This paper proposes a general procedure to link meteorological data with air quality models, such as U.S. EPA's Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. CMAQ is intended to be used for studying multi-scale (urban and regional) and multi-pollutant (ozon...
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey
2016-01-01
Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
Multi-scale habitat selection modeling: A review and outlook
Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman
2016-01-01
Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.
Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Schröter, Kai; Merz, Bruno
2016-05-01
Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.
Correlates of a Single-Item Indicator Versus a Multi-Item Scale of Outness About Same-Sex Attraction
Noor, Syed W.; Galos, Dylan L.; Simon Rosser, B. R.
2017-01-01
In this study, we investigated if a single-item indicator measured the degree to which people were open about their same-sex attraction (“out”) as accurately as a multi-item scale. For the multi-item scale, we used the Outness Inventory, which includes three subscales: family, world, and religion. We examined correlations between the single- and multi-item measures; between the single-item indicator and the subscales of the multi-item scale; and between the measures and internalized homonegativity, social attitudes towards homosexuality, and depressive symptoms. In addition, we calculated Tjur’s R2 as a measure of predictive power of the single-item indicator, multi-item scale, and subscales of the multi-item scale in predicting two health-related outcomes: depressive symptoms and condomless anal sex with multiple partners. There was a strong correlation between the single- and multi-item measures (r = 0.73). Furthermore, there were strong correlations between the single-item indicator and each subscale of the multi-item scale: family (r = 0.70), world (r = 0.77), and religion (r = 0.50). In addition, the correlations between the single-item indicator and internalized homonegativity (r = −0.63), social attitudes towards homosexuality (r = −0.38), and depression (r = −0.14) were higher than those between the multi-item scale and internalized homonegativity (r = −0.55), social attitudes towards homosexuality (r = −0.21), and depression (r = −0.13). Contrary to the premise that multi-item measures are superior to single-item measures, our collective findings indicate that the single-item indicator of outness performs better than the multi-item scale of outness. PMID:26292840
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
Multi-Scale Computational Models for Electrical Brain Stimulation
Seo, Hyeon; Jun, Sung C.
2017-01-01
Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476
NASA Astrophysics Data System (ADS)
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Reliability of Multi-Category Rating Scales
ERIC Educational Resources Information Center
Parker, Richard I.; Vannest, Kimberly J.; Davis, John L.
2013-01-01
The use of multi-category scales is increasing for the monitoring of IEP goals, classroom and school rules, and Behavior Improvement Plans (BIPs). Although they require greater inference than traditional data counting, little is known about the inter-rater reliability of these scales. This simulation study examined the performance of nine…
NASA Astrophysics Data System (ADS)
Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie
2017-08-01
This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes
NASA Astrophysics Data System (ADS)
Tao, W. K.
2017-12-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2010-01-01
In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.
New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less
Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod
Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...
2017-03-02
New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov
2013-04-24
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
Development of multi-dimensional body image scale for malaysian female adolescents
Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371
Development of multi-dimensional body image scale for malaysian female adolescents.
Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.
Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia
2016-09-01
In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdikaris, Paris, E-mail: parisp@mit.edu; Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu
The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process takingmore » place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.« less
Multiscale modeling and simulation of brain blood flow
NASA Astrophysics Data System (ADS)
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em
2016-02-01
The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.
Wang, Qi; Xie, Zhiyi; Li, Fangbai
2015-11-01
This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien
2017-01-01
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
ERIC Educational Resources Information Center
Wickerd, Garry; Hulac, David
2017-01-01
Accurate and rapid identification of students displaying behavioral problems requires instrumentation that is user friendly and reliable. The purpose of the study was to evaluate a multi-item direct behavior rating scale called the Direct Behavior Rating-Multiple Item Scale (DBR-MIS) for disruptive behavior to determine the number of…
ERIC Educational Resources Information Center
Daniels, Brian; Volpe, Robert J.; Briesch, Amy M.; Gadow, Kenneth D.
2017-01-01
Direct behavior rating (DBR) represents a feasible method for monitoring student behavior in the classroom; however, limited work to date has focused on the use of multi-item scales. The purposes of the study were to examine the (a) dependability of data obtained from a multi-item DBR designed to assess peer conflict and (b) treatment sensitivity…
Chen, Hai; Liang, Xiaoying; Li, Rui
2013-01-01
Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.
ERIC Educational Resources Information Center
Tilga, Henri; Hein, Vello; Koka, Andre
2017-01-01
This research aimed to develop and validate an instrument to assess the students' perceptions of the teachers' autonomy-supportive behavior by the multi-dimensional scale (Multi-Dimensional Perceived Autonomy Support Scale for Physical Education). The participants were 1,476 students aged 12- to 15-years-old. In Study 1, a pool of 37 items was…
Multi-scale biomedical systems: measurement challenges
NASA Astrophysics Data System (ADS)
Summers, R.
2016-11-01
Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.
Cross-scale interactions: Quantifying multi-scaled cause–effect relationships in macrosystems
Soranno, Patricia A.; Cheruvelil, Kendra S.; Bissell, Edward G.; Bremigan, Mary T.; Downing, John A.; Fergus, Carol E.; Filstrup, Christopher T.; Henry, Emily N.; Lottig, Noah R.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.
2014-01-01
Ecologists are increasingly discovering that ecological processes are made up of components that are multi-scaled in space and time. Some of the most complex of these processes are cross-scale interactions (CSIs), which occur when components interact across scales. When undetected, such interactions may cause errors in extrapolation from one region to another. CSIs, particularly those that include a regional scaled component, have not been systematically investigated or even reported because of the challenges of acquiring data at sufficiently broad spatial extents. We present an approach for quantifying CSIs and apply it to a case study investigating one such interaction, between local and regional scaled land-use drivers of lake phosphorus. Ultimately, our approach for investigating CSIs can serve as a basis for efforts to understand a wide variety of multi-scaled problems such as climate change, land-use/land-cover change, and invasive species.
Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES
NASA Astrophysics Data System (ADS)
Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu
2016-11-01
Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.
Towards an eco-phylogenetic framework for infectious disease ecology.
Fountain-Jones, Nicholas M; Pearse, William D; Escobar, Luis E; Alba-Casals, Ana; Carver, Scott; Davies, T Jonathan; Kraberger, Simona; Papeş, Monica; Vandegrift, Kurt; Worsley-Tonks, Katherine; Craft, Meggan E
2018-05-01
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats. © 2017 Cambridge Philosophical Society.
COMPARISONS AND CONTRASTS AMONG DIFFERENT SCALED ASSESSMENTS
A comparison of a regional (multi-state) and local (multi-county) scale assessment was done to evaluate similarities and differences in the collection, analysis, and interpretation of landscape data. The study areas included EP A Region 3 a11d a sub-region spanning North and Sout...
Multi-Scale Models for the Scale Interaction of Organized Tropical Convection
NASA Astrophysics Data System (ADS)
Yang, Qiu
Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
A Multi-Scale Comparative Study of Shape and Sprawl in Metropolitan Regions of the United States
ERIC Educational Resources Information Center
Kugler, Tracy A.
2012-01-01
This dissertation constitutes a multi-scale quantitative and qualitative investigation of patterns of urban development in metropolitan regions of the United States. This work has generated a comprehensive data set on spatial patterns of metropolitan development in the U.S. and an approach to the study of such patterns that can be used to further…
Blood Flow: Multi-scale Modeling and Visualization (July 2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Zhang, Xin; Fang, Ruihong
2018-02-01
Understanding the potential connections between climate indices such as the El Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO) and drought variability will be beneficial for making reasonable predictions or assumptions about future regional droughts, and provide valuable information to improve water resources planning and design for specific regions of interest. This study is to examine the multi-scale relationships between winter drought variability over Shaanxi (North China) and both ENSO and AO during the period 1960-2009. To accomplish this, we first estimated winter dryness/wetness conditions over Shaanxi based on the self-calibrating Palmer drought severity index (PDSI). Then, we identified the spatiotemporal variability of winter dryness/wetness conditions in the study area by using the empirical orthogonal function (EOF). Two primary sub-regions of winter dryness/wetness conditions across Shaanxi were identified. We further examined the periodical oscillations of dryness/wetness conditions and the multi-scale relationships between dryness/wetness conditions and both ENSO and AO in winter using wavelet analysis. The results indicate that there are inverse multi-scale relations between winter dryness/wetness conditions and ENSO (according to the wavelet coherence) for most of the study area. Moreover, positive multi-scale relations between winter dryness/wetness conditions and AO are mainly observed. The results could be beneficial for making reasonable predictions or assumptions about future regional droughts and provide valuable information to improve water resources planning and design within this study area. In addition to the current study area, this study may also offer a useful reference for other regions worldwide with similar climate conditions.
Plank, G; Prassl, AJ; Augustin, C
2014-01-01
Despite the evident multiphysics nature of the heart – it is an electrically controlled mechanical pump – most modeling studies considered electrophysiology and mechanics in isolation. In no small part, this is due to the formidable modeling challenges involved in building strongly coupled anatomically accurate and biophyically detailed multi-scale multi-physics models of cardiac electro-mechanics. Among the main challenges are the selection of model components and their adjustments to achieve integration into a consistent organ-scale model, dealing with technical difficulties such as the exchange of data between electro-physiological and mechanical model, particularly when using different spatio-temporal grids for discretization, and, finally, the implementation of advanced numerical techniques to deal with the substantial computational. In this study we report on progress made in developing a novel modeling framework suited to tackle these challenges. PMID:24043050
Energy transport towards magnetosphere: current background and perspectives
NASA Astrophysics Data System (ADS)
Savin, Sergey; Zelenyi, Lev
On the background of rising number of multi-scale magnetospheric constellations of satellites (e.g. MMS, ROY, SCOPE etc.), we discuss realistic options for the future experimental efforts in the current international framework. Now space weather predictions require cross-scale (i.e. multi-point) and micro-scale (down to the electron inertial length and gyroradius, i.e. few km and 0.1 s) measurements, which should facilitate the fundamental turbulence explorations impacting e.g. fusion and astrophysical tasks. Both ROY and SCOPE could provide 4-6 space-craft under wide international collaboration. For SCOPE near-equatorial plane is the region for the multi-scale studies, while ROY will start from high latitudes and finish at the intermediate and, hopefully, low ones. We suggest a new strategy for the correlated measurements instead of a multi-tetrahedron configuration: -place spacecraft along magnetospheric boundaries: magne-topause, neutral sheet, bow shock et. instead of tetrahedron Cluster-like configuration trying to get the multi-scale measurements along the natural boundaries; -monitor the processes along the streamlines in magnetosheath; -use extra 2-8 nano/ pico-satellites for campaigns of the multi-spacecraft explorations, -utilize multi-frequency radio-tomography for monitoring of the inter-spacecraft processes Both SCOPE and ROY launchers have respective payload resources, which, with the respective international cooperation, should provide a new step in the magnetospheric plasma explorations.
Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R
2016-11-16
Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.
Data fusion of multi-scale representations for structural damage detection
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-01-01
Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.
Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform
NASA Astrophysics Data System (ADS)
Liu, W.; Yao, H.; Yang, H. Y.
2017-12-01
Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.
Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad
2017-05-01
Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
Vita Wright; Sallie J. Hejl; Richard L. Hutto
1997-01-01
Our multi-scale analysis of Flammulated Owl (Otus flammeolus) habitat use in the northern Rocky Mountains indicates some landscapes may be unsuitable for this species. As a result, there may be less habitat available for Flammulated Owls than thought based on the results of microhabitat studies. Thus, we suggest Flammulated Owl habitat conservation...
NASA Astrophysics Data System (ADS)
Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.
2014-12-01
Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.
NASA Astrophysics Data System (ADS)
Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu
2017-09-01
An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.
ERIC Educational Resources Information Center
Gotwals, John K.; Dunn, John G. H.
2009-01-01
This article presents a chronology of three empirical studies that outline the measurement process by which two new subscales ("Doubts about Actions" and "Organization") were developed and integrated into a revised version of Dunn, Causgrove Dunn, and Syrotuik's (2002) "Sport Multidimensional Perfectionism Scale"…
Multi-scale computational modeling of developmental biology.
Setty, Yaki
2012-08-01
Normal development of multicellular organisms is regulated by a highly complex process in which a set of precursor cells proliferate, differentiate and move, forming over time a functioning tissue. To handle their complexity, developmental systems can be studied over distinct scales. The dynamics of each scale is determined by the collective activity of entities at the scale below it. I describe a multi-scale computational approach for modeling developmental systems and detail the methodology through a synthetic example of a developmental system that retains key features of real developmental systems. I discuss the simulation of the system as it emerges from cross-scale and intra-scale interactions and describe how an in silico study can be carried out by modifying these interactions in a way that mimics in vivo experiments. I highlight biological features of the results through a comparison with findings in Caenorhabditis elegans germline development and finally discuss about the applications of the approach in real developmental systems and propose future extensions. The source code of the model of the synthetic developmental system can be found in www.wisdom.weizmann.ac.il/~yaki/MultiScaleModel. yaki.setty@gmail.com Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen
2018-05-01
The long-term reliability of multi-stacked coatings suffering the bending or rolling load was a severe challenge to extend the lifespan of foregoing structure. In addition, the adhesive strength of dissimilar materials was regarded as the major mechanical reliability concerns among multi-stacked films. However, the significant scale-mismatch from several nano-meter to micro-meter among the multi-stacked coatings causing the numerical accuracy and converged capability issues on fracture-based simulation approach. For those reasons, this study proposed the FEA-based multi-level submodeling and multi-point constraint (MPC) technique to conquer the foregoing scale-mismatch issue. The results indicated that the decent region of first and second-order submodeling can achieve the small error of 1.27% compared with the experimental result and significantly reduced the mesh density and computing time. Moreover, the MPC method adopted in FEA simulation also shown only 0.54% error when the boundary of selected local region was away the concerned critical region following the Saint-Venant principle. In this investigation, two FEA-based approaches were used to conquer the evidently scale mismatch issue when the adhesive strengths of micro and nano-scale multi-stacked coating were taken into account.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
NASA Astrophysics Data System (ADS)
Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.
2016-04-01
For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
NASA Astrophysics Data System (ADS)
Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank
2017-10-01
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
NASA Astrophysics Data System (ADS)
Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.
2011-11-01
We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.
2D deblending using the multi-scale shaping scheme
NASA Astrophysics Data System (ADS)
Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan
2018-01-01
Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.
Frasch, Martin G; Lobmaier, Silvia M; Stampalija, Tamara; Desplats, Paula; Pallarés, María Eugenia; Pastor, Verónica; Brocco, Marcela A; Wu, Hau-Tieng; Schulkin, Jay; Herry, Christophe L; Seely, Andrew J E; Metz, Gerlinde A S; Louzoun, Yoram; Antonelli, Marta C
2018-05-30
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen
2013-01-23
Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.
NASA Astrophysics Data System (ADS)
Jedlikowski, Jan; Chibowski, Piotr; Karasek, Tomasz; Brambilla, Mattia
2016-05-01
Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.
Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole
2017-09-01
In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
A multi-scale approach to designing therapeutics for tuberculosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje
Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less
A multi-scale approach to designing therapeutics for tuberculosis
Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje; ...
2015-04-20
Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less
Alternative transitions between existing representations in multi-scale maps
NASA Astrophysics Data System (ADS)
Dumont, Marion; Touya, Guillaume; Duchêne, Cécile
2018-05-01
Map users may have issues to achieve multi-scale navigation tasks, as cartographic objects may have various representations across scales. We assume that adding intermediate representations could be one way to reduce the differences between existing representations, and to ease the transitions across scales. We consider an existing multiscale map on the scale range from 1 : 25k to 1 : 100k scales. Based on hypotheses about intermediate representations design, we build custom multi-scale maps with alternative transitions. We will conduct in a next future a user evaluation to compare the efficiency of these alternative maps for multi-scale navigation. This paper discusses the hypotheses and production process of these alternative maps.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, N. T., E-mail: nthoward@psfc.mit.edu; White, A. E.; Greenwald, M.
2014-03-15
Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (m{sub D}/m{sub e}){sup .5} = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al.,more » Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron (k{sub θ}ρ{sub e}∼O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (k{sub θ}ρ{sub s} < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.« less
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo
2013-02-01
SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.
Plant trait detection with multi-scale spectrometry
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.
Development and validation of the Work Conflict Appraisal Scale (WCAS).
González-Navarro, Pilar; Llinares-Insa, Lucía; Zurriaga-Llorens, Rosario; Lloret-Segura, Susana
2017-05-01
In the context of cognitive appraisal, the Work Conflict Appraisal Scale (WCAS) was developed to assess work conflict in terms of threat and challenge. In the first study, the factorial structure of the scale was tested using confirmatory factor analysis with a Spanish multi-occupational employee sample (N= 296). In the sec-ond study, we used multi-sampling confirmatory factor analysis (N= 815) to cross-validate the results. The analyses confirm the validity of the scale and are con-sistent with the tri-dimensional conflict classification. The findings support the distinc-tion between the challenge and threat appraisals of work conflict, highlighting the im-portance of measuring these two types of appraisal separately. This scale is a valid and reliable instrument to measure conflict appraisal in organizations.
Towards large scale multi-target tracking
NASA Astrophysics Data System (ADS)
Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus
2014-06-01
Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition
Ong, Frank; Lustig, Michael
2016-01-01
We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978
Goal-oriented robot navigation learning using a multi-scale space representation.
Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A
2015-12-01
There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schut, Marc; Hermans, Frans; van Asten, Piet; Leeuwis, Cees
2018-01-01
Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs–local-level actors–left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts. PMID:29870559
Sartas, Murat; Schut, Marc; Hermans, Frans; Asten, Piet van; Leeuwis, Cees
2018-01-01
Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs-local-level actors-left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts.
Multi-scale Material Appearance
NASA Astrophysics Data System (ADS)
Wu, Hongzhi
Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
Users matter : multi-agent systems model of high performance computing cluster users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Hood, C. S.; Decision and Information Sciences
2005-01-01
High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture
NASA Astrophysics Data System (ADS)
Hassan, Ezeldin A.
Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.
Multi-scale signed envelope inversion
NASA Astrophysics Data System (ADS)
Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang
2018-06-01
Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.
Sibole, Scott C.; Erdemir, Ahmet
2012-01-01
Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535
Multi-level multi-task learning for modeling cross-scale interactions in nested geospatial data
Yuan, Shuai; Zhou, Jiayu; Tan, Pang-Ning; Fergus, Emi; Wagner, Tyler; Sorrano, Patricia
2017-01-01
Predictive modeling of nested geospatial data is a challenging problem as the models must take into account potential interactions among variables defined at different spatial scales. These cross-scale interactions, as they are commonly known, are particularly important to understand relationships among ecological properties at macroscales. In this paper, we present a novel, multi-level multi-task learning framework for modeling nested geospatial data in the lake ecology domain. Specifically, we consider region-specific models to predict lake water quality from multi-scaled factors. Our framework enables distinct models to be developed for each region using both its local and regional information. The framework also allows information to be shared among the region-specific models through their common set of latent factors. Such information sharing helps to create more robust models especially for regions with limited or no training data. In addition, the framework can automatically determine cross-scale interactions between the regional variables and the local variables that are nested within them. Our experimental results show that the proposed framework outperforms all the baseline methods in at least 64% of the regions for 3 out of 4 lake water quality datasets evaluated in this study. Furthermore, the latent factors can be clustered to obtain a new set of regions that is more aligned with the response variables than the original regions that were defined a priori from the ecology domain.
Young Kim, Eun; Johnson, Hans J
2013-01-01
A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.
Modeling small-scale dairy farms in central Mexico using multi-criteria programming.
Val-Arreola, D; Kebreab, E; France, J
2006-05-01
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multi-criteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, ryegrass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
The Development and Validation of a Scale Measuring Teacher Autonomous Behaviour
ERIC Educational Resources Information Center
Evers, Arnoud T.; Verboon, Peter; Klaeijsen, Andrea
2017-01-01
In the current study a multi-dimensional scale that measures teacher autonomous behaviour is presented. The scale is applicable across the following educational sectors: primary education, secondary education and vocational education. Based on an elaborate literature study, four theoretically relevant dimensions of teacher autonomous behaviour…
Nonlinear dynamics of the complex multi-scale network
NASA Astrophysics Data System (ADS)
Makarov, Vladimir V.; Kirsanov, Daniil; Goremyko, Mikhail; Andreev, Andrey; Hramov, Alexander E.
