects at the partner institutions (University of Wisconsin-Madison, Indiana University, and Yale University) plus others who access the telescope via national time from NOAO. WIYN and its instruments have served both undergraduates who are local to each institution, as well as those who have a temporary tenure as Research Experience for Undergraduates (REU) students. The topics of this work range widely, and only a few examples are listed here. Numerous studies of stars have been undertaken by undergraduates, from rotation velocities of pre-main sequence stars (Rhode et al.) to dynamical heating mechanisms in open clusters (Friel et al.). Extragalactic investigations range from a study of cold ISM in galaxies near the centers of rich clusters (Gallagher & Hooper, et al.) to the stellar populations of post-starburst galaxies hosting low-level AGN (Wolf & Hooper, et al.). Students have made wide use of WIYN's long established suite of facility instruments, which currently includes the Hydra multi-object fiber spectrograph, the SparsePak integral field unit fiber spectrograph, and the WHIRC near-infrared imager. A current undergraduate is a key player in final laboratory testing of two new integral field units that will come to WIYN soon. Finally, the new large format imager pODI currently is in science operation, soon to be followed by an upgrade to nearly four times the current imaging area, a powerful tool that will join the others in contributing to undergraduate research and education. This presentation is a continuation of the overview of WIYN contributions to education that began with a discussion of graduate education at the Indianapolis AAS (Hooper, AAS Meeting #222, #214.23).

  5. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    DOE PAGES

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; ...

    2018-01-15

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was anmore » on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. In conclusion, lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.« less

  6. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was anmore » on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. In conclusion, lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.« less

  7. Lyman-α emitters in the context of hierarchical galaxy formation: predictions for VLT/MUSE surveys

    NASA Astrophysics Data System (ADS)

    Garel, T.; Guiderdoni, B.; Blaizot, J.

    2016-02-01

    The VLT/Multi Unit Spectrograph Explorer (MUSE) integral-field spectrograph can detect Lyα emitters (LAE) in the redshift range 2.8 ≲ z ≲ 6.7 in a homogeneous way. Ongoing MUSE surveys will notably probe faint Lyα sources that are usually missed by current narrow-band surveys. We provide quantitative predictions for a typical wedding-cake observing strategy with MUSE based on mock catalogues generated with a semi-analytic model of galaxy formation coupled to numerical Lyα radiation transfer models in gas outflows. We expect ≈1500 bright LAEs (FLyα ≳ 10-17 erg s-1 cm-2) in a typical shallow field (SF) survey carried over ≈100 arcmin2 , and ≈2000 sources as faint as 10-18 erg s-1 cm-2 in a medium-deep field (MDF) survey over 10 arcmin2 . In a typical deep field (DF) survey of 1 arcmin2 , we predict that ≈500 extremely faint LAEs (FLyα ≳ 4 × 10-19 erg s-1 cm-2) will be found. Our results suggest that faint Lyα sources contribute significantly to the cosmic Lyα luminosity and SFR budget. While the host haloes of bright LAEs at z ≈ 3 and 6 have descendants with median masses of 2 × 1012 and 5 × 1013 M⊙, respectively, the faintest sources detectable by MUSE at these redshifts are predicted to reside in haloes which evolve into typical sub-L* and L* galaxy haloes at z = 0. We expect typical DF and MDF surveys to uncover the building blocks of Milky Way-like objects, even probing the bulk of the stellar mass content of LAEs located in their progenitor haloes at z ≈ 3.

  8. VizieR Online Data Catalog: 44 SZ-selected galaxy clusters ACT observations (Sifon+, 2016)

    NASA Astrophysics Data System (ADS)

    Sifon, C.; Battaglia, N.; Hasselfield, M.; Menanteau, F.; Barrientos, L. F.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dunner, R.; Hilton, M.; Hincks, A. D.; Hlozek, R.; Huffenberger, K. M.; Hughes, J. P.; Infante, L.; Kosowsky, A.; Marsden, D.; Marriage, T. A.; Moodley, K.; Niemack, M. D.; Page, L. A.; Spergel, D. N.; Staggs, S. T.; Trac, H.; Wollack, E. J.

    2017-11-01

    ACT is a 6-metre off-axis Gregorian telescope located at an altitude of 5200um in the Atacama desert in Chile, designed to observe the CMB at arcminute resolution. Galaxy clusters were detected in the 148GHz band by matched-filtering the maps with the pressure profile suggested by Arnaud et al. (2010A&A...517A..92A), fit to X-ray selected local (z<0.2) clusters, with varying cluster sizes,θ500, from 1.18 to 27-arcmin. Because of the complete overlap of ACT equatorial observations with Sloan Digital Sky Survey Data Release 8 (SDSS DR8; Aihara et al., 2011ApJS..193...29A) imaging, all cluster candidates were assessed with optical data (Menanteau et al., 2013ApJ...765...67M). We observed 20 clusters from the equatorial sample with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope, split in semesters 2011B (ObsID:GS-2011B-C-1, PI:Barrientos/Menanteau) and 2012A (ObsID:GS-2012A-C-1, PI:Menanteau), prioritizing clusters in the cosmological sample at 0.3

  9. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  10. APOGEE fiber development and FRD testing

    NASA Astrophysics Data System (ADS)

    Brunner, Sophia; Burton, Adam; Crane, Jeff; Zhao, Bo; Hearty, Fred R.; Wilson, John C.; Carey, Larry; Leger, French; Skrutskie, Mike; Schiavon, Ricardo; Majewski, Steven R.

    2010-07-01

    Development of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph has motivated thorough investigation into the properties and performance of optical fibers. The fiber selected for APOGEE is a step index, multi-mode fiber, developed by PolyMicro, with a 120μm low OH, fused silica core, 25μm cladding, and 10μm buffer. The instrument design includes a 40 meter fiber run, connecting the spectrograph to the 2.5m Sloan Digital Sky Survey (SDSS) telescope, and an additional 2.5 meter fiber segment located within the instrument dewar, a vacuum-sealed, cryogenic environment. This light path is convoluted and includes many transitions and connections where the beam is susceptible irrevocable loss. To optimize the spectrograph performance it is necessary to minimize the losses incurred in the fiber system, especially those resulting in focal ratio degradation (FRD). The focus of this research has been to identify potential sources of loss and where applicable, select material components to minimize this effect. There is little previous documented work concerning the performance of optical fibers within this wavelength band (1.5-1.7μm). Consequently, the following includes comprehensive explanations of the APOGEE fiber system components, our experimental design and optical test bed set-up, beam alignment procedures, fiber terminating and polishing techniques, and results from our examination of FRD as correlated with source wavelength, fiber length and termination, and environmental conditions.

  11. Hermes: the engineering challenges

    NASA Astrophysics Data System (ADS)

    Brzeski, Jurek; Gers, Luke; Smith, Greg; Staszak, Nicholas

    2012-09-01

    The Australian Astronomical Observatory is building a 4-channel VPH-grating High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the 3.9 meter Anglo-Australian Telescope (AAT). HERMES will provide a nominal spectral resolving power of 28,000 for Galactic Archaeology with an optional high-resolution mode of 45,000 with the use of a slit mask. HERMES is fed by a fibre positioning robot called 2dF at the telescope prime focus. There are a total of 784 science fibres, which interface with the spectrograph via two separate slit body assemblies, each comprising of 392 science fibers. The slit defines the spectral lines of 392 fibres on the detector. The width of the detector determines the spectral bandwidth and the detector height determines the fibre to fibre spacing or cross talk. Tolerances that follow from this are all in the 10 micrometer range. The slit relay optics must contribute negligibly to the overall image quality budget and uniformly illuminate the spectrograph exit pupil. The latter requirement effectively requires that the relay optics provide a telecentric input at the collimator entrance slit. As a result it is critical to align the optical components to extreme precision required by the optical design. This paper discusses the engineering challenges of designing, optimising, tolerancing and manufacturing of very precise mechanical components for housing optics and the design of low cost of jigs and fixtures for alignment and assembly of the optics.

  12. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  13. Raman Spectrograph for Ocean Worlds: Integrating Cavity Enhanced Spectroscopy

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Moore, Thomas Z.; Davis, Michael W.; Howett, Carly; Soto, Alejandro; Raut, Ujjwal; Molyneux, Philippa M.; Nowicki, Keith; Mandt, Kathleen; E Schmidt, Britney; Mason, John; Yakovlev, Vladislav V.; Fry, Edward S.; RSO Team

    2017-10-01

    We present a new concept for a Raman spectrograph instrument designed to conduct high sensitivity measurements of biomarkers within Ocean Worlds environments. Our Raman Spectrograph for Ocean worlds (RSO) instrument is a UV+IR multi-laser enhanced Raman system capable of detecting complex, biologically-relevant molecular species mixed within icy surfaces in the outer Solar System. Incorporating two or more lasers with different excitation-emission pathways is crucial for thorough and definitive interpretation of the spectral fingerprints that identify unknown constituents within a sample. Our approach strives to remove fluorescence-driven ambiguities from degenerate, non-unique signatures expected for the most interesting trace constituents, i.e., those best revealed by UV excitation. Our design for deep-UV measurements is based on a novel high-reflectivity integrating cavity invented at Texas A&M University and further developed at SwRI. We report nanomole-range sensitivities of several complex organic molecules measured with our laboratory prototype cavities. Weak optical signals from Raman or fluorescence based instruments require sensitive low-noise detectors and long integration times, which by comparison are undesirable for the high radiation environment and limited battery power conditions anticipated for the Europa Lander mission. The two-to-five orders of magnitude enhanced sensitivity over standard Raman spectroscopy enabled by the integrating cavity enhanced spectroscopy technique makes it well suited for the Europa Lander payload and other future Ocean Worlds missions.

  14. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.

  15. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; hide

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  16. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph spreads light from an object apart into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. Theorists though the spectra for hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules. It is what astronomers call 'flat.' For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not seen there might indicate that the water is hidden under a thick blanket of high, dry clouds.

    This spectrum was produced by Dr. Mark R. Swain of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a complex set of mathematical tools. It was derived using two different methods, both of which led to the same result. The data were taken on July 6 and 13, 2005, by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center and his team using Spitzer's infrared spectrograph.

  17. Physical properties of PNe: what IFU spectrographs can do?

    NASA Astrophysics Data System (ADS)

    Costa, R.; Lago, P. J. A.; Faes, D., M.

    2014-04-01

    Structure, kinematics and physical parameters of planetary nebulae are related to their progenitor stars. A better understanding of these properties is essential to improve the knowledge of the late stages of evolution of intermediate-mass stars, as well as to better understand the chemical enrichment mechanisms that feed the interstellar medium with the nucleosynthesis yields from such stars. Integral Field Unit (IFU) spectrographs can provide valuable information from these objects, mapping such properties point-to-point over the projected nebulae. In this communication we present the results of a survey of physical properties for southern PNe. We have used IFU spectroscopy in order to derive the angular distribution of electron densities and ionic abundances, and also to map the ionization profiles. The aim is to characterize their physical properties and structures, and results can be used in morpho-kinematical models (such as SHAPE) or in photoionization models (such as CLOUDY) to describe in detail the 3D structure and evolution of these objects.

  18. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  19. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  20. Modeling the Scattering Polarization of the Hydrogen Ly-alpha Line Observed by CLASP in a Filament Channel

    NASA Technical Reports Server (NTRS)

    Stepan, J.; Trujillo Bueno, J.; Gunar, S.; del Pino Aleman, T.; Heinzel, P.; Kano, R.; Ishikawa, R.; Narukage, M.; Bando, T.; Winebarger, Amy; hide

    2016-01-01

    The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals.

  1. KSC-08pd2326

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, workers prepare to attach an overhead crane to the Cosmic Origins Spectrograph, or COS. The COS will be lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd2327

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, workers attach an overhead crane to the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd2330

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd2331

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd2328

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd2329

    NASA Image and Video Library

    2008-08-07

    CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett

  7. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  8. Dwarfs Cooler Than M: The Definition of Spectral Type L Using Discoveries from the 2-Micron All-Sky Survey (2MASS)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Cutri, R.; Nelson, B.; Beichman, C.; Dahn, C.; Monet, D.; Gizis, J.; Skrutskie, M.

    1998-01-01

    Before the 2-Micron All-Sky Survey (2MASS) began, only six objects were known with spectral types later than M9.5 V. In the first 371 sq. deg. of actual 2MASS survey data, we have identified another twenty such objects spectroscopically confirmed using the Low Resolution Imaging Spectrograph (LRIS) at the W.M. Keck Observatory.

  9. CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Kozak, M.; Gnaciński, P.; Galazutdinov, G. A.; Beletsky, Y.; Krełowski, J.

