Multi-Object Spectroscopy with MUSE
NASA Astrophysics Data System (ADS)
Kelz, A.; Kamann, S.; Urrutia, T.; Weilbacher, P.; Bacon, R.
2016-10-01
Since 2014, MUSE, the Multi-Unit Spectroscopic Explorer, is in operation at the ESO-VLT. It combines a superb spatial sampling with a large wavelength coverage. By design, MUSE is an integral-field instrument, but its field-of-view and large multiplex make it a powerful tool for multi-object spectroscopy too. Every data-cube consists of 90,000 image-sliced spectra and 3700 monochromatic images. In autumn 2014, the observing programs with MUSE have commenced, with targets ranging from distant galaxies in the Hubble Deep Field to local stellar populations, star formation regions and globular clusters. This paper provides a brief summary of the key features of the MUSE instrument and its complex data reduction software. Some selected examples are given, how multi-object spectroscopy for hundreds of continuum and emission-line objects can be obtained in wide, deep and crowded fields with MUSE, without the classical need for any target pre-selection.
Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images
NASA Astrophysics Data System (ADS)
Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.
2018-01-01
We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Long; Ye, Zhongfu
2016-12-01
A novel sky-subtraction method based on non-negative matrix factorisation with sparsity is proposed in this paper. The proposed non-negative matrix factorisation with sparsity method is redesigned for sky-subtraction considering the characteristics of the skylights. It has two constraint terms, one for sparsity and the other for homogeneity. Different from the standard sky-subtraction techniques, such as the B-spline curve fitting methods and the Principal Components Analysis approaches, sky-subtraction based on non-negative matrix factorisation with sparsity method has higher accuracy and flexibility. The non-negative matrix factorisation with sparsity method has research value for the sky-subtraction on multi-object fibre spectroscopic telescope surveys. To demonstrate the effectiveness and superiority of the proposed algorithm, experiments are performed on Large Sky Area Multi-Object Fiber Spectroscopic Telescope data, as the mechanisms of the multi-object fibre spectroscopic telescopes are similar.
NASA Astrophysics Data System (ADS)
Rivard, Camille; Montargès-Pelletier, Emmanuelle; Vantelon, Delphine; Pelletier, Manuel; Karunakaran, Chithra; Michot, Laurent J.; Villieras, Frédéric; Michau, Nicolas
2013-02-01
In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.
Fabrication of titania inverse opals by multi-cycle dip-infiltration for optical sensing
NASA Astrophysics Data System (ADS)
Chiang, Chun-Chen; Tuyen, Le Dac; Ren, Ching-Rung; Chau, Lai-Kwan; Wu, Cheng Yi; Huang, Ping-Ji; Hsu, Chia Chen
2016-04-01
We have demonstrated a low-cost method to fabricate TiO2 inverse opal photonic crystals with high refractive index skeleton. The TiO2 inverse opal films were fabricated from a polystyrene opal template by multi-cycle dip-infiltration-coating method. The properties of the TiO2 inverse opal films were characterized by scanning electron microscopy and Bragg reflection spectroscopy. The reflection spectroscopic measurements of the TiO2 inverse opal films were compared with theories of photonic band calculations and Bragg law. The agreement between experiment and theory indicates that we can precisely predict the refractive index of the infiltrated liquid sample in the TiO2 inverse opal films from the measurement results. The red-shift of the peak wavelength in the Bragg reflection spectra for both alcohol mixtures and aqueous sucrose solutions of increasing refractive index was observed and respective refractive index sensitivities of 296 and 286 nm/RIU (refractive index unit) were achieved. As the fabrication of the TiO2 inverse opal films and reflection spectroscopic measurement are fairly easy, the TiO2 inverse opal films have potential applications in optical sensing.
NASA Astrophysics Data System (ADS)
Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna
2018-01-01
Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.
Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography
2009-03-01
polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination
Kc, Chandra B; Lim, Gary N; D'Souza, Francis
2015-04-21
A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.
NASA Astrophysics Data System (ADS)
Jin, Yi; Gu, Yonggang; Zhai, Chao
2012-09-01
Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.
Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology
NASA Astrophysics Data System (ADS)
Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.
2017-02-01
Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.
OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release
Childress, M. J.; Lidman, C.; Davis, T. M.; ...
2017-07-26
We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less
OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childress, M. J.; Lidman, C.; Davis, T. M.
We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less
A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions
NASA Astrophysics Data System (ADS)
Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.
2009-06-01
In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik
2016-08-01
We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.
Kiso Multi-Fiber Spectroscope Project (C)
NASA Astrophysics Data System (ADS)
Yadoumaru, Yasushi; Itoh, Nobunari; Nakada, Yoshikazu; Tarusawa, Ken'ichi; Soyano, Takao; Mito, Hiroyuki
A Multi-FIBER Spectroscope at Kiso Observatory is under consideration as our next instrument. In this paper we report an overview of our instrument and a scientific target of our survey project. We are going to attach multi-fiber system at the prime focus of Kiso 105cm Schmidt telescope. This telescope has some advantages for our project. First, the efficiency in survey for the object, which number density is 0.1 to 10 degree2, is higher than other multi object system due to the wide field of view (6 degree x 6 degree). Second, an optics of telescope is well-matched to fiber numerical aperture (NA) at an input end of fiber. Moreover, taking a focal ratio degradation (FRD) and scrambling property into account, since the light from object dose not move at the entrance slit of spectroscope, we could get spectroscopic data stably with this system. We select a fiber with 100 micron meter core which is correspond to 6 arcsec on focal plane, that is matched with a typical seeing (about 3 arcsec) of Kiso Observatory and set 150 fibers to one field. For efficient observations, it is necessary to arrange fibers accurately within an accuracy of +/- 25 micron meter on the curved focal plane during a typical exposure time (1 hour). Therefore we examine a particular positioner specialized for curved surface. We also develop a spectroscope that is suited for a fast focal ratio and proceed with making its design. One of our main key projects with this system is a non-biased metallicity survey for solar neighbor stars. We are now establishing a new metallicity determination method that easily and reliably measures a metallicity from low-dispersion spectra. (see Itoh et al.). As we consider our main target as Galactic objects and low resolution (R is around 1000), we could observe a star with 17 mag at V-band (1 hour exposure).
VizieR Online Data Catalog: Abundances of LAMOST giants from APOGEE DR12 (Ho+, 2017)
NASA Astrophysics Data System (ADS)
Ho, A. Y. Q.; Ness, M. K.; Hogg, D. W.; Rix, H.-W.; Liu, C.; Yang, F.; Zhang, Y.; Hou, Y.; Wang, Y.
2017-09-01
The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is a low-resolution (R~1800) optical (3650-9000Å) spectroscopic survey. APOGEE is a high-resolution (R~22500), high-S/N (S/N~100), H-band (15200-16900Å) spectroscopic survey, part of the Sloan Digital Sky Survey III. Observations are conducted using a 300 fiber spectrograph on the 2.5m Sloan Telescope at the Apache Point Observatory (APO) in Sunspot, New Mexico (USA). (1 data file).
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-02-09
In this paper, we present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. Finally,more » the sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).« less
The science enabled by the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Martin, N. F.; Babusiaux, C.