2018-04-01
In this paper, we study the complex multi-scale network of nonlocally coupled oscillators for the appearance of chimera states. Chimera is a special state in which, in addition to the asynchronous cluster, there are also completely synchronous parts in the system. We show that the increase of nodes in subgroups leads to the destruction of the synchronous interaction within the common ring and to the narrowing of the chimera region.
NASA Astrophysics Data System (ADS)
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education
ERIC Educational Resources Information Center
Schwalbe, Michelle Kristin
2010-01-01
This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
SMR Re-Scaling and Modeling for Load Following Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, K.; Wu, Q.; Bragg-Sitton, S.
2016-11-01
This study investigates the creation of a new set of scaling parameters for the Oregon State University Multi-Application Small Light Water Reactor (MASLWR) scaled thermal hydraulic test facility. As part of a study being undertaken by Idaho National Lab involving nuclear reactor load following characteristics, full power operations need to be simulated, and therefore properly scaled. Presented here is the scaling analysis and plans for RELAP5-3D simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.
1995-12-31
The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less
eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data
Dorazio, Robert; Erickson, Richard A.
2017-01-01
In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.
Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph; Meneveau, Charles
2015-06-01
Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.
Grid-Enabled Quantitative Analysis of Breast Cancer
2010-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also
Multiscale deformation behavior for multilayered steel by in-situ FE-SEM
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.
2010-03-01
The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.
Evaluation of Multi-Functional Materials for Deep Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William; Wilkins, Richard; Gersey, Brad; Badavi, Francis F.
2009-01-01
Small scale trade study of materials for radiation shielding: a) High-hydrogen polymers; b) Z-graded materials; c) Fiber-reinforced polymer composites. Discussed multi-functionality of fiber-reinforced polymer composites. Preliminary results of ground testing data.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; He, Ya-Ling; Kang, Qinjun
2013-12-15
A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A
2015-12-01
We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Newig, Jens; Schulz, Daniel; Jager, Nicolas W.
2016-12-01
This article attempts to shed new light on prevailing puzzles of spatial scales in multi-level, participatory governance as regards the democratic legitimacy and environmental effectiveness of governance systems. We focus on the governance re-scaling by the European Water Framework Directive, which introduced new governance scales (mandated river basin management) and demands consultation of citizens and encourages `active involvement' of stakeholders. This allows to examine whether and how re-scaling through deliberate governance interventions impacts on democratic legitimacy and effective environmental policy delivery. To guide the enquiry, this article organizes existing—partly contradictory—claims on the relation of scale, democratic legitimacy, and environmental effectiveness into three clusters of mechanisms, integrating insights from multi-level governance, social-ecological systems, and public participation. We empirically examine Water Framework Directive implementation in a comparative case study of multi-level systems in the light of the suggested mechanisms. We compare two planning areas in Germany: North Rhine Westphalia and Lower Saxony. Findings suggest that the Water Framework Directive did have some impact on institutionalizing hydrological scales and participation. Local participation appears generally both more effective and legitimate than on higher levels, pointing to the need for yet more tailored multi-level governance approaches, depending on whether environmental knowledge or advocacy is sought. We find mixed results regarding the potential of participation to bridge spatial `misfits' between ecological and administrative scales of governance, depending on the historical institutionalization of governance on ecological scales. Polycentricity, finally, appeared somewhat favorable in effectiveness terms with some distinct differences regarding polycentricity in planning vs. polycentricity in implementation.
Newig, Jens; Schulz, Daniel; Jager, Nicolas W
2016-12-01
This article attempts to shed new light on prevailing puzzles of spatial scales in multi-level, participatory governance as regards the democratic legitimacy and environmental effectiveness of governance systems. We focus on the governance re-scaling by the European Water Framework Directive, which introduced new governance scales (mandated river basin management) and demands consultation of citizens and encourages 'active involvement' of stakeholders. This allows to examine whether and how re-scaling through deliberate governance interventions impacts on democratic legitimacy and effective environmental policy delivery. To guide the enquiry, this article organizes existing-partly contradictory-claims on the relation of scale, democratic legitimacy, and environmental effectiveness into three clusters of mechanisms, integrating insights from multi-level governance, social-ecological systems, and public participation. We empirically examine Water Framework Directive implementation in a comparative case study of multi-level systems in the light of the suggested mechanisms. We compare two planning areas in Germany: North Rhine Westphalia and Lower Saxony. Findings suggest that the Water Framework Directive did have some impact on institutionalizing hydrological scales and participation. Local participation appears generally both more effective and legitimate than on higher levels, pointing to the need for yet more tailored multi-level governance approaches, depending on whether environmental knowledge or advocacy is sought. We find mixed results regarding the potential of participation to bridge spatial 'misfits' between ecological and administrative scales of governance, depending on the historical institutionalization of governance on ecological scales. Polycentricity, finally, appeared somewhat favorable in effectiveness terms with some distinct differences regarding polycentricity in planning vs. polycentricity in implementation.
Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann
2018-04-01
Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.
Marital happiness and sleep disturbances in a multi-ethnic sample of middle-aged women.
Troxel, Wendy M; Buysse, Daniel J; Hall, Martica; Matthews, Karen A
2009-01-01
Previous research suggests that divorced individuals, particularly women, have higher rates of sleep disturbances as compared to married individuals. Among the married, however, little is known about the association between relationship quality and sleep. The present study examined the association between marital happiness and self-reported sleep disturbances in a sample of midlife women drawn from the Study of Women's Health Across the Nation (SWAN), a multi-site, multi-ethnic, community-based study (N = 2,148). Marital happiness was measured using a single item from the Dyadic Adjustment Scale, and sleep disturbance was assessed using 4 items from the Women's Health Initiative Insomnia Rating Scale (WHIIRS). After controlling for relevant covariates, maritally happy women reported fewer sleep disturbances, with the association evident among Caucasian women and to a lesser extent among African American women.
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
2015-12-07
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai
2015-12-01
In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.
Simulation Studies of Mechanical Properties of Novel Silica Nano-structures
NASA Astrophysics Data System (ADS)
Muralidharan, Krishna; Torras Costa, Joan; Trickey, Samuel B.
2006-03-01
Advances in nanotechnology and the importance of silica as a technological material continue to stimulate computational study of the properties of possible novel silica nanostructures. Thus we have done classical molecular dynamics (MD) and multi-scale quantum mechanical (QM/MD) simulation studies of the mechanical properties of single-wall and multi-wall silica nano-rods of varying dimensions. Such nano-rods have been predicted by Mallik et al. to be unusually strong in tensile failure. Here we compare failure mechanisms of such nano-rods under tension, compression, and bending. The concurrent multi-scale QM/MD studies use the general PUPIL system (Torras et al.). In this case, PUPIL provides automated interoperation of the MNDO Transfer Hamiltonian QM code (Taylor et al.) and a locally written MD code. Embedding of the QM-forces domain is via the scheme of Mallik et al. Work supported by NSF ITR award DMR-0325553.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.
2007-01-01
Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.
ERIC Educational Resources Information Center
Mizumoto, Atsushi; Chujo, Kiyomi; Yokota, Kenji
2016-01-01
In spite of researchers' and practitioners' increasing attention to data-driven learning (DDL) and increasing numbers of DDL studies, a multi-item scale to measure learners' attitude toward DDL has not been developed thus far. In the present study, we developed and validated a psychometric scale to measure learners' perceived preferences and…
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Wearable Wireless Sensor for Multi-Scale Physiological Monitoring
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0541 TITLE: Wearable Wireless Sensor for Multi-Scale...TYPE Annual 3. DATES COVERED 25 12- 13 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Wearable Wireless Sensor for Multi-Scale Physiological...peripheral management • Procedures for low power mode activation and wake - up • Routines for start- up state detection • Flash memory management
Scale Interactions in the Tropics from a Simple Multi-Cloud Model
NASA Astrophysics Data System (ADS)
Niu, X.; Biello, J. A.
2017-12-01
Our lack of a complete understanding of the interaction between the moisture convection and equatorial waves remains an impediment in the numerical simulation of large-scale organization, such as the Madden-Julian Oscillation (MJO). The aim of this project is to understand interactions across spatial scales in the tropics from a simplified framework for scale interactions while a using a simplified framework to describe the basic features of moist convection. Using multiple asymptotic scales, Biello and Majda[1] derived a multi-scale model of moist tropical dynamics (IMMD[1]), which separates three regimes: the planetary scale climatology, the synoptic scale waves, and the planetary scale anomalies regime. The scales and strength of the observed MJO would categorize it in the regime of planetary scale anomalies - which themselves are forced from non-linear upscale fluxes from the synoptic scales waves. In order to close this model and determine whether it provides a self-consistent theory of the MJO. A model for diabatic heating due to moist convection must be implemented along with the IMMD. The multi-cloud parameterization is a model proposed by Khouider and Majda[2] to describe the three basic cloud types (congestus, deep and stratiform) that are most responsible for tropical diabatic heating. We implement a simplified version of the multi-cloud model that is based on results derived from large eddy simulations of convection [3]. We present this simplified multi-cloud model and show results of numerical experiments beginning with a variety of convective forcing states. Preliminary results on upscale fluxes, from synoptic scales to planetary scale anomalies, will be presented. [1] Biello J A, Majda A J. Intraseasonal multi-scale moist dynamics of the tropical atmosphere[J]. Communications in Mathematical Sciences, 2010, 8(2): 519-540. [2] Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis[J]. Journal of the atmospheric sciences, 2006, 63(4): 1308-1323. [3] Dorrestijn J, Crommelin D T, Biello J A, et al. A data-driven multi-cloud model for stochastic parametrization of deep convection[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2013, 371(1991): 20120374.
MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models
Gevorgyan, Albert; Kierzek, Andrzej M.; Breitling, Rainer; Takano, Eriko
2012-01-01
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads. PMID:23272111
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Scaling of graphene integrated circuits.
Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman
2015-05-07
The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.
Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli
2016-01-01
Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388
Multiscale Modeling in the Clinic: Drug Design and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, Colleen E.; An, Gary; Cannon, William R.
A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less
Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.
2018-01-01
High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.
Multi-scale modeling in cell biology
Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick
2009-01-01
Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808
Marital Happiness and Sleep Disturbances in a Multi-Ethnic Sample of Middle-Aged Women
Troxel, Wendy M.; Buysse, Daniel J.; Hall, Martica; Matthews, Karen A.
2009-01-01
Previous research suggests that divorced individuals, particularly women, have higher rates of sleep disturbances as compared to married individuals. Among the married, however, little is known about the association between relationship quality and sleep. The present study examined the association between marital happiness and self-reported sleep disturbances in a sample of midlife women drawn from the Study of Women’s Health Across the Nation (SWAN), a multi-site, multi-ethnic, community-based study (N=2,148). Marital happiness was measured using a single-item from the Dyadic Adjustment Scale and sleep disturbance was assessed using 4-items from the Women’s Health Initiative Insomnia Rating Scale (WHIIRS). After controlling for relevant covariates, maritally happy women reported fewer sleep disturbances, with the association evident among Caucasian women and to a lesser extent among African American women. PMID:19116797
Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
NASA Astrophysics Data System (ADS)
Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien
2018-06-01
In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.
Felo, Michael; Christensen, Brandon; Higgins, John
2013-01-01
The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.
2016-12-01
Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.
NASA Astrophysics Data System (ADS)
Cao, Chao
2009-03-01
Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.
Non-stationary dynamics in the bouncing ball: A wavelet perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in
2014-12-01
The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
Deep multi-scale convolutional neural network for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Zhang, Feng-zhe; Yang, Xia
2018-04-01
In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.
Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders
Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael
2015-01-01
Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions and objectives prior to sampling data and fitting models.
Diagnostics of multi-fractality of magnetized plasma inside coronal holes and quiet sun areas
NASA Astrophysics Data System (ADS)
Abramenko, Valentyna
Turbulent and multi-fractal properties of magnetized plasma in solar Coronal Holes (CHs) and Quiet Sun (QS) photosphere were explored using high-resolution magnetograms measured with the New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO, USA), Hinode/SOT and SDO/HMI instruments. Distribution functions of size and magnetic flux measured for small-scale magnetic elements follow the log-normal law, which implies multi-fractal organization of the magnetic field and the absence of a unique power law for all scales. The magnetograms show multi-fractality in CHs on scales 400 - 10000 km, which becomes better pronounced as the spatial resolution of data improves. Photospheric granulation measured with NST exhibits multi-fractal properties on very small scales of 50 - 600 km. While multi-fractal nature of solar active regions is well known, newly established multi-fractality of weakest magnetic fields on the solar surface, i.e., in CHs and QS, leads us to a conclusion that the entire variety of solar magnetic fields is generated by a unique nonlinear dynamical process.
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-01-01
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-04-21
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Development of a Multi-Dimensional Scale for PDD and ADHD
ERIC Educational Resources Information Center
Funabiki, Yasuko; Kawagishi, Hisaya; Uwatoko, Teruhisa; Yoshimura, Sayaka; Murai, Toshiya
2011-01-01
A novel assessment scale, the multi-dimensional scale for pervasive developmental disorder (PDD) and attention-deficit/hyperactivity disorder (ADHD) (MSPA), is reported. Existing assessment scales are intended to establish each diagnosis. However, the diagnosis by itself does not always capture individual characteristics or indicate the level of…
Cross-Scale: a multi-spacecraft mission to study cross-scale coupling in space plasmas
NASA Astrophysics Data System (ADS)
Fujimoto, M.; Schwartz, S.; Horbury, T.; Louarn, P.; Baumjohann, W.
Collisionless astrophysical plasmas exhibit complexity on many scales if we are to understand their properties and effects we must measure this complexity We can identify a small number of processes and phenomena one of which is dominant in almost every space plasma region of interest shocks reconnection turbulence and boundaries These processes act to transfer energy between locations scales and modes However this transfer is characterised by variability and 3D structures on at least three scales electron kinetic ion kinetic and fluid It is the interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects However current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time We must measure the three scales simultaneously completely to understand the energy transfer processes ESA fs Cosmic Vision 2015-2025 exercise revealed a broad consensus for a mission to study these issues commonly known as M3 In parallel Japanese scientists have been studying a similar mission concept SCOPE We have taken ideas from both of these mission proposals and produced a concept called Cross-Scale Cross-Scale would comprise three nested groups each consisting of four spacecraft with similar instrumentation Each group would have a different spacecraft separation at approximately the electron and ion gyroradii and a larger MHD scale We would therefore be able to measure variations on all three important physical scales
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-01-01
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-09-03
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.
Multi-scale graph-cut algorithm for efficient water-fat separation.
Berglund, Johan; Skorpil, Mikael
2017-09-01
To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.
2017-03-01
Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.
Multi-Scale/Multi-Functional Probabilistic Composite Fatigue
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.
Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways
Galinsky, Vitaly L.; Frank, Lawrence R.
2015-01-01
We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167
3D deblending of simultaneous source data based on 3D multi-scale shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin
2018-04-01
We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.
Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.
2014-01-01
Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807
Application of LOD technology to the economic residence GIS for industry and commerce administration
NASA Astrophysics Data System (ADS)
Song, Yongjun; Feng, Xuezhi; Zhao, Shuhe; Yin, Haiwei; Li, Yulin; Cui, Hongxia; Zhang, Hui; Zhong, Quanbao
2007-06-01
The LOD technology has an impact upon the multi-scale representation of spatial database. This paper takes advantage of LOD technology to express the multi-scale geographical data, and establish the exchange of multi-scale electronic map, further attain the goal that the details of geographic features such as point, line and polygon can be displayed more and more clearly with the display scale being enlarged to be convenient for the personnel of all offices of industry and commerce administration to label the locations of the corporations or enterprises.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping
2017-03-01
A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
Confirmatory Factor Analysis of the Hewitt-Multidimensional Perfectionism Scale
ERIC Educational Resources Information Center
Barut, Yasar
2015-01-01
Various studies on the conceptual framework of perfectionism construct use Hewitt Multi-dimensional Perfectionism Scale (HMPS), as a basic approach. The measure has a prominent role with respect to the theoretical considerations of perfectionism dimensions. This study aimed to evaluate the psychometric properties of the Turkish version of the…
Multi-view L2-SVM and its multi-view core vector machine.
Huang, Chengquan; Chung, Fu-lai; Wang, Shitong
2016-03-01
In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-scale symbolic transfer entropy analysis of EEG
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...
Analytical methods for Multi-Criteria Decision Analysis (MCDA) support the non-monetary valuation of ecosystem services for environmental decision making. Many published case studies transform ecosystem service outcomes into a common metric and aggregate the outcomes to set land ...
The Impact of Large, Multi-Function/Multi-Site Competitions
2003-08-01
this approach generates larger savings and improved service quality , and is less expensive to implement. Moreover, it is a way to meet the President s...of the study is to assess the degree to which large-scale competitions completed have resulted in increased savings and service quality and decreased
Multi-Party, Whole-Body Interactions in Mathematical Activity
ERIC Educational Resources Information Center
Ma, Jasmine Y.
2017-01-01
This study interrogates the contributions of multi-party, whole-body interactions to students' collaboration and negotiation of mathematics ideas in a task setting called walking scale geometry, where bodies in interaction became complex resources for students' emerging goals in problem solving. Whole bodies took up overlapping roles representing…
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal
Puglisi, G.
2016-01-01
We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927
NASA Astrophysics Data System (ADS)
Meneveau, C. V.; Bai, K.; Katz, J.
2011-12-01
The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.
NASA Astrophysics Data System (ADS)
Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi
2018-03-01
This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.
Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi
2017-05-01
The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.
A practical scale for Multi-Faceted Organizational Health Climate Assessment.
Zweber, Zandra M; Henning, Robert A; Magley, Vicki J
2016-04-01
The current study sought to develop a practical scale to measure 3 facets of workplace health climate from the employee perspective as an important component of a healthy organization. The goal was to create a short, usable yet comprehensive scale that organizations and occupational health professionals could use to determine if workplace health interventions were needed. The proposed Multi-faceted Organizational Health Climate Assessment (MOHCA) scale assesses facets that correspond to 3 organizational levels: (a) workgroup, (b) supervisor, and (c) organization. Ten items were developed and tested on 2 distinct samples, 1 cross-organization and 1 within-organization. Exploratory and confirmatory factor analyses yielded a 9-item, hierarchical 3-factor structure. Tests confirmed MOHCA has convergent validity with related constructs, such as perceived organizational support and supervisor support, as well as discriminant validity with safety climate. Lastly, criterion-related validity was found between MOHCA and health-related outcomes. The multi-faceted nature of MOHCA provides a scale that has face validity and can be easily translated into practice, offering a means for diagnosing the shortcomings of an organization or workgroup's health climate to better plan health and well-being interventions. (c) 2016 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNab, W; Ezzedine, S; Detwiler, R
2007-02-26
Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, andmore » the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to quantify the dissolution rate in response to local dissolved-phase concentrations distributed across the source area using a volume-averaging approach (Figure 1). The fundamental problem with the lumped mass transfer parameter is that its value is typically derived empirically through column-scale experiments that combine the effects of pore-scale flow, diffusion, and pore-scale geometry in a manner that does not provide a robust theoretical basis for upscaling. In our view, upscaling processes from the pore-scale to the field-scale requires new computational approaches (Held and Celia, 2001) that are directly linked to experimental studies of dissolution at the pore scale. As such, our investigation has been multi-pronged, combining theory, experiments, numerical modeling, new data analysis approaches, and a synthesis of previous studies (e.g. Glass et al, 2001; Keller et al., 2002) aimed at quantifying how the mechanisms controlling dissolution at the pore-scale control the long-term dissolution of source areas at larger scales.« less
Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data
NASA Astrophysics Data System (ADS)
Pang, Y.; Li, Z.