    2007-07-01

    A new kind of interstellar cloud is proposed. These are rare (just a few examples among ~300 lines of sight) objects with the CaI 4227-Å, FeI 3720-Å and 3860-Å lines stronger than those of KI (near 7699 Å) and NaI (near 3302 Å). We propose the name `CaFe' for these clouds. Apparently they occupy different volumes from the well-known interstellar HI clouds where the KI and ultraviolet NaI lines are dominant features. In the CaFe clouds we have not found either detectable molecular features (CH, CN) or diffuse interstellar bands which, as commonly believed, are carried by some complex, organic molecules. We have found the CaFe clouds only along sightlines toward hot, luminous (and thus distant) objects with high rates of mass loss. In principle, the observed gas-phase interstellar abundances reflect the combined effects of the nucleosynthetic history of the material, the depletion of heavy elements into dust grains and the ionization state of these elements which may depend on irradiation by neighbouring stars. Based on data collected using the Maestro spectrograph at the Terskol 2-m telescope, Russia; and on data collected using the ESO Feros spectrograph; and on data obtained from the ESO Science Archive Facility acquired with the UVES spectrograph, Chile. E-mail: `arctur'@rambler.ru (AB); marizak@astri.uni.torun.pl (MK); pg@iftia.univ.gda.pl (PG); gala@boao.re.kr (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  10. Polishing techniques for MEGARA pupil elements optics

    NASA Astrophysics Data System (ADS)

    Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.

    2016-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.

  11. A deconvolution extraction method for 2D multi-object fibre spectroscopy based on the regularized least-squares QR-factorization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li

    2014-09-01

    This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.

  12. Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries

    NASA Astrophysics Data System (ADS)

    Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team

    2018-01-01

    Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.

  13. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  14. 16 years of airglow measurement with astronomical facilities

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a solar cycle. (3) MaNGA spectrograph@SDSS: This instrument combines two spectrographs covering the wavelength range from 0.36 to 1.03μm with a resolving power of R˜2 000. It is equipped with a multi-fibre device and is used for this specific survey that started in 2014 (aimed to finish in 2020). In this poster we give an overview on the status of the project, some first results, and an outlook.

  15. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less

  16. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  17. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  18. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  19. Color sensitivity of the multi-exposure HDR imaging process

    NASA Astrophysics Data System (ADS)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  20. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark

    2016-07-01

    The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time, have been on-sky for science observations. In Summer 2015 LUCI-1 was refurbished to replace the infrared detector; to install a high-resolution camera to take advantage of the active optics SX secondary; and to install a grating designed primarily for use with high resolution active optics. Thus, like MODS-1 and -2, both LUCIs now have specifications nearly identical to each other. The software interface for both LUCIs have also been replaced, allowing both instruments to be run together from a single interface. With the installation of all facility instruments finally complete we also report on the first science use of "mixed-mode" operations, defined as the combination of different paired instruments with each mirror (i.e. LBC+MODS, LBC+LUCI, LUCI+MODS). Although both primary mirrors reside on a single fixed mount, they are capable of operating as independent entities within a defined "co-pointing" limit. This provides users with the additional capability to independently dither each mirror or center observations on two different sets of spatial coordinates within this limit.

  1. Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby

    2018-01-01

    We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.

  2. Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; NGVS Collaboration

    2018-01-01

    We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.

  3. VizieR Online Data Catalog: OzDES DR1 (Childress+, 2017)

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Levy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; Costa, L. N. Da; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; Garcia-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Rome, R. A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, I. D.; Sevilla-Noarbe, N.; Seymour, R.; Sharp, M.; Smith, M.; Soares-Santos, F.; Sobreira; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.

    2017-09-01

    The table contains redshifts for 14,693 objects that land within the 10 deep fields of the Dark Energy Survey. The redshifts were obtained by the OzDES collaboration using the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. (1 data file).

  4. Using confidence intervals to evaluate the focus alignment of spectrograph detector arrays.

    PubMed

    Sawyer, Travis W; Hawkins, Kyle S; Damento, Michael

    2017-06-20

    High-resolution spectrographs extract detailed spectral information of a sample and are frequently used in astronomy, laser-induced breakdown spectroscopy, and Raman spectroscopy. These instruments employ dispersive elements such as prisms and diffraction gratings to spatially separate different wavelengths of light, which are then detected by a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) detector array. Precise alignment along the optical axis (focus position) of the detector array is critical to maximize the instrumental resolution; however, traditional approaches of scanning the detector through focus lack a quantitative measure of precision, limiting the repeatability and relying on one's experience. Here we propose a method to evaluate the focus alignment of spectrograph detector arrays by establishing confidence intervals to measure the alignment precision. We show that propagation of uncertainty can be used to estimate the variance in an alignment, thus providing a quantitative and repeatable means to evaluate the precision and confidence of an alignment. We test the approach by aligning the detector array of a prototype miniature echelle spectrograph. The results indicate that the procedure effectively quantifies alignment precision, enabling one to objectively determine when an alignment has reached an acceptable level. This quantitative approach also provides a foundation for further optimization, including automated alignment. Furthermore, the procedure introduced here can be extended to other alignment techniques that rely on numerically fitting data to a model, providing a general framework for evaluating the precision of alignment methods.

  5. The KMOS Deep Survey: Dynamical Measurements of Star-Forming Galaxies at z 3.5

    NASA Astrophysics Data System (ADS)

    Turner, Owen; Cirasuolo, Michele; Harrison, Chris; McLure, Ross; Dunlop, James; Swinbank, Mark; Johnson, Helen; Sobral, David; Matthee, Jorryt; Sharples, Ray

    2017-07-01

    This poster present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 78 typical star-forming galaxies at z = 3.5 in the mass range 9.0 < log(M*) < 10.5. We fit spatially and spectrally convolved mock datacubes to the observed data, in order to make beam-smearing corrected measurements of the intrinsic velocity dispersions and rotation velocities of 33 galaxies in the sample classed as spatially resolved and isolated. The results suggest that the rotation-dominated galaxies in the sample are offset to lower velocities at fixed stellar mass and have higher velocity dispersions than star-forming galaxies in the local and intermediate redshift universe. Only 1/3 of the galaxies in the sample are dominated by rotation, which hints that random motions are playing an increasingly significant role in supporting the dynamical mass in the systems. When searching for evolution in scaling relations, such as the stellar mass Tully-Fisher relation, it is important to take these random motions into account.

  6. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  7. The quenching of the ultra-faint dwarf galaxies in the reionization era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.

    2014-12-01

    We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W. M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the starsmore » formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark-matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe.« less

  8. A NEW COLLISIONAL RING GALAXY AT z = 0.111: AURIGA'S WHEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conn, Blair C.; Pasquali, Anna; Pompei, Emanuela

    2011-11-10

    We report the serendipitous discovery of a collision ring galaxy, identified as 2MASX J06470249+4554022, which we have dubbed 'Auriga's Wheel', found in a SUPRIME-CAM frame as part of a larger Milky Way survey. This peculiar class of galaxies is the result of a near head-on collision typically between a late-type and an early-type galaxy. Subsequent Gemini Multi-object Spectrograph North long-slit spectroscopy has confirmed both the relative proximity of the components of this interacting pair and has shown that it has a redshift of 0.111. Analysis of the spectroscopy reveals that the late-type galaxy is a LINER class active galactic nucleusmore » (AGN) while the early-type galaxy is also potentially an AGN candidate; this is very uncommon among known collision ring galaxies. Preliminary modeling of the ring finds an expansion velocity of {approx}200 km s{sup -1} consistent with our observations, making the collision about 50 Myr old. The ring currently has a radius of about 10 kpc and a bridge of stars and gas is also visible connecting the two galaxies.« less

  9. Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan S.; Shappee, Benjamin J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Prieto, J. L.

    2016-11-01

    We present late-time optical spectroscopy taken with the Large Binocular Telescope's Multi-Object Double Spectrograph, an improved All-Sky Automated Survey for SuperNovae pre-discovery non-detection, and late-time Swift observations of the nearby (d = 193 Mpc, z = 0.0436) tidal disruption event (TDE) ASASSN-14ae. Our observations span from ˜20 d before to ˜750 d after discovery. The proximity of ASASSN-14ae allows us to study the optical evolution of the flare and the transition to a host-dominated state with exceptionally high precision. We measure very weak Hα emission 300 d after discovery (LH α ≃ 4 × 1039 erg s-1) and the most stringent upper limit to date on the Hα luminosity ˜750 d after discovery (LH α ≲ 1039 erg s-1), suggesting that the optical emission arising from a TDE can vanish on a time-scale as short as 1 yr. Our results have important implications for both spectroscopic detection of TDE candidates at late times, as well as the nature of TDE host galaxies themselves.

  10. NGC 6362: THE LEAST MASSIVE GLOBULAR CLUSTER WITH CHEMICALLY DISTINCT MULTIPLE POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mucciarelli, Alessio; Dalessandro, Emanuele; Ferraro, Francesco R.

    2016-06-20

    We present the first measure of Fe and Na abundances in NGC 6362, a low-mass globular cluster (GC) where first- and second-generation stars are fully spatially mixed. A total of 160 member stars (along the red giant branch (RGB) and the red horizontal branch (RHB)) were observed with the multi-object spectrograph FLAMES at the Very Large Telescope. We find that the cluster has an iron abundance of [Fe/H] = −1.09 ± 0.01 dex, without evidence of intrinsic dispersion. On the other hand, the [Na/Fe] distribution turns out to be intrinsically broad and bimodal. The Na-poor and Na-rich stars populate, respectively,more » the bluest and the reddest RGBs detected in the color–magnitude diagrams including the U filter. The RGB is composed of a mixture of first- and second-generation stars in a similar proportion, while almost all the RHB stars belong to the first cluster generation. To date, NGC 6362 is the least massive GC where both the photometric and spectroscopic signatures of multiple populations have been detected.« less

  11. The Spanish network for Gaia Science Exploitation

    NASA Astrophysics Data System (ADS)

    Figueras, F.; Jordi, C.; Luri, X.; Torra, J.; REG Executive Committee Team; Gaia UB Team

    2017-03-01

    The ''Red Española de Explotación Científica de Gaia'' (REG) continues to intensify its activities facing the imminent publication of the first and second Gaia data releases (14 September, 2016 and Q4-2017, respectively). The network, supported by the MINECO under contract Acciones de dinamizaci ´on, Redes de Excelencia (2016-2017), has as major priority the task to coordinate and support the collective activities developed by its more than 150 members. At present, REG plays a prominent role in the preparation of the Spanish community for the use of the Gaia data archive (a task lead by the Spanish team), in the work to exploit the Gaia-ESO survey collected during the last four years and in supporting the preparation of the science case and survey plan for WEAVE, the new multi-object spectrograph for the WHT at Canary Islands (commissioning, 2018). These activities are described together with the schedule of future national and international science meetings and the outreach activities being organized for the first and second Data Releases

  12. Properties of SN1978K from multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.; Ryder, Stuart; Staveley-Smith, L.; Colbert, E.; Petre, R.; Dopita, M.; Campbell-Wilson, D.

    2000-06-01

    We update the light curves from the X-ray, optical, and radio bandpasses which we have assembled over the past decade, and present two observations in the ultraviolet using the Hubble Space Telescope Faint Object Spectrograph. The HRI X-ray light curve is constant within the errors over the entire observation period which is confirmed by ASCA GIS data obtained in 1993 and 1995. In the UV, we detected the Mg II doublet at 2800 Å and a line at ~3190 Å attributed to He I 3187 at SN1978K's position. The optical light curve is formally constant within the errors, although a slight upward trend may be present. The radio light curve continues its steep decline. The longer time span of our radio observations compared to previous studies shows that SN1978K belongs in the class of highly X-ray and radio-luminous supernovae. The Mg II doublet flux ratio implies the quantity of line optical depth times density is ~1014 cm-3. The emission site must lie in the shocked gas. .

  13. Early laser operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rahmer, Gustavo; Lefebvre, Michael; Christou, Julian; Raab, Walfried; Rabien, Sebastian; Ziegleder, Julian; Borelli, José L.; Gässler, Wolfgang

    2014-08-01

    ARGOS is the GLAO (Ground-Layer Adaptive Optics) Rayleigh-based LGS (Laser Guide Star) facility for the Large Binocular Telescope Observatory (LBTO). It is dedicated for observations with LUCI1 and LUCI2, LBTO's pair of NIR imagers and multi-object spectrographs. The system projects three laser beams from the back of each of the two secondary mirror units, which create two constellations circumscribed on circles of 2 arcmin radius with 120 degree spacing. Each of the six Nd:YAG lasers provides a beam of green (532nm) pulses at a rate of 10kHz with a power of 14W to 18W. We achieved first on-sky propagation on the night of November 5, 2013, and commissioning of the full system will take place during 2014. We present the initial results of laser operations at the observatory, including safety procedures and the required coordination with external agencies (FAA, Space Command, and Military Airspace Manager). We also describe our operational procedures and report on our experiences with aircraft spotters. Future plans for safer and more efficient aircraft monitoring and detection are discussed.