2017-12-01
With its unique wide-field, multi-object, and dedicated spectroscopic capabilities, the Maunakea Spectroscopic Explorer (MSE) is a powerful facility to shed light on the faint Universe. Built around an upgrade of the Canada-France Hawaii Telescope (CFHT) to a 11.25-meter telescope with a dedicated ˜1.5 deg^2, 4,000-fiber wide-field spectrograph that covers the optical and near-infrared wavelengths at resolutions between 2,500 and 40,000, the MSE is the essential follow-up complement to the current and next generations of multi-wavelength imaging surveys, such as the LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for the extremely large telescopes that are currently being built (E-ELT, GMT, and TMT). The science enabled by the MSE is vast and would have an impact on almost all aspects of astronomy research.
OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release
NASA Astrophysics Data System (ADS)
Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.
2017-11-01
We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.
Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter
NASA Astrophysics Data System (ADS)
Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric
2018-06-01
We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
Recovering the systemic redshift of galaxies from their Lyman alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-07-01
The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.
Spectroscopic Surveys with the ELT: A Gigantic Step into the Deep Universe
NASA Astrophysics Data System (ADS)
Evans, C.; Puech, M.; Hammer, F.; Gallego, J.; Sánchez, A.; García, L.; Iglesias, J.
2018-03-01
The Phase A design of MOSAIC, a powerful multi-object spectrograph intended for ESO's Extremely Large Telescope, concluded in late 2017. With the design complete, a three-day workshop was held last October in Toledo to discuss the breakthrough spectroscopic surveys that MOSAIC can deliver across a broad range of contemporary astronomy.
VizieR Online Data Catalog: ABCG209 spectroscopic and photometric catalog (Mercurio+, 2008)
NASA Astrophysics Data System (ADS)
Mercurio, A.; Barbera, F. L.; Haines, C. P.; Merluzzi, P.; Busarello, G.; Capaccioli, M.
2008-11-01
Spectroscopic observations were carried out at the ESO New Technology Telescope (NTT) with the ESO Multi-Mode Instrument (EMMI) and at the Telescopio Nazionale Galileo (TNG) with the Device Optimized for the LOw RESolution (DOLORES), while NIR photometric data were collected with the Son OF ISAAC (SOFI) at NTT. (3 data files).
Multi-modal spectroscopic imaging with synchrotron light to study mechanisms of brain disease
NASA Astrophysics Data System (ADS)
Summers, Kelly L.; Fimognari, Nicholas; Hollings, Ashley; Kiernan, Mitchell; Lam, Virginie; Tidy, Rebecca J.; Takechi, Ryu; George, Graham N.; Pickering, Ingrid J.; Mamo, John C.; Harris, Hugh H.; Hackett, Mark J.
2017-04-01
The international health care costs associated with Alzheimer's disease (AD) and dementia have been predicted to reach $2 trillion USD by 2030. As such, there is urgent need to develop new treatments and diagnostic methods to stem an international health crisis. A major limitation to therapy and diagnostic development is the lack of complete understanding about the disease mechanisms. Spectroscopic methods at synchrotron light sources, such as FTIR, XRF, and XAS, offer a "multi-modal imaging platform" to reveal a wealth of important biochemical information in situ within ex vivo tissue sections, to increase our understanding of disease mechanisms.
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...
2016-11-01
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.
2016-11-01
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.
The Dark Energy Spectroscopic Instrument (DESI)
NASA Astrophysics Data System (ADS)
Flaugher, Brenna; Bebek, Chris
2014-07-01
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).
The MUSE-Wide survey: a measurement of the Ly α emitting fraction among z > 3 galaxies
NASA Astrophysics Data System (ADS)
Caruana, Joseph; Wisotzki, Lutz; Herenz, Edmund Christian; Kerutt, Josephine; Urrutia, Tanya; Schmidt, Kasper Borello; Bouwens, Rychard; Brinchmann, Jarle; Cantalupo, Sebastiano; Carollo, Marcella; Diener, Catrina; Drake, Alyssa; Garel, Thibault; Marino, Raffaella Anna; Richard, Johan; Saust, Rikke; Schaye, Joop; Verhamme, Anne
2018-01-01
We present a measurement of the fraction of Lyman α (Ly α) emitters (XLy α) amongst HST continuum-selected galaxies at 3 < z < 6 with the Multi-Unit Spectroscopic Explorer (MUSE) on the VLT. Making use of the first 24 MUSE-Wide pointings in GOODS-South, each having an integration time of 1 h, we detect 100 Ly α emitters and find XLy α ≳ 0.5 for most of the redshift range covered, with 29 per cent of the Ly α sample exhibiting rest equivalent widths (rest-EWs) ≤ 15 Å. Adopting a range of rest-EW cuts (0-75 Å), we find no evidence of a dependence of XLy α on either redshift or ultraviolet luminosity.
Spectroscopic Studies of Double Beta Decays and MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555
2007-10-12
This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.
Recovering the systemic redshift of galaxies from their Lyman-alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-04-01
The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.
Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson
2013-04-01
As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.
2016-03-01
Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo and truncated pseudo-isothermal mass profiles for the cluster galaxies. We show that by adding bona fide photometric-selected multiple images to the sample of spectroscopic families, one can slightly improve constraints on the model parameters. In particular, we find that the degeneracy between the lens total mass distribution and the underlying geometry of the Universe, which is probed via angular diameter distance ratios between the lens and sources and the observer and sources, can be partially removed. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68% confidence level) Ωm = 0.25+ 0.13-0.16 and w = -1.07+ 0.16-0.42 for a flat ΛCDM model, and Ωm = 0.31+ 0.12-0.13 and ΩΛ = 0.38+ 0.38-0.27 for a Universe with w = -1 and free curvature. Finally, using toy models mimicking the overall configuration of multiple images and cluster total mass distribution, we estimate the impact of the line-of-sight mass structure on the positional rms to be 0.̋3 ± 0. We argue that the apparent sensitivity of our lensing model to cosmography is due to the combination of the regular potential shape of RXC J2248, a large number of bona fide multiple images out to z = 6.1, and a relatively modest presence of intervening large-scale structure, as revealed by our spectroscopic survey.
MUSE field splitter unit: fan-shaped separator for 24 integral field units
NASA Astrophysics Data System (ADS)
Laurent, Florence; Renault, Edgard; Anwand, Heiko; Boudon, Didier; Caillier, Patrick; Kosmalski, Johan; Loupias, Magali; Nicklas, Harald; Seifert, Walter; Salaun, Yves; Xu, Wenli
2014-07-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where it was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way onto VLT telescope where the first light was achieved. This paper describes the MUSE main optical component: the Field Splitter Unit. It splits the VLT image into 24 subfields and provides the first separation of the beam for the 24 Integral Field Units. This talk depicts its manufacturing at Winlight Optics and its alignment into MUSE instrument. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput onto the sky. MUSE commissioning at the VLT is planned for September, 2014.