2016-12-01
Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.
2015-12-01
The exchange of water and solutes across the stream-hyporheic-riparian-hillslope continuum is controlled by the interaction of dynamic hydrological processes with the underlying geological setting. Our current understanding of exchange processes is primarily based on field observations collected during baseflow conditions, with few studies considering time-variable stream-aquifer interactions during storm events. We completed ten sets of four in-stream tracer slug injections during and after a large storm event in a headwater catchment at the H.J. Andrews Experimental Forest, Oregon. The injections were performed in three adjacent 50-meter study reaches, enabling comparison of spatial heterogeneity in transport processes. Reach-scale data demonstrate apparent trends with discharge in both transient storage and long-term storage (commonly "channel water balance"). Comparison of flowpath-scale observations from a network of monitoring wells to reach-scale observations showed that the advective timescale changed with discharge making it difficult to infer process from simple, reach-scale tracer studies. Overall, our results highlight the opportunities and challenges for interpretation of multi-scale solute tracer data along the stream-hyporheic-riparian-hillslope continuum.
Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.
Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E
2011-03-01
The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.
Multi-scale calculation based on dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Tilak Raj
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less
Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.
Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P
2016-12-01
Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.
NASA Astrophysics Data System (ADS)
Holburn, E. R.; Bledsoe, B. P.; Poff, N. L.; Cuhaciyan, C. O.
2005-05-01
Using over 300 R/EMAP sites in OR and WA, we examine the relative explanatory power of watershed, valley, and reach scale descriptors in modeling variation in benthic macroinvertebrate indices. Innovative metrics describing flow regime, geomorphic processes, and hydrologic-distance weighted watershed and valley characteristics are used in multiple regression and regression tree modeling to predict EPT richness, % EPT, EPT/C, and % Plecoptera. A nested design using seven ecoregions is employed to evaluate the influence of geographic scale and environmental heterogeneity on the explanatory power of individual and combined scales. Regression tree models are constructed to explain variability while identifying threshold responses and interactions. Cross-validated models demonstrate differences in the explanatory power associated with single-scale and multi-scale models as environmental heterogeneity is varied. Models explaining the greatest variability in biological indices result from multi-scale combinations of physical descriptors. Results also indicate that substantial variation in benthic macroinvertebrate response can be explained with process-based watershed and valley scale metrics derived exclusively from common geospatial data. This study outlines a general framework for identifying key processes driving macroinvertebrate assemblages across a range of scales and establishing the geographic extent at which various levels of physical description best explain biological variability. Such information can guide process-based stratification to avoid spurious comparison of dissimilar stream types in bioassessments and ensure that key environmental gradients are adequately represented in sampling designs.
Fowler, Christopher S.
2015-01-01
Neighborhoods and neighborhood change are often at least implicitly understood in relation to processes taking place at scales both smaller than and larger than the neighborhood itself. Until recently our capacity to represent these multi-scalar processes with quantitative measures has been limited. Recent work on “segregation profiles” by Reardon and collaborators (Reardon et al., 2008, 2009) expands our capacity to explore the relationship between population measures and scale. With the methodological tools now available, we need a conceptual shift in how we view population measures in order to bring our theories and measures of neighborhoods into alignment. I argue that segregation can be beneficially viewed as multi-scalar; not a value calculable at some ‘correct’ scale, but a continuous function with respect to scale. This shift requires new ways of thinking about and analyzing segregation with respect to scale that engage with the complexity of the multi-scalar measure. Using block level data for eight neighborhoods in Seattle, Washington I explore the implications of a multi-scalar segregation measure for understanding neighborhoods and neighborhood change from 1990 to 2010. PMID:27041785
Fowler, Christopher S
Neighborhoods and neighborhood change are often at least implicitly understood in relation to processes taking place at scales both smaller than and larger than the neighborhood itself. Until recently our capacity to represent these multi-scalar processes with quantitative measures has been limited. Recent work on "segregation profiles" by Reardon and collaborators (Reardon et al., 2008, 2009) expands our capacity to explore the relationship between population measures and scale. With the methodological tools now available, we need a conceptual shift in how we view population measures in order to bring our theories and measures of neighborhoods into alignment. I argue that segregation can be beneficially viewed as multi-scalar ; not a value calculable at some 'correct' scale, but a continuous function with respect to scale. This shift requires new ways of thinking about and analyzing segregation with respect to scale that engage with the complexity of the multi-scalar measure. Using block level data for eight neighborhoods in Seattle, Washington I explore the implications of a multi-scalar segregation measure for understanding neighborhoods and neighborhood change from 1990 to 2010.
Uncertainty in detecting trend: a new criterion and its applications to global SST
NASA Astrophysics Data System (ADS)
Lian, Tao
2017-10-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.
Uncertainty in Detecting Trend: A New Criterion and Its Applications to Global SST
NASA Astrophysics Data System (ADS)
Lian, Tao
2017-04-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.
NASA Astrophysics Data System (ADS)
Dai, Jun; Zhou, Haigang; Zhao, Shaoquan
2017-01-01
This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.
Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann
2014-01-01
Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...
Wu, Dingming; Wang, Dongfang; Zhang, Michael Q; Gu, Jin
2015-12-01
One major goal of large-scale cancer omics study is to identify molecular subtypes for more accurate cancer diagnoses and treatments. To deal with high-dimensional cancer multi-omics data, a promising strategy is to find an effective low-dimensional subspace of the original data and then cluster cancer samples in the reduced subspace. However, due to data-type diversity and big data volume, few methods can integrative and efficiently find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data. In this study, we proposed a novel low-rank approximation based integrative probabilistic model to fast find the shared principal subspace across multiple data types: the convexity of the low-rank regularized likelihood function of the probabilistic model ensures efficient and stable model fitting. Candidate molecular subtypes can be identified by unsupervised clustering hundreds of cancer samples in the reduced low-dimensional subspace. On testing datasets, our method LRAcluster (low-rank approximation based multi-omics data clustering) runs much faster with better clustering performances than the existing method. Then, we applied LRAcluster on large-scale cancer multi-omics data from TCGA. The pan-cancer analysis results show that the cancers of different tissue origins are generally grouped as independent clusters, except squamous-like carcinomas. While the single cancer type analysis suggests that the omics data have different subtyping abilities for different cancer types. LRAcluster is a very useful method for fast dimension reduction and unsupervised clustering of large-scale multi-omics data. LRAcluster is implemented in R and freely available via http://bioinfo.au.tsinghua.edu.cn/software/lracluster/ .
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.
Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M
2016-09-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success
Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.
2016-01-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942
Probing Inflation Using Galaxy Clustering On Ultra-Large Scales
NASA Astrophysics Data System (ADS)
Dalal, Roohi; de Putter, Roland; Dore, Olivier
2018-01-01
A detailed understanding of curvature perturbations in the universe is necessary to constrain theories of inflation. In particular, measurements of the local non-gaussianity parameter, flocNL, enable us to distinguish between two broad classes of inflationary theories, single-field and multi-field inflation. While most single-field theories predict flocNL ≈ ‑5/12 (ns -1), in multi-field theories, flocNL is not constrained to this value and is allowed to be observably large. Achieving σ(flocNL) = 1 would give us discovery potential for detecting multi-field inflation, while finding flocNL=0 would rule out a good fraction of interesting multi-field models. We study the use of galaxy clustering on ultra-large scales to achieve this level of constraint on flocNL. Upcoming surveys such as Euclid and LSST will give us galaxy catalogs from which we can construct the galaxy power spectrum and hence infer a value of flocNL. We consider two possible methods of determining the galaxy power spectrum from a catalog of galaxy positions: the traditional Feldman Kaiser Peacock (FKP) Power Spectrum Estimator, and an Optimal Quadratic Estimator (OQE). We implemented and tested each method using mock galaxy catalogs, and compared the resulting constraints on flocNL. We find that the FKP estimator can measure flocNL in an unbiased way, but there remains room for improvement in its precision. We also find that the OQE is not computationally fast, but remains a promising option due to its ability to isolate the power spectrum at large scales. We plan to extend this research to study alternative methods, such as pixel-based likelihood functions. We also plan to study the impact of general relativistic effects at these scales on our ability to measure flocNL.
A Bayesian method for assessing multiscalespecies-habitat relationships
Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.
2017-01-01
ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.
NASA Astrophysics Data System (ADS)
Gires, Auguste; Abbes, Jean-Baptiste; da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2018-03-01
In this paper we suggest to innovatively use scaling laws and more specifically Universal Multifractals (UM) to analyse simulated surface runoff and compare the retrieved scaling features with the rainfall ones. The methodology is tested on a 3 km2 semi-urbanised with a steep slope study area located in the Paris area along the Bièvre River. First Multi-Hydro, a fully distributed model is validated on this catchment for four rainfall events measured with the help of a C-band radar. The uncertainty associated with small scale unmeasured rainfall, i.e. occurring below the 1 km × 1 km × 5 min observation scale, is quantified with the help of stochastic downscaled rainfall fields. It is rather significant for simulated flow and more limited on overland water depth for these rainfall events. Overland depth is found to exhibit a scaling behaviour over small scales (10 m-80 m) which can be related to fractal features of the sewer network. No direct and obvious dependency between the overland depth multifractal features (quality of the scaling and UM parameters) and the rainfall ones was found.
Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl
Ho Yi Wan; Kevin McGarigal; Joseph L. Ganey; Valentin Lauret; Brad C. Timm; Samuel A. Cushman
2017-01-01
Anthropogenic environmental changes are leading to habitat loss and degradation, driving many species to extinction. In this context, habitat models become increasingly important for effective species management and conservation. However, most habitat studies lack replicated study areas and do not properly address the role of nonstationarity and spatial scales in...
Fransson, Eleonor I; Nyberg, Solja T; Heikkilä, Katriina; Alfredsson, Lars; Bacquer, De Dirk; Batty, G David; Bonenfant, Sébastien; Casini, Annalisa; Clays, Els; Goldberg, Marcel; Kittel, France; Koskenvuo, Markku; Knutsson, Anders; Leineweber, Constanze; Magnusson Hanson, Linda L; Nordin, Maria; Singh-Manoux, Archana; Suominen, Sakari; Vahtera, Jussi; Westerholm, Peter; Westerlund, Hugo; Zins, Marie; Theorell, Töres; Kivimäki, Mika
2012-01-20
Job strain (i.e., high job demands combined with low job control) is a frequently used indicator of harmful work stress, but studies have often used partial versions of the complete multi-item job demands and control scales. Understanding whether the different instruments assess the same underlying concepts has crucial implications for the interpretation of findings across studies, harmonisation of multi-cohort data for pooled analyses, and design of future studies. As part of the 'IPD-Work' (Individual-participant-data meta-analysis in working populations) consortium, we compared different versions of the demands and control scales available in 17 European cohort studies. Six of the 17 studies had information on the complete scales and 11 on partial scales. Here, we analyse individual level data from 70 751 participants of the studies which had complete scales (5 demand items, 6 job control items). We found high Pearson correlation coefficients between complete scales of job demands and control relative to scales with at least three items (r > 0.90) and for partial scales with two items only (r = 0.76-0.88). In comparison with scores from the complete scales, the agreement between job strain definitions was very good when only one item was missing in either the demands or the control scale (kappa > 0.80); good for job strain assessed with three demand items and all six control items (kappa > 0.68) and moderate to good when items were missing from both scales (kappa = 0.54-0.76). The sensitivity was > 0.80 when only one item was missing from either scale, decreasing when several items were missing in one or both job strain subscales. Partial job demand and job control scales with at least half of the items of the complete scales, and job strain indices based on one complete and one partial scale, seemed to assess the same underlying concepts as the complete survey instruments.
2012-01-01
Background Job strain (i.e., high job demands combined with low job control) is a frequently used indicator of harmful work stress, but studies have often used partial versions of the complete multi-item job demands and control scales. Understanding whether the different instruments assess the same underlying concepts has crucial implications for the interpretation of findings across studies, harmonisation of multi-cohort data for pooled analyses, and design of future studies. As part of the 'IPD-Work' (Individual-participant-data meta-analysis in working populations) consortium, we compared different versions of the demands and control scales available in 17 European cohort studies. Methods Six of the 17 studies had information on the complete scales and 11 on partial scales. Here, we analyse individual level data from 70 751 participants of the studies which had complete scales (5 demand items, 6 job control items). Results We found high Pearson correlation coefficients between complete scales of job demands and control relative to scales with at least three items (r > 0.90) and for partial scales with two items only (r = 0.76-0.88). In comparison with scores from the complete scales, the agreement between job strain definitions was very good when only one item was missing in either the demands or the control scale (kappa > 0.80); good for job strain assessed with three demand items and all six control items (kappa > 0.68) and moderate to good when items were missing from both scales (kappa = 0.54-0.76). The sensitivity was > 0.80 when only one item was missing from either scale, decreasing when several items were missing in one or both job strain subscales. Conclusions Partial job demand and job control scales with at least half of the items of the complete scales, and job strain indices based on one complete and one partial scale, seemed to assess the same underlying concepts as the complete survey instruments. PMID:22264402
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER
We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...
A multi-frequency receiver function inversion approach for crustal velocity structure
NASA Astrophysics Data System (ADS)
Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian
2017-05-01
In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.
CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY
Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...
NASA Astrophysics Data System (ADS)
Tabik, S.; Romero, L. F.; Mimica, P.; Plata, O.; Zapata, E. L.
2012-09-01
A broad area in astronomy focuses on simulating extragalactic objects based on Very Long Baseline Interferometry (VLBI) radio-maps. Several algorithms in this scope simulate what would be the observed radio-maps if emitted from a predefined extragalactic object. This work analyzes the performance and scaling of this kind of algorithms on multi-socket, multi-core architectures. In particular, we evaluate a sharing approach, a privatizing approach and a hybrid approach on systems with complex memory hierarchy that includes shared Last Level Cache (LLC). In addition, we investigate which manual processes can be systematized and then automated in future works. The experiments show that the data-privatizing model scales efficiently on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless of algorithmic and scheduling optimizations, the sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing provides the best scalability over all used multi-socket, multi-core systems.
ERIC Educational Resources Information Center
Latimer, Lara; Walker, Lorraine O.; Kim, Sunghun; Pasch, Keryn E.; Sterling, Bobbie Sue
2011-01-01
Objective: This study examined test-retest reliability, internal consistency, and construct and predictive validity of the Physical Activity and Nutrition Self-Efficacy (PANSE) scale, an 11-item instrument to assess weight-loss self-efficacy among postpartum women of lower income. Methods: Seventy-one women completed the PANSE scale and…
Perceptions of Learning Effectiveness in M-Learning: Scale Development and Student Awareness
ERIC Educational Resources Information Center
Chang, Wen-Hui; Liu, Yuan-Chen; Huang, Tzu-Hua
2017-01-01
The purpose of this study is to develop a multi-dimensional scale to measure students' awareness of key competencies for M-learning and to test its reliability and validity. The Key Competencies of Mobile Learning Scale (KCMLS) was determined via confirmatory factor analysis to have four dimensions: team collaboration, creative thinking, critical…
NASA Astrophysics Data System (ADS)
Li, Jie; Guo, LiXin; He, Qiong; Wei, Bing
2012-10-01
An iterative strategy combining Kirchhoff approximation^(KA) with the hybrid finite element-boundary integral (FE-BI) method is presented in this paper to study the interactions between the inhomogeneous object and the underlying rough surface. KA is applied to study scattering from underlying rough surfaces, whereas FE-BI deals with scattering from the above target. Both two methods use updated excitation sources. Huygens equivalence principle and an iterative strategy are employed to consider the multi-scattering effects. This hybrid FE-BI-KA scheme is an improved and generalized version of previous hybrid Kirchhoff approximation-method of moments (KA-MoM). This newly presented hybrid method has the following advantages: (1) the feasibility of modeling multi-scale scattering problems (large scale underlying surface and small scale target); (2) low memory requirement as in hybrid KA-MoM; (3) the ability to deal with scattering from inhomogeneous (including coated or layered) scatterers above rough surfaces. The numerical results are given to evaluate the accuracy of the multi-hybrid technique; the computing time and memory requirements consumed in specific numerical simulation of FE-BI-KA are compared with those of MoM. The convergence performance is analyzed by studying the iteration number variation caused by related parameters. Then bistatic scattering from inhomogeneous object of different configurations above dielectric Gaussian rough surface is calculated and the influences of dielectric compositions and surface roughness on the scattering pattern are discussed.
Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A
2016-09-01
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.
Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.
2016-01-01
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523
Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall
2012-01-01
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
Challenge toward the prediction of typhoon behaviour and down pour
NASA Astrophysics Data System (ADS)
Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.
2013-08-01
Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.
Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida
2016-09-01
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Multi-scale and multi-domain computational astrophysics.
van Elteren, Arjen; Pelupessy, Inti; Zwart, Simon Portegies
2014-08-06
Astronomical phenomena are governed by processes on all spatial and temporal scales, ranging from days to the age of the Universe (13.8 Gyr) as well as from kilometre size up to the size of the Universe. This enormous range in scales is contrived, but as long as there is a physical connection between the smallest and largest scales it is important to be able to resolve them all, and for the study of many astronomical phenomena this governance is present. Although covering all these scales is a challenge for numerical modellers, the most challenging aspect is the equally broad and complex range in physics, and the way in which these processes propagate through all scales. In our recent effort to cover all scales and all relevant physical processes on these scales, we have designed the Astrophysics Multipurpose Software Environment (AMUSE). AMUSE is a Python-based framework with production quality community codes and provides a specialized environment to connect this plethora of solvers to a homogeneous problem-solving environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.
2014-01-01
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
Geomorphic analysis of large alluvial rivers
NASA Astrophysics Data System (ADS)
Thorne, Colin R.
2002-05-01
Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.
Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis
Gilbert, Rachel M.; Morgan, Joshua T.; Marcin, Elizabeth S.; Gleghorn, Jason P.
2016-01-01
Purpose of Review Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Recent Findings Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. Summary This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development. PMID:28163984
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements
NASA Astrophysics Data System (ADS)
Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.
2012-12-01
The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some validation experiments demonstrated that the models yield accurate estimates at flux measurement sites, the question remains whether they are performing well over the broader landscape. Moreover, a large number of RS_ET products have been released in recent years. Thus, we also pay attention to the cross-validation method of RS_ET derived from multi-source models. "The Multi-scale Observation Experiment on Evapotranspiration over Heterogeneous Land Surfaces: Flux Observation Matrix" campaign is carried out at the middle reaches of the Heihe River Basin, China in 2012. Flux measurements from an observation matrix composed of 22 EC and 4 LAS are acquired to investigate the cross-validation of multi-source models over different landscapes. In this case, six remote sensing models, including the empirical statistical model, the one-source and two-source models, the Penman-Monteith equation based model, the Priestley-Taylor equation based model, and the complementary relationship based model, are used to perform an intercomparison. All the results from the two cases of RS_ET validation showed that the proposed validation methods are reasonable and feasible.
Formalizing Knowledge in Multi-Scale Agent-Based Simulations
Somogyi, Endre; Sluka, James P.; Glazier, James A.
2017-01-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063
Formalizing Knowledge in Multi-Scale Agent-Based Simulations.
Somogyi, Endre; Sluka, James P; Glazier, James A
2016-10-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.
Single-scale renormalisation group improvement of multi-scale effective potentials
NASA Astrophysics Data System (ADS)
Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła
2018-03-01
We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.
Influences of coupled fire-atmosphere interaction on wildfire behavior
NASA Astrophysics Data System (ADS)
Linn, R.; Winterkamp, J.; Jonko, A. K.; Runde, I.; Canfield, J.; Parsons, R.; Sieg, C.