  14. VizieR Online Data Catalog: WIYN open cluster study. LX. RV survey of NGC 6819 (Milliman+, 2014)

    NASA Astrophysics Data System (ADS)

    Milliman, K. E.; Mathieu, R. D.; Geller, A. M.; Gosnell, N. M.; Meibom, S.; Platais, I.

    2014-10-01

    The WOCS radial velocity target sample for NGC 6819 has 3895 stars that span 1° on the sky centered at RA=19h41m17.5s, DE=+40°11'47'' (J2000). The details of our radial velocity survey of NGC 6819 including the observing procedure, data reduction, and membership classification are discussed in depth in Hole et al. 2009 (cat. J/AJ/138/159; Paper XXIV) and Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII). Observations of NGC 6819 with the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope began in 1998 June and are still ongoing. We have almost 14000 spectra for over 2600 stars. These observations are augmented with 733 radial velocity measurements for 170 stars taken at the Harvard-Smithsonian Center for Astrophysics (CfA) facilities between 1988 May and 1995 by R. D. Mathieu and D. W Latham (Hole et al. 2009, cat. J/AJ/138/159; Paper XXIV). (4 data files).

  15. United Kingdom Infrared Telescope's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Buckalew, Brent; Abercromby, Kira; Lederer, Susan; Frith, James; Cowardin, Heather

    2017-01-01

    Presented here are the results of the United Kingdom Infrared Telescope (UKIRT) spectral observations of human-made space objects taken from 2014 to 2015. The data collected using the UIST infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 18 different orbiting objects at or near the geosynchronous (GEO) regime. Thirteen of the objects are spacecraft, one is a rocket body, and four are cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials; thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons and silicon. The spacecraft show distinct features due to the presence of solar panels. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include more materials, noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. A comparison conducted between objects observed previously with the NASA Infrared Telescope Facility (IRTF) shows similar materials and trends from the two telescopes and from the two distinct data sets. However, based on the current state of the model, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  16. Gemini spectroscopy of the outer disk star cluster BH176

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  17. Temporal intensity interferometry for characterization of very narrow spectral lines

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  18. Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.

    1995-09-01

    We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.

  19. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  20. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

    DTIC Science & Technology

    2015-11-18

    The scattered light was collected through the Nikon objective, passed through a long-pass filter (LP03-633RS-25, Semrock ) to filter Rayleigh light and...25, Semrock ). The light was then focused into a 1/3 m spectrograph (SP2300, Princeton Instruments), dispersed (1200 grooves/nm, 500 nm blaze), and

  1. Spectroscopic Classification of ASASSN-15rm as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Halevi, G.; Shivvers, I.; Yuk, H.; Filippenko, A. V.

    2015-10-01

    We report that inspection of a CCD spectrum (range 350-1050 nm) of ASASSN-15rm (ATel #8192), obtained on Oct. 20.50 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.

  2. Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Abercromby, K.; Buckalew, B.; Abell, P.; Cowardin, H.

    2015-01-01

    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  3. Present status of the KISS project

    NASA Astrophysics Data System (ADS)

    Miyatake, H.; Wada, M.; Watanabe, X. Y.; Hirayama, Y.; Schury, P.; Ahmed, M.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Mukai, M.; Oyaizu, M.; Park, J. H.

    2018-04-01

    KISS project aims at finding an astrophysical condition for synthesizing r-process heavy element isotopes, which are characterized as the third peak in the solar abundance pattern. This is an experimental challenge in nuclear physics to measure ground and isomeric state properties of unknown nuclei around the region of N=126 isotones. So far we have constructed and developed new type of mass separation system, KISS (KEK Isotope Separation System) and performed measurements of lifetimes and hyperfine structures of some platinum and iridium neutron-rich radioactive isotopes by applying multi-nucleon transfer reactions and in-gas laser ionization and spectroscopy (IGLIS) methods. In this report, recent physics results, updated KISS performance, and future's research plan including a challenge of a systematic mass measurement with MRTOF (Multi-Reflection Time-Of-Flight mass spectrograph) are presented.

  4. Lithium abundance in a sample of solar-like stars

    NASA Astrophysics Data System (ADS)

    López-Valdivia, R.; Hernández-Águila, J. B.; Bertone, E.; Chávez, M.; Cruz-Saenz de Miera, F.; Amazo-Gómez, E. M.

    2015-08-01

    We report on the determination of the lithium abundance [A(Li)] of 52 solar-like stars. For 41 objects the A(Li) here presented corresponds to the first measurement. We have measured the equivalent widths of the 6708 Å lithium feature in high-resolution spectroscopic images (R ˜ 80 000), obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), as part of the first scientific observations of the revitalized Lunar and Planetary Laboratory (LPL) Echelle Spectrograph, now known as the Cananea High-resolution Spectrograph (CanHiS). Lithium abundances were derived with the Fortran code MOOG, using as fundamental input a set of atmospheric parameters recently obtained by our group. With the help of an additional small sample with previous A(Li) determinations, we demonstrate that our lithium abundances are in agreement, to within uncertainties, with other works. Two target objects stand out from the rest of the sample. The star BD+47 3218 (Teff = 6050 ± 52 K, A(Li) = 1.86 ± 0.07 dex) lies inside the so-called lithium desert in the A(Li)-Teff plane. The other object, BD+28 4515, has an A(Li) = 3.05 ± 0.07 dex, which is the highest of our sample and compatible with the expected abundances of relatively young stars.

  5. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 189733b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    Astronomers were perplexed when they first saw the infrared spectrum above. It doesn't look anything like what theorists had predicted. Theorists thought the spectra of hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules, and is instead what astronomers call 'flat.' For example, theorists thought there'd be a strong signature of water in the form of a big drop in the wavelength range between 7 and 10 microns. The fact that water is not detected may indicate that it is hidden underneath a thick blanket of high, dry clouds. The average brightness of the spectrum is also a bit lower than theoretical predictions, suggesting that very high winds are rapidly moving the terrific heat of the noonday sun from the day side of HD 189733b to the night side.

    This spectrum was produced by Dr. Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., and his colleagues. The data were taken by Spitzer's infrared spectrograph on November 22, 2006.

  6. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 189733b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. Astronomers were perplexed when they first saw the infrared spectrum above. It doesn't look anything like what theorists had predicted. Theorists thought the spectra of hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules, and is instead what astronomers call "flat." For example, theorists thought there'd be a strong signature of water in the form of a big drop in the wavelength range between 7 and 10 microns. The fact that water is not detected may indicate that it is hidden underneath a thick blanket of high, dry clouds. The average brightness of the spectrum is also a bit lower than theoretical predictions, suggesting that very high winds are rapidly moving the terrific heat of the noonday sun from the day side of HD 189733b to the night side. This spectrum was produced by Dr. Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., and his colleagues. The data were taken by Spitzer's infrared spectrograph on November 22, 2006. http://photojournal.jpl.nasa.gov/catalog/PIA09199

  7. Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio V.; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Sang; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Le Fèvre, Olivier; Le Mignant, David; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas S.; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia M.; de Oliveira, Ligia S.; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino B.; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2014-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC's excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.

  8. Active Galactic Nuclei, Quasars, BL Lac Objects and X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2005-01-01

    The XMM COSMOS survey is producing the large surface density of X-ray sources anticipated. The first batch of approx. 200 sources is being studied in relation to the large scale structure derived from deep optical/near-IR imaging from Subaru and CFHT. The photometric redshifts from the opt/IR imaging program allow a first look at structure vs. redshift, identifying high z clusters. A consortium of SAO, U. Arizona and the Carnegie Institute of Washington (Pasadena) has started a large program using the 6.5meter Magellan telescopes in Chile with the prime objective of identifying the XMM X-ray sources in the COSMOS field. The first series of observing runs using the new IMACS multi-slit spectrograph on Magellan will take place in January and February of 2005. Some 300 spectra per field will be taken, including 70%-80% of the XMM sources in each field. The four first fields cover the center of the COSMOS field. A VLT consortium is set to obtain bulk redshifts of the field galaxies. The added accuracy of the spectroscopic redshifts over the photo-z's will allow much lower density structures to be seen, voids and filaments. The association of X-ray selected AGNs, and quasars with these filaments, is a major motivation for our studies. Comparison to the deep VLA radio data now becoming available is about to begin.

  9. The physics of brown dwarfs and exoplanets - JWST/NIRSpec GTO program overview

    NASA Astrophysics Data System (ADS)

    Birkmann, Stephan; Alves de Oliveira, Catarina; Valenti, Jeff A.; Ferruit, Pierre; NIRSpec GTO Team

    2017-06-01

    The Near Infrared Spectrograph (NIRSpec) is one of the science instruments on the James Webb Space Telescope that is scheduled for launch in October 2018. The NIRSpec guaranteed time observer (GTO) team will use ~70 hours of NIRSpec guaranteed time to carry out spectroscopic observations of brown dwarfs as well as transiting and directly imaged exoplanets with NIRSpec. The instrument offers four distinct observing modes to proposers that will all be exercised by the GTO programs presented here: 1) multi object spectroscopy (MOS) of 10s to 100s of sources in a ~9 arcmin field of view (FOV), 2) integral field spectroscopy (IFS) with a 3” x 3” FOV, 3) high contrast slit spectroscopy of individual objects and 4) time series observations of bright sources, e.g. transiting exoplanets host stars. Seven dispersers are available in all observing modes: a prism covering the wavelength range from 0.6 to 5.3 micron with a spectral resolution R of ~30 to 300, and two sets of three gratings covering 0.7 to 5.2 micron with medium (R~1000) and high (R~2700) spectral resolution.We will present the science goals and targets for the brown dwarf and exoplanet GTO programs and discuss the planned implementation of the observations. The latter might be of particular interest to future JWST/NIRSpec proposers.

  10. Characterization of the actuator of EMIR configurable slit unit

    NASA Astrophysics Data System (ADS)

    Mato Martínez, A.; Núñez Cagigal, M.; Barreto Cabrera, M.; Garzón López, F.; Patrón, J.; Teuwen, M.

    2016-07-01

    EMIR1,2 (Espectrógrafo Multiobjeto Infra-Rojo) is a wide field multi-object spectrograph already installed in the Nasmyth focus of GTC (Gran Telescopio Canarias). It operates in the near-infrared (NIR), in the wavelength range from 0.9 μm to 2.5 μm and it will include several mechanism working in cryogenic conditions. A key component of EMIR is the CSU (Configurable Slit Unit), which is a robotic cryo-mechanism used to generate a multi-slit configuration and a long slit on EMIR focal plane when working in spectroscopic mode. The system has 110 sliding bars which can be configured at cryogenic working temperature to create up to 55 slits with a high position accuracy and repeatability. The movement of the bars is performed by an actuator which allows reaching a relatively high speed for the coarse movement and controllable steps up to 2 microns for the fine positioning. This subsystem has been designed and manufactured by the Dutch company Janssen Precision Engineering (JPE) and the Spanish company NTE-SENER. Afterwards, it was thoroughly verified at the IAC (Instituto de Astrofísica de Canarias) facilities. In this paper, the CSU will be briefly described. One of the more important parts of the CSU is the actuators, which move the bars by means of a stick-slip effect. A set of tests designed for characterizing and improving the robustness and performance of the actuators will be presented. Finally, an overview of the current CSU performance will be presented.

  11. RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prato, L.; Mace, G. N.; Rice, E. L.

    2015-07-20

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less

  12. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  13. Solar XUV grazing incidence spectrograph on Skylab.

    PubMed

    Garrett, D L; Tousey, R

    1977-04-01

    The objective of Skylab corollary experiment S020 was to obtain through the availability of long exposure times more complete information than was then available on the extreme ultraviolet (XUV) and soft x-ray spectrum of the sun in the 10-200-A range. The instrument was a small grazing incidence spectrograph with photographic recording. Use was made of a novel split-ruled grating that combined 1200- and 2400-1/mm rulings to double the spectral coverage of the instrument and to aid in the measurement of wavelengths and order sorting. As it happened, there were many difficulties resulting from the major problems encountered by the Apollo and Skylab missions. Useful spectra were obtained, but the sensitivity of the instrument was greatly reduced, probably because of contamination resulting from leakage of the fluid used in the spacecraft cooling system.

  14. Estimación de la incerteza cinemática de los espectros obtenidos con REOSC (CAsLeo), Flamingos-2 y PHOENIX (Gemini) para observaciones de gas ionizado en galaxias

    NASA Astrophysics Data System (ADS)

    Gaspar, G.; Díaz, R. J.; Güunthardt, G.; Agüuero, M. P.; Camperi, J. A.; Gimeno, G.