An Infrared Multi-Object Spectrograph (IRMS) with adaptive optics for TMT: the science case
NASA Astrophysics Data System (ADS)
Mobasher, Bahram; Crampton, David; Simard, Luc
2010-07-01
It has been recognized that a Near-Infrared Multi-object Spectrograph (IRMS) as one of the first light instrument on the Thirty Meter Telescope (TMT) would significantly increase the scientific capability of the observatory. The IRMS is planned to be a clone of the MOSFIRE instrument on the Keck telescope. As a result, we use the already available MOSFIRE design and expertise, significantly reducing the total cost and its development time. The IRMS will be a quasi diffraction limited multi-slit spectrograph with moderate resolution (R~4000), fed by Narrow-Field Infrared Adaptive Optics System (NFIRAOS). It images over the 2 arcmin diameter field of view of the NFIRAOS. There are a number of exceedingly important scientific questions, waiting to be addressed by the TMT/IRMS combination. Given its relatively small field of view, it is less affected by the sky background, which is a limiting factor in ground-based observations at near-IR wavelengths. The IRMS is the ideal instrument for studying spectroscopic properties of galaxies at the re-ionization epoch (z > 7), where the Lyman alpha line shifts to the near-ir wavelenghths. It can be used to measure rotation curves of spiral and velocity dispersion of elliptical galaxies at z~2-3 and hence, their spectroscopic mass. It can be used to search for population III stars via their spectroscopic signature and to perform measurement of spectroscopic lines at high redshifts, diagnostic of metallicity. Finally, IRMS allows measurement of the blue shifts in the rest-frame MgII line for high redshift galaxies, used to study the winds, leading to the feedback mechanism, responsible for quenching star formation activity in galaxies.
Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K
2018-09-15
We explored the encapsulation of dietary plant flavonols fisetin and its chromophore 3-hydroxyflavone, within 2-hydroxypropyl-γ-cyclodextrin (HPγ-CDx) nano-cavity in aqueous solution using multi-spectroscopic approaches and molecular docking. Upon addition of HPγ-CDx, dramatic changes occur in the intrinsic 'two color' fluorescence behavior of the fluorophores. This is manifested by significant increase in the steady state fluorescence intensities, anisotropies, average fluorescence lifetimes and rotational correlation times. Furthermore, in the CDx environment, intrinsically achiral flavonols exhibit prominent induced circular dichroism bands. These findings indicate that the flavonol molecules spontaneously enter the relatively hydrophobic, chiral environment of the HPγ-CDx nano-cavities. Molecular docking computations corroborate the spectroscopic findings, and predict selectivity in orientation of the encapsulated flavonols. HPγ-CDx inclusion increases the aqueous solubility of individual flavonols ∼100-1000 times. The present study demonstrates that the hydroxypropyl substituent in γ-CDx controls the inclusion mode of the flavonols, leading to their enhanced solubilization and altered spectral signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.
GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies
NASA Astrophysics Data System (ADS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2014-11-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2013-01-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B.; Spielman, Daniel M.; Alger, Jeffry R.; Maudsley, Andrew A.
2014-01-01
Purpose To assess volumetric proton MR spectroscopic imaging of the human brain on multi-vendor MRI instruments. Methods Echo-planar spectroscopic imaging (EPSI) was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, RF power, and data formats. Inter-site reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), Creatine (Cre) and Choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Results Inter-site differences for phantom measurements were under 1.7% for individual metabolites and 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white-matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In grey-matter a significant difference was observed for frontal lobe NAA. Primary causes of inter-site differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. Conclusion A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multi-vendor MR instruments. PMID:25354190
The Data Release of the Sloan Digital Sky Survey-II Supernova Survey
NASA Astrophysics Data System (ADS)
Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen
2018-06-01
This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.
A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.
2004-10-01
We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).
Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Cherie; Murray, Christopher; Kikkawa, James
2017-06-14
Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less
NASA Astrophysics Data System (ADS)
Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.
In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.
The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field
NASA Astrophysics Data System (ADS)
Hasinger, G.; Capak, P.; Salvato, M.; Barger, A. J.; Cowie, L. L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; Mobasher, B.; Nayyeri, H.; Sanders, D.; Scoville, N. Z.; Suh, H.; Steinhardt, C.; Yang, Fengwei
2018-05-01
We present a catalog of 10,718 objects in the COSMOS field, observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ∼5500–9800 Å. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects, we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I AB ∼ 23 and K AB ∼ 21, with a secondary peak at K AB ∼ 24. We sample a broad redshift distribution in the range 0 < z < 6, with one peak at z ∼ 1, and another one around z ∼ 4. We have identified 13 redshift spikes at z > 0.65 with chance probabilities < 4 × 10‑4, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Lyα background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Posse, Stefan
2011-01-01
The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458
Assembly of Multi-Phthalocyanines on a Porphyrin Template by Fourfold Rotaxane Formation.
Yamada, Yasuyuki; Kato, Tatsuhisa; Tanaka, Kentaro
2016-08-22
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24-crown-8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear Cu(II) complex, in which two Cu(II) phthalocyanines were assembled on a metal-free porphyrin template, revealed that two Cu(II) phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S=1/2 spins in the ground state of the Cu(2+) ions in the heterotrimer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hexanuclear gold(I) phosphide complexes as platforms for multiple redox-active ferrocenyl units.
Lee, Terence Kwok-Ming; Cheng, Eddie Chung-Chin; Zhu, Nianyong; Yam, Vivian Wing-Wah
2014-01-03
The synthesis, X-ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ(3)-ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au(6)(P-P)(n)(Fc-CH(2)-P)(2)][PF(6)](2) (n=3, P-P=dppm (bis(diphenylphosphino)methane) (1), dppe (1,2-bis(diphenylphosphino)ethane) (2), dppp (1,3-bis(diphenylphosphino)propane) (3), Ph(2)PN(C(3)H(7))-PPh(2) (4), Ph(2)PN(Ph-CH(3)-p)PPh(2) (5), dppf (1,1′-bis(diphenylphosphino)ferrocene) (6); n=2, P-P=dpepp (bis(2-diphenylphosphinoethyl)phenylphosphine) (7)), as platforms for multiple redox-active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ(3)-ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au(6)P(2) cluster core, providing an understanding of the electronic properties of the hexanuclear Au(I) cluster linkage. The present complexes also serve as an ideal system for the design of multi-electron reservoir and molecular battery systems.
Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication
NASA Astrophysics Data System (ADS)
Pishva, Davar
This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.
NASA Astrophysics Data System (ADS)
Jauzac, Mathilde; Harvey, David; Massey, Richard
2018-07-01
We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.
NASA Astrophysics Data System (ADS)
Boyce, H.; Lützgendorf, N.; van der Marel, R. P.; Baumgardt, H.; Kissler-Patig, M.; Neumayer, N.; de Zeeuw, P. T.
2017-09-01
We constrain the possible presence of a central black hole (BH) in the center of the Large Magellanic Cloud. This requires spectroscopic measurements over an area of the order of a square degree, due to the poorly known position of the kinematic center. Such measurements are now possible with the impressive field of view of the Multi Unit Spectroscopic Explorer (MUSE) on the ESO Very Large Telescope. We used the Calcium Triplet (˜850 nm) spectral lines in many short-exposure MUSE pointings to create a two-dimensional integrated-light line-of-sight velocity map from the ˜ {10}8 individual spectra, taking care to identify and remove Galactic foreground populations. The data reveal a clear velocity gradient at an unprecedented spatial resolution of 1 arcmin2. We fit kinematic models to arrive at a 3σ upper-mass limit of {10}7.1 {M}⊙ for any central BH—consistent with the known scaling relations for supermassive black holes and their host systems. This adds to the growing body of knowledge on the presence of BHs in low-mass and dwarf galaxies, and their scaling relations with host-galaxy properties, which can shed light on theories of BH growth and host system interaction.