2017-12-01
Two-way interactions between fire and the environment affect fire behavior at scales ranging from buoyancy-induced mixing and turbulence to fire-scale circulations that retard or increase fire spread. Advances in computing have created new opportunities for the exploration of coupled fire-atmosphere behavior using numerical models that represent interactions between the dominant processes driving wildfire behavior, including convective and radiative heat transfer, aerodynamic drag and buoyant response of the atmosphere to heat released by the fire. Such models are not practical for operational, faster-than-real-time fire prediction due to their computational and data requirements. However, they are valuable tools for exploring influences of fire-atmosphere feedbacks on fire behavior as they explicitly simulate atmospheric motions surrounding fires from meter to kilometer scales. We use the coupled fire-atmosphere model FIRETEC to gain new insights into aspects of fire behavior that have been observed in the field and laboratory, to carry out sensitivity analysis that is impractical through observations and to pose new hypotheses that can be tested experimentally. Specifically, we use FIRETEC to study the following multi-scale coupled fire-atmosphere interactions: 1) 3D fire-atmosphere interaction that dictates multi-scale fire line dynamics; 2) influence of vegetation heterogeneity and variability in wind fields on predictability of fire spread; 3) fundamental impacts of topography on fire spread. These numerical studies support new conceptual models for the dominant roles of multi-scale fluid dynamics in determining fire spread, including the roles of crosswind fire line-intensity variations on heat transfer to unburned fuels and the role of fire line depth expansion in upslope acceleration of fires.
Understanding hydraulic fracturing: a multi-scale problem.
Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N
2016-10-13
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).
Understanding hydraulic fracturing: a multi-scale problem
Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.
2016-01-01
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
NASA Astrophysics Data System (ADS)
Jardine, P. M.; Gentry, R. W.
2011-12-01
Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.
NASA Astrophysics Data System (ADS)
Ganetis, Sara Anne
Mesoscale precipitation bands within Northeast U.S. (NEUS) winter storms result in heterogeneous spatial and temporal snowfall. Several studies have provided analysis of snowbands focusing on larger, meso-beta scale bands with lengths (L) > 200 km known as single bands. NEUS winter storms can also exhibit multiple bands with meso-beta scale (L < 200 km) and similar spatial orientation and when ≥ 3 occur are termed multi-bands; however, the genesis and evolution of multi-bands is less well understood. Unlike single bands, there is no multi-bands climatological study. In addition, there has been little detailed thermodynamic analysis of snowbands. This dissertation utilizes radar observations, reanalyses, and high-resolution model simulations to explore the thermodynamic evolution of single and multi-bands. Bands are identified within 20 cool season (October-April) NEUS storms. The 110-case dataset was classified using a combination of automated and manual methods into: single band only (SINGLE), multi-bands only (MULTI), both single and multi-bands (BOTH), and non-banded (NONE). Multi-bands occur with the presence of a single band in 55.4% of times used in this study, without the presence of a single band 18.1% of the time, and precipitation exhibits no banded characteristics 23.8% of the time. Most MULTI events occur in the northeast quadrant of a developing cyclone poleward of weak-midlevel forcing along a warm front, whereas multi-bands associated with BOTH events mostly occur in the northwest quadrant of mature cyclones associated with strong mid-level frontogenesis and conditional symmetric instability. The non-banded precipitation associated with NONE events occur in the eastern quadrants of developing and mature cyclones lacking mid-level forcing to concentrate the precipitation into bands. A high-resolution mesoscale model is used to explore the evolution of single and multi-bands based on two case studies, one of a single band and one of multi-bands. The multi-bands form in response to intermittent mid-level frontogenetical forcing in a conditionally unstable environment. The bands within their genesis location southeast of the single band move northwest towards the single band by 700-hPa steering flow. This allows for the formation of new multi-bands within the genesis region, unlike the single band that remains fixed to a 700-hPa frontogenesis maximum. Latent heating within the band is shown to increase the intensity and duration of single and multi-bands through decreased geopotential height below the heating maximum that leads to increased convergence within the band.
Measuring the Quality of Life of University Students. Research Monograph Series. Volume 1.
ERIC Educational Resources Information Center
Roberts, Lance W.; Clifton, Rodney A.
This study sought to develop a valid set of scales in the cognitive and affective domains for measuring the quality of life of university students. In addition the study attempted to illustrate the usefulness of Thomas Piazza's procedures for constructing valid scales in educational research. Piazza's method involves a multi-step construction of…
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Quarter Scale RLV Multi-Lobe LH2 Tank Test Program
NASA Technical Reports Server (NTRS)
Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol
1998-01-01
Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.
Diagnosing Disaster Resilience of Communities as Multi-scale Complex Socio-ecological Systems
NASA Astrophysics Data System (ADS)
Liu, Wei; Mochizuki, Junko; Keating, Adriana; Mechler, Reinhard; Williges, Keith; Hochrainer, Stefan
2014-05-01
Global environmental change, growing anthropogenic influence, and increasing globalisation of society have made it clear that disaster vulnerability and resilience of communities cannot be understood without knowledge on the broader social-ecological system in which they are embedded. We propose a framework for diagnosing community resilience to disasters, as a form of disturbance to social-ecological systems, with feedbacks from the local to the global scale. Inspired by iterative multi-scale analysis employed by Resilience Alliance, the related socio-ecological systems framework of Ostrom, and the sustainable livelihood framework, we developed a multi-tier framework for thinking of communities as multi-scale social-ecological systems and analyzing communities' disaster resilience and also general resilience. We highlight the cross-scale influences and feedbacks on communities that exist from lower (e.g., household) to higher (e.g., regional, national) scales. The conceptual framework is then applied to a real-world resilience assessment situation, to illustrate how key components of socio-ecological systems, including natural hazards, natural and man-made environment, and community capacities can be delineated and analyzed.
NASA Astrophysics Data System (ADS)
Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg
2016-06-01
In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.
An improved KCF tracking algorithm based on multi-feature and multi-scale
NASA Astrophysics Data System (ADS)
Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye
2018-02-01
The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
ERIC Educational Resources Information Center
Yao, Shuqiao; Zou, Tao; Zhu, Xiongzhao; Abela, John R. Z.; Auerbach, Randy P.; Tong, Xi
2007-01-01
The objective of the current study was to develop a Chinese translation of the Multidimensional Anxiety Scale for Children (MASC) [March (1997) Multidimensional anxiety scale for children: Technical manual, Multi health systems, Toronto, ON], and to evaluate its reliability and validity. The original version of the MASC was translated into Chinese…
Grid-Enabled Quantitative Analysis of Breast Cancer
2009-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...pilot study to utilize large scale parallel Grid computing to harness the nationwide cluster infrastructure for optimization of medical image ... analysis parameters. Additionally, we investigated the use of cutting edge dataanalysis/ mining techniques as applied to Ultrasound, FFDM, and DCE-MRI Breast
Bina, Rena; Harrington, Donna
2016-04-01
The Edinburgh Postnatal Depression Scale (EPDS) was originally created as a uni-dimensional scale to screen for postpartum depression (PPD); however, evidence from various studies suggests that it is a multi-dimensional scale measuring mainly anxiety in addition to depression. The factor structure of the EPDS seems to differ across various language translations, raising questions regarding its stability. This study examined the factor structure of the Hebrew version of the EPDS to assess whether it is uni- or multi-dimensional. Seven hundred and fifteen (n = 715) women were screened at 6 weeks postpartum using the Hebrew version of the EPDS. Confirmatory factor analysis (CFA) was used to test four models derived from the literature. Of the four CFA models tested, a 9-item two factor model fit the data best, with one factor representing an underlying depression construct and the other representing an underlying anxiety construct. for Practice The Hebrew version of the EPDS appears to consist of depression and anxiety sub-scales. Given the widespread PPD screening initiatives, anxiety symptoms should be addressed in addition to depressive symptoms, and a short scale, such as the EPDS, assessing both may be efficient.
A Liver-centric Multiscale Modeling Framework for Xenobiotics ...
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.
Multi-scale statistical analysis of coronal solar activity
Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.
2016-07-08
Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.
Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan
2018-02-01
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arshadi, Amir
Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.
Study of multi-functional precision optical measuring system for large scale equipment
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi
2017-10-01
The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.
NASA Astrophysics Data System (ADS)
Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.
2017-12-01
Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.
3D-printing and mechanics of bio-inspired articulated and multi-material structures.
Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto
2017-09-01
3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic. Copyright © 2017 Elsevier Ltd. All rights reserved.
James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun
2014-07-01
The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).
Local variance for multi-scale analysis in geomorphometry.
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-15
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application.
Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan
2017-09-21
We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.
Dynamical scales for multi-TeV top-pair production at the LHC
NASA Astrophysics Data System (ADS)
Czakon, Michał; Heymes, David; Mitov, Alexander
2017-04-01
We calculate all major differential distributions with stable top-quarks at the LHC. The calculation covers the multi-TeV range that will be explored during LHC Run II and beyond. Our results are in the form of high-quality binned distributions. We offer predictions based on three different parton distribution function (pdf) sets. In the near future we will make our results available also in the more flexible fastNLO format that allows fast re-computation with any other pdf set. In order to be able to extend our calculation into the multi-TeV range we have had to derive a set of dynamic scales. Such scales are selected based on the principle of fastest perturbative convergence applied to the differential and inclusive cross-section. Many observations from our study are likely to be applicable and useful to other precision processes at the LHC. With scale uncertainty now under good control, pdfs arise as the leading source of uncertainty for TeV top production. Based on our findings, true precision in the boosted regime will likely only be possible after new and improved pdf sets appear. We expect that LHC top-quark data will play an important role in this process.
METHODS FOR MULTI-SPATIAL SCALE CHARACTERIZATION OF RIPARIAN CORRIDORS
This paper describes the application of aerial photography and GIS technology to develop flexible and transferable methods for multi-spatial scale characterization and analysis of riparian corridors. Relationships between structural attributes of riparian corridors and indicator...
Multi-Scale Infrastructure Assessment
The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang
2018-06-19
In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.
Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling
USDA-ARS?s Scientific Manuscript database
We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuebing; Chen, Ting; Qi, Xintong
In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten
NASA Astrophysics Data System (ADS)
Samin, Adib J.; Zhang, Jinsuo
2016-07-01
In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.
News Release: May 25, 2016 — Building on data from The Cancer Genome Atlas (TCGA) project, a multi-institutional team of scientists has completed the first large-scale “proteogenomic” study of breast cancer, linking DNA mutations to protein signaling and helping pinpoint the genes that drive cancer.
Systems Performance Laboratory | Energy Systems Integration Facility | NREL
array access Small Commercial Power Hardware in the Loop The small commercial power-hardware-in-the-loop (PHIL) test bay is dedicated to small-scale power hardware-in-the-loop studies of inverters and other , natural gas supply Multi-Inverter Power Hardware in the Loop The multi-inverter test bay is dedicated to
Inferring multi-scale neural mechanisms with brain network modelling
Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo
2018-01-01
The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System
Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas
2013-01-01
During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183
Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...
2015-06-12
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Hu, Meng; Liang, Hualou
2013-04-01
Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.
Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation
NASA Astrophysics Data System (ADS)
Sakamoto, M.; Honda, Y.; Kondo, A.
2016-06-01
From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.
Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei
2016-01-01
Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m(-2) d(-1) and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m(-2) d(-1) and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution.
Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei
2016-01-01
Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m-2 d-1 and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m-2 d-1 and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution. PMID:27088356
Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
NASA Technical Reports Server (NTRS)
Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.
2012-01-01
The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana
2014-05-01
The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.
ERIC Educational Resources Information Center
Kaya, Fatih; Delen, Erhan; Ritter, Nicola L.
2012-01-01
This article presents a review of the Children's Organizational Skills Scales (COSS) which were designed to assess how children organize their time, materials, and actions to accomplish important tasks at home and school. The scale quantifies children's skills in organization, time management, and planning (OTMP). The COSS is a multi-informant…
Fine-scale multi-species aggregations of oceanic zooplankton
NASA Astrophysics Data System (ADS)
Haury, L. R.; Wiebe, P. H.
1982-07-01
Sixteen Longhurst-Hardy Plankton Recorder tows were taken at different depths in the northwest Atlantic for analysis of fine-scale horizontal patchiness. Abundant species were non-randomly distributed in patches with scales of tens to hundreds of meters. Positive correlations between species abundances dominated, indicating that the patches were multi-species associations. Most horizontal pattern appeared to be of biological origin.
NASA Astrophysics Data System (ADS)
Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming
2014-05-01
A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
Tone mapping infrared images using conditional filtering-based multi-scale retinex
NASA Astrophysics Data System (ADS)
Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng
2015-10-01
Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
Multi-scale modeling of spin transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo
In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.
Multi-group measurement invariance of the multiple sclerosis walking scale-12?
Motl, Robert W; Mullen, Sean; McAuley, Edward
2012-03-01
One primary assumption underlying the interpretation of composite multiple sclerosis walking scale-12 (MSWS-12) scores across levels of disability status is multi-group measurement invariance. This assumption was tested in the present study between samples that differed in self-reported disability status. Participants (n = 867) completed a battery of questionnaires that included the MSWS-12 and patient-determined disease step (PDDS) scale. The multi-group invariance was tested between samples that had PDDS scores of ≤2 (i.e. no mobility limitation; n = 470) and PDDS scores ≥3 (onset of mobility limitation; n = 397) using Mplus 6·0. The omnibus test of equal covariance matrices indicated that the MSWS-12 was not invariant between the two samples that differed in disability status. The source of non-invariance occurred with the initial equivalence test of the factor structure itself. We provide evidence that questions the unambiguous interpretation of scores from the MSWS-12 as a measure of walking impairment between samples of persons with multiple sclerosis who differ in disability status.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
Shi, Yajuan; Wang, Ruoshi; Lu, Yonglong; Song, Shuai; Johnson, Andrew C; Sweetman, Andrew; Jones, Kevin
2016-09-01
Ecological risk assessment (ERA) has been widely applied in characterizing the risk of chemicals to organisms and ecosystems. The paucity of toxicity data on local biota living in the different compartments of an ecosystem and the absence of a suitable methodology for multi-compartment spatial risk assessment at the regional scale has held back this field. The major objective of this study was to develop a methodology to quantify and distinguish the spatial distribution of risk to ecosystems at a regional scale. A framework for regional multi-compartment probabilistic ecological risk assessment (RMPERA) was constructed and corroborated using a bioassay of a local species. The risks from cadmium (Cd) pollution in river water, river sediment, coastal water, coastal surface sediment and soil in northern Bohai Rim were examined. The results indicated that the local organisms in soil, river, coastal water, and coastal sediment were affected by Cd. The greatest impacts from Cd were identified in the Tianjin and Huludao areas. The overall multi-compartment risk was 31.4% in the region. The methodology provides a new approach for regional multi-compartment ecological risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
A multi-topographical-instrument analysis: the breast implant texture measurement
NASA Astrophysics Data System (ADS)
Garabédian, Charles; Delille, Rémi; Deltombe, Raphaël; Anselme, Karine; Atlan, Michael; Bigerelle, Maxence
2017-06-01
Capsular contracture is a major complication after implant-based breast augmentation. To address this tissue reaction, most manufacturers texture the outer breast implant surfaces with calibrated salt grains. However, the analysis of these surfaces on sub-micron scales has been under-studied. This scale range is of interest to understand the future of silicone particles potentially released from the implant surface and the aetiology of newly reported complications, such as Anaplastic Large Cell Lymphoma. The surface measurements were accomplished by tomography and by two optical devices based on interferometry and on focus variation. The robustness of the measurements was investigated from the tissue scale to the cellular scale. The macroscopic pore-based structure of the textured implant surfaces is consistently measured by the three instruments. However, the multi-scale analyses start to be discrepant in a scale range between 50 µm and 500 µm characteristic of a finer secondary roughness regardless of the pore shape. The focus variation and the micro-tomography would fail to capture this roughness regime because of a focus-related optical artefact and of step-shaped artefact respectively.
Simulating and mapping spatial complexity using multi-scale techniques
De Cola, L.
1994-01-01
A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author
Purchasing Nonprescription Contraceptives: The Underlying Structure of a Multi-Item Scale.
ERIC Educational Resources Information Center
Manolis, Chris; Winsor, Robert D.; True, Sheb L.
1999-01-01
Developed a multi-item scale for measuring attitudes associated with purchasing nonprescription contraceptives using construct specification and item generation and confirmatory factor analysis. Demonstrated a high degree of invariance across samples of 81 female and 115 male adult consumers. (SLD)
Power, Thomas J; Dombrowski, Stefan C; Watkins, Marley W; Mautone, Jennifer A; Eagle, John W
2007-06-01
Efforts to develop interventions to improve homework performance have been impeded by limitations in the measurement of homework performance. This study was conducted to develop rating scales for assessing homework performance among students in elementary and middle school. Items on the scales were intended to assess student strengths as well as deficits in homework performance. The sample included 163 students attending two school districts in the Northeast. Parents completed the 36-item Homework Performance Questionnaire - Parent Scale (HPQ-PS). Teachers completed the 22-item teacher scale (HPQ-TS) for each student for whom the HPQ-PS had been completed. A common factor analysis with principal axis extraction and promax rotation was used to analyze the findings. The results of the factor analysis of the HPQ-PS revealed three salient and meaningful factors: student task orientation/efficiency, student competence, and teacher support. The factor analysis of the HPQ-TS uncovered two salient and substantive factors: student responsibility and student competence. The findings of this study suggest that the HPQ is a promising set of measures for assessing student homework functioning and contextual factors that may influence performance. Directions for future research are presented.
Power, Thomas J.; Dombrowski, Stefan C.; Watkins, Marley W.; Mautone, Jennifer A.; Eagle, John W.
2007-01-01
Efforts to develop interventions to improve homework performance have been impeded by limitations in the measurement of homework performance. This study was conducted to develop rating scales for assessing homework performance among students in elementary and middle school. Items on the scales were intended to assess student strengths as well as deficits in homework performance. The sample included 163 students attending two school districts in the Northeast. Parents completed the 36-item Homework Performance Questionnaire – Parent Scale (HPQ-PS). Teachers completed the 22-item teacher scale (HPQ-TS) for each student for whom the HPQ-PS had been completed. A common factor analysis with principal axis extraction and promax rotation was used to analyze the findings. The results of the factor analysis of the HPQ-PS revealed three salient and meaningful factors: student task orientation/efficiency, student competence, and teacher support. The factor analysis of the HPQ-TS uncovered two salient and substantive factors: student responsibility and student competence. The findings of this study suggest that the HPQ is a promising set of measures for assessing student homework functioning and contextual factors that may influence performance. Directions for future research are presented. PMID:18516211
Kirsch, Joseph; Peterson, James T.
2014-01-01
There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.
A multi-scale framework to link remotely sensed metrics with socioeconomic data
NASA Astrophysics Data System (ADS)
Watmough, Gary; Svenning, Jens-Christian; Palm, Cheryl; Sullivan, Clare; Danylo, Olha; McCallum, Ian
2017-04-01
There is increasing interest in the use of remotely sensed satellite data for estimating human poverty as it can bridge data gaps that prevent fine scale monitoring of development goals across large areas. The ways in which metrics derived from satellite imagery are linked with socioeconomic data are crucial for accurate estimation of poverty. Yet, to date, approaches in the literature linking satellite metrics with socioeconomic data are poorly characterized. Typically, approaches use a GIS approach such as circular buffer zones around a village or household or an administrative boundary such as a district or census enumeration area. These polygons are then used to extract environmental data from satellite imagery and related to the socioeconomic data in statistical analyses. The use of a single polygon to link environment and socioeconomic data is inappropriate in coupled human-natural systems as processes operate over multiple scales. Human interactions with the environment occur at multiple levels from individual (household) access to agricultural plots adjacent to homes, to communal access to common pool resources (CPR) such as forests at the village level. Here, we present a multi-scale framework that explicitly considers how people use the landscape. The framework is presented along with a case study example in Kenya. The multi-scale approach could enhance the modelling of human-environment interactions which will have important consequences for monitoring the sustainable development goals for human livelihoods and biodiversity conservation.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Development of a Scale Measuring Trait Anxiety in Physical Education
ERIC Educational Resources Information Center
Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos
2012-01-01
The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…
Avian movements and wetland connectivity in landscape conservation
Haig, Susan M.; Mehlman, D.W.; Oring, L.W.