    The determination of the radial velocity curves of ionized gas in galaxies requires knowing the value of the internal kinematic uncertainly along the slit for the used spectrographs. We present preliminary results of the study of the variation of the measured radial velocity of both the telluric and comparison emission lines in the spatial direction. This was done for the spectrographs REOSC, Flamingos-2 (F2) and Phoenix. In particular we are interested in using this data to homogenize the rotation curves of nearby galaxies in large-scale ranges. These results will be also useful as references for those works that measure radial velocities of extended objects using only one emission line of ionized gas. FULL TEXT IN SPANISH

  15. Instruments by Telescope | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments Single-object IR spectrograph 1.1"x28" ~3500 Hawaii2RG 0.80-2.40 Available SOAR Instruments See gratings 1,800-14,000 with 0.45 arcsec slit Fairchild CCD 4096x4096 0.32-0.98 Available Spartan IR imager

  16. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).

  17. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bandsmore » was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.« less

  18. Detection et caracterisation de naines brunes et exoplanetes avec un filtre accordable pour applications dans l'espace

    NASA Astrophysics Data System (ADS)

    Ingraham, Patrick Jon

    This thesis determines the capability of detecting faint companions in the presence of speckle noise when performing space-based high-contrast imaging through spectral differential imagery (SDI) using a low-order Fabry-Perot etalon as a tunable filter. The performance of such a tunable filter is illustrated through the Tunable Filter Imager (TFI), an instrument designed for the James Webb Space Telescope (JWST). Using a TFI prototype etalon and a custom designed test bed, the etalon's ability to perform speckle-suppression through SDI is demonstrated experimentally. Improvements in contrast vary with separation, ranging from a factor of ˜10 at working angles greater than 11 lambda/D and increasing up to a factor of ˜60 at 5 lambda/D. These measurements are consistent with a Fresnel optical propagation model which shows the speckle suppression capability is limited by the test bed and not the etalon. This result demonstrates that a tunable filter is an attractive option to perform high-contrast imaging through SDI. To explore the capability of space-based SDI using an etalon, we perform an end-to-end Fresnel propagation of JWST and TFI. Using this simulation, a contrast improvement ranging from a factor of ˜7 to ˜100 is predicted, depending on the instrument's configuration. The performance of roll-subtraction is simulated and compared to that of SDI. The SDI capability of the Near-Infrared Imager and Slitless Spectrograph (NIRISS), the science instrument module to replace TFI in the JWST Fine Guidance Sensor is also determined. Using low resolution, multi-band (0.85-2.4 microm) multi-object spectroscopy, 104 objects towards the central region of the Orion Nebular Cluster have been assigned spectral types including 7 new brown dwarfs, and 4 new planetary mass candidates. These objects are useful for determining the substellar initial mass function and for testing evolutionary and atmospheric models of young stellar and substellar objects. Using the measured H band magnitudes, combined with our determined extinction values, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. Our results indicate a single epoch of star formation beginning ˜1 Myr ago. The initial mass function of the cluster is derived and found to be consistent with the values determined for other young clusters and the galactic disk.

  19. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  20. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    NASA Astrophysics Data System (ADS)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  1. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  2. Comparisons of a Constrained Least Squares Model versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira J.; Rapp, Jason; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan

    2013-01-01

    Spectral reflectance data through the visible regime was collected at Las Campanas Observatory in Chile using an imaging spectrograph on one of the twin 6.5-m Magellan telescopes. The data were obtained on 1-2 May 2012 on the 'Landon Clay' telescope with the LDSS3 (Low Dispersion Survey Spectrograph 3). Five pieces of Geosynchronous Orbit (GEO) or near-GEO debris were identified and observed with an exposure time of 30 seconds on average. In addition, laboratory spectral reflectance data was collected using an Analytical Spectral Device (ASD) field spectrometer at California Polytechnic State University (Cal Poly) in San Luis Obispo on several typical common spacecraft materials including solar cells, circuit boards, various Kapton materials used for multi-layer insulation, and various paints. The remotely collected data and the laboratory-acquired data were then incorporated in a newly developed model that uses a constrained least squares method to unmix the spectrum in specific material components. The results of this model are compared to the previous method of a human-in-the-loop (considered here the traditional method) that identifies possible material components by varying the materials and percentages until a spectral match is obtained. The traditional model was found to match the remotely collected spectral data after it had been divided by the continuum to remove the space weathering effects, or a reddening of the materials. The constrained least-squares model also used the de-reddened spectra as inputs and the results were consistent with those obtained through the traditional method. For comparison, a first-order examination of including reddening effects into the constrained least-squares model will be explored and comparisons to the remotely collected data will be examined. The identification of each object s suspected material component will be discussed herein.

  3. Comparisons of a Constrained Least Squares Model Versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    NASA Technical Reports Server (NTRS)

    Rapp, Jason; Abercromby, Kira J.; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan

    2012-01-01

    Spectral reflectance data through the visible regime was collected at Las Campanas Observatory in Chile using an imaging spectrograph on one of the twin 6.5-m Magellan telescopes. The data were obtained on 1-2 May 2012 on the 'Landon Clay' telescope with the LDSS3 (Low Dispersion Survey Spectrograph 3). Five pieces of Geosynchronous Orbit (GEO) or near-GEO debris were identified and observed with an exposure time of 30 seconds on average. In addition, laboratory spectral reflectance data was collected using an Analytical Spectral Device (ASD) field spectrometer at California Polytechnic State University in San Luis Obispo on several typical common spacecraft materials including solar cells, circuit boards, various Kapton materials used for multi-layer insulation, and various paints. The remotely collected data and the laboratory-acquired data were then incorporated in a newly developed model that uses a constrained least squares method to unmix the spectrum in specific material components. The results of this model are compared to the previous method of a human-in-the-loop (considered here the traditional method) that identifies possible material components by varying the materials and percentages until a spectral match is obtained. The traditional model was found to match the remotely collected spectral data after it had been divided by the continuum to remove the space weathering effects, or a "reddening" of the materials. The constrained least-squares model also used the de-reddened spectra as inputs and the results were consistent with those obtained through the traditional method. For comparison, a first-order examination of including reddening effects into the constrained least-squares model will be explored and comparisons to the remotely collected data will be examined. The identification of each object's suspected material component will be discussed herein.

  4. Investigating the properties of low-mass AGN and their connection to unification models

    NASA Astrophysics Data System (ADS)

    Hood, Carol Elizabeth

    The most basic model of active galactic nuclei (AGN) suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Although there are still some unanswered questions about the structures surrounding the central engines of the AGN, such as if the obscuring region is due to a dusty torus or an outflowing wind, observations (e.g. the detections of broad lines in the polarized light of some Type 2 objects) have proved consistent with predictions and continue to strengthen the case for unification. However, many are still searching for "true" Type 2 objects. These objects optically look like other Type 2 objects, but instead of having their broad line region blocked from the line-of-sight by the obscuring region, they are believed to lack the broad line region altogether. Others have predicted that at low luminosity or low accretion rate, the broad line region will disappear, leaving all objects to optically look like Type 2 objects, despite their level of intrinsic absorption. Low-mass (< 10^6 solar masses) AGN provide interesting environments in which these unification models can be studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. In addition, we examine the X-ray properties of a sample of Type 2 objects observed with XMM-Newton and the IR properties of a sample of both Type 1 and 2 objects observed with the Spitzer Infrared Spectrograph, in order to study the absorption properties of these objects and test the validity of unification models in the low-mass regime. We find little to no evidence of any "true" Type 2 objects in any of our samples, and show that in all tests preformed, low-mass AGN appear to simply be scaled-down versions of their more massive counterparts, keeping current unification models intact down to the lowest black hole masses probed to date.

  5. Investigating the Lyman photon escape in local starburst galaxies with the Cosmic Origins Spectrograph ★

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan

    2018-04-01

    We present a study of 7 star-forming galaxies from the Cosmic Evolution Survey (COSMOS) observed with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations we also analyze observations taken with the VIMOS spectrograph on the Very Large Telescope (VLT). In our galaxy sample we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5-13%. Given the low flux levels in the individual COS exposures we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4}% and f_res(LyC) = 1.7^{+15.2}_{-1.7}%, respectively. Finally, we find that most of these galaxies have moderate UV and optical SFRs (SFRs ≲ 10 M⊙ yr-1).

  6. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  7. Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2018-01-01

    A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.

  8. Multiple Eyes for the VLT

    NASA Astrophysics Data System (ADS)