NASA Astrophysics Data System (ADS)
Westberg, Jonas; Sterczewski, Lukasz A.; Patrick, Link; Wysocki, Gerard
2017-05-01
Majority of chemical species of interest in security and safety applications (e.g. explosives) have complex molecular structures that produce unresolved rotational-vibrational spectroscopic signatures in the mid-infrared. This requires spectroscopic techniques that can provide broadband coverage in the mid-IR region to target broadband absorbers and high resolution to address small molecules that exhibit well-resolved spectral lines. On the other hand, many broadband mid-IR absorbers exhibit well-resolved rotational components in the THz spectral region. Thus, development of spectroscopic sensing technologies that can address both spectral regions is of great importance. Here we demonstrate recent progress towards broadband high-resolution spectroscopic sensing applications with Fabry-Perot quantum cascade lasers (QCLs) and frequency combs using multi-heterodyne spectroscopy (MHS) techniques. In this paper, we will present spectroscopic sensing of large and small molecules in the mid-IR region using QCLs operating at 8.5µm. An example high-resolution, broadband MHS of ammonia (small molecule) and isobutane (broadband absorber) at atmospheric pressure in the 1165-1190 cm^-1 range will be discussed. We have developed a balanced MHS system for mitigation of the laser intensity fluctuations. Absorption spectroscopy as well as dispersion spectroscopy with minimum fractional absorption down to 10^-4/Hz1/2 and fast spectral acquisition capabilities down to 10 µs/spectrum range will be demonstrated. In order to mitigate the shortcomings of the limited chemical selectivity in the mid-IR, THz QCL based spectrometer is currently under development to provide spectral de-congestion and thus significantly improve chemical identification. Preliminary characterization of the performance of THZ QCL combs for the THz QCL-MHS will be presented.
MuSICa at GRIS: a prototype image slicer for EST at GREGOR
NASA Astrophysics Data System (ADS)
Calcines, A.; Collados, M.; López, R. L.
2013-05-01
This communication presents a prototype image slicer for the 4-m European Solar Telescope (EST) designed for the spectrograph of the 1.5-m GREGOR solar telescope (GRIS). The design of this integral field unit has been called MuSICa (Multi-Slit Image slicer based on collimator-Camera). It is a telecentric system developed specifically for the integral field, high resolution spectrograph of EST and presents multi-slit capability, reorganizing a bidimensional field of view of 80 arcsec^{2} into 8 slits, each one of them with 200 arcsec length × 0.05 arcsec width. It minimizes the number of optical components needed to fulfil this multi-slit capability, three arrays of mirrors: slicer, collimator and camera mirror arrays (the first one flat and the other two spherical). The symmetry of the layout makes it possible to overlap the pupil images associated to each part of the sliced entrance field of view. A mask with only one circular aperture is placed at the pupil position. This symmetric characteristic offers some advantages: facilitates the manufacturing process, the alignment and reduces the costs. In addition, it is compatible with two modes of operation: spectroscopic and spectro-polarimetric, offering a great versatility. The optical quality of the system is diffraction-limited. The prototype will improve the performances of GRIS at GREGOR and is part of the feasibility study of the integral field unit for the spectrographs of EST. Although MuSICa has been designed as a solar image slicer, its concept can also be applied to night-time astronomical instruments (Collados et al. 2010, Proc. SPIE, Vol. 7733, 77330H; Collados et al. 2012, AN, 333, 901; Calcines et al. 2010, Proc. SPIE, Vol. 7735, 77351X)
Defect study in ZnO related structures—A multi-spectroscopic approach
NASA Astrophysics Data System (ADS)
Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.
2008-10-01
ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.
NASA Astrophysics Data System (ADS)
Richardson, Noel D.; Russell, Christopher M. P.; St-Jean, Lucas; Moffat, Anthony F. J.; St-Louis, Nicole; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Corcoran, Michael; Hamuguchi, Kenji; Eversberg, Thomas; Miszalski, Brent; Chené, André-Nicolas; Waldron, Wayne; Kotze, Enrico J.; Kotze, Marissa M.; Luckas, Paul; Cacella, Paulo; Heathcote, Bernard; Powles, Jonathan; Bohlsen, Terry; Locke, Malcolm; Handler, Gerald; Kuschnig, Rainer; Pigulski, Andrzej; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.
2017-11-01
We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary γ2 Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I λ5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III λ5696 of the system. These results represent the first in a series of investigations into the winds and properties of γ2 Velorum through multi-technique and multi-wavelength observational campaigns.
Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Su, Ding-Qiang; Jia, Peng; Liu, Genrong
2012-02-01
The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is the largest, wide field-of-view (FOV) telescope (with an aperture of 4 m), and it is equipped with the highest number (4000) of optical fibres in the world. For the LAMOST North and the LAMOST South, the FOVs are 5° and 3.5°, respectively, and the linear diameters are 1.75 m and 1.22 m, respectively. A new type of atmospheric dispersion corrector (ADC) is put forward and designed for LAMOST. It is a segmented lens, which consists of many lens-prism strips. Although it is very large, its thickness is only 12 mm. Thus, the difficulty of obtaining a large optical glass is avoided, and the aberration caused by the ADC is small. By moving this segmented lens along the optical axis, different dispersions can be obtained. We discuss the effects of ADC's slits on the diffraction energy distribution and on the obstruction of light. We calculate and discuss the aberration caused by the ADC. All these results are acceptable. Such an ADC could also be used for other optical fibre spectroscopic telescopes, especially those which a have very large FOV.
NASA Astrophysics Data System (ADS)
Jing, Mingyang; Song, Wei; Liu, Rutao
2016-07-01
Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.
Tayade, Rajratna P; Sekar, Nagaiyan
2017-05-01
A novel thiazole based carbaldehyde bearing benzimidazole fluorophore as the receptor unit for F - anion was prepared by multi steps synthesis. Density functional theory was used to understand the structural and electronic properties the receptor. The anion sensing activities of receptor 4 were studied for various anions in acetonitrile solvent. The receptor showed fluorescence enhancement in the presence of fluoride anion due to intramolecular charge transfer (ICT) mechanism. No significant changes were observed upon addition of less basic anions such as OAc - , Cl - , Br - , I - , HSO 4 - . After the interaction of fluoride anion with the receptor 4 leads to an 88 nm red shift in emission maxima. [TBA]OH and 1 H NMR titration experiments indicated that deprotonation of N-H in the benzimidazole due to interaction with fluoride anions.
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd
2014-01-01
One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.
Multi-electron transfer photochemistry: Caught in the act
NASA Astrophysics Data System (ADS)
Beiler, Anna M.; Moore, Gary F.
2018-01-01
The accumulation of multiple redox equivalents is essential in photo-driven catalytic reactions such as solar water splitting. However, direct spectroscopic observation of a twice-oxidized species under diffuse illumination has proved elusive until now.
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro
2015-03-01
For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye technologies, type: IR-75).
VizieR Online Data Catalog: GOODS-MUSIC sample: multicolour catalog (Grazian+, 2006)
NASA Astrophysics Data System (ADS)
Grazian, A.; Fontana, A.; de Santis, C.; Nonino, M.; Salimbeni, S.; Giallongo, E.; Cristiani, S.; Gallozzi, S.; Vanzella, E.