1998-01-01
The current conservation crisis calls for research and management to be carried out on a long-term, multi-species basis at large spatial scales. Unfortunately, scientists, managers, and agencies often are stymied in their effort to conduct these large-scale studies because of a lack of appropriate technology, methodology, and funding. This issue is of particular concern in wetland conservation, for which the standard landscape approach may include consideration of a large tract of land but fail to incorporate the suite of wetland sites frequently used by highly mobile organisms such as waterbirds (e.g., shorebirds, wading birds, waterfowl). Typically, these species have population dynamics that require use of multiple wetlands, but this aspect of their life history has often been ignored in planning for their conservation. We outline theoretical, empirical, modeling, and planning problems associated with this issue and suggest solutions to some current obstacles. These solutions represent a tradeoff between typical in-depth single-species studies and more generic multi-species studies. They include studying within- and among-season movements of waterbirds on a spatial scale appropriate to both widely dispersing and more stationary species; multi-species censuses at multiple sites; further development and use of technology such as satellite transmitters and population-specific molecular markers; development of spatially explicit population models that consider within-season movements of waterbirds; and recognition from funding agencies that landscape-level issues cannot adequately be addressed without support for these types of studies.
Evaluation of ground motion scaling methods for analysis of structural systems
O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.
2011-01-01
Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.
Richardson, Jeff; Iezzi, Angelo; Khan, Munir A
2015-08-01
Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.
Profitability and sustainability of small - medium scale palm biodiesel plant
NASA Astrophysics Data System (ADS)
Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga
2017-06-01
The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
ERIC Educational Resources Information Center
Lin, Tzung-Jin; Tsai, Chin-Chung
2013-01-01
In the past, students' science learning self-efficacy (SLSE) was usually measured by questionnaires that consisted of only a single scale, which might be insufficient to fully understand their SLSE. In this study, a multi-dimensional instrument, the SLSE instrument, was developed and validated to assess students' SLSE based on the previous…
Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians
2015-12-01
spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C
ERIC Educational Resources Information Center
Posy, Yosef
This study compares the attitudes of two groups of professionals involved in adolescent drug and alcohol treatment regarding the usefulness of Mediated Learning Experience as a supplement to Multi Systemic Treatment (MST) for substance abuse. Fifteen social workers and 15 school psychologists completed a rating scale to record their opinions of…
Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, W.; He, G.; Long, T.; Ni, Y.
2018-04-01
Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.
Zhou, Xiaolu; Li, Dongying
2018-05-09
Advancement in location-aware technologies, and information and communication technology in the past decades has furthered our knowledge of the interaction between human activities and the built environment. An increasing number of studies have collected data regarding individual activities to better understand how the environment shapes human behavior. Despite this growing interest, some challenges exist in collecting and processing individual's activity data, e.g., capturing people's precise environmental contexts and analyzing data at multiple spatial scales. In this study, we propose and implement an innovative system that integrates smartphone-based step tracking with an app and the sequential tile scan techniques to collect and process activity data. We apply the OpenStreetMap tile system to aggregate positioning points at various scales. We also propose duration, step and probability surfaces to quantify the multi-dimensional attributes of activities. Results show that, by running the app in the background, smartphones can measure multi-dimensional attributes of human activities, including space, duration, step, and location uncertainty at various spatial scales. By coordinating Global Positioning System (GPS) sensor with accelerometer sensor, this app can save battery which otherwise would be drained by GPS sensor quickly. Based on a test dataset, we were able to detect the recreational center and sports center as the space where the user was most active, among other places visited. The methods provide techniques to address key issues in analyzing human activity data. The system can support future studies on behavioral and health consequences related to individual's environmental exposure.
Semantic Differential Scale Method Can Reveal Multi-Dimensional Aspects of Mind Perception.
Takahashi, Hideyuki; Ban, Midori; Asada, Minoru
2016-01-01
As humans, we tend to perceive minds in both living and non-living entities, such as robots. From a questionnaire developed in a previous mind perception study, authors found that perceived minds could be located on two dimensions "experience" and "agency." This questionnaire allowed the assessment of how we perceive minds of various entities from a multi-dimensional point of view. In this questionnaire, subjects had to evaluate explicit mental capacities of target characters (e.g., capacity to feel hunger). However, we sometimes perceive minds in non-living entities, even though we cannot attribute these evidently biological capacities to the entity. In this study, we performed a large-scale web survey to assess mind perception by using the semantic differential scale method. We revealed that two mind dimensions "emotion" and "intelligence," respectively, corresponded to the two mind dimensions (experience and agency) proposed in a previous mind perception study. We did this without having to ask about specific mental capacities. We believe that the semantic differential scale is a useful method to assess the dimensions of mind perception especially for non-living entities that are hard to be attributed to biological capacities.
NASA Astrophysics Data System (ADS)
Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.
2016-03-01
Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.
Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong
2017-04-01
This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.
Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi
2016-05-01
Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.
A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib J.; Zhang, Jinsuo
In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlomore » simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.« less
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-05-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-04-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
Multi-scale modelling of elastic moduli of trabecular bone
Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz
2012-01-01
We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160
Multi-scale models of grassland passerine abundance in a fragmented system in Wisconsin
Renfrew, R.B.; Ribic, C.A.
2008-01-01
Fragmentation of grasslands has been implicated in grassland bird population declines. Multi-scale models are being increasingly used to assess potential factors that influence grassland bird presence, abundance, and productivity. However, studies rarely assess fragmentation metrics, and seldom evaluate more than two scales or interactions among scales. We evaluated the relative importance of characteristics at multiple scales to patterns in relative abundance of Savannah Sparrow (Passerculus sandwichensis), Grasshopper Sparrow (Ammodramus savannarum), Eastern Meadowlark (Sturnella magna), and Bobolink (Dolichonyx oryzivorus). We surveyed birds in 74 southwestern Wisconsin pastures from 1997 to 1999 and compared models with explanatory variables from multiple scales: within-patch vegetation structure (microhabitat), patch (macrohabitat), and three landscape extents. We also examined interactions between macrohabitat and landscape factors. Core area of pastures was an important predictor of relative abundance, and composition of the landscape was more important than configuration. Relative abundance was frequently higher in pastures with more core area and in landscapes with more grassland and less wooded area. The direction and strength of the effect of core pasture size on relative abundance changed depending on amount of wooded area in the landscape. Relative abundance of grassland birds was associated with landscape variables more frequently at the 1200-m scale than at smaller scales. To develop better predictive models, parameters at multiple scales and their interactive effects should be included, and results should be evaluated in the context of microhabitat variability, landscape composition, and fragmentation in the study area. ?? 2007 Springer Science+Business Media B.V.
Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ; ...
2017-02-16
Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
NASA Astrophysics Data System (ADS)
Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.
2018-01-01
In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
The Moral Injury Symptom Scale-Military Version.
Koenig, Harold G; Ames, Donna; Youssef, Nagy A; Oliver, John P; Volk, Fred; Teng, Ellen J; Haynes, Kerry; Erickson, Zachary D; Arnold, Irina; O'Garo, Keisha; Pearce, Michelle
2018-02-01
The purpose of this study was to develop a multi-dimensional measure of moral injury symptoms that can be used as a primary outcome measure in intervention studies that target moral injury (MI) in Veterans and Active Duty Military with PTSD. This was a multi-center study of 427 Veterans and Active Duty Military with PTSD symptoms recruited from VA Medical Centers in Augusta, Los Angeles, Durham, Houston, and San Antonio, and from Liberty University in Lynchburg. Internal reliability of the Moral Injury Symptom Scale-Military Version (MISS-M) was examined along with factor analytic, discriminant, and convergent validity. Participants were randomly split into two equal samples, with exploratory factor analysis conducted in the first sample and confirmatory factor analysis in the second. Test-retest reliability was assessed in a subsample of 64 Veterans. The 45-item MISS-M consists of 10 theoretically grounded subscales assessing guilt, shame, moral concerns, religious struggles, loss of religious faith/hope, loss of meaning/purpose, difficulty forgiving, loss of trust, and self-condemnation. The Cronbach's alpha of the overall scale was .92 and of individual subscales ranged from .56 to .91. The test-retest reliability was .91 for the total scale and ranged from .78 to .90 for subscales. Discriminant validity was demonstrated by relatively weak correlations with other psychosocial, religious, and physical health constructs, and convergent validity was indicated by strong correlations with PTSD, depression, and anxiety symptoms. The MISS-M is a reliable and valid multi-dimensional symptom measure of moral injury that can be used in studies targeting MI in Veterans and Active Duty Military with PTSD symptoms and may also be used by clinicians to identify those at risk.
NASA Astrophysics Data System (ADS)
Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.
2017-05-01
Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.
NASA Astrophysics Data System (ADS)
Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant
2013-03-01
Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.
DOT National Transportation Integrated Search
2006-12-01
Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...
Retinex enhancement of infrared images.
Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili
2008-01-01
With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...
2017-09-13
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
NASA Astrophysics Data System (ADS)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.
2017-11-01
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.
Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures
NASA Astrophysics Data System (ADS)
Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi
2017-04-01
Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.
Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart
Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin
2015-01-01
Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.
2017-12-01
In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at even larger geographical domains. Keywords: PAHs; Community multi-scale air quality model; Multimedia fate model; Land use
A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
2011-01-01
Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191
2013-03-01
of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber
2017-09-01
to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we
NASA Astrophysics Data System (ADS)
Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei
2017-04-01
In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh
2017-09-01
Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin M.; Moore, Johnathan E.; Tudek, John K.
Evaluation of the fate and transport of carbon dioxide (CO 2) in deep reservoirs is crucial to the development of long-term geologic carbon sequestration (GCS) technologies. In this report, various studies using computed tomography (CT) scanning are utilized in conjunction with traditional flow tests to observe the multi-scale phenomena associated with CO 2 injection in geologic media. Pore scale analyses were performed to determine the infiltration characteristics of CO 2 into a brine saturated reservoir rock. Multiphase floods were performed to evaluate the saturation of CO 2 into a brine-saturated reservoir rock and determine how structural changes within the lithologymore » affect such interactions. Additionally, CO 2 induced swelling of unconventional reservoir rock was evaluated with respect to reductions in fracture transmissivity due to matrix swelling. These studies are just a few examples of the benefits of multi-scale CT imaging in conjunction with traditional laboratory methodology to gain a better understanding of the interactions between CO 2 and the lithologies it interacts with during GCS.« less
NASA Astrophysics Data System (ADS)
Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.
2017-12-01
Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and forecasted 2D fields to develop objective criteria for consistency. We investigate the WNA cartoons of environmental moisture, precipitation structure and surface convergence. We will present the preliminary selection of most skillful members and will outline our future goals - analyzing the multi-scale interactions using these members
Effect of thematic map misclassification on landscape multi-metric assessment.
Kleindl, William J; Powell, Scott L; Hauer, F Richard
2015-06-01
Advancements in remote sensing and computational tools have increased our awareness of large-scale environmental problems, thereby creating a need for monitoring, assessment, and management at these scales. Over the last decade, several watershed and regional multi-metric indices have been developed to assist decision-makers with planning actions of these scales. However, these tools use remote-sensing products that are subject to land-cover misclassification, and these errors are rarely incorporated in the assessment results. Here, we examined the sensitivity of a landscape-scale multi-metric index (MMI) to error from thematic land-cover misclassification and the implications of this uncertainty for resource management decisions. Through a case study, we used a simplified floodplain MMI assessment tool, whose metrics were derived from Landsat thematic maps, to initially provide results that were naive to thematic misclassification error. Using a Monte Carlo simulation model, we then incorporated map misclassification error into our MMI, resulting in four important conclusions: (1) each metric had a different sensitivity to error; (2) within each metric, the bias between the error-naive metric scores and simulated scores that incorporate potential error varied in magnitude and direction depending on the underlying land cover at each assessment site; (3) collectively, when the metrics were combined into a multi-metric index, the effects were attenuated; and (4) the index bias indicated that our naive assessment model may overestimate floodplain condition of sites with limited human impacts and, to a lesser extent, either over- or underestimated floodplain condition of sites with mixed land use.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
75 FR 13730 - Marine Mammals; File No. 14118
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
...) extended fine-scale behavioral ecology studies using multi-sensor data recording packages. Initial efforts..., photography and video both above water and underwater, and collection of sloughed skin. Other animals...
The influence of multi-season imagery on models of canopy cover: A case study
John W. Coulston; Dennis M. Jacobs; Chris R. King; Ivey C. Elmore
2013-01-01
Quantifying tree canopy cover in a spatially explicit fashion is important for broad-scale monitoring of ecosystems and for management of natural resources. Researchers have developed empirical models of tree canopy cover to produce geospatial products. For subpixel models, percent tree canopy cover estimates (derived from fine-scale imagery) serve as the response...
Although it is routine for watershed management programs to coincide the monitoring of land use impacts and water quality at different spatial scales, rarely are the data collected in a manner to elucidate the linkages among ecological systems across a drainage network. There rem...
ERIC Educational Resources Information Center
Burney, Laurie; Zascavage, Victoria; Matherly, Michele
2017-01-01
Literature consistently documents a positive, direct effect of students' attitudes on learning (Lizzio, Wilson, & Simons, 2002). Hence, accounting studies describing active learning activities often report student attitudes as evidence of efficacy (e.g., Matherly & Burney, 2013), but rely on single-item instead of multi-item scales. This…
NASA Astrophysics Data System (ADS)
Harfst, S.; Portegies Zwart, S.; McMillan, S.
2008-12-01
We present MUSE, a software framework for combining existing computational tools from different astrophysical domains into a single multi-physics, multi-scale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a ``Noah's Ark'' milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe two examples calculated using MUSE: the merger of two galaxies and an N-body simulation with live stellar evolution. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stander, Nielen; Basudhar, Anirban; Basu, Ushnish
2015-09-14
Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less
NASA Astrophysics Data System (ADS)
Field, C. B.
2012-12-01
Modeling climate change impacts is challenging for a variety of reasons. Some of these are related to causation. A weather or climate event is rarely the sole cause of an impact, and, for many impacts, social, economic, cultural, or ecological factors may play a larger role than climate. Other challenges are related to outcomes. Consequences of an event are often most severe when several kinds of responses interact, typically in unexpected ways. Many kinds of consequences are difficult to quantify, especially when they include a mix of market, cultural, personal, and ecological values. In addition, scale can be tremendously important. Modest impacts over large areas present very different challenges than severe but very local impacts. Finally, impacts may respond non-linearly to forcing, with behavior that changes qualitatively at one or more thresholds and with unexpected outcomes in extremes. Modeling these potentially complex interactions between drivers and impacts presents one set of challenges. Evaluating the models presents another. At least five kinds of approaches can contribute to the evaluation of impact models designed to provide insights in multi-driver, multi-responder, multi-scale, and extreme-driven contexts, even though none of these approaches is a complete or "silver-bullet" solution. The starting point for much of the evaluation in this space is case studies. Case studies can help illustrate links between processes and scales. They can highlight factors that amplify or suppress sensitivity to climate drivers, and they can suggest the consequences of intervening at different points. While case studies rarely provide concrete evidence about mechanisms, they can help move a mechanistic case from circumstantial to sound. Novel approaches to data collection, including crowd sourcing, can potentially provide tools and the number of relevant examples to develop case studies as statistically robust data sources. A critical condition for progress in this area is the ability to utilize data of uneven quality and standards. Novel approaches to meta-analysis provide other options for taking advantage of diverse case studies. Techniques for summarizing responses across impacts, drivers, and scales can play a huge role in increasing the value of information from case studies. In some cases, expert elicitation may provide alternatives for identifying mechanisms or for interpreting multi-factor drivers or responses. Especially when designed to focus on a well-defined set of observations, a sophisticated elicitation can establish formal confidence limits on responses that are otherwise difficult to constrain. A final possible approach involves a focus on the mechanisms contributing to an impact, rather than the impact itself. Approaches based on quantified mechanisms are especially appealing in the context of models where the number of interactions makes it difficult to intuitively understand the chain of connections from cause to effect, when actors differ in goals or sensitivities, or when scale affects parts of the system differently. With all of these approaches, useful evidence may not conform to traditional levels of statistical confidence. Some of the biggest challenges in taking advantage of the potential tools will involve defining what constitutes a meaningful evaluation.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo
2016-08-01
Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.
Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs
NASA Astrophysics Data System (ADS)
Donetti, L.; Sampedro, C.; Ruiz, F. G.; Godoy, A.; Gamiz, F.
2018-05-01
We developed a Multi-Subband Ensemble Monte Carlo simulator for non-planar devices, taking into account two-dimensional quantum confinement. It couples self-consistently the solution of the 3D Poisson equation, the 2D Schrödinger equation, and the 1D Boltzmann transport equation with the Ensemble Monte Carlo method. This simulator was employed to study MOS devices based on ultra-scaled Gate-All-Around Si nanowires with diameters in the range from 4 nm to 8 nm with gate length from 8 nm to 14 nm. We studied the output and transfer characteristics, interpreting the behavior in the sub-threshold region and in the ON state in terms of the spatial charge distribution and the mobility computed with the same simulator. We analyzed the results, highlighting the contribution of different valleys and subbands and the effect of the gate bias on the energy and velocity profiles. Finally the scaling behavior was studied, showing that only the devices with D = 4nm maintain a good control of the short channel effects down to the gate length of 8nm .
Multi-hole pressure probes to air data system for subsonic small-scale air vehicles
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.
2016-10-01
A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.
NASA Astrophysics Data System (ADS)
Lee, Jongpil; Nam, Juhan
2017-08-01
Music auto-tagging is often handled in a similar manner to image classification by regarding the 2D audio spectrogram as image data. However, music auto-tagging is distinguished from image classification in that the tags are highly diverse and have different levels of abstractions. Considering this issue, we propose a convolutional neural networks (CNN)-based architecture that embraces multi-level and multi-scaled features. The architecture is trained in three steps. First, we conduct supervised feature learning to capture local audio features using a set of CNNs with different input sizes. Second, we extract audio features from each layer of the pre-trained convolutional networks separately and aggregate them altogether given a long audio clip. Finally, we put them into fully-connected networks and make final predictions of the tags. Our experiments show that using the combination of multi-level and multi-scale features is highly effective in music auto-tagging and the proposed method outperforms previous state-of-the-arts on the MagnaTagATune dataset and the Million Song Dataset. We further show that the proposed architecture is useful in transfer learning.
NASA Astrophysics Data System (ADS)
Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk
2017-10-01
A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.
NASA Astrophysics Data System (ADS)
Dai, Xiaoyu; Haussener, Sophia
2018-02-01
A multi-scale methodology for the radiative transfer analysis of heterogeneous media composed of morphologically-complex components on two distinct scales is presented. The methodology incorporates the exact morphology at the various scales and utilizes volume-averaging approaches with the corresponding effective properties to couple the scales. At the continuum level, the volume-averaged coupled radiative transfer equations are solved utilizing (i) effective radiative transport properties obtained by direct Monte Carlo simulations at the pore level, and (ii) averaged bulk material properties obtained at particle level by Lorenz-Mie theory or discrete dipole approximation calculations. This model is applied to a soot-contaminated snow layer, and is experimentally validated with reflectance measurements of such layers. A quantitative and decoupled understanding of the morphological effect on the radiative transport is achieved, and a significant influence of the dual-scale morphology on the macroscopic optical behavior is observed. Our results show that with a small amount of soot particles, of the order of 1ppb in volume fraction, the reduction in reflectance of a snow layer with large ice grains can reach up to 77% (at a wavelength of 0.3 μm). Soot impurities modeled as compact agglomerates yield 2-3% lower reduction of the reflectance in a thick show layer compared to snow with soot impurities modeled as chain-like agglomerates. Soot impurities modeled as equivalent spherical particles underestimate the reflectance reduction by 2-8%. This study implies that the morphology of the heterogeneities in a media significantly affects the macroscopic optical behavior and, specifically for the soot-contaminated snow, indicates the non-negligible role of soot on the absorption behavior of snow layers. It can be equally used in technical applications for the assessment and optimization of optical performance in multi-scale media.