    2002-01-01

    First System of Deployable Multi-Integral Field Units Ready Summary The ESO Very Large Telescope (VLT) at the Paranal Observatory is being equipped with many state-of-the-art astronomical instruments that will allow observations in a large number of different modes and wavebands. Soon to come is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , a project co-ordinated by ESO. It incorporates several complex components, now being constructed at various research institutions in Europe and Australia. One of these, a true technological feat, is a unique system of 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) . They can be accurately positioned within a sky field-of-view measuring no less that 25 arcmin in diameter, i.e., almost as large as the full Moon . Each of the IFUs looks like an insect's eye and images a small sky area (3 x 2 arcsec 2 ) with a multiple microlens. From each IFU, 20 narrow light beams are sent via optical fibres to an advanced spectrograph. All 300 spectra are recorded simultaneously by a sensitive digital camera. A major advantage of this technique is that, contrary usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . This will permit extremely efficient spectral observations of many celestial objects, including faint galaxies, providing detailed information about their internal structure and motions. Such studies will have an important impact on our understanding, e.g., of the early evolution of galaxies , the main building blocks in the Universe. The IFUs have been developed by a team of astronomers and engineers [2] at the Observatoire de Paris-Meudon. All IFU components are now at the ESO Headquarters in Garching (Germany) where they are being checked and integrated into the instrument [3]. PR Photo 03a/02 : The GIRAFFE spectrograph in the ESO Assembly Hall (Garching, Germany) . PR Photo 03b/02 : Example of a future IFU observation in a sky field with galaxies. PR Photo 03c/02 : An illustration of how the IFUs function . PR Photo 03d/02 : The IFU design . PR Photo 03e/02 : Computer simulation of the motions in a galaxy , as deduced from IFU observations. The FLAMES instrument and its many parts ESO PR Photo 03a/02 ESO PR Photo 03a/02 [Preview - JPEG: 560 x 400 pix - 62k] [Normal - JPEG: 1120 x 800 pix - 544k] [Hi-Res - JPEG: 2885 x 2061 pix - 5.3M] Caption : PR Photo 03a/02 : The GIRAFFE spectrograph, a major component of the VLT Fibre Large Array Multi-Element Spectrograph (FLAMES) , during the present assembly at the ESO Headquarters in Garching (Germany). Late last year, the ESO Very Large Telescope (VLT) at the Paranal Observatory received its newest instrument, NAOS-CONICA . The first tests were very successful, cf. PR 25/01. But this is far from the last. Work is now underway at several European and overseas research institutes to complete the many other large astronomical instruments planned for the VLT. Over the next years, these new facilities will enter into operation one by one, further enhancing the capabilities of this true flagship of European science. One of these instruments is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , to be installed at the 8.2-m VLT KUEYEN Unit Telescope. It will be able to observe the spectra of a large number of individual, faint objects (or small sky areas) simultaneously and incorporates several highly complex components, e.g., * a Nasmyth Corrector - an optical system to focus the light that is received from the telescope over a sky field of no less than 25 arcmin in diameter, i.e., almost as large as the full Moon . It was installed on KUEYEN in September 2001 * a Fibre Positioner (known as "OzPoz"). It is now being built by the AUSTRALIS Consortium, lead by the Anglo Australian Observatory (AAO) , cf. ESO PR 07/98 * a high- and intermediate-resolution optical spectrograph, GIRAFFE , with its own fibre system, developed by the Observatoire de Paris-Meudon in close collaboration with ESO . It is now in the process of being assembled in the ESO laboratories in Garching, cf. PR Photo 03a/01 . Work at the FLAMES facility will be supported by specialized data reduction software developed by Observatoire de Genève-Lausanne in collaboration with Observatoire de Paris-Meudon , and specialized observing software developed at ESO . There will also be a fibre link to the UVES high-dispersion spectrograph and there are plans for incorporating an intermediate resolution IR spectrograph in the future; the ITAL-FLAMES consortium is now preparing the associated instrument control and data reduction software packages. The Integral Field Units (IFUs) for FLAMES ESO PR Photo 03b/02 ESO PR Photo 03b/02 [Preview - JPEG: 573 x 400 pix - 94k] [Normal - JPEG: 1145 x 800 pix - 592k] ESO PR Photo 03c/02 ESO PR Photo 03c/02 [Preview - JPEG: 538 x 400 pix - 63k] [Normal - JPEG: 1076 x 800 pix - 256k] Caption : PR Photo 03b/02 : An example of observations with Integral Field Units (IFUs) at FLAMES (only 4 of the 15 units are shown here). Each IFU is placed so that it records the light from 20 small adjacent sky areas (each measuring about 3 x 2 arcsec 2 ). In this way, it is possible to register simultaneously the spectrum of as many different regions of a (distant) galaxy. PR Photo 03c/02 : How the IFUs work: each IFU consists of a microlens that guides the light from a small sky area, normally centred on a celestial object (e.g., a distant galaxy) and sends it on to the entry of the spectrograph (inside the dotted box). When it enters into operation later this year [3], GIRAFFE will become the most efficient instrument of its kind available at the world's large optical/infrared telescopes. It will be especially suited for the study of the dynamical properties of distant galaxies - their motion in space, as well as the internal motions of their stars and gas clouds. Indeed, observations of the velocity fields in a large variety of galaxies in the early Universe (when its age was only one third to one half of its current age) will be essential for a better understanding of those major building blocks of the Universe. This is first of all due to the unique system of 15 deployable fibre bundles, the Integral Field Units (IFUs) , that can be accurately positioned within a field-of-view measuring no less than 25 arcmin across, cf. PR Photo 03b/02 . Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec 2 on the sky. It contains twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph, cf. PR Photo 03c/02 . A great advantage of this technique is that, contrary to usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . It is therefore possible to obtain spectra of larger areas of a celestial object simultaneously, and not just along one particular diameter. With 15 IFUs at their disposal, the astronomers will be able to observe many galaxies at the same time - this will represent a tremendous gain of efficiency with many more astrophysical data collected within the available observation time! The IFU design ESO PR Photo 03d/02 ESO PR Photo 03d/02 [Preview - JPEG: 400 x 469 pix - 86k] [Normal - JPEG: 800 x 937 pix - 232k] Caption : PR Photo 03d/02 : Mechanical design of an IFU "button". Upper right: photo of an "IFU entrance" with the 20 square microlenses, each measuring 1.8 x 1.8 mm 2. PR Photo 03d/02 shows the mechanical design of the entrance of one IFU. An array of 20 square microlenses, each measuring 1.8 x 1.8 mm 2 is used to concentrate the light in the corresponding, small sky field onto a prism that passes the light on to 20 fibres. These are inserted and cemented into a mechanical holder and the entire assembly is then mounted in an IFU "button" that will be positioned in the focal plane by the OzPoz Positioner. A magnet is incorporated at the base of the button to ensure a stable position (a firm hold) on the focal plate during the observation. The optical cementing is ensured with an UV curing and the fibre bundle is cemented into the button with an epoxy glue in order to ensure excellent stiffness of the complete assembly. The external diameter of the button is about 6 mm, corresponding to about 11 arcsec on the sky, allowing quite close positioning of the buttons on the focal plate. An example of astronomical observations with IFUs ESO PR Photo 03e/02 ESO PR Photo 03e/02 [Preview - JPEG: 467 x 400 pix - 51k] [Normal - JPEG: 933 x 800 pix - 264k] Caption : PR Photo 03e/02 is a computer simulation of the velocity field in a galaxy , as deduced on the basis of IFU spectra. The blue area has negative velocities and is thus the approaching side of the galaxy, while the red area is receding. In this way, the direction of rotation can be determined. The velocity unit is km/s. During the astronomical observation with the IFUs , the spectrograph slit receives light from 15 sky areas simultaneously, each with 21 fibres (20 from the IFU and 1 that collects the light from the night sky in an adjacent sky field) or 22 fibres (with the addition of 1 fibre with light from a calibration lamp). Altogether, about 300 spectra are recorded simultaneously. By means of such observations, the astronomers can perform many different studies, e.g., of the dynamics of star clusters and motions of stars and interstellar clouds in galaxies. PR Photo 03e/02 provides an example of a computer simulation of a resulting diagramme in which the internal rotation of a distant spiral galaxy is clearly visible. Red and yellow areas have positive velocities that are approaching while the blue areas are receding). Of special interest will be the study of the often violent motions when two or more galaxies interact gravitationally. Notes [1]: This is a joint Press Release of ESO and the Observatoire de Paris (cf. http://www.obspm.fr/actual/nouvelle/jan02/flames.shtml ). [2]:The GIRAFFE team at the Observatoire de Paris that has developed the Integral Field Units (IFUs) discussed in this Press Release includes Jean-Pierre Aoustin, Sebastien Baratchart, Patrice Barroso, Veronique Cayatte, Laurent Chemin, Florence Cornu, Jean Cretenet, Jean-Paul Danton, Hector Flores, Francoise Gex, Fabien Guillon, Isabelle Guinouard, Francois Hammer, Jacques Hammes, David Horville, Jean-Michel Huet, Laurent Jocou, Pierre Kerlirzin, Serge Lebourg, Hugo Lenoir, Claude Lesqueren, Regis Marichal, Michel Marteaud, Thierry Melse, Fabrice Peltier, Francois Rigaud, Frederic Sayede and Pascal Vola . [3]: It is expected to ship the various components of the FLAMES instrument to the VLT Observatory at Paranal (Chile) during the next month. "First Light" is scheduled to take place some weeks thereafter, following installation at the telescope and extensive system tests. ESO will issue another Press Release with more details on that occasion.

  9. VizieR Online Data Catalog: GCs in 27 nearby ETGs from the SLUGGS survey (Forbes+, 2017)

    NASA Astrophysics Data System (ADS)

    Forbes, D. A.; Alabi, A.; Brodie, J. P.; Romanowsky, A. J.; Strader, J.; Foster, C.; Usher, C.; Spitler, L.; Bellstedt, S.; Pastorello, N.; Villaume, A.; Wasserman, A.; Pota, V.

    2018-04-01

    Our sample consists of GC systems associated with 25 early-type galaxies from the SLUGGS survey (Brodie et al. 2014ApJ...796...52B) plus two of the three bonus galaxies (NGC 3607 and NGC 5866) that were observed with the same setup. We have obtained wide-field multi-filter imaging of the SLUGGS galaxies using the Subaru telescope under =<1 arcsec seeing conditions. This is supplemented by HST and CFHT imaging. Spectroscopic observations of GC candidates were obtained over the last decade using the DEIMOS spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck II 10 m telescope. The DEIMOS instrument is used in multi-slit mode, with each slit mask covering an area of ~16x5 arcmin2. (5 data files).

  10. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  11. Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.

    2015-11-01

    We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.

  12. Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.

    2015-11-01

    We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.

  13. GEMINI SPECTROSCOPY OF ULTRACOMPACT DWARFS IN THE FOSSIL GROUP NGC 1132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Donzelli, Carlos J.

    2013-06-20

    A spectroscopic follow-up of ultracompact dwarf (UCD) candidates in the fossil group NGC 1132 is undertaken with the Gemini Multi Object Spectrograph. These new Gemini spectra prove the presence of six UCDs in the fossil group NGC 1132 at a distance of D {approx} 100 Mpc and a recessional velocity of v{sub r} = 6935 {+-} 11 km s{sup -1}. The brightest and largest member of the UCD population is an M32 analog with a size of 77.1 pc and a magnitude of M{sub V} = -14.8 mag with the characteristics in between those of the brightest UCDs and compactmore » elliptical galaxies. The ensemble of UCDs have an average radial velocity of (v{sub r} ) = 6966 {+-} 208 km s{sup -1} and a velocity dispersion of {sigma}{sub v} = 169 {+-} 18 km s{sup -1} similar to the one of poor galaxy groups. This work shows that UCDs can be used as test particles to determine the dynamical properties of galaxy groups. The presence of UCDs in the fossil group environment is confirmed and thus the fact that UCDs can form across diverse evolutionary conditions.« less

  14. Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi

    2016-07-01

    We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.

  15. Implementation of the control electronics for KMOS instrument

    NASA Astrophysics Data System (ADS)

    Hess, Hans-Joachim; Ilijevski, Ivica; Kravcar, Helmut; Richter, Josef; Rühfel, Josef; Schwab, Christoph

    2010-07-01

    The KMOS Instrument is built to be one of the second generation VLT instruments. It is a highly complex multi-object spectrograph for the near infrared. Nearly 60 cryogenic mechanisms have to be controlled. This includes 24 deployable Pick-Off arms, three filter and grating wheels as well as three focus stages and four lamps with an attenuator wheel. These mechanisms and a calibration unit are supervised by three control cabinets based on the VLT standards. To follow the rotation of the Nasmyth adaptor the cabinets are mounted into a Co-rotating structure. The presentation will highlight the requirements on the electronics control and how these are met by new technologies applying a compact and reliable signal distribution. To enable high density wiring within the given space envelope flex-rigid printed circuit board designs have been installed. In addition an electronic system that detects collisions between the moving Pick-Off arms will be presented for safe operations. The control system is designed to achieve two micron resolution as required by optomechanical and flexure constraints. Dedicated LVDT sensors are capable to identify the absolute positions of the Pick- Off arms. These contribute to a safe recovery procedure after power failure or accidental collision.

  16. ANDROMEDA XXIX: A NEW DWARF SPHEROIDAL GALAXY 200 kpc FROM ANDROMEDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Eric F.; Slater, Colin T.; Martin, Nicolas F.

    We report the discovery of a new dwarf galaxy, Andromeda XXIX (And XXIX), using data from the recently released Sloan Digital Sky Survey Data Release 8, and confirmed by Gemini North telescope Multi-Object Spectrograph imaging data. And XXIX appears to be a dwarf spheroidal galaxy, separated on the sky by a little more than 15 Degree-Sign from M31, with a distance inferred from the tip of the red giant branch of 730 {+-} 75 kpc, corresponding to a three-dimensional separation from M31 of 207{sup +20}{sub -2} kpc (close to M31's virial radius). Its absolute magnitude, as determined by comparison tomore » the red giant branch luminosity function of the Draco dwarf spheroidal, is M{sub V} = -8.3 {+-} 0.4. And XXIX's stellar populations appear very similar to Draco's; consequently, we estimate a metallicity for And XXIX of [Fe/H] {approx}-1.8. The half-light radius of And XXIX is 360 {+-} 60 pc and its ellipticity is 0.35 {+-} 0.06, typical of dwarf satellites of the Milky Way and M31 at this absolute magnitude range.« less

  17. The LUVOIR Large Mission Concept

    NASA Astrophysics Data System (ADS)

    O'Meara, John; LUVOIR Science and Technology Definition Team

    2018-01-01

    LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.

  18. A fibre positioner solution for the 4MOST instrument

    NASA Astrophysics Data System (ADS)

    Lang-Bardl, Florian; Bender, Ralf; Grupp, Frank; Häuser, Marco; Hess, Hans-Joachim; Junk, Veronika; Kosyra, Ralf; Muschielok, Bernard; Richter, Josef; Schlichter, Jörg; Schwab, Christoph

    2012-09-01

    4MOST1 is a multi object spectrograph facility for ESO's NTT or VISTA telescope. 4MOST is one of the two projects selected for a conceptual design study by ESO. The 4MOST instrument will be able to position < 1500 fibres in the focal plane and collect spectra in a high resolution (R=20000)2 and a low resolution (R=5000) mode (HRM, LRM). The spectral coverage for the LRM is 400-900 nm, the HRM covers 390-459 nm and 564-676 nm. We will present one of the possible positioner designs and first tests of some components for the focal plane array. The design follows the LAMOST3 positioner and has two rotational axes to move the fibre inside the patrol disc. Each axis consists of a stepper motor attached to micro harmonic drive (MHD). The small outer dimensions and high gear ratios of the MHD-stepper motor package, makes them perfectly suitable for our application. The MHD is also backlash free and self-locking what gives us the opportunity to minimize power consumption and heat dissipation during observation without loosing the position of the fibre on sky. The control electronics will also be miniaturized and part of the positioner unit.

  19. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  20. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minjin; Ho, Luis C.; Im, Myungshin

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directlymore » responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.« less

  1. VizieR Online Data Catalog: Spectroscopic redshifts of galaxies in MACS (Ebeling+, 2014)

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Ma, C.-J.; Barrett, E.

    2014-04-01

    MACSJ0416.1-2403 was observed by us on January 20, 2001 with the multi-object spectrograph (MOS) on the Canada-Hawaii-France Telescope (CFHT) on Mauna Kea, Hawaii (effective resolution of 12.5Å). MACSJ0717.5+3745 and MACSJ1149.5+2223 are part of the subsample of MACS clusters at z>0.5 (Ebeling et al. 2007ApJ...661L..33E), and were observed extensively by us, primarily in the context of a study of the impact of environment on spectral and morphological properties of the cluster galaxy population (Ma et al. 2008ApJ...684..160M; Ma & Ebeling 2011MNRAS.410.2593M). MACSJ0717.5+3745 was observed with Keck-II/DEIMOS on nine date between 2003 Dec 23 and 2008 Jan 7, with Keck-I/LRIS on 2000 Nov 20/21 and 2002 Nov 29 and with Gemini/GMOS on 2004 Mar 12 and 17. MACSJ1149.5+2223 was observed with Gemini/GMOS on 2003 May 1 and 2004 Mar 16 and with Keck-II/DEIMOS on 2005 Feb 12, 2006 Apr 30 and 2009 Feb 26. (3 data files).