2006-02-01
The GOODS-MUSIC multi-wavelength catalog provides photometric and spectroscopic information for galaxies in the GOODS Southern field. It includes two U images obtained with the ESO 2.2m telescope and one U band image from VLT-VIMOS, the ACS-HST images in four optical (B,V,i,z) bands, the VLT-ISAAC J, H, and Ks bands as well as the Spitzer images in at 3.5, 4.5, 5.8, and 8 micron. Most of these images have been made publicly available in the coadded version by the GOODS team, while the U band data were retrieved in raw format and reduced by our team. We also collected all the available spectroscopic information from public spectroscopic surveys and cross-correlated the spectroscopic redshifts with our photometric catalog. For the unobserved fraction of the objects, we applied our photometric redshift code to obtain well-calibrated photometric redshifts. The final catalog is made up of 14847 objects, with at least 72 known stars, 68 AGNs, and 928 galaxies with spectroscopic redshift (668 galaxies with reliable redshift determination). (3 data files).
NASA Astrophysics Data System (ADS)
Bejaoui, A.; Alonso, M. I.; Garriga, M.; Campoy-Quiles, M.; Goñi, A. R.; Hetsch, F.; Kershaw, S. V.; Rogach, A. L.; To, C. H.; Foo, Y.; Zapien, J. A.
2017-11-01
We report on the investigation by spectroscopic ellipsometry of films containing Cd1 - xHgxTe alloy quantum dots (QDs). The alloy QDs were fabricated from colloidal CdTe QDs grown by an aqueous synthesis process followed by an ion-exchange step in which Hg2+ ions progressively replace Cd2+. For ellipsometric studies, several films were prepared on glass substrates using layer-by-layer (LBL) deposition. The contribution of the QDs to the measured ellipsometric spectra is extracted from a multi-sample, transmission and multi- angle-of-incidence ellipsometric data analysis fitted using standard multilayer and effective medium models that include surface roughness effects, modeled by an effective medium approximation. The relationship of the dielectric function of the QDs retrieved from these studies to that of the corresponding II-VI bulk material counterparts is presented and discussed.
Ikhlas, Shoeb; Usman, Afia; Ahmad, Masood
2018-04-24
Interaction studies of bisphenol analogues; biphenol-A (BPA), bisphenol-B (BPB), and bisphenol-F (BPF) with bovine serum albumin (BSA) were performed using multi-spectroscopic and molecular docking studies at the protein level. The mechanism of binding of bisphenols with BSA was dynamic in nature. SDS refolding experiments demonstrated no stabilization of BSA structure denatured by BPB, however, BSA denatured by BPA and BPF was found to get stabilized. Also, CD spectra and molecular docking studies revealed that BPB bound more strongly and induced more conformational changes in BSA in comparison to BPA. Hence, this study throws light on the replacement of BPA by its analogues and whether the replacement is associated with a possible risk, raising a doubt that perhaps BPB is not a good substitute of BPA.
Characterization of the actuator of EMIR configurable slit unit
NASA Astrophysics Data System (ADS)
Mato Martínez, A.; Núñez Cagigal, M.; Barreto Cabrera, M.; Garzón López, F.; Patrón, J.; Teuwen, M.
2016-07-01
EMIR1,2 (Espectrógrafo Multiobjeto Infra-Rojo) is a wide field multi-object spectrograph already installed in the Nasmyth focus of GTC (Gran Telescopio Canarias). It operates in the near-infrared (NIR), in the wavelength range from 0.9 μm to 2.5 μm and it will include several mechanism working in cryogenic conditions. A key component of EMIR is the CSU (Configurable Slit Unit), which is a robotic cryo-mechanism used to generate a multi-slit configuration and a long slit on EMIR focal plane when working in spectroscopic mode. The system has 110 sliding bars which can be configured at cryogenic working temperature to create up to 55 slits with a high position accuracy and repeatability. The movement of the bars is performed by an actuator which allows reaching a relatively high speed for the coarse movement and controllable steps up to 2 microns for the fine positioning. This subsystem has been designed and manufactured by the Dutch company Janssen Precision Engineering (JPE) and the Spanish company NTE-SENER. Afterwards, it was thoroughly verified at the IAC (Instituto de Astrofísica de Canarias) facilities. In this paper, the CSU will be briefly described. One of the more important parts of the CSU is the actuators, which move the bars by means of a stick-slip effect. A set of tests designed for characterizing and improving the robustness and performance of the actuators will be presented. Finally, an overview of the current CSU performance will be presented.
NASA Astrophysics Data System (ADS)
Ferraro, F. R.; Mucciarelli, A.; Lanzoni, B.; Pallanca, C.; Lapenna, E.; Origlia, L.; Dalessandro, E.; Valenti, E.; Beccari, G.; Bellazzini, M.; Vesperini, E.; Varri, A.; Sollima, A.
2018-06-01
We present the first results of the Multi-Instrument Kinematic Survey of Galactic Globular Clusters (GGCs), a project aimed at exploring the internal kinematics of a representative sample of GGCs from the radial velocity of individual stars, covering the entire radial extension of each system. This is achieved by exploiting the formidable combination of multi-object and integral field unit spectroscopic facilities of the ESO Very Large Telescope. As a first step, here we discuss the results obtained for 11 clusters from high and medium resolution spectra acquired through a combination of FLAMES and KMOS observations. We provide the first kinematical characterization of NGC 1261 and NGC 6496. In all the surveyed systems, the velocity dispersion profile declines at increasing radii, in agreement with the expectation from the King model that best fits the density/luminosity profile. In the majority of the surveyed systems, we find evidence of rotation within a few half-mass radii from the center. These results are in general overall agreement with the predictions of recent theoretical studies, suggesting that the detected signals could be the relic of significant internal rotation set at the epoch of the cluster’s formation. Based on FLAMES and KMOS observations performed at the European Southern Observatory as part of the Large Programme 193.D-0232 (PI: Ferraro).
2006-11-14
Spectroscopic Data- Observations Longslit spectra of SNLS SN candidates were taken at the Gemini telescopes with the Gemini Multi-Object Spectrograph [ GMOS ...typical i’ magnitudes ranged from 21.8 to 24.5), and required exposure times of 1 to 2 hours over two to four exposures. The GMOS R400 grating (400 lines...extra 360 seconds. The extra overhead time is often minimised by choosing a small nod distance, or by employing the Electronic N&S mode. The GMOS
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, toward a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, into a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Cosmic Origins Spectrograph, or COS, into a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Cosmic Origins Spectrograph, or COS, in a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Ichikawa, Takashi; Obata, Tomokazu
2016-08-01
A design of the wide-field infrared camera (AIRC) for Antarctic 2.5m infrared telescope (AIRT) is presented. The off-axis design provides a 7'.5 ×7'. 5 field of view with 0".22 pixel-1 in the wavelength range of 1 to 5 μm for the simultaneous three-color bands using cooled optics and three 2048×2048 InSb focal plane arrays. Good image quality is obtained over the entire field of view with practically no chromatic aberration. The image size corresponds to the refraction limited for 2.5 m telescope at 2 μm and longer. To enjoy the stable atmosphere with extremely low perceptible water vapor (PWV), superb seeing quality, and the cadence of the polar winter at Dome Fuji on the Antarctic plateau, the camera will be dedicated to the transit observations of exoplanets. The function of a multi-object spectroscopic mode with low spectra resolution (R 50-100) will be added for the spectroscopic transit observation at 1-5 μm. The spectroscopic capability in the environment of extremely low PWV of Antarctica will be very effective for the study of the existence of water vapor in the atmosphere of super earths.