Quantifying Stream-Aquifer Exchanges Over Scales: the Concept of Nested Interfaces
NASA Astrophysics Data System (ADS)
Flipo, N.; Mouhri, A.; Labarthe, B.; Saleh, F. S.
2013-12-01
Recent developments in hydrological modelling are based on a view of the interface being a single continuum through which water flows. These coupled hydrological-hydrogeological models, emphasizing the importance of the stream-aquifer interface (SAI), are more and more used in hydrological sciences for pluri-disciplinary studies aiming at questioning environmental issues. This notion of a single continuum comes from the historical modelling of hydrosystems based on the hypothesis of a homogeneous media that led to the Darcy law. Nowadays, there is a need to first bridge the gap between hydrological and eco-hydrological views of the SAIs, and, second, to rationalize the modelling of SAI within a consistent framework that fully takes into account the multi-dimensionality of the SAIs. We first define the concept of nested SAIs as a key transitional component of continental hydrosystem. We then demonstrate the usefulness of the concept for the multi-dimensional study of the SAI, with a special emphasis on the stream network which is identified as the key component for scaling hydrological processes occurring at the interface. Finally we focus on SAI modelling at various scales with up-to-date methodologies and give some guidance for the multi-dimensional modelling of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed. MIM scales in space three pools of methods needed to fully understand SAIs. The outcome of MIM is the localization in space of the type of SAI that can be studied by a given approach. The efficiency of the method is illustrated from the local (approx. 1m) to the regional scale (> 10 000 km2) with two examples from the Paris basin (France). The first one consists in the implementation of a sampling system of stream-aquifer exchanges, which is coupled with local 2D thermo-hydro models and a pseudo 3D hydro(geo)logical model at the watershed scale (40 km2). The quantification of monthly stream-aquifer exchanges over 14 000 km of river network in the Paris basin (74 000 km2) corresponds to a unique regional scale example.
Moll, Remington J; Redilla, Kyle M; Mudumba, Tutilo; Muneza, Arthur B; Gray, Steven M; Abade, Leandro; Hayward, Matt W; Millspaugh, Joshua J; Montgomery, Robert A
2017-07-01
Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple competing hypotheses. Addressing the pressing questions in risk effects research, including how, to what extent and on what scale they occur, requires leveraging the advantages of the many methods available to characterize risk while minimizing the confusion caused by variability in their application. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Zhang, Guoqing; Zhang, Xianku; Pang, Hongshuai
2015-09-01
This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Multi-scale curvature for automated identification of glaciated mountain landscapes
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2014-03-01
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staebler, G. M.; Candy, J.; Howard, N. T.
2016-06-15
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less
Urban Resources Selection and Allocation for Emergency Shelters: In a Multi-Hazard Environment.
Chen, Wei; Zhai, Guofang; Ren, Chongqiang; Shi, Yijun; Zhang, Jianxin
2018-06-14
This study explores how emergency shelters can adapt to a multi-hazard environment by geographic information system (GIS) and takes Guangzhou as a case for analysis. The physical suitability of the overall urban resources was first assessed by aiming to select the suitable resources and safe locations for emergency shelters in the context of multiple disasters. Afterward, by analyzing the scale and spatial distribution of affected areas and populations under different types of disaster scenarios, the demand for different kinds of shelters were predicted. Lastly, taking into account the coverage of the affected people, shelters were allocated according to different conditions in the districts. This work will hopefully provide a reference for the construction of emergency shelters and help form emergency operations in order to mitigate the impact of hazards. The issues identified in the study need to be further studied in medium or small-scale cities.
Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.
2005-01-01
This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.
Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor
2017-01-25
It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.
Multi-window PIV measurements around a breathing manikin
NASA Astrophysics Data System (ADS)
Marr, David
2005-11-01
The presented work includes multi-scale measurements via a stereo article Image Velocimetry (PIV) system to view a pair of two-component windows of dissimilar scale using a varied focal length. These measurements are taken in the breathing zone of an isothermal breathing manikin (from mouth) in an environmental chamber of average office cubicle dimensions without ventilation and are analogous to an oscillatory jet. From these phase-averaged measurements, we can extract information concerning length scales, turbulence quantities and low dimensional information in order to both determine correlation between data at different length scales as well as continuing research in exposure assessment for the indoor environment. In this talk we will present these turbulence quantities and interpret their influence on the breathing zone. While the largest scale is that of the room itself, we find that the relevant spatial scales associated with the breathing zone are much lower in magnitude. In future experiments, we will expand the multi window PIV technique to include PIV window configured to obtain scales of order the cubicle simultaneously with those of the breathing zone. This will aid in our understanding of the combined impact of these multiple scales on occupant exposure in the indoor environment.
NASA Astrophysics Data System (ADS)
Sweeney, C.; Kort, E. A.; Rella, C.; Conley, S. A.; Karion, A.; Lauvaux, T.; Frankenberg, C.
2015-12-01
Along with a boom in oil and natural gas production in the US, there has been a substantial effort to understand the true environmental impact of these operations on air and water quality, as well asnet radiation balance. This multi-institution effort funded by both governmental and non-governmental agencies has provided a case study for identification and verification of emissions using a multi-scale, top-down approach. This approach leverages a combination of remote sensing to identify areas that need specific focus and airborne in-situ measurements to quantify both regional and large- to mid-size single-point emitters. Ground-based networks of mobile and stationary measurements provide the bottom tier of measurements from which process-level information can be gathered to better understand the specific sources and temporal distribution of the emitters. The motivation for this type of approach is largely driven by recent work in the Barnett Shale region in Texas as well as the San Juan Basin in New Mexico and Colorado; these studies suggest that relatively few single-point emitters dominate the regional emissions of CH4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Dai, Zhenxue; Gong, Huili
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
NASA Astrophysics Data System (ADS)
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
Dudley, Joel T; Listgarten, Jennifer; Stegle, Oliver; Brenner, Steven E; Parts, Leopold
2015-01-01
Advances in molecular profiling and sensor technologies are expanding the scope of personalized medicine beyond genotypes, providing new opportunities for developing richer and more dynamic multi-scale models of individual health. Recent studies demonstrate the value of scoring high-dimensional microbiome, immune, and metabolic traits from individuals to inform personalized medicine. Efforts to integrate multiple dimensions of clinical and molecular data towards predictive multi-scale models of individual health and wellness are already underway. Improved methods for mining and discovery of clinical phenotypes from electronic medical records and technological developments in wearable sensor technologies present new opportunities for mapping and exploring the critical yet poorly characterized "phenome" and "envirome" dimensions of personalized medicine. There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, behavioral, and environmental data streams from large population cohorts longitudinally to enable more comprehensive and dynamic models of individual biology and personalized health. Personalized medicine stands to benefit from inclusion of rich new sources and dimensions of data. However, realizing these improvements in care relies upon novel informatics methodologies, tools, and systems to make full use of these data to advance both the science and translational applications of personalized medicine.
Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing
2016-12-10
To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...
Advancing Ecological Models to Compare Scale in Multi-Level Educational Change
ERIC Educational Resources Information Center
Woo, David James
2016-01-01
Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…
The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...
Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images
NASA Astrophysics Data System (ADS)
Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.
2016-07-01
In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.
NASA Astrophysics Data System (ADS)
Du, Wenbo
A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.
Using CellML with OpenCMISS to Simulate Multi-Scale Physiology
Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.
2014-01-01
OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed. PMID:25601911
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
van Ruitenbeek, Gemma M C; Zijlstra, Fred R H; Hülsheger, Ute R
2018-06-04
Purpose Participation in regular paid jobs positively affects mental and physical health of all people, including people with limited work capacities (LWC), people that are limited in their work capacity as a consequence of their disability, such as chronic mental illness, psychological or developmental disorder. For successful participation, a good fit between on one hand persons' capacities and on the other hand well-suited individual support and a suitable work environment is necessary in order to meet the demands of work. However, to date there is a striking paucity of validated measures that indicate the capability to work of people with LWC and that outline directions for support that facilitate the fit. Goal of the present study was therefore to develop such an instrument. Specifically, we adjusted measures of mental ability, conscientiousness, self-efficacy, and coping by simplifying the language level of these measures to make the scales accessible for people with low literacy. In order to validate these adjusted self-report and observer measures we conducted two studies, using multi-source, longitudinal data. Method Study 1 was a longitudinal multi-source study in which the newly developed instrument was administered twice to people with LWC and their significant other. We statistically tested the psychometric properties with respect to dimensionality and reliability. In Study 2, we collected new multi-source data and conducted a confirmatory factor analysis (CFA). Results Studies yielded a congruous factor structure in both samples, internally consistent measures with adequate content validity of scales and subscales, and high test-retest reliability. The CFA confirmed the factorial validity of the scales. Conclusion The adjusted self-report and the observer scales of mental ability, conscientiousness, self-efficacy, and coping are reliable measures that are well-suited to assess the work capability of people with LWC. Further research is needed to examine criterion-related validity with respect to the work demands such as work-behaviour and task performance.
NASA Astrophysics Data System (ADS)
Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.
2017-12-01
The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Gradient design for liquid chromatography using multi-scale optimization.
López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C
2018-01-26
In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
ERIC Educational Resources Information Center
Moghnie, Lamia; Kazarian, Shahe S.
2012-01-01
The present study evaluated the subjective happiness of Lebanese college youth using a multi-item rather than a single-item subjective happiness measure. An Arabic translation of the Subjective Happiness Scale (SHS) was administered to 273 Lebanese college youth from state- and private-run higher institutions of learning, as was the Arabic Adult…
Validating the Language Domain Subtest in a Developmental Assessment Scale for Preschool Children
ERIC Educational Resources Information Center
Wong, Anita M. -Y.; Leung, Cynthia; Siu, Elaine K. -L.; Lam, Catherine C. -C.
2012-01-01
This study reports on the validation of the language domain subtest of a developmental assessment scale for Cantonese Chinese preschool children. Three hundred and seventy eight multi-stage randomly selected children between 3;4 and 6;3 years of age were tested on the 104-item subtest. Fifty-four of these children, spreading across three age…
ERIC Educational Resources Information Center
Siefert, Caleb J.; Sinclair, Samuel J.; Kehl-Fie, Kendra A.; Blais, Mark A.
2009-01-01
Multi-item multiscale self-report measures are increasingly used in inpatient assessments. When considering a measure for this setting, it is important to evaluate the psychometric properties of the clinical scales and items to ensure that they are functioning as intended in a highly distressed clinical population. The present study examines scale…
ERIC Educational Resources Information Center
Abubakar, Amina; van de Vijver, Fons; Alonso-Arbiol, Itziar; He, Jia; Adams, Byron; Aldhafri, Said; Aydinli-Karakulak, Arzu; Arasa, Josephine; Boer, Diana; Celenk, Ozgur; Dimitrova, Radosveta; Ferreira, Maria Cristina; Fischer, Ronald; Mbebeb, Fomba Emmanuel; Frías, María Teresa; Fresno, Andrés; Gillath, Omri; Harb, Charles; Handani, Penny; Hapunda, Given; Kamble, Shanmukh; Kosic, Marianna; Looh, Joseph Lah; Mazrui, Lubna; Mendia, Rafael Emilio; Murugami, Margaret; Mason-Li, Mei; Pandia, Weny Savitry; Perdomo, Cristina; Schachner, Maja; Sim, Samantha; Spencer, Rosario; Suryani, Angela; Tair, Ergyul
2016-01-01
There is hardly any cross-cultural research on the measurement invariance of the Brief Multidimensional Students' Life Satisfaction Scales (BMSLSS). The current article evaluates the measurement invariance of the BMSLSS across cultural contexts. This cross-sectional study sampled 7,739 adolescents and emerging adults in 23 countries. A multi-group…
Multi-scale Methods in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih
2018-05-01
Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.
Muraro, D; Larrieu, A; Lucas, M; Chopard, J; Byrne, H; Godin, C; King, J
2016-09-07
The growth of the root of Arabidopsis thaliana is sustained by the meristem, a region of cell proliferation and differentiation which is located in the root apex and generates cells which move shootwards, expanding rapidly to cause root growth. The balance between cell division and differentiation is maintained via a signalling network, primarily coordinated by the hormones auxin, cytokinin and gibberellin. Since these hormones interact at different levels of spatial organisation, we develop a multi-scale computational model which enables us to study the interplay between these signalling networks and cell-cell communication during the specification of the root meristem. We investigate the responses of our model to hormonal perturbations, validating the results of our simulations against experimental data. Our simulations suggest that one or more additional components are needed to explain the observed expression patterns of a regulator of cytokinin signalling, ARR1, in roots not producing gibberellin. By searching for novel network components, we identify two mutant lines that affect significantly both root length and meristem size, one of which also differentially expresses a central component of the interaction network (SHY2). More generally, our study demonstrates how a multi-scale investigation can provide valuable insight into the spatio-temporal dynamics of signalling networks in biological tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dysart, Arthur D.; Burgos, Juan C.; Mistry, Aashutosh; ...
2016-02-09
In this work, a novel heterofunctional, bimodal-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host as a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized by a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate high sulfur loading (47 %-wt. S) and ca. 700 mAh g -1 reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio Molecular Dynamics characterize the interface between themore » C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM images to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance.« less
Coertjens, Liesje; Donche, Vincent; De Maeyer, Sven; Vanthournout, Gert; Van Petegem, Peter
2013-01-01
The change in learning strategies during higher education is an important topic of research in the Student Approaches to Learning field. Although the studies on this topic are increasingly longitudinal, analyses have continued to rely primarily on traditional statistical methods. The present research is innovative in the way it uses a multi-indicator latent growth analysis in order to more accurately estimate the general and differential development in learning strategy scales. Moreover, the predictive strength of the latent growth models are estimated. The sample consists of one cohort of Flemish University College students, 245 of whom participated in the three measurement waves by filling out the processing and regulation strategies scales of the Inventory of Learning Styles--Short Versions. Independent-samples t-tests revealed that the longitudinal group is a non-random subset of students starting University College. For each scale, a multi-indicator latent growth model is estimated using Mplus 6.1. Results suggest that, on average, during higher education, students persisting in their studies in a non-delayed manner seem to shift towards high-quality learning and away from undirected and surface-oriented learning. Moreover, students from the longitudinal group are found to vary in their initial levels, while, unexpectedly, not in their change over time. Although the growth models fit the data well, significant residual variances in the latent factors remain.
Coertjens, Liesje; Donche, Vincent; De Maeyer, Sven; Vanthournout, Gert; Van Petegem, Peter
2013-01-01
The change in learning strategies during higher education is an important topic of research in the Student Approaches to Learning field. Although the studies on this topic are increasingly longitudinal, analyses have continued to rely primarily on traditional statistical methods. The present research is innovative in the way it uses a multi-indicator latent growth analysis in order to more accurately estimate the general and differential development in learning strategy scales. Moreover, the predictive strength of the latent growth models are estimated. The sample consists of one cohort of Flemish University College students, 245 of whom participated in the three measurement waves by filling out the processing and regulation strategies scales of the Inventory of Learning Styles – Short Versions. Independent-samples t-tests revealed that the longitudinal group is a non-random subset of students starting University College. For each scale, a multi-indicator latent growth model is estimated using Mplus 6.1. Results suggest that, on average, during higher education, students persisting in their studies in a non-delayed manner seem to shift towards high-quality learning and away from undirected and surface-oriented learning. Moreover, students from the longitudinal group are found to vary in their initial levels, while, unexpectedly, not in their change over time. Although the growth models fit the data well, significant residual variances in the latent factors remain. PMID:23844112
On the estimation of the current density in space plasmas: Multi- versus single-point techniques
NASA Astrophysics Data System (ADS)
Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco
2017-06-01
Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.
A Multi-Scale Study on the Role of Trace Metals on Physiological and Pathological Mineralization
NASA Astrophysics Data System (ADS)
Rammelkamp, Derek
The work in this thesis provides mulit-scale contributions towards understanding the effects of trace metals on the pathological mineralization process relating to both the development of healthy bone tissue, the diseased state of osteoporosis, and microcalcifications which develop in breast cancers. A protein level study was performed on ECM protein fibronectin, which plays a role in cell adhesion. The protein studies showed zinc interactions with fibronectin and its fragment, anastellin, to influence protein structure. Zinc is also shown to decrease cell migration in vitro, which may be influenced by changes in fibronectin ECM structure. The effects of osteoporosis on micronutrient composition in vivo were examined using the technique of x-ray fluorescence (XRF) in an ovariectomized rat model. Compared to healthy bone, subtle difference are observed in zinc and iron in osteoporotic rat bones, showing micronutrients may play an important role in healthy bone regulation. Effects of micronutrient zinc was used to inhibit microcalcification formation in breast cancers. Microcalcifications have been linked malignancy of breast cancers, but the process of microcalcification formation has yet to be well understood. In this work, exogenous zinc is used to inhibit microcalcification formation, and metastatic potential in both a 2D and 3D spheroid environment. A novel in vitro self-assembled three dimensional multi-cellular tumor spheroid (MCTS) model for the study of breast cancer microcalcifications was developed for this experiment. A MCTS model for studying breast cancer microcalcifications has potential to be used in drug discovery, or for basic research applications studying mechanisms of microcalcification formation, which are still not fully understood. Taken together this study uses a multi-scale approach to gain a better understanding of micronutrients involved in pathological mineralization.
Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo
2009-01-01
Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
A Multi-Domain Self-Report Measure of Coparenting
Feinberg, Mark E.; Brown, Louis D.; Kan, Marni L.
2012-01-01
SYNOPSIS Objective This study reports the psychometric properties of a multi-domain measure of the coparenting relationship in dual-parent families. Method 152 couples participating in a transition to parenthood study completed the Coparenting Relationship Scale and additional measures during home visits at child age 6 months, 1 year, and 3 years. Results Psychometric and construct validity assessments indicated the measure performed satisfactorily. The 35-item measure demonstrated good reliability and strong stability. Subscales measuring theoretically and empirically important aspects of coparenting (coparenting agreement, coparenting closeness, exposure of child to conflict, coparenting support, coparenting undermining, endorsement of partner’s parenting, and division of labor) demonstrated good reliability as well. A 14-item brief overall measure showed very strong associations with the overall measure. Relations of the full scale with a measure of social desirability were weak, and the full scale was positively associated with positive dimensions of the dyadic couple relationship (love, sex/romance, couple efficacy) and inversely associated with negative dimensions (conflict, ineffective arguing)—as expected. Conclusions This initial examination of the Coparenting Relationship Scale suggests that it possesses good psychometric properties (reliability, stability, construct validity, and inter-rater agreement), can be flexibly administered in short and long forms, and is positioned to promote further conceptual and methodological progress in the study of coparenting. PMID:23166477
NASA Astrophysics Data System (ADS)
Aliyu, Yahaya A.; Botai, Joel O.
2018-04-01
The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.
2017-12-01
Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid
Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...
2016-06-29
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less
NASA Astrophysics Data System (ADS)
Villegas, J. C.; Salazar, J. F.; Arias, P. A.; León, J. D.
2017-12-01
Land cover transformation is currently one of the most important challenges in tropical South America. These transformations occur both because of climate-related ecological perturbations, as well as in response to ongoing socio-economic processes. A fundamental difference between those two drivers is the spatial and temporal scale at which they operate. However, when considered in a larger context, both drivers affect the ability of ecosystems to provide fundamental services to society. In this work, we use a multi-scale approach to identify key-mechanisms through which land cover transformation significantly affects ecological, hydrological and ecoclimatological dynamics, potentially leading to loss of societally-critical regulation services. We propose a suite of examples spanning multiple spatial and temporal scales that illustrate the effects of land cover trnasformations in ecological, hydrological, biogeochemical and climatic functions in tropical South America. These examples highlight important global-change-effects management challenges, as well as the need to consider the feedbacks and interactions between multi-scale processes.