  2. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields. Aluminum is the heaviest light element displaying large star-to-star variations in Galactic GCs. This element may provide additional insight into the origin of the multiple populations and the nature of the first-generation stars responsible for chemical inhomogeneities. We found that, unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. In chapter 3, we present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that, similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe]. Furthermore, these data suggest that only a small fraction of stars (29%) have an [Na/Fe] ratio similar to halo stars at this metallicity, which is a characteristic reproduced by GC formation and evolution models. In the fourth chapter we present chemical abundances for a sample of 61 red giants in the intermediate-metallicity GC M5. The data were obtained using the Hydra multi-fiber positioner and bench spectrograph on the WIYN telescope. We find that our abundance ratios for Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu agree with published values for this cluster. The scatter seen in Fe-peak, alpha, and neutron-capture elements is consistent with typical spectroscopic errors. However, we identified a star modestly enhanced in La by performing a careful comparison of stellar spectra with similar atmospheric parameters. La-enhanced stars are rare in GCs. For instance, we have found only one such star in each of M5 and 47 Tuc. M5 red giants exhibit a strong Na-Al correlation, which is absent in M71 and 47 Tuc. Furthermore, M5 is at the metallicity regime where GCs seem to transition from small to large [Al/Fe] scatter. Interestingly, this metallicity regime also separates metal-poor from metal-rich Galactic GCs. In the fifth chapter we present radial distributions, population fractions, detailed examination of behavior of Al in more metal-rich GCs in the context of cluster chemical evolution, and, finally, a kinematical study of the GC M13 using spectra acquired with the WIYN-Hydra spectrograph. We find a rotational signal and a kinematical difference between the intermediate and extreme generations. Specifically, we find that the extreme O-depleted population, which is also more centrally concentrated than the primordial and intermediate populations, has the highest rotational amplitude. (Abstract shortened by UMI.)

  3. Spectral types for objects in the Kiso survey. IV - Data for 81 stars

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Mcmahan, Robert K.

    1988-01-01

    Spectroscopy and spectral types for 81 ultraviolet-excess objects found in the Kiso Schmidt-camera survey are reported. The data were secured with the McGraw-Hill 1.3 m telescope at 8-A resolution covering the wavelength interval 4000 -7200 A using the Mark II spectrograph. Descriptions of the spectra of some of the more peculiar objects found in this sample are given and include 14 sub-dwarfs, 23 definite DA white dwarfs, including a magnetic one, and one DQ whie dwarf, eight quasars and emission-line objects, and a new composite DA + dM system. More spectroscopy of the new cataclysmic variable KUV 01584-0939 and a possibly related object is also described.

  4. First ultraviolet reflectance measurements of several Kuiper Belt objects, Kuiper Belt object satellites, and new ultraviolet measurements of A Centaur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, S. A.; Schindhelm, E.; Cunningham, N. J., E-mail: astern@swri.edu

    We observed the 2600-3200 Å (hereafter, mid-UV) reflectance of two Kuiper Belt Objects (KBOs), two KBO satellites, and a Centaur, using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). Other than measurements of the Pluto system, these constitute the first UV measurements obtained of KBOs, and KBO satellites, and new HST UV measurements of the Centaur 2060 Chiron. We find significant differences among these objects, constrain the sizes and densities of Haumea's satellites, and report the detection of a possible spectral absorption band in Haumea's spectrum near 3050 Å. Comparisons of these objects to previously published UV reflectance measurementsmore » of Pluto and Charon are also made here.« less

  5. StarCAT: A Catalog of Space Telescope Imaging Spectrograph Ultraviolet Echelle Spectra of Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2010-03-01

    StarCAT is a catalog of high resolution ultraviolet spectra of objects classified as "stars," recorded by Space Telescope Imaging Spectrograph (STIS) during its initial seven years of operations (1997-2004). StarCAT is based on 3184 echelle observations of 545 distinct targets, with a total exposure duration of 5.2 Ms. For many of the objects, broad ultraviolet coverage has been achieved by splicing echellegrams taken in two or more FUV (1150-1700 Å) and/or NUV (1600-3100 Å) settings. In cases of multiple pointings on conspicuously variable sources, spectra were separated into independent epochs. Otherwise, different epochs were combined to enhance the signal-to-noise ratio (S/N). A post-facto correction to the calstis pipeline data sets compensated for subtle wavelength distortions identified in a previous study of the STIS calibration lamps. An internal "fluxing" procedure yielded coherent spectral energy distributions (SEDs) for objects with broadly overlapping wavelength coverage. The best StarCAT material achieves 300 m s-1 internal velocity precision; absolute accuracy at the 1 km s-1 level; photometric accuracy of order 4%; and relative flux precision several times better (limited mainly by knowledge of SEDs of UV standard stars). While StarCAT represents a milestone in the large-scale post-processing of STIS echellegrams, a number of potential improvements in the underlying "final" pipeline are identified.

  6. The AAO fiber instrument data simulator

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Farrell, Tony; Smedley, Scott; Heald, Ron; Heijmans, Jeroen; De Silva, Gayandhi; Carollo, Daniela

    2012-09-01

    The fiber instrument data simulator is an in-house software tool that simulates detector images of fiber-fed spectrographs developed by the Australian Astronomical Observatory (AAO). In addition to helping validate the instrument designs, the resulting simulated images are used to develop the required data reduction software. Example applications that have benefited from the tool usage are the HERMES and SAMI instrumental projects for the Anglo-Australian Telescope (AAT). Given the sophistication of these projects an end-to-end data simulator that accurately models the predicted detector images is required. The data simulator encompasses all aspects of the transmission and optical aberrations of the light path: from the science object, through the atmosphere, telescope, fibers, spectrograph and finally the camera detectors. The simulator runs under a Linux environment that uses pre-calculated information derived from ZEMAX models and processed data from MATLAB. In this paper, we discuss the aspects of the model, software, example simulations and verification.

  7. The road to Earth twins

    NASA Astrophysics Data System (ADS)

    Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.

    2011-06-01

    A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010

  8. CARMENES science preparation: characterisation of M dwarfs with low-resolution spectroscopy and search for low-mass wide companions to young stars

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.

    2015-11-01

    This thesis is focused on the study of low-mass objects that can be targets of exoplanet searches with near-infrared spectrographs in general and CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs; see Quirrenbach et al. 2014) in particular. The CARMENES consortium comprises 11 institutions from Germany and Spain that are building a high-resolution spectrograph (R=82,000) with two channels, visible (0.55 - 1.05 um) and infrared (0.95 - 1.7 um), for the 3.5 m Calar Alto telescope. It will observe a sample of 300 M dwarfs in 600 nights of guaranteed time during at least three years, starting in January 2016. The final sample will be chosen from the 2200 M dwarfs included in the CARMENCITA input catalogue. For these stars, we have obtained and collected a large amount of data: spectral types, radial and rotational velocities, photometry in several bands, etc. Part of the e effort of the science preparation necessary for the final selection of targets for CARMENES and other near-infrared spectrographs has been collected in two publications, which are presented in this PhD thesis. In the first publication (Alonso-Floriano et al., 2015A&A...577A.128A), we obtained low-resolution spectra for 753 stars using the CAFOS spectrograph at the 2.2 m Calar Alto telescope. The main goal was to derive accurate spectral types, which are fundamental parameters for the sample selection. We used a grid of 49 standard stars, from spectral types K3V to M8V, together with a double least-square minimisation technique and 31 spectral indices previously defined by other authors. In addition, we quantified the surface gravity, metallicity and chromospheric activity of the sample, in order to detect low-gravity stars (giants and very young), metal-poor and very metal-poor stars (subdwarfs), and very active stars. In the second publication (Alonso-Floriano et al., 2015A&A...583A..85A), we searched for common proper motion companions, especially of low mass, to members of the near young beta Pictoris moving group. First, we compiled a list of 185 members and candidate members to beta Pictoris from 35 representatives studies on this moving group. Next, we used the Aladin and STILTS virtual observatory tools, as well as the PPMXL proper motion and Washington double stars catalogues. The objects that showed similar proper motions to those stars of the sample were targets of an astro-photometric follow-up. The 36 common proper motion companion eventually obtained were subjects of a study of binding energies to determine their physical ligation.

  9. VizieR Online Data Catalog: Solar neighborhood. XXXVII. RVs for M dwarfs (Benedict+, 2016)

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, W.-C.; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L.

    2017-05-01

    During this project we observed with two Fine Guidance Sensor (FGS) units: FGS 3 from 1992 to 2000, and FGS 1r from 2000 to 2009. FGS 1r replaced the original FGS 1 during Hubble Space Telescope (HST) Servicing Mission 3A in late 1999. We included visual, photographic, and CCD observations of separations and position angles from Geyer et al. 1988AJ.....95.1841G for our analysis of GJ 65 AB. We include a single observation of G 193-027 AB from Beuzit et al. 2004A&A...425..997B, who used the Adaptive Optics Bonnette system on the Canada-France-Hawaii Telescope (CFHT). For GJ 65 AB we include five Very Large Telescope/NAos-COnica (VLT/NACO) measures of position angle and separation (Kervella et al. 2016A&A...593A.127K). For our analysis of GJ 623 AB, we included astrometric observations (Martinache et al. 2007ApJ...661..496M) performed with the Palomar High Angular Resolution Observer (PHARO) instrument on the Palomar 200in (5m) telescope and with the Near InfraRed Camera 2 (NIRC2) instrument on the Keck II telescope. Separations have typical errors of 2mas. Position angle errors average 0.5°. Measurements are included for GJ 22 AC from McCarthy et al. 1991AJ....101..214M and for GJ 473 AB from Henry et al. 1992AJ....103.1369H and Torres et al. 1999AJ....117..562T, who used a two-dimensional infrared speckle camera containing a 58*62 pixel InSb array on the Steward Observatory 90in telescope. We also include infrared speckle observations by Woitas et al. 2003A&A...406..293W, who obtained fourteen separation and position angle measurements for GJ 22 AC with the near-infrared cameras MAGIC and OMEGA Cass at the 3.5m telescope on Calar Alto. We also include a few speckle observations at optical wavelengths from the Special Astrophysical Observatory 6m Bolshoi Azimuth Telescope (BTA) and 1m Zeiss (Balega et al. 1994, Cat. J/A+AS/105/503), from the CFHT (Blazit et al. 1987) and from the Differential Speckle Survey Instrument (DSSI) on the Wisconsin, Indiana, Yale, National optical astronomy observatory (WIYN) 3.5m (Horch et al. 2012, Cat. J/AJ/143/10). Where available, we use astrometric observations from HST instruments other than the FGSs, including the Faint Object Camera (FOC; Barbieri et al. 1996A&A...315..418B), the Faint Object Spectrograph (FOS; Schultz et al. 1998PASP..110...31S), the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS; Golimowski et al. 2004AJ....128.1733G), and the Wide-Field Planetary Camera 2 (WFPC2; Schroeder et al. 2000AJ....119..906S; Dieterich et al. 2012, Cat. J/AJ/144/64). Our radial velocity measurements, listed in table3, are from two sources. We obtained most radial velocity data with the McDonald 2.1m Struve telescope and the Sandiford Cassegrain Echelle spectrograph, hereafter CE. The CE delivers a dispersion equivalent to 2.5km/s/pix (R=λ/Δλ=60000) with a wavelength range of 5500{<=}λ{<=}6700Å spread across 26 orders (apertures). The McDonald data were collected during 33 observing runs from 1995 to 2009. Some GJ 623 AB velocities came from the Hobby-Eberly Telescope (HET) using the Tull Spectrograph. (3 data files).

  10. The Ultraviolet Spectrograph on the Europa Mission (Europa-UVS)

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Steffl, A.; Davis, M. W.; Feldman, P. D.; McGrath, M. A.; Roth, L.; Saur, J.; Spencer, J. R.; Stern, S. A.; Pope, S.; Freeman, M. A.; Persyn, S. C.; Araujo, M. F.; Cortinas, S. C.; Monreal, R. M.; Persson, K. B.; Trantham, B. J.; Versteeg, M. H.; Walther, B. C.