First results of tests on the WEAVE fibres
NASA Astrophysics Data System (ADS)
Sayède, Frédéric; Younes, Youssef; Fasola, Gilles; Dorent, Stéphane; Abrams, Don Carlos; Aguerri, J. Alphonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Dalton, Gavin; Dee, Kevin; Laporte, Philippe; Lewis, Ian; Lhome, Emilie; Middleton, Kevin; Pragt, Johan H.; Rey, Juerg; Stuik, Remko; Trager, Scott C.; Vallenari, Antonella
2016-07-01
WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of 5000 or modest wavelength coverage in both arms at a resolution 20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V 17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2006-06-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2004-09-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2008-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
USDA-ARS?s Scientific Manuscript database
Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...
NASA Astrophysics Data System (ADS)
Noirot, Gaël; Stern, Daniel; Mei, Simona; Wylezalek, Dominika; Cooke, Elizabeth A.; De Breuck, Carlos; Galametz, Audrey; Hatch, Nina A.; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Gonzalez, Anthony H.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.
2018-05-01
We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 < z < 2.8. These candidate rich structures, among the richest and most distant known, were identified on the basis of [3.6]–[4.5] color from a 408 hr multi-cycle Spitzer program targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4 < z < 2.8 associated with the targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87 < z < 2.12 not associated with the targeted radio-loud AGN. We find that 1010–1011 M ⊙ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4 ≤ z ≤ 2. We also observe higher star-forming activity in the structure cores up to z = 2, finding similar trends as cluster surveys at slightly lower redshifts (1.0 < z < 1.5). By design, our efficient strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations “structures,” although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z > 1.4.
Tri-band optical coherence tomography for lipid and vessel spectroscopic imaging
NASA Astrophysics Data System (ADS)
Yu, Luoqin; Kang, Jiqiang; Wang, Xie; Wei, Xiaoming; Chan, Kin-Tak; Lee, Nikki P.; Wong, Kenneth K. Y.
2016-03-01
Optical coherence tomography (OCT) has been utilized for various functional imaging applications. One of its highlights comes from spectroscopic imaging, which can simultaneously obtain both morphologic and spectroscopic information. Assisting diagnosis and therapeutic intervention of coronary artery disease is one of the major directions in spectroscopic OCT applications. Previously Tanaka et al. have developed a spectral domain OCT (SDOCT) to image lipid distribution within blood vessel [1]. In the meantime, Fleming et al. have demonstrated optical frequency domain imaging (OFDI) by a 1.3-μm swept source and quadratic discriminant analysis model [2]. However, these systems suffered from burdensome computation as the optical properties' variation was calculated from a single-band illumination that provided limited contrast. On the other hand, multi-band OCT facilitates contrast enhancement with separated wavelength bands, which further offers an easier way to distinguish different materials. Federici and Dubois [3] and Tsai and Chan [4] have demonstrated tri-band OCT systems to further enhance the image contrast. However, these previous work provided under-explored functional properties. Our group has reported a dual-band OCT system based on parametrically amplified Fourier domain mode-locked (FDML) laser with time multiplexing scheme [5] and a dual-band FDML laser OCT system with wavelength-division multiplexing [6]. Fiber optical parametric amplifier (OPA) can be ideally incorporated in multi-band spectroscopic OCT system as it has a broad amplification window and offers an additional output range at idler band, which is phase matched with the signal band. The sweeping ranges can thus overcome traditional wavelength bands that are limited by intra-cavity amplifiers in FDML lasers. Here, we combines the dual-band FDML laser together with fiber OPA, which consequently renders a simultaneous tri-band output at 1.3, 1.5, and 1.6 μm, for intravascular applications. Lipid and blood vessel distribution can be subsequently visualized with the tri-band OCT system by ex vivo experiments using porcine artery model with artificial lipid plaques.
Spectrometer capillary vessel and method of making same
Linehan, John C.; Yonker, Clement R.; Zemanian, Thomas S.; Franz, James A.
1995-01-01
The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen
2016-08-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai
2012-10-01
In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.
Observatory software for the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick
2016-07-01
The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.
VizieR Online Data Catalog: Abundances of Population II stars in NGC 6397 (Lind+, 2008)
NASA Astrophysics Data System (ADS)
Lind, K.; Korn, A. J.; Barklem, P. S.; Grundahl, F.
2010-03-01
The target selection for the spectroscopic study is based on Stroemgren uvby photometry. The photometric observations were collected with the DFOSC instrument on the 1.5m telescope on La Silla, Chile, in 1997. Additional BVI photometric data were obtained in 2005. All spectroscopic data were collected in Service Mode, with the fibre-fed, multi-object, medium-high resolution spectrograph FLAMES/GIRAFFE at ESO-VLT. FLAMES allows for 132 objects to be observed simultaneously, with GIRAFFE in MEDUSA mode, between 2005 Mar 23 and Apr 04. (2 data files).
Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A
2014-05-01
Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.
VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)
NASA Astrophysics Data System (ADS)
Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.
2017-11-01
The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).
The Story of Supernova “Refsdal” Told by Muse
NASA Astrophysics Data System (ADS)
Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.
2016-05-01
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin2 target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to seven background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope (HST), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort. This work is based in large part on data collected at ESO VLT (prog.ID 294.A-5032) and NASA HST.
THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, C.; Karman, W.; Caputi, K. I.
2016-05-10
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin{sup 2} target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to sevenmore » background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope ( HST ), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST /WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort.« less
NASA Astrophysics Data System (ADS)
Tirupataiah, Ch.; Narendrudu, T.; Suresh, S.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.
2017-11-01
Multi-component glass ceramics with composition 29PbO-5Al2O3-1TeO2 -10GeO2- (55-x) SiO2 doped with different concentrations of CuO (0 ≤ x ≤ 1.0 mol %) were synthesized by melt quenching technique and subsequent heat treatment. These glass ceramics were characterized by X-ray diffraction, scanning electron microscope, differential thermal analysis, optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman studies. The absorption spectra of these glass ceramics exhibited a broad absorption band in the range 650-950 nm which is ascribed to 2B1g → 2B2g octahedral transition of Cu2+ ions. A feeble band around 364 nm is also identified in the samples doped with CuO up to 0.6 mol% as being due to charge transfer between the two oxidation states Cu2+ and Cu+ of copper ions. The EPR spectrum recorded at room temperature exhibited a strong resonance signal at g⊥ = 2.072 and a shallow quadruplet at about gǁ = 2.401. FTIR and Raman spectra of the titled samples provide significant information about various structural units viz., silicate, germanate, PbO4, PbO6, AlO6, TeO4 and TeO3 that are present in these ceramic matrix. Analysis of the spectroscopic investigations reveals that with an increase in the concentration of CuO up to 0.6 mol% copper ions do exist in Cu2+ and Cu+ states and they act as modifiers and net work formers respectively. Therefore, glass ceramic sample contains 0.6 mol% of CuO is favorable for memory switching action.
Functionalized multi-walled carbon nanotubes in an aldol reaction
NASA Astrophysics Data System (ADS)
Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.
2015-01-01
The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained. Electronic supplementary information (ESI) available: Experimental details for the synthesis of 5, 8 and 11; 1H & 13C NMR of compounds 8 and 11; ATR-IR spectra, thermographs and TEM imaging of hybrids 10 and 13. See DOI: 10.1039/c4nr06543c
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
Spectroscopic investigations on oxidized multi-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less
Spectrometer capillary vessel and method of making same
Linehan, J.C.; Yonker, C.R.; Zemanian, T.S.; Franz, J.A.