Multi-scale structural community organisation of the human genome.
Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin
2017-04-11
Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.
Multi-scale functional mapping of tidal marsh vegetation for restoration monitoring
NASA Astrophysics Data System (ADS)
Tuxen Bettman, Karin
2007-12-01
Nearly half of the world's natural wetlands have been destroyed or degraded, and in recent years, there have been significant endeavors to restore wetland habitat throughout the world. Detailed mapping of restoring wetlands can offer valuable information about changes in vegetation and geomorphology, which can inform the restoration process and ultimately help to improve chances of restoration success. I studied six tidal marshes in the San Francisco Estuary, CA, US, between 2003 and 2004 in order to develop techniques for mapping tidal marshes at multiple scales by incorporating specific restoration objectives for improved longer term monitoring. I explored a "pixel-based" remote sensing image analysis method for mapping vegetation in restored and natural tidal marshes, describing the benefits and limitations of this type of approach (Chapter 2). I also performed a multi-scale analysis of vegetation pattern metrics for a recently restored tidal marsh in order to target the metrics that are consistent across scales and will be robust measures of marsh vegetation change (Chapter 3). Finally, I performed an "object-based" image analysis using the same remotely sensed imagery, which maps vegetation type and specific wetland functions at multiple scales (Chapter 4). The combined results of my work highlight important trends and management implications for monitoring wetland restoration using remote sensing, and will better enable restoration ecologists to use remote sensing for tidal marsh monitoring. Several findings important for tidal marsh restoration monitoring were made. Overall results showed that pixel-based methods are effective at quantifying landscape changes in composition and diversity in recently restored marshes, but are limited in their use for quantifying smaller, more fine-scale changes. While pattern metrics can highlight small but important changes in vegetation composition and configuration across years, scientists should exercise caution when using metrics in their studies or to validate restoration management decisions, and multi-scale analyses should be performed before metrics are used in restoration science for important management decisions. Lastly, restoration objectives, ecosystem function, and scale can each be integrated into monitoring techniques using remote sensing for improved restoration monitoring.
Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).
Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli
2018-02-26
Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Liu, Chen; Chen, Haishan
2018-02-01
The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.
Xiao, Li; Luo, Ray
2017-12-07
We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.
Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas
NASA Astrophysics Data System (ADS)
Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.
2017-12-01
Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
Hanlon, Steven P; Camattari, Andrea; Abad, Sandra; Glieder, Anton; Kittelmann, Matthias; Lütz, Stephan; Wirz, Beat; Winkler, Margit
2012-06-18
A panel of human flavin monooxygenases were heterologously expressed in E. coli to obtain ready-to-use biocatalysts for the in vitro preparation of human drug metabolites. Moclobemide-N-oxide (65 mg) was the first high-priced metabolite prepared with recombinant hFMO3 on the multi-milligram scale.
Multi-Item Direct Behavior Ratings: Dependability of Two Levels of Assessment Specificity
ERIC Educational Resources Information Center
Volpe, Robert J.; Briesch, Amy M.
2015-01-01
Direct Behavior Rating-Multi-Item Scales (DBR-MIS) have been developed as formative measures of behavioral assessment for use in school-based problem-solving models. Initial research has examined the dependability of composite scores generated by summing all items comprising the scales. However, it has been argued that DBR-MIS may offer assessment…
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
NASA Astrophysics Data System (ADS)
Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.
2017-12-01
Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed self-consistent Multi-Order Power-Law Approach (MOPLA) to multi-scale field observations, we constrain likely paleo-tectonic controls of orogenic structural evolution rather than predicting a unique, but likely incorrect deformation history.
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Jianping; Sofia, Giulia; Tarolli, Paolo
2014-05-01
Moon surface features have great significance in understanding and reconstructing the lunar geological evolution. Linear structures like rilles and ridges are closely related to the internal forced tectonic movement. The craters widely distributed on the moon are also the key research targets for external forced geological evolution. The extremely rare availability of samples and the difficulty for field works make remote sensing the most important approach for planetary studies. New and advanced lunar probes launched by China, U.S., Japan and India provide nowadays a lot of high-quality data, especially in the form of high-resolution Digital Terrain Models (DTMs), bringing new opportunities and challenges for feature extraction on the moon. The aim of this study is to recognize and extract lunar features using geomorphometric analysis based on multi-scale parameters and multi-resolution DTMs. The considered digital datasets include CE1-LAM (Chang'E One, Laser AltiMeter) data with resolution of 500m/pix, LRO-WAC (Lunar Reconnaissance Orbiter, Wide Angle Camera) data with resolution of 100m/pix, LRO-LOLA (Lunar Reconnaissance Orbiter, Lunar Orbiter Laser Altimeter) data with resolution of 60m/pix, and LRO-NAC (Lunar Reconnaissance Orbiter, Narrow Angle Camera) data with resolution of 2-5m/pix. We considered surface derivatives to recognize the linear structures including Rilles and Ridges. Different window scales and thresholds for are considered for feature extraction. We also calculated the roughness index to identify the erosion/deposits area within craters. The results underline the suitability of the adopted methods for feature recognition on the moon surface. The roughness index is found to be a useful tool to distinguish new craters, with higher roughness, from the old craters, which present a smooth and less rough surface.
Multi-scale study of the isotope effect in ISTTOK
NASA Astrophysics Data System (ADS)
Liu, B.; Silva, C.; Figueiredo, H.; Pedrosa, M. A.; van Milligen, B. Ph.; Pereira, T.; Losada, U.; Hidalgo, C.
2016-05-01
The isotope effect, namely the isotope dependence of plasma confinement, is still one of the principal scientific conundrums facing the magnetic fusion community. We have investigated the impact of isotope mass on multi-scale mechanisms, including the characterization of radial correlation lengths (\\boldsymbol{L}{r} ) and long-range correlations (LRC) of plasma fluctuations using multi-array Langmuir probe system, in hydrogen (H) and deuterium (D) plasmas in the ISTTOK tokamak. We found that when changing plasma composition from the H dominated to D dominated, the LRC amplitude increased markedly (10-30%) and the \\boldsymbol{L}{r} increased slightly (~10%). The particle confinement also improved by about 50%. The changes of LRC and \\boldsymbol{L}{r} are congruent with previous findings in the TEXTOR tokamak (Xu et al 2013 Phys. Rev. Lett. 110 265005). In addition, using biorthogonal decomposition, both geodesic acoustic modes and very low frequency (<5 kHz) coherent modes were found to be contributing to LRC.
Multi-time scale control of demand flexibility in smart distribution networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Multi-time scale control of demand flexibility in smart distribution networks
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...
2017-01-01
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures
NASA Astrophysics Data System (ADS)
Kaveh, A.; Ilchi Ghazaan, M.
2018-02-01
In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.
The Influence of Multi-Scale Stratal Architecture on Multi-Phase Flow
NASA Astrophysics Data System (ADS)
Soltanian, M.; Gershenzon, N. I.; Ritzi, R. W.; Dominic, D.; Ramanathan, R.
2012-12-01
Geological heterogeneity affects flow and transport in porous media, including the migration and entrapment patterns of oil, and efforts for enhanced oil recovery. Such effects are only understood through their relation to a hierarchy of reservoir heterogeneities over a range of scales. Recent work on modern rivers and ancient sediments has led to a conceptual model of the hierarchy of fluvial forms within channel-belts of gravelly braided rivers, and a quantitative model for the corresponding scales of heterogeneity within the stratal architecture (e.g. [Lunt et al (2004) Sedimentology, 51 (3), 377]). In related work, a three-dimensional digital model was developed which represents these scales of fluvial architecture, the associated spatial distribution of permeability, and the connectivity of high-permeability pathways across the different scales of the stratal hierarchy [Ramanathan et al, (2010) Water Resour. Res., 46, W04515; Guin et al, (2010) Water Resour. Res., 46, W04516]. In the present work we numerically examine three-phase fluid flow (water-oil-gas) incorporating the multi-scale model for reservoir heterogeneity spanning the scales from 10^-1 to 10^3 meters. Comparison with results of flow in a reservoir with homogeneous permeability is made showing essentially different flow dynamics.
Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.
NASA Astrophysics Data System (ADS)
Rainville, L.; Farrar, J. T.; Shcherbina, A.; Centurioni, L. R.
2017-12-01
The Salinity Processes in the Upper-ocean Regional Study (SPURS) is a program aimed at understanding the patterns and variability of sea surface salinity. Following the first SPURS program in an evaporation-dominated region (2012-2013), the SPURS-2 program targeted wide range of spatial and temporal scales associated with processes controlling salinity in the rain-dominated Eastern Pacific Fresh Pool. Autonomous instruments were delivered in August and September 2016 using research vessels conducted observations over one complete annual cycle. The SPURS-2 field program used coordinated observations from many different autonomous platforms, and a mix of Lagrangian and Eulerian approaches. Here we discuss the motivation, implementation, and the early of SPURS-2.
Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
Towards a macrosystems approach for successful coastal management
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, soc...
The Relationship Between Non-Symbolic Multiplication and Division in Childhood
McCrink, Koleen; Shafto, Patrick; Barth, Hilary
2016-01-01
Children without formal education in addition and subtraction are able to perform multi-step operations over an approximate number of objects. Further, their performance improves when solving approximate (but not exact) addition and subtraction problems that allow for inversion as a shortcut (e.g., a + b − b = a). The current study examines children’s ability to perform multi-step operations, and the potential for an inversion benefit, for the operations of approximate, non-symbolic multiplication and division. Children were trained to compute a multiplication and division scaling factor (*2 or /2, *4 or /4), and then tested on problems that combined two of these factors in a way that either allowed for an inversion shortcut (e.g., 8 * 4 / 4) or did not (e.g., 8 * 4 / 2). Children’s performance was significantly better than chance for all scaling factors during training, and they successfully computed the outcomes of the multi-step testing problems. They did not exhibit a performance benefit for problems with the a * b / b structure, suggesting they did not draw upon inversion reasoning as a logical shortcut to help them solve the multi-step test problems. PMID:26880261
A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells
NASA Astrophysics Data System (ADS)
Tourani, Abbas; White, Peter; Ivey, Paul
2014-06-01
Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.
a Region-Based Multi-Scale Approach for Object-Based Image Analysis
NASA Astrophysics Data System (ADS)
Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.
2016-06-01
Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
The three-zone composite productivity model for a multi-fractured horizontal shale gas well
NASA Astrophysics Data System (ADS)
Qi, Qian; Zhu, Weiyao
2018-02-01
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.
Communication and cooperation in underwater acoustic networks
NASA Astrophysics Data System (ADS)
Yerramalli, Srinivas
In this thesis, we present a study of several problems related to underwater point to point communications and network formation. We explore techniques to improve the achievable data rate on a point to point link using better physical layer techniques and then study sensor cooperation which improves the throughput and reliability in an underwater network. Robust point-to-point communications in underwater networks has become increasingly critical in several military and civilian applications related to underwater communications. We present several physical layer signaling and detection techniques tailored to the underwater channel model to improve the reliability of data detection. First, a simplified underwater channel model in which the time scale distortion on each path is assumed to be the same (single scale channel model in contrast to a more general multi scale model). A novel technique, which exploits the nature of OFDM signaling and the time scale distortion, called Partial FFT Demodulation is derived. It is observed that this new technique has some unique interference suppression properties and performs better than traditional equalizers in several scenarios of interest. Next, we consider the multi scale model for the underwater channel and assume that single scale processing is performed at the receiver. We then derive optimized front end pre-processing techniques to reduce the interference caused during single scale processing of signals transmitted on a multi-scale channel. We then propose an improvised channel estimation technique using dictionary optimization methods for compressive sensing and show that significant performance gains can be obtained using this technique. In the next part of this thesis, we consider the problem of sensor node cooperation among rational nodes whose objective is to improve their individual data rates. We first consider the problem of transmitter cooperation in a multiple access channel and investigate the stability of the grand coalition of transmitters using tools from cooperative game theory and show that the grand coalition in both the asymptotic regimes of high and low SNR. Towards studying the problem of receiver cooperation for a broadcast channel, we propose a game theoretic model for the broadcast channel and then derive a game theoretic duality between the multiple access and the broadcast channel and show that how the equilibria of the broadcast channel are related to the multiple access channel and vice versa.
Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah
2009-01-01
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.
BASIN-SCALE ASSESSMENTS FOR SUSTAINABLE ECOSYSTEMS (BASE)
The need for multi-media, multi-stressor, and multi-response models for ecological assessment is widely acknowledged. Assessments at this level of complexity have not been conducted, and therefore pilot assessments are required to identify the critical concepts, models, data, and...
NASA Astrophysics Data System (ADS)
Pakhotin, I.; Mann, I. R.; Forsyth, C.; Rae, J.; Burchill, J. K.; Knudsen, D. J.; Murphy, K. R.; Gjerloev, J. W.; Ozeke, L.; Balasis, G.; Daglis, I. A.
2016-12-01
With the advent of the Swarm mission with its multi-satellite capacity, it became possible for the first time to make systematic close separation multi-satellite measurements of the magnetic fields associated with field-aligned currents (FACs) at a 50 Hz cadence using fluxgate magnetometers. Initial studies have revealed an even greater level of detail and complexity and spatio-temporal non-stationarity than previously understood. On inter-satellite separation scales of 10 seconds along-track and <120 km cross-track, the peak-to-peak magnitudes of the small scale and poorly correlated inter-spacecraft magnetic field fluctuations can reach tens to hundreds of nanoteslas. These magnitudes are directly comparable to those associated with larger scale magnetic perturbations such as the global scale Region 1 and 2 FAC systems characterised by Iijima and Potemra 40 years ago. We evaluate the impact of these smaller scale magnetic perturbations relative to the larger scale FAC systems statistically as a function of the total number of FAC crossings observed, and as a function of geomagnetic indices, spatial location, and season. Further case studies incorporating Swarm electric field measurements enable estimates of the Poynting flux associated with the small scale and non-stationary magnetic fields. We interpret the small scale structures as Alfvenic, suggesting that Alfven waves play a much larger and more energetically significant role in magnetosphere-ionosphere coupling than previously thought. We further examine what causes such high variability among low-Earth orbit FAC systems to be observed under some conditions but not in others.
HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.
2016-12-01
Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.
Erosion of cohesive soil layers above underground conduits
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier
2017-06-01
Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.
A multi-layer MRI description of Parkinson's disease
NASA Astrophysics Data System (ADS)
La Rocca, M.; Amoroso, N.; Lella, E.; Bellotti, R.; Tangaro, S.
2017-09-01
Magnetic resonance imaging (MRI) along with complex network is currently one of the most widely adopted techniques for detection of structural changes in neurological diseases, such as Parkinson's Disease (PD). In this paper, we present a digital image processing study, within the multi-layer network framework, combining more classifiers to evaluate the informative power of the MRI features, for the discrimination of normal controls (NC) and PD subjects. We define a network for each MRI scan; the nodes are the sub-volumes (patches) the images are divided into and the links are defined using the Pearson's pairwise correlation between patches. We obtain a multi-layer network whose important network features, obtained with different feature selection methods, are used to feed a supervised multi-level random forest classifier which exploits this base of knowledge for accurate classification. Method evaluation has been carried out using T1 MRI scans of 354 individuals, including 177 PD subjects and 177 NC from the Parkinson's Progression Markers Initiative (PPMI) database. The experimental results demonstrate that the features obtained from multiplex networks are able to accurately describe PD patterns. Besides, also if a privileged scale for studying PD disease exists, exploring the informative content of more scales leads to a significant improvement of the performances in the discrimination between disease and healthy subjects. In particular, this method gives a comprehensive overview of brain regions statistically affected by the disease, an additional value to the presented study.
Weatherill, John; Krause, Stefan; Voyce, Kevin; Drijfhout, Falko; Levy, Amir; Cassidy, Nigel
2014-03-01
Integrated approaches for the identification of pollutant linkages between aquifers and streams are of crucial importance for evaluating the environmental risks posed by industrial contaminants like trichloroethene (TCE). This study presents a systematic, multi-scale approach to characterising groundwater TCE discharge to a 'gaining' UK lowland stream receiving baseflow from a major Permo-Triassic sandstone aquifer. Beginning with a limited number of initial monitoring points, we aim to provide a 'first pass' mechanistic understanding of the plume's fate at the aquifer/stream interface using a novel combination of streambed diffusion samplers, riparian monitoring wells and drive-point mini-piezometers in a spatially nested sampling configuration. Our results indicate the potential discharge zone of the plume to extend along a stream reach of 120 m in length, delineated by a network of 60 in-situ diffusion samplers. Within this section, a 40 m long sub-reach of higher concentration (>10 μg L(-1)) was identified; centred on a meander bend in the floodplain. 25 multi-level mini-piezometers installed to target this down-scaled reach revealed even higher TCE concentrations (20-40 μg L(-1)), significantly above alluvial groundwater samples (<6 μg L(-1)) from 15 riparian monitoring wells. Significant lateral and vertical spatial heterogeneity in TCE concentrations within the top 1m of the streambed was observed with the decimetre-scale vertical resolution provided by multi-level mini-piezometers. It appears that the distribution of fine-grained material in the Holocene deposits of the riparian floodplain and below the channel is exerting significant local-scale geological controls on the location and magnitude of the TCE discharge. Large-scale in-situ biodegradation of the plume was not evident during the monitoring campaigns. However, detections of cis-1,2-dichloroethene and vinyl chloride in discrete sections of the sediment profile indicate that shallow (e.g., <20 cm) TCE transformation may be significant at a local scale in the streambed deposits. Our findings highlight the need for efficient multi-scale monitoring strategies in geologically heterogeneous lowland stream/aquifer systems in order to more adequately quantify the risk to surface water ecological receptors posed by point-source groundwater contaminants like TCE. Copyright © 2013 Elsevier B.V. All rights reserved.
Fleming, Austin; Folsom, Charles; Ban, Heng; ...
2015-11-13
Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.
NASA Astrophysics Data System (ADS)
Fischer, Andreas; Keller, Denise; Liniger, Mark; Rajczak, Jan; Schär, Christoph; Appenzeller, Christof
2014-05-01
Fundamental changes in the hydrological cycle are expected in a future warmer climate. This is of particular relevance for the Alpine region, as a source and reservoir of several major rivers in Europe and being prone to extreme events such as floodings. For this region, climate change assessments based on the ENSEMBLES regional climate models (RCMs) project a significant decrease in summer mean precipitation under the A1B emission scenario by the mid-to-end of this century, while winter mean precipitation is expected to slightly rise. From an impact perspective, projected changes in seasonal means, however, are often insufficient to adequately address the multifaceted challenges of climate change adaptation. In this study, we revisit the full matrix of the ENSEMBLES RCM projections regarding changes in frequency and intensity, precipitation-type (convective versus stratiform) and temporal structure (wet/dry spells and transition probabilities) over Switzerland and surroundings. As proxies for raintype changes, we rely on the model parameterized convective and large-scale precipitation components. Part of the analysis involves a Bayesian multi-model combination algorithm to infer changes from the multi-model ensemble. The analysis suggests a summer drying that evolves altitude-specific: over low-land regions it is associated with wet-day frequency decreases of convective and large-scale precipitation, while over elevated regions it is primarily associated with a decline in large-scale precipitation only. As a consequence, almost all the models project an increase in the convective fraction at elevated Alpine altitudes. The decrease in the number of wet days during summer is accompanied by decreases (increases) in multi-day wet (dry) spells. This shift in multi-day episodes also lowers the likelihood of short dry spell occurrence in all of the models. For spring and autumn the combined multi-model projections indicate higher mean precipitation intensity north of the Alps, while a similar tendency is expected for the winter season over most of Switzerland.