    2015-12-01

    NASA's Europa multi-flyby mission is designed to provide a diversity of measurements suited to enrich our understanding of the potential habitability of this intriguing ocean world. The Europa mission's Ultraviolet Spectrograph, Europa-UVS, is the sixth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and, like JUICE-UVS (now under Phase B development), is largely based on the most recent of these to fly, Juno-UVS. Europa-UVS observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5° slit. Three distinct apertures send light to the off-axis telescope mirror feeding the long-slit spectrograph: i) a main entrance airglow port is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations); ii) a high-spatial-resolution port consists of a small hole in an additional aperture door, and is used for detailed observations of bright targets; and iii) a separate solar port allows for solar occultations, viewing at a 60° offset from the nominal payload boresight. Photon event time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal science data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high-voltage settings, and careful use of radiation-hard parts. The science goals of Europa-UVS are to: 1) Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole; 2) Search for and characterize active plumes in terms of global distribution, structure, composition, and variability; 3) Explore the surface composition & microphysics and their relation to endogenic & exogenic processes; and 4) Investigate how energy and mass flow in the Europa atmosphere, neutral cloud & plasma torus, and footprint on Jupiter. Here we present the UVS investigation by describing the science we plan to address, the salient details of the instrument, and the basic concept of operations.

  11. Rocket ultraviolet observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Mccoy, Robert P.; Woods, Thomas N.; Feldman, Paul D.; Opal, Chet B.

    1987-01-01

    Ultraviolet observations of Comet Halley have been obtained in February and March, 1986 with two instrument payloads, one with the Faint Object Telescope and one with a direct imaging electrographic Schmidt camera and an objective grating spectrograph. The observations include spectroscopic imagery in the 1200-200 A wavelength range and imagery of the comet in hydrogen Lyman-alpha (1216 A) radiation. The present observations have been reduced to intensity contour plots in the different emission wavelengths, and production rates are given for the emitting species H, C, O, S, and CO.

  12. In-orbit commissioning of the NIRSpec instrument on the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Böker, T.; Muzerolle, J.; Bacinski, J.; Alves de Oliveira, C.; Birkmann, S.; Ferruit, P.; Karl, H.; Lemke, R.; Lützgendorf, N.; Marston, A.; Mosner, P.; Rawle, T.; Sirianni, M.

    2016-07-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, promises to revolutionize observational astronomy, due to its unprecedented sensitivity at near and mid-infrared wavelengths. Following launch, a ~6 month long commissioning campaign aims to verify the observatory performance. A key element in this campaign is the verification and early calibration of the four JWST science instruments, one of which is the Near-Infrared Spectrograph (NIRSpec). This paper summarizes the objectives of the NIRSpec commissioning campaign, and outlines the sequence of activities needed to achieve these objectives.

  13. LRS2: A New Integral Field Spectrograph for the HET

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  14. VizieR Online Data Catalog: FGK dwarfs atmospheric parameters (Ryabchikova+, 2016)

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Pakhomov, Y.; Tsymbal, V.; Titarenko, A.; Sitnova, T.; Alexeeva, S.; Fossati, L.; Mashonkina, L.

    2016-08-01

    For the spectroscopic analysis, we choose the 13 MS stars including the Sun (Table 1) in the 4900-6600K temperature range and with metallicity between [Fe/H]=-1.5 and +0.3dex. All the stars, except HD 149026, have, at least, one interferometric determination of radius and effective temperature. Spectra of the programme stars were obtained with different spectrographs. Most data were extracted from the following archives: the UVES/VLT and HARPS/3.6m spectrographs at ESO,2 the ELODIE/1.93-m spectrograph3 at the Observatoire de Haute Provence, and the ESPaDONs spectrograph at the Canada-France-Hawaii Telescope (CFHT). Spectra of beta Vir and HD 103095 were obtained with the FOCES spectrograph at 2.2-m telescope of the Calar Alto Observatory. One of the spectra of 61 Vir was obtained with the Hamilton Echelle Spectrograph attached to the Shane 3-m telescope of the Lick Observatory. Spectra of few stars, including that of the Sun reflected from Ganymede, were obtained with the HiReS/Keck spectrograph. (3 data files).

  15. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    NASA Astrophysics Data System (ADS)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  16. The GALAH survey: scientific motivation

    NASA Astrophysics Data System (ADS)

    De Silva, G. M.; Freeman, K. C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E. Wylie; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Bayliss, D.; Beavis, M. A.; Bergemann, M.; Campbell, S.; Cannon, R.; Carollo, D.; Casagrande, L.; Casey, A. R.; Da Costa, G.; D'Orazi, V.; Dotter, A.; Duong, L.; Heger, A.; Ireland, M. J.; Kafle, P. R.; Kos, J.; Lattanzio, J.; Lewis, G. F.; Lin, J.; Lind, K.; Munari, U.; Nataf, D. M.; O'Toole, S.; Parker, Q.; Reid, W.; Schlesinger, K. J.; Sheinis, A.; Simpson, J. D.; Stello, D.; Ting, Y.-S.; Traven, G.; Watson, F.; Wittenmyer, R.; Yong, D.; Žerjal, M.

    2015-05-01

    The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ˜ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ˜ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.

  17. Using local correlation tracking to recover solar spectral information from a slitless spectrograph

    NASA Astrophysics Data System (ADS)

    Courrier, Hans T.; Kankelborg, Charles C.

    2018-01-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.

  18. VizieR Online Data Catalog: Imaging and spectroscopy in Lynx W (Jorgensen+, 2014)

    NASA Astrophysics Data System (ADS)

    Jorgensen, I.; Chiboucas, K.; Toft, S.; Bergmann, M.; Zirm, A.; Schiavon, R. P.; Grutzbauch, R.

    2017-01-01

    Ground-based imaging of RX J0848.6+4453 was obtained primarily to show the performance gain provided by replacing the original E2V charge-coupled devices (E2V CCDs) in Gemini Multi-Object Spectrograph on Gemini North (GMOS-N) with E2V Deep Depletion CCDs (E2V DD CCDs). This replacement was done in 2011 October. Imaging of RX J0848.6+4453 was obtained with the original E2V CCDs in 2011 October (UT 2011 Oct 1 to 2011 Oct 2; Program ID: GN-2011B-DD-3) and repeated with the E2V DD CCDs in 2011 November. The imaging was done in the z' filter. For the observations with the original E2V CCDs the total exposure time was 60 minutes (obtained as 12 five-minute exposures) and the co-added image had an image quality of FWHM=0.52'' measured from point sources in the field. For the E2V DD CCDs a total exposure time of 55 minutes was obtained and the resulting image quality was FWHM=0.51''. Imaging of RX J0848.6+4453 was also obtained with Hubble Space Telescope /Advanced Camera for Surveys (HST/ACS using the filters F775W and F850LP) under the program ID 9919. The spectroscopic observations were obtained in multi-object spectroscopic (MOS) mode with GMOS-N (UT 2011 Nov 24 to 2012 Jan 4, Program ID: GN-2011B-DD-5; UT 2013 Mar 9 to 2013 May 18, Program ID: GN-2013A-Q-65). Table10 lists the photometric parameters for the spectroscopic sample as derived from the HST/ACS observations in F850LP and F775W. Tables 11 and 12 list the results from the template fitting and the derived line strengths, respectively. (3 data files).

  19. "First Light" Approaches for VLT MELIPAL

    NASA Astrophysics Data System (ADS)

    2000-01-01

    The year 1999 was a very busy one at ESO's Paranal Observatory , the site of the Very Large Telescope (VLT). Soon after the official Inauguration on March 5, 1999, regular observations started with the first 8.2-m VLT Unit Telescope ANTU . During the first nine months of operation (April - December 1999), about 79,000 exposures were made with the FORS1 and ISAAC astronomical instruments at this telescope. Altogether, more than 68 Gigabytes of unique data were gathered during this period for about 200 individual research programmes and stored in the VLT Data Archive. "First Light" was successfully achieved early in the year for the second 8.2-m VLT Unit telescope, KUEYEN . It has since been equipped with two powerful instruments, UVES and FORS2. Science observations with this telescope will start on April 1, 2000. Already in early December 1999, ahead of the schedule, the third 8.2-m Zerodur mirror in its cell was attached to the third 8.2-m VLT Unit Telescope, MELIPAL , cf. ESO PR Photos 42a-ad/99. The moment of "First Light" is approaching for this telescope. Originally planned for mid-February 2000, this significant event is now expected to take place about two weeks ahead of schedule, in late January 2000. From then on, the VLT will possess nearly 160 square metres of extremely accurate, highly reflecting mirror surface. While the observations for "First Light" and the subsequent commissioning period will be carried out with the VLT Test Camera, MELIPAL will receive its first special astronomical instrument, the VIsible MultiObject Spectrograph (VIMOS) towards the middle of the year. It is optimized for large field imaging and spectroscopic surveys and will become a real workhorse of the VLT for this type of research projects, together with the Near InfraRed MultiObject Spectrograph (NIRMOS) , to be installed later at the fourth 8.2-m Unit Telescope, YEPUN . YEPUN will have "First Light" later this year and the work on this telescope also progresses well. The "M1 Dummy" that was mounted on the telescope frame for balance during the mechanical assembly was removed on January 4. The next day, it was transported down to the Base Camp storage area where it was lifted off the Carriage using a combination of two cranes. The empty M1 Carriage was then moved to the Mirror Maintenance Building (MMB) where the fourth M1 Cell with a dummy concrete mirror was loaded. Later that day it was transported up to YEPUN and the next morning (January 6), the Mirror Cell was moved inside the enclosure. Over the next weeks, it will be fitted to the back of the telescope structure. In parallel, the "M2 Unit" on which the 1.1-m secondary mirror of beryllium will later be mounted, is now being assembled in the Integration Laboratory in the MMB. The following digital photos were obtained during the past days and illustrate the recent work.

  20. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  1. Classification of ASASSN-18ix as a dwarf nova

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.; Chomiuk, L.; Strader, J.; Stanek, K. Z.

    2018-05-01

    We report on SALT high-resolution spectroscopy of ASASSN-18ix which was reported as a possible Galactic nova by K. Z. Stanek et al. (ATel #11561). We obtained a 2000 s spectrum of this object under the SALT Large Science Program on transients on 2018 April 24.99 (HJD 2458233.50), using the High Resolution Spectrograph (HRS; Crause et al. 2014, Proc.

  2. Spectrum from Faint Galaxy IRAS F00183-7111

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years, Spitzer has observed the presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust (see visible-light image in the inset), most of its luminosity is radiated at infrared wavelengths.

    The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.

    The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.

    Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by astronomers as a diagnostic of star formation rates in distant galaxies.

    The Spitzer spectrum is the result of only 14 minutes of integration time, highlighting the power of the infrared spectrograph to unlock the secrets of distant galaxies.

  3. New infrared spectrograph for the investigation of the mesopause region

    NASA Astrophysics Data System (ADS)

    Koltovskoi, I. I.; Ammosov, P. P.; Gavrilyeva, G. A.; Ammosova, A. M.; Sivseva, V. I.

    2017-11-01

    A new infrared spectrograph with high temporal resolution for observation of OH band (3-1) emission dynamics is described. For the automated work of the spectrograph, special software was created. Remote control over the device is also configured.

  4. Cosmic dance at z 3: Detecting the host galaxies of the dual AGN system LBQS 0302-0019 and Jil with HAWK-I+GRAAL

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Bielby, R.; Jahnke, K.; Arrigoni-Battaia, F.; Worseck, G.; Shanks, T.; Wardlow, J.; Scholtz, J.

    2018-06-01

    We recently discovered that the luminous radio-quiet quasi-stellar objects (QSO) LBQS 0302-0019 at z = 3.286 is likely accompanied by an obscured AGN at 20 kpc projected distance, which we dubbed Jil. It represents the tightest candidate system of an obscured and unobscured dual AGN at z > 3. To verify the dual AGN scenario, we obtained deep Ks band (rest-frame V band) imaging with the VLT/HAWK-I+GRAAL instrument at 0.″4 resolution during science verification in January 2018. We detect the individual host galaxies of the QSO and Jil with estimated stellar masses of log(M⋆/M⊙) = 11.4 ± 0.5 and log(M⋆/M⊙) = 0.9 ± 0.5, respectively. Near-IR spectra obtained with Very Large Telescope-K-band Multi Object Spectrograph (VLT-KMOS) reveal a clear [O III] λ5007 line detection at the location of Jil that does not contribute significantly to the Ks band flux. Both observations therefore corroborate the dual AGN scenario. A comparison to Illustris simulations suggests a parent halo mass of log(Mhalo/M⊙) = 13.2 ± 0.5 for this interacting galaxy system, corresponding to a massive dark matter halo at that epoch. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme(s) 60.A-9471(A) and 100.A-0134(B).