1995-11-21
The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube. 13 figs.
Winner, Taryn L; Lanzarotta, Adam; Sommer, André J
2016-06-01
An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.
VizieR Online Data Catalog: Velocities in ZwCl2341.1+0000 field (Boschin+, 2013)
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.
2014-07-01
Multi-object spectroscopic observations of ZwCl 2341+00 were carried out at the TNG in 2009 October, 2011 August and 2011 December. We used the instrument Device Optimized for the Low Resolution (DOLORES) in multi-object spectroscopy (MOS) mode with the LR-B Grism. In summary, we observed four MOS masks for a total of 142 slits. The total exposure time was 3600s for three masks and 5400s for the last one. (1 data file).
Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy
NASA Astrophysics Data System (ADS)
Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.
2013-09-01
We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest-frame colors (Rc - z') typical of S cd galaxies. From this sample, absorbing cluster galaxies hosting weak absorbers are consistent with lower star formation activity than the rest, which produce strong absorption and agree with typical Mg II absorbing galaxies found in the literature. Our spectroscopic confirmations lend support to the selection of photometric hits made in López et al. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
Multi-axial interferometry: demonstration of deep nulling
NASA Astrophysics Data System (ADS)
Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Ruilier, Cyril; Barillot, Marc; Lierstuen, Lars; Perdigués Armengol, Josep Maria
2017-11-01
The ESA-Darwin mission is devoted to direct detection and spectroscopic characterization of earthlike exoplanets. Starlight rejection is achieved by nulling interferometry from space so as to make detectable the faintly emitting planet in the neighborhood. In that context, Alcatel Alenia Space has developed a nulling breadboard for ESA in order to demonstrate in laboratory conditions the rejection of an on-axis source. This device, the Multi Aperture Imaging Interferometer (MAII) demonstrated high rejection capability at a relevant level for exoplanets, in singlepolarized and mono-chromatic conditions. In this paper we report on the new multi-axial configuration of MAII and we summarize our late nulling results.
Zhou, Kai-Li; Pan, Dong-Qi; Lou, Yan-Yue; Shi, Jie-Hua
2018-04-16
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi-spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, K b , value was found to lie between 2.69 × 10 3 and 9.55 × 10 3 M -1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub-domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril-BSA interaction, and 8-anilino-1-naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3-dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei
2010-02-01
Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.
Polypropionate lactones of deoxysugars glycosides from slime mold Lycogala epidendrum.
Rezanka, Tomás; Dvoráková, Radmila
2003-08-01
Two novel polypropionate lactone glycosides (1 and 2, i.e. lycogalinosides A and B) were isolated from the slime mold Lycogala epidendrum. Their structures, including the absolute configurations of the hydroxyl and methyls groups, were determined by means of extensive spectroscopic data such as mass, IR, UV, and 1D and 2D NMR spectra and chemical degradation followed by spectroscopic and chromatographic analysis. Compounds 1 and 2 are unique in structure containing a 2-deoxy-alpha-L-fucopyranosyl-(1-4)-6-deoxy-beta-D-gulopyranosyl unit and a beta-D-olivopyranosyl-(1-4)-beta-D-fucopyranosyl unit, respectively, and showed growth inhibitory activities against Gram-positive bacteria.
Optimization of spectroscopic surveys for testing non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raccanelli, Alvise; Doré, Olivier; Dalal, Neal, E-mail: alvise@caltech.edu, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: dalaln@illinois.edu
We investigate optimization strategies to measure primordial non-Gaussianity with future spectroscopic surveys. We forecast measurements coming from the 3D galaxy power spectrum and compute constraints on primordial non-Gaussianity parameters f{sub NL} and n{sub NG}. After studying the dependence on those parameters upon survey specifications such as redshift range, area, number density, we assume a reference mock survey and investigate the trade-off between number density and area surveyed. We then define the observational requirements to reach the detection of f{sub NL} of order 1. Our results show that power spectrum constraints on non-Gaussianity from future spectroscopic surveys can improve on currentmore » CMB limits, but the multi-tracer technique and higher order correlations will be needed in order to reach an even better precision in the measurements of the non-Gaussianity parameter f{sub NL}.« less
Optical Spectroscopy of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Wuyts, Stijn; van Dokkum, Pieter G.; Franx, Marijn; Förster Schreiber, Natascha M.; Illingworth, Garth D.; Labbé, Ivo; Rudnick, Gregory
2009-11-01
We present optical spectroscopic follow-up of a sample of distant red galaxies (DRGs) with K tot s,Vega < 22.5, selected by (J - K)Vega>2.3, in the Hubble Deep Field South (HDFS), the MS 1054-03 field, and the Chandra Deep Field South (CDFS). Spectroscopic redshifts were obtained for 15 DRGs. Only two out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high-redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in Δz/(1 + z) of ~0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY. Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K tot s,Vega < 22.5 lie at z>2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z < 2 and z>2. In our photometric sample to K tot s,Vega < 22.5, low-redshift DRGs are brighter in Ks than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in AV . Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.
Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit
Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark
Okazaki, Masato; Pander, Piotr; Higginbotham, Heather; Monkman, Andrew P.
2017-01-01
Novel U-shaped donor–acceptor–donor (D–A–D) π-conjugated multi-functional molecules comprising dibenzo[a,j]phenazine (DBPHZ) as an acceptor and phenothiazines (PTZ) as donors have been developed. Most importantly, the D–A–D compounds exhibit not only distinct tricolor-changeable mechanochromic luminescence (MCL) properties but also efficient thermally activated delayed fluorescence (TADF). Quantum chemical calculations, X-ray diffraction analysis, and systematic studies on the photophysical properties indicated that the “two-conformation-switchable” PTZ units play a highly important role in achieving multi-color-changing MCL. Time-resolved photophysical measurements revealed that the developed D–A–D compounds also exhibit efficient orange-TADF. Furthermore, organic light-emitting diode (OLED) devices fabricated with the new TADF emitters have achieved high external quantum efficiencies (EQEs) up to 16.8%, which significantly exceeds the theoretical maximum (∼5%) of conventional fluorescent emitters. PMID:28553504
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2010-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.
Performance of a Diaphragmed Microlens for a Packaged Microspectrometer
Lo, Joe; Chen, Shih-Jui; Fang, Qiyin; Papaioannou, Thanassis; Kim, Eun-Sok; Gundersen, Martin; Marcu, Laura
2009-01-01
This paper describes the design, fabrication, packaging and testing of a microlens integrated in a multi-layered MEMS microspectrometer. The microlens was fabricated using modified PDMS molding to form a suspended lens diaphragm. Gaussian beam propagation model was used to measure the focal length and quantify M2 value of the microlens. A tunable calibration source was set up to measure the response of the packaged device. Dual wavelength separation by the packaged device was demonstrated by CCD imaging and beam profiling of the spectroscopic output. We demonstrated specific techniques to measure critical parameters of microoptics systems for future optimization of spectroscopic devices. PMID:22399943
Properties of O dwarf stars in 30 Doradus
NASA Astrophysics Data System (ADS)
Sabín-Sanjulián, Carolina; VFTS Collaboration
2017-11-01
We perform a quantitative spectroscopic analysis of 105 presumably single O dwarf stars in 30 Doradus, located within the Large Magellanic Cloud. We use mid-to-high resolution multi-epoch optical spectroscopic data obtained within the VLT-FLAMES Tarantula Survey. Stellar and wind parameters are derived by means of the automatic tool iacob-gbat, which is based on a large grid of fastwind models. We also benefit from the Bayesian tool bonnsai to estimate evolutionary masses. We provide a spectral calibration for the effective temperature of O dwarf stars in the LMC, deal with the mass discrepancy problem and investigate the wind properties of the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Sandra Rodríguez; Nieto-Ortega, Belén; González Cano, Rafael C.