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
NASA Astrophysics Data System (ADS)
Hawie, Nicolas; Deschamps, Remy; Granjeon, Didier; Nader, Fadi-Henri; Gorini, Christian; Müller, Carla; Montadert, Lucien; Baudin, François
2015-04-01
Recent scientific work underlined the presence of a thick Cenozoic infill in the Levant Basin reaching up to 12 km. Interestingly; restricted sedimentation was observed along the Levant margin in the Cenozoic. Since the Late Eocene successive regional geodynamic events affecting Afro-Arabia and Eurasia (collision and strike slip deformation)induced fast marginal uplifts. The initiation of local and long-lived regional drainage systems in the Oligo-Miocene period (e.g. Lebanon versus Nile) provoked a change in the depositional pattern along the Levant margin and basin. A shift from carbonate dominated environments into clastic rich systems has been observed. Through this communication we explore the importance of multi-scale constraints (i.e.,seismic, well and field data) in the quantification of the subsidence history, sediment transport and deposition of a Middle-Upper Miocene "multi-source" to sink system along the northernLevant frontier region. We prove through a comprehensive forward stratigraphic modeling workflow that the contribution to the infill of the northern Levant Basin (offshore Lebanon) is split in between proximal and more distal clastic sources as well as in situ carbonate/hemipelagic deposition. In a wider perspective this work falls under the umbrella of multi-disciplinary source to sink studies that investigate the impact of geodynamic events on basin/margin architectural evolutions, consequent sedimentary infill and thus on petroleum systems assessment.
Scaling of plasma-body interactions in low Earth orbit
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2017-04-01
This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.
Michael C. Stambaugh; Richard P. Guyette; Joseph M. Marschall; Daniel C. Dey
2016-01-01
Characterization of scale dependence of fire intervals could inform interpretations of fire history and improve fire prescriptions that aim to mimic historical fire regime conditions. We quantified the temporal variability in fire regimes and described the spatial dependence of fire intervals through the analysis of multi-century fire scar records (8 study sites, 332...
ERIC Educational Resources Information Center
Zacamy, Jenna; Newman, Denis; Lazarev, Valeriy; Lin, Li
2015-01-01
This paper reports findings from a multi-year study of the scale-up of Reading Apprenticeship (RA), an approach to improve academic literacy by helping teachers provide the support students need to be successful readers in the content areas. WestEd's Strategic Literacy Initiative (SLI), began developing the program in 1995 and has since reached…
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
ERIC Educational Resources Information Center
Dunn, Margaret Breslin
2009-01-01
A main question this dissertation addresses is: what variation in teaching and teacher training matter? This question is examined within a specific but important context: the scale-up of a technology-rich intervention focused on the algebra strand of 8th grade mathematics. I conducted a multi-level case study by gathering and analyzing data at…
Human-Robot Teaming in a Multi-Agent Space Assembly Task
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher
2004-01-01
NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.
NASA Astrophysics Data System (ADS)
Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.
2010-03-01
The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect (temperature, dissolved oxygen in sediment and water) as well as the effect of microbial activities on chironomid larvae. Our results show that a multi-scale approach identifies patchy distribution, even when there is relative environmental homogeneity.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Multi-scale evaporator architectures for geothermal binary power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Nejad, Ali; Klett, James William
2016-01-01
In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a weremore » used to obtain performance indicators.« less
ASSESSING ECOLOGICAL RISKS AT LARGE SPATIAL SCALES
The history of environmental management and regulation in the United States has been one of initial focus on localized, end-of-the-pipe problems to increasing attention to multi-scalar, multi-stressor, and multi- resource issues. Concomitant with this reorientation is the need fo...
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Wang, Xu; Liu, Pan; Lei, Xiaohui; Li, Zejun; Gong, Wei; Duan, Qingyun; Wang, Hao
2017-01-01
The optimization of large-scale reservoir system is time-consuming due to its intrinsic characteristics of non-commensurable objectives and high dimensionality. One way to solve the problem is to employ an efficient multi-objective optimization algorithm in the derivation of large-scale reservoir operating rules. In this study, the Weighted Multi-Objective Adaptive Surrogate Model Optimization (WMO-ASMO) algorithm is used. It consists of three steps: (1) simplifying the large-scale reservoir operating rules by the aggregation-decomposition model, (2) identifying the most sensitive parameters through multivariate adaptive regression splines (MARS) for dimensional reduction, and (3) reducing computational cost and speeding the searching process by WMO-ASMO, embedded with weighted non-dominated sorting genetic algorithm II (WNSGAII). The intercomparison of non-dominated sorting genetic algorithm (NSGAII), WNSGAII and WMO-ASMO are conducted in the large-scale reservoir system of Xijiang river basin in China. Results indicate that: (1) WNSGAII surpasses NSGAII in the median of annual power generation, increased by 1.03% (from 523.29 to 528.67 billion kW h), and the median of ecological index, optimized by 3.87% (from 1.879 to 1.809) with 500 simulations, because of the weighted crowding distance and (2) WMO-ASMO outperforms NSGAII and WNSGAII in terms of better solutions (annual power generation (530.032 billion kW h) and ecological index (1.675)) with 1000 simulations and computational time reduced by 25% (from 10 h to 8 h) with 500 simulations. Therefore, the proposed method is proved to be more efficient and could provide better Pareto frontier.
CPMIP: measurements of real computational performance of Earth system models in CMIP6
NASA Astrophysics Data System (ADS)
Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett
2017-01-01
A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).
Multi-scale curvature for automated identification of glaciated mountain landscapes☆
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2014-01-01
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes. PMID:24748703
NASA Astrophysics Data System (ADS)
Li, Jiahong; Lei, Xiaohui; Fu, Qiang; Li, Tianxiao; Qiao, Yu; Chen, Lei; Liao, Weihong
2018-03-01
A multi-scale assessment framework for assessing and comparing the water resource sustainability based on the ecological footprint (EF) is introduced. The study aims to manage the water resource from different views in Heilongjiang Province. First of all, from the scale of each city, the water ecological carrying capacity (ECC) was calculated from 2000 to 2011, and map the spatial distribution of the recent 3 years which show that, the water ecological carrying capacity (ECC) is uneven and has a downward trend year by year. Then, from the perspective of the five secondary partition basins in Heilongjiang Province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological surplus and deficit (S&D) situation of water resources from 2000 to 2011, which show that the ecological deficit situation is more prominent in Nenjiang and Suifenhe basins which are in an unsustainable development state. Finally, from the perspective of the province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological S&D of water resources from 2000 to 2011 in Heilongjiang Province, which show that the ecological footprint (EF) is in the rising trend, and the correlation coefficient between the ecological carrying capacity (ECC) and the precipitation is 0.8. There are 5 years of unsustainable development state in Heilongjiang. The proposed multi-scale assessment of WEF aims to evaluate the complex relationship between water resource supply and consumption in different spatial scales and time series. It also provides more reasonable assessment result which can be used by managers and regulators.
Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.
Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569
Network features of sector indexes spillover effects in China: A multi-scale view
NASA Astrophysics Data System (ADS)
Feng, Sida; Huang, Shupei; Qi, Yabin; Liu, Xueyong; Sun, Qingru; Wen, Shaobo
2018-04-01
The spillover effects among sectors are of concern for distinct market participants, who are in distinct investment horizons and concerned with the information in different time scales. In order to uncover the hidden spillover information in multi-time scales in the rapidly changing stock market and thereby offer guidance to different investors concerning distinct time scales from a system perspective, this paper constructed directional spillover effect networks for the economic sectors in distinct time scales. The results are as follows: (1) The "2-4 days" scale is the most risky scale, and the "8-16 days" scale is the least risky one. (2) The most influential and sensitive sectors are distinct in different time scales. (3) Although two sectors in the same community may not have direct spillover relations, the volatility of one sector will have a relatively strong influence on the other through indirect relations.
Scale invariant texture descriptors for classifying celiac disease
Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg
2013-01-01
Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171
A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo
A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less
The Grand Challenge of Scale in Scientific Hydrology: Some Personal Reflections
NASA Astrophysics Data System (ADS)
Gupta, V. K.
2009-12-01
Scale issues in hydrology have shaped my entire scientific career. I first recognized the challenge of scale during the 1970s in linking multi-scale hydrologic processes through collaborative work on solute transport in saturated porous media. Linking geometry, dynamics and statistics, and the role of diagnostics in testing theoretical predictions against experimental observations, played a foundational role. This foundation has guided the rest of my multi-scale research on larger space-time scales of river basins, regional, and global. After the blue book was published in 1991, NSF needed a futuristic implementation plan for the blue book, but did not communicate it to Pete. I came to know of it in 1998 after six years of pursuing an ‘open-ended agenda’ in which Doug played a key role. The upper management of the Geosciences Directorate first mentioned to me in 1998 that the blue book needed a broad and futuristic implementation plan. It led to the Water, Earth, and Biota (WEB) report in 2000 following an NSF-funded workshop in 1999. The multi-scale nature of hydrology served as the central organizing theme for the WEB report. The history from 1984 to 2001 is summarized on the CUAHSI web page under “history”, so I will only share a few personal reflections from this period. Where do we go from here? My perspective is that an urgent need exists to modernize hydrology curriculum that should include the progress that has been made in addressing multi-scale challenges. I will share some personal reflections, both intellectual and administrative, from my experiences in implementing a graduate hydrology science program at the University of Colorado after joining it in 1989.
ERIC Educational Resources Information Center
Stapleton, Paul; Helms-Park, Rena
2006-01-01
This paper introduces the Website Acceptability Tiered Checklist (WATCH), a preliminary version of a multi-trait scale that could be used by instructors and students to assess the quality of websites chosen as source materials in students' research papers in a Humanities program. The scale includes bands for assessing: (i) the authority and…
Multi-Scale Characterization of Orthotropic Microstructures
2008-04-01
D. Valiveti, S. J. Harris, J. Boileau, A domain partitioning based pre-processor for multi-scale modelling of cast aluminium alloys , Modelling and...SUPPLEMENTARY NOTES Journal article submitted to Modeling and Simulation in Materials Science and Engineering. PAO Case Number: WPAFB 08-3362...element for charac- terization or simulation to avoid misleading predictions of macroscopic defor- mation, fracture, or transport behavior. Likewise
ERIC Educational Resources Information Center
Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher
2016-01-01
Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…
Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth
2014-01-01
A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...
NASA Astrophysics Data System (ADS)
Noor, N. A. M.; Razak, J. A.; Ismail, S.; Mohamad, N.; Yaakob, M. Y.; Theng, T. H.
2017-06-01
This research was conducted to develop kenaf reinforced epoxy/MWCNTs multi-scale composite using kenaf fibre and MWCNTs as the reinforcement in epoxy as the hosted matrix. The composites were produced by using a combination of hand lay-up and vacuum bagging process. The selection of optimum composition of epoxy-MWCNTs is based on the MWCNTs loading and the resulted mixture viscosity. Lower resin viscosity is required to allow good wetting and interaction between matrix and filler, which will yielded superior final performance of the fabricated composites. Therefore, different loading of MWCNTs (0.0 wt. %, 0.5 wt. %, 1.0 wt. %, 3.0 wt. %, 5.0 wt. %, 7.0 wt. %) were used to investigate the mechanical and thermal properties of the composites. As a result, the epoxy/kenaf/MWCNTs multi-scale composite at 1.0 wt. % of MWCNTs addition had yielded substantial improvement by 15.54 % in tensile strength and 90.54 % in fracture toughness. Besides, the fracture surface morphology of the selected samples were analysed via scanning electron microscopy (SEM) observation to further support the reinforcement characteristic of epoxy/kenaf/MWCNTs multi-scale composite.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2017-04-01
Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.
visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.
Scales, Matthew; Jäger, Roland; Migliorini, Gabriele; Houlston, Richard S; Henrion, Marc Y R
2014-01-01
We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk), a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV). Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…). It also allows annotation of genes and other custom features in the plotted region(s). Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3).
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.
Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H
2011-06-06
We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.
NASA Astrophysics Data System (ADS)
Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.
2016-02-01
The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Backman, R.; Hupa, M.
1996-10-01
The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
Preparation of biomimetic nano-structured films with multi-scale roughness
NASA Astrophysics Data System (ADS)
Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.
2016-06-01
Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.
Li, Weinan; Kong, Yanjun; Cong, Xiangyu
2016-01-01
Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents. PMID:26741491
Impact of jamming on collective cell migration
NASA Astrophysics Data System (ADS)
Nnetu, Kenechukwu David; Knorr, Melanie; Pawlizak, Steve; Fuhs, Thomas; Zink, Mareike; KäS, Josef A.
2012-02-01
Multi-cellular migration plays an important role in physiological processes such as embryogenesis, cancer metastasis and tissue repair. During migration, single cells undergo cycles of extension, adhesion and retraction resulting in morphological changes. In a confluent monolayer, there are inter-cellular interactions and crowding, however, the impact of these interactions on the dynamics and elasticity of the monolayer at the multi-cellular and single cell level is not well understood. Here we study the dynamics of a confluent epithelial monolayer by simultaneously measuring cell motion at the multi-cellular and single cell level for various cell densities and tensile elasticity. At the multi-cellular level, the system exhibited spatial kinetic transitions from isotropic to anisotropic migration on long times and the velocity of the monolayer decreased with increasing cell density. Moreover, the dynamics was spatially and temporally heterogeneous. Interestingly, the dynamics was also heterogeneous in wound-healing assays and the correlation length was fitted by compressed exponential. On the single cell scale, we observed transient caging effects with increasing cage rearrangement times as the system age due to an increase in density. Also, the density dependent elastic modulus of the monolayer scaled as a weak power law. Together, these findings suggest that caging effects at the single cell level initiates a slow and heterogeneous dynamics at the multi-cellular level which is similar to the glassy dynamics of deformable colloidal systems.
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi
2014-03-01
We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Projected changes to precipitation extremes over the Canadian Prairies using multi-RCM ensemble
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2016-12-01
Information on projected changes to precipitation extremes is needed for future planning of urban drainage infrastructure and storm water management systems and to sustain socio-economic activities and ecosystems at local, regional and other scales of interest. This study explores the projected changes to seasonal (April-October) precipitation extremes at daily, hourly and sub-hourly scales over the Canadian Prairie Provinces of Alberta, Saskatchewan, and Manitoba, based on the North American Regional Climate Change Assessment Program multi-Regional Climate Model (RCM) ensemble and regional frequency analysis. The performance of each RCM is evaluated regarding boundary and performance errors to study various sources of uncertainties and the impact of large-scale driving fields. In the absence of RCM-simulated short-duration extremes, a framework is developed to derive changes to extremes of these durations. Results from this research reveal that the relative changes in sub-hourly extremes are higher than those in the hourly and daily extremes. Overall, projected changes in precipitation extremes are larger for southeastern parts of this region than southern and northern areas, and smaller for southwestern and western parts of the study area. Keywords: climate change, precipitation extremes, regional frequency analysis, NARCCAP, Canadian Prairie provinces
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel
This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.
Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.
2017-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over 15 contiguous burst periods on the afternoon of 6 July 2017, allowing a wide spectral range from 0.01-64 Hz.
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Giles, B. L.; Pollock, C.; Smith, S. E.; Uritsky, V. M.
2016-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collisionless plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (f -5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over multiple burst periods during MMS' first sub-solar apogee pass from November 2015 to January 2016.
Generation of mechanical interference fringes by multi-photon counting
NASA Astrophysics Data System (ADS)
Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.
2018-05-01
Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.
Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.
2005-01-01
A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.
Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy
NASA Astrophysics Data System (ADS)
Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping
2018-01-01
Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.
NASA Astrophysics Data System (ADS)
Chen, W.; Jiang, M.; Xu, Y.; Shi, P. W.; Yu, L. M.; Ding, X. T.; Shi, Z. B.; Ji, X. Q.; Yu, D. L.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Li, J. Q.; Dong, J. Q.; Yang, Q. W.; Liu, Yi.; Yan, L. W.; Xu, M.; Duan, X. R.
2017-11-01
Multi-scale interactions have been observed recently in the HL-2A core NBI plasmas, including the synchronous coupling between m/n=1/1 kink mode and m/n=2/1 tearing mode, nonlinear couplings of TAE/BAE and m/n=2/1 TM near q=2 surface, AITG/KBM/BAE and m/n=1/1 kink mode near q=1 surface, and between m/n=1/1 kink mode and high-frequency turbulence. Experimental results suggest that several couplings can exist simultaneously, Alfvenic fluctuations have an important contribution to the high-frequency turbulence spectra, and the couplings reveal the electromagnetic character. Multi-scale interactions via the nonlinear modulation process maybe enhance plasma transport and trigger sawtooth-crash onset.
A scale-based approach to interdisciplinary research and expertise in sports.
Ibáñez-Gijón, Jorge; Buekers, Martinus; Morice, Antoine; Rao, Guillaume; Mascret, Nicolas; Laurin, Jérome; Montagne, Gilles
2017-02-01
After more than 20 years since the introduction of ecological and dynamical approaches in sports research, their promising opportunity for interdisciplinary research has not been fulfilled yet. The complexity of the research process and the theoretical and empirical difficulties associated with an integrated ecological-dynamical approach have been the major factors hindering the generalisation of interdisciplinary projects in sports sciences. To facilitate this generalisation, we integrate the major concepts from the ecological and dynamical approaches to study behaviour as a multi-scale process. Our integration gravitates around the distinction between functional (ecological) and execution (organic) scales, and their reciprocal intra- and inter-scale constraints. We propose an (epistemological) scale-based definition of constraints that accounts for the concept of synergies as emergent coordinative structures. To illustrate how we can operationalise the notion of multi-scale synergies we use an interdisciplinary model of locomotor pointing. To conclude, we show the value of this approach for interdisciplinary research in sport sciences, as we discuss two examples of task-specific dimensionality reduction techniques in the context of an ongoing project that aims to unveil the determinants of expertise in basketball free throw shooting. These techniques provide relevant empirical evidence to help bootstrap the challenging modelling efforts required in sport sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less
Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe
2016-03-01
Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach competes successfully with those developed using more expensive imagery, such as multi-spectral and hyperspectral airborne imagery. The high overall accuracy results obtained by the classification of the diseased alders open the door to applications dedicated to monitoring of the health conditions of riparian forest. Our methodological framework will allow UAS users to manage large imagery metric datasets derived from those dense time series.
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2012-07-01
Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.
Application of Multi-Model CMIP5 Analysis in Future Drought Adaptation Strategies
NASA Astrophysics Data System (ADS)
Casey, M.; Luo, L.; Lang, Y.
2014-12-01
Drought influences the efficacy of numerous natural and artificial systems including species diversity, agriculture, and infrastructure. Global climate change raises concerns that extend well beyond atmospheric and hydrological disciplines - as climate changes with time, the need for system adaptation becomes apparent. Drought, as a natural phenomenon, is typically defined relative to the climate in which it occurs. Typically a 30-year reference time frame (RTF) is used to determine the severity of a drought event. This study investigates the projected future droughts over North America with different RTFs. Confidence in future hydroclimate projection is characterized by the agreement of long term (2005-2100) multi-model precipitation (P) and temperature (T) projections within the Coupled model Intercomparison Project Phase 5 (CMIP5). Drought severity and the propensity of extreme conditions are measured by the multi-scalar, probabilistic, RTF-based Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI). SPI considers only P while SPEI incorporates Evapotranspiration (E) via T; comparing the two reveals the role of temperature change in future hydroclimate change. Future hydroclimate conditions, hydroclimate extremity, and CMIP5 model agreement are assessed for each Representative Concentration Pathway (RCP 2.6, 4.5, 6.0, 8.5) in regions throughout North America for the entire year and for the boreal seasons. In addition, multiple time scales of SPI and SPEI are calculated to characterize drought at time scales ranging from short to long term. The study explores a simple, standardized method for considering adaptation in future drought assessment, which provides a novel perspective to incorporate adaptation with climate change. The result of the analysis is a multi-dimension, probabilistic summary of the hydrological (P, E) environment a natural or artificial system must adapt to over time. Studies similar to this with specified criteria (SPI/SPEI value, time scale, RCP, etc.) can provide professionals in a variety of disciplines with necessary climatic insight to develop adaptation strategies.
Approaches for advancing scientific understanding of macrosystems
Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.
2014-01-01
The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.
NASA Astrophysics Data System (ADS)
Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale
2013-04-01
A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.