  5. Deep g'r'i'z' GMOS Imaging of the Dwarf Irregular Galaxy Kar 50

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2002-11-01

    Images obtained with the Gemini Multi-Object Spectrograph (GMOS) are used to investigate the stellar content and distance of the dwarf irregular galaxy Kar 50. The brightest object is an H II region, and the bright stellar content is dominated by stars with g'-r'<0. The tips of the main sequence and the red giant branch (RGB) are tentatively identified near r'=24.9 and i'=25.5, respectively. The galaxy has a blue integrated color and no significant color gradient, and we conclude that Kar 50 has experienced a recent galaxy-wide episode of star formation. The distance estimated from the brightest blue stars indicates that Kar 50 is behind the M81 group, and this is consistent with the tentative RGB-tip brightness. Kar 50 has a remarkably flat central surface brightness profile, even at wavelengths approaching 1 μm, although there is no evidence of a bar. In the absence of another large star-forming episode, Kar 50 will evolve into a very low surface brightness galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  6. The Radial Velocity Precision of Fiber-fed Spectrographs

    NASA Astrophysics Data System (ADS)

    Walker, Gordon A. H.; Shkolnik, Evgenya; Bohlender, David A.; Yang, Stephenson

    2003-06-01

    We have measured the radial velocities of five 51 Peg-type stars and one star known to be constant in velocity. Our measurements, on 20 Å centered at 3947 Å, were conventional, using Th/Ar comparison spectra taken every 20 or 40 minutes between the stellar exposures. Existing IRAF routines were used for the reduction. We find σRV<=20 m s-1, provided that four measurements (out of 72) with residuals greater than 5 σRV are neglected. The observations were made on five nights with the CFHT Gecko spectrograph (R~110,000), fiber-fed by the CAFE system; σRV<=10 m s-1 seems possible with additional care. This study was incidental to the main observing program and is certainly not exhaustive, but the small value of σRV implies that the fiber feed/image slicer system on Gecko+CAFE essentially eliminates the long-standing problem of guiding errors in radial velocity measurements. We are not promoting this conventional approach for serious Doppler planet searches (especially with Gecko, which has such a small multiplex gain), but the precision is valuable for observations made in spectral regions remote from telluric lines or captive-gas fiducials. Instrument builders might consider the advantages of the CAFE optics, which incorporate agitation and invert the object and pupil to illuminate the slit and grating, respectively, in future spectrograph designs.

  7. Design and Construction of VUES: The Vilnius University Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary

    2016-03-01

    In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.

  8. The Cosmic Dance of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2006-03-01

    GIRAFFE at VLT reveals the turbulent life of distant galaxies Studying several tens of distant galaxies, an international team of astronomers found that galaxies had the same amount of dark matter relative to stars 6 billion years ago as they have now. If confirmed, this suggests a much closer interplay between dark and normal matter than previously believed. The scientists also found that as many as 4 out of 10 galaxies are out of balance. These results shed a new light on how galaxies form and evolve since the Universe was only half its current age. ESO PR Photo 10a/06 ESO PR Photo 10a/06 Collision Between Galaxies (Artist's Impression) "This may imply that collisions and merging are important in the formation and evolution of galaxies", said François Hammer, Paris Observatory, France, and one of the leaders of the team [1]. The scientists were interested in finding out how galaxies that are far away - thus seen as they were when the Universe was younger - evolved into the ones nearby. In particular, they wanted to study the importance of dark matter in galaxies. "Dark matter, which composes about 25% of the Universe, is a simple word to describe something we really don't understand," said Hector Flores, co-leader. "From looking at how galaxies rotate, we know that dark matter must be present, as otherwise these gigantic structures would just dissolve." In nearby galaxies, and in our own Milky Way for that matter, astronomers have found that there exists a relation between the amount of dark matter and ordinary stars: for every kilogram of material within a star there is roughly 30 kilograms of dark matter. But does this relation between dark and ordinary matter still hold in the Universe's past? ESO PR Photo 10b/06 ESO PR Photo 10b/06 Mapping Distant Galaxies (FLAMES-GIRAFFE/VLT) This required measuring the velocity in different parts of distant galaxies, a rather tricky experiment: previous measurements were indeed unable to probe these galaxies in sufficient detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its exquisite spectral resolution, GIRAFFE also allows for the first time to study the distribution of gas as a function of its density in such distant galaxies. The most spectacular results reveal a possible outflow of gas and energy driven by the intense star-formation within the galaxy and a giant region of very hot gas (HII region) in a galaxy in equilibrium that produces many stars. "Such a technique can be expanded to obtain maps of many physical and chemical characteristics of distant galaxies, enabling us to study in detail how they assembled their mass during their entire life," said François Hammer. "In many respects, GIRAFFE and its multi-integral field mode gives us a first flavour of what will be achieved with future extremely large telescopes." Notes [1]: The team comprises: François Hammer, Hector Flores, Mathieu Puech, Chantal Balkowski (GEPI - Observatoire de Paris), Philippe Amram (LAM - Observatoire Astronomique Marseille-Provence), Göran Östlin (Stockholm Observatory), Thomas Marquart (Dept. of Astronomy and Space Physics - Uppsala, Sweden) and Matthew D. Lehnert (MPE, Germany). [2]: This complex and unique instrument allows obtaining high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector. It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon, Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO). More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. See also ESO PR 13/02. [3]: The results will be published in a series of three papers in the leading research journal, Astronomy and Astrophysics (click on the title to access the papers): "3D spectroscopy with VLT/GIRAFFE - I: The true Tully-Fisher relationship at z~ 0.6" (Flores H., Hammer F., Puech M. et al.); "3D spectroscopy with VLT/GIRAFFE - II: Are Luminous Compact Galaxies merger remnants?" (Puech M., Hammer F., Flores H. et al.); and "3D spectroscopy with VLT/GIRAFFE - III: Mapping electron densities in distant galaxies" (Puech M., Flores H., Hammer F. & Lehnert M.D.).

  9. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  10. The ionization mechanism of NGC 185: how to fake a Seyfert galaxy?

    NASA Astrophysics Data System (ADS)

    Martins, L. P.; Lanfranchi, G.; Gonçalves, D. R.; Magrini, L.; Teodorescu, A. M.; Quireza, C.

    2012-02-01

    NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From mid-1990s onwards it was revealed that dwarf spheroidals often display a varied and in some cases complex star formation history. In an optical survey of bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its emission line ratios. However, although the emission lines in this object formally place it in the category of Seyferts, it is probable that this galaxy does not contain a genuine active nucleus. NGC 185 was not detected in radio surveys either in 6 or 20 cm, or X-ray observations, which means that the Seyfert-like line ratios may be produced by stellar processes. In this work, we try to identify the possible ionization mechanisms for this galaxy. We discussed the possibility of the line emissions being produced by planetary nebulae (PNe), using deep spectroscopy observations obtained with the Gemini Multi-Object Spectrograph - North (GMOS-N), at Gemini. Although the fluxes of the PNe are high enough to explain the integrated spectrum, the line ratios are very far from the values for the Seyfert classification. We then proposed that a mixture of supernova remnants and PNe could be the source of the ionization, and we show that a composition of these two objects do mimic Seyfert-like line ratios. We used chemical evolution models to predict the supernova rates and to support the idea that these supernova remnants should be present in the galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership.

  11. The Ionization Source in the Nucleus of M84

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.

    2000-01-01

    We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.

  12. CAMSS: A spectroscopic survey of meteoroid elemental abundances

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Gural, P.; Berdeu, A.

    2014-07-01

    The main element abundances (Mg, Fe, Na, ...) of some Near Earth Objects can be measured by meteor spectroscopy. The Cameras for All-sky Meteor Surveillance (CAMS) Spectrograph project aims to scale up meteor spectroscopy in the same way as CAMS scaled up the measurement of precise meteoroid trajectories from multi-station video observations. Spectra are recorded with sixteen low-light video cameras, each equipped with a high 1379 lines/mm objective transmission grating. The cameras are operated in survey mode and have recorded spectra in the San Francisco Bay Area every clear night since March 12, 2013. An interactive software tool is being developed to calibrate the wavelength alignments projected on the focal plane and extract the meteor spectra. Because the meteoroid trajectory and pre-atmospheric orbit are also independently measured, the absolute abundances of elements in the meteoroid plasma can be calculated as a function of altitude, while the orbital information can tie the meteoroid back to its parent object. % 2007AdSpR..39..538A Berezhnoy, A. A., Borovička, J. 2012, ACM 2012, Abstract 6142 1993A&A...279..627B 1994A&AS..103...83B 2005Icar..174...15B 2011pimo.conf...28G Gural, P. S. 2012, M&PS, 47, 1405 1997ApJ...479..441J 2007AdSpR..39..491J 2011Icar..216...40J Gomez, N., Madiedo, J. M., & Trigo-Rodriguez, J. M. 2013, 44th LPSC, Abstract 1239 2007AdSpR..39..513K 2004AJ....128.2564M 2007AdSpR..39..583R 2007AdSpR..39..517T 2011A&A...526A.126W

  13. Astrophysics on the Edge: New Instrumental Developments at the ING

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Rodríguez-Gil, P.; Tulloch, S.; Rutten, R. G. M.

    Present and future key instruments at the Isaac Newton Group of Telescopes (ING) are introduced, and their corresponding latest scientific highlights are presented. GLAS (Ground-layer Laser Adaptive optics System): The recently installed 515 nm laser, mounted on the WHT (William Herschel Telescope), produces a bright artificial star at a height of 15 km. This enables almost full-sky access to Adaptive Optics observations. Recent commissioning observations with the NAOMI+GLAS system showed that very significant improvement in image quality can be obtained, e.g. down to 0.16 arcsec in the H band. QUCAM2 and QUCAM3: Two Low Light Level (L3) CCD cameras for fast or faint-object spectroscopy with the twin-armed ISIS spectrograph at the WHT. Their use opens a new window of high time-frequency observations, as well as access to fainter objects. They are powerful instruments for research on compact objects such as white dwarfs, neutron stars or black holes, stellar pulsations, and compact binaries.HARPS-NEF (High-Accuracy Radial-velocity Planet Searcher of the New Earths Facility): An extremely stable, high-resolution (R ˜ 120, 000) spectrograph for the WHT which is being constructed for commissioning in 2009-2010. Its radial velocity stability of < 1 m s- 1 may in the future be even further improved by using a Fabry-Perot laser-comb, a wavelength calibration unit capable of achieving an accuracy of 1 cm s- 1. This instrument will effectively allow to search for earth-like exoplanets.

  14. Goodman High Throughput Spectrograph | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR 320-850 nm wavelength range. The paper describing the instrument is Clemens et al. (2004) Applying for IRAF. Publishing results based on Goodman data?: ADS link to 2004 SPIE Goodman Spectrograph paper

  15. The coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald Observatory.

    NASA Technical Reports Server (NTRS)

    Tull, R. G.

    1972-01-01

    Discussion of certain design aspects of the coude spectrograph, and description of the coude scanner that uses some of the spectrograph optics. The configuration of the large echelle grating used is reviewed along with the systems of computer scanner control and data handling.

  16. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    NASA Technical Reports Server (NTRS)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  17. VizieR Online Data Catalog: CARMENES radial velocity curves of 7 M-dwarf (Trifonov+, 2018)

    NASA Astrophysics Data System (ADS)

    Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude, G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R.-R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.; Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2017-10-01

    The two CARMENES spectrographs are grism cross-dispersed, white pupil, echelle spectrograph working in quasi-Littrow mode using a two-beam, two-slice image slicer. The visible spectrograph covers the wavelength range from 0.52um to 1.05um with 61 orders, a resolving power of R=94600, and a mean sampling of 2.8 pixels per resolution element. The data presented in this paper were taken during the early phase of operation of the CARMENES visible-light spectrograph. (8 data files).

  18. Data reductions and data quality for the high resolution spectrograph on the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Crause, Lisa; Depagne, Éric; Ilkiewicz, Krystian; Schroeder, Anja; Kuhn, Rudolph; Hettlage, Christian; Romero Colmenaro, Encarni; Kniazev, Alexei; Väisänen, Petri

    2016-08-01

    The High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) is a dual beam, fiber-fed echelle spectrograph providing high resolution capabilities to the SALT observing community. We describe the available data reduction tools and the procedures put in place for regular monitoring of the data quality from the spectrograph. Data reductions are carried out through the pyhrs package. The data characteristics and instrument stability are reported as part of the SALT Dashboard to help monitor the performance of the instrument.

  19. Metrology measurements for large-aperture VPH gratings

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  20. The Ultraviolet Total Ozone Unit (TOU) IN-ORBIT PERFORMANCE AND CALIBRATION

    NASA Astrophysics Data System (ADS)

    Wang, Yongmei; Fu, Liping; Zhang, Zhongmou

    The Ultraviolet Total Ozone Unit (TOU) was launched on 27 May 2008 on FY-3 meteorological satellite. The main purpose of TOU is to measure the incident solar radiation and backscattered ultraviolet radiance for retrieving daily global map of atmospheric ozone. TOU is a fixed grating and slit-array Ebert-Fastie grating spectrograph system. It has the multi-wavelengths detecting and two-dimensional scanning which enables global daily ground coverage. This paper discusses the recent working status of the instrument, including the sensitivity, measuring precision of solar irradiance, diffuser degradation and wavelength drift, and then presents the in-flight calibration and performance results.

Top