2014-04-28
We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.more » These items are addressed by using the “oligomer approach” in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.« less
NASA Astrophysics Data System (ADS)
Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.
2017-11-01
We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...
New software solutions for analytical spectroscopists
NASA Astrophysics Data System (ADS)
Davies, Antony N.
1999-05-01
Analytical spectroscopists must be computer literate to effectively carry out the tasks assigned to them. This has often been resisted within organizations with insufficient funds to equip their staff properly, a lack of desire to deliver the essential training and a basic resistance amongst staff to learn the new techniques required for computer assisted analysis. In the past these problems were compounded by seriously flawed software which was being sold for spectroscopic applications. Owing to the limited market for such complex products the analytical spectroscopist often was faced with buying incomplete and unstable tools if the price was to remain reasonable. Long product lead times meant spectrometer manufacturers often ended up offering systems running under outdated and sometimes obscure operating systems. Not only did this mean special staff training for each instrument where the knowledge gained on one system could not be transferred to the neighbouring system but these spectrometers were often only capable of running in a stand-alone mode, cut-off from the rest of the laboratory environment. Fortunately a number of developments in recent years have substantially changed this depressing picture. A true multi-tasking operating system with a simple graphical user interface, Microsoft Windows NT4, has now been widely introduced into the spectroscopic computing environment which has provided a desktop operating system which has proved to be more stable and robust as well as requiring better programming techniques of software vendors. The opening up of the Internet has provided an easy way to access new tools for data handling and has forced a substantial re-think about results delivery (for example Chemical MIME types, IUPAC spectroscopic data exchange standards). Improved computing power and cheaper hardware now allows large spectroscopic data sets to be handled without too many problems. This includes the ability to carry out chemometric operations in minutes rather than hours. Fast networks now enable data analysis of even multi-dimensional spectroscopic data sets remote from the measuring instrument. A strong tendency to opt for a more unified graphical user interface which is substantially more user friendly allows even inexperienced users to rapidly get acquainted with even the complex mathematical analyses. Some examples of new spectroscopic software products will be given to demonstrate the aforesaid points and highlight the ease of integration into a modern analytical spectroscopy workplace.
USDA-ARS?s Scientific Manuscript database
Spectroscopic analysis of chemically complex samples often requires an increase n the dimensionality of the measured response surface. This often involves the measurement of emitted light intensities as functions of both wavelengths of excitation and emission resulting in the generation of an excita...
MOSAIC: A Multi-Object Spectrograph for the E-ELT
NASA Astrophysics Data System (ADS)
Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium
2016-10-01
The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.
Individual bioaerosol particle discrimination by multi-photon excited fluorescence.
Kiselev, Denis; Bonacina, Luigi; Wolf, Jean-Pierre
2011-11-21
Femtosecond laser induced multi-photon excited fluorescence (MPEF) from individual airborne particles is tested for the first time for discriminating bioaerosols. The fluorescence spectra, analysed in 32 channels, exhibit a composite character originating from simultaneous two-photon and three-photon excitation at 790 nm. Simulants of bacteria aggregates (clusters of dyed polystyrene microspheres) and different pollen particles (Ragweed, Pecan, Mulberry) are clearly discriminated by their MPEF spectra. This demonstration experiment opens the way to more sophisticated spectroscopic schemes like pump-probe and coherent control. © 2011 Optical Society of America
Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie
2011-10-01
High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail
NASA Astrophysics Data System (ADS)
Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.
2011-11-01
We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.
Ram Pressure Stripping of Galaxy JO201
NASA Astrophysics Data System (ADS)
Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti
2017-01-01
Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, workers prepare to attach an overhead crane to the Cosmic Origins Spectrograph, or COS. The COS will be lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, workers attach an overhead crane to the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-08-07
CAPE CANAVERAL, Fla. – In the clean room of the Payload Hazardous Processing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Cosmic Origins Spectrograph, or COS. The COS is being lifted and moved to a protective enclosure on the Orbital Replacement Unit Carrier, part of the payload for the fifth and final Hubble servicing mission, STS-125. Other payloads include the Flight Support System, the Super Lightweight Interchangeable Carrier and the Multi-Use Lightweight Equipment, or MULE, carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The COS far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of Atlantis on the STS-125 mission is targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.
2018-01-01
Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.
Multi-Unit Considerations for Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Germain, S.; Boring, R.; Banaseanu, G.
This paper uses the insights from the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) methodology to help identify human actions currently modeled in the single unit PSA that may need to be modified to account for additional challenges imposed by a multi-unit accident as well as identify possible new human actions that might be modeled to more accurately characterize multi-unit risk. In identifying these potential human action impacts, the use of the SPAR-H strategy to include both errors in diagnosis and errors in action is considered as well as identifying characteristics of a multi-unit accident scenario that may impact themore » selection of the performance shaping factors (PSFs) used in SPAR-H. The lessons learned from the Fukushima Daiichi reactor accident will be addressed to further help identify areas where improved modeling may be required. While these multi-unit impacts may require modifications to a Level 1 PSA model, it is expected to have much more importance for Level 2 modeling. There is little currently written specifically about multi-unit HRA issues. A review of related published research will be presented. While this paper cannot answer all issues related to multi-unit HRA, it will hopefully serve as a starting point to generate discussion and spark additional ideas towards the proper treatment of HRA in a multi-unit PSA.« less
WIYN Open Cluster Study. XXXVI. Spectroscopic Binary Orbits in NGC 188
2009-04-01
2000; Pleiades , Mermilliod et al. 1992; M67, Mathieu et al. 1990). Today, the advent of multi-object spectrographs permits surveys of larger stellar...open clusters (e.g., M67, Mathieu et al. (1990); Praesepe, Mermilliod et al. (1994); Pleiades , Bouvier et al. (1997); Hyades, Patience et al. (1998
NASA Astrophysics Data System (ADS)
Samanta, T.; Singh, J.; Sindhuja, G.; Banerjee, D.
2016-01-01
During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 Å that is due to [Fe xiv] and the red line at 6374 Å that is due to [Fe x]. The data were analyzed to study the periodic variations in intensity, Doppler velocity, and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations, each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we were able to detect damping of high-frequency oscillations with periods of about 10 s. If the observed damped oscillations are due to magnetohydrodynamic waves, then they can contribute significantly to the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillations while considering the distribution of power in different line parameters.
THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cool, Richard J.; Moustakas, John; Blanton, Michael R.
2013-04-20
The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1more » + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.« less
NASA Astrophysics Data System (ADS)
Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.
2013-03-01
Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.
Multi-methodological investigation of the variability of the microstructure of HPMC hard capsules.
Faulhammer, E; Kovalcik, A; Wahl, V; Markl, D; Stelzer, F; Lawrence, S; Khinast, J G; Paudel, A
2016-09-25
The objective of this study was to analyze differences in the subtle microstructure of three different grades of HMPC hard capsule shells using mechanical, spectroscopic, microscopic and tomographic approaches. Dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), vibrational spectroscopic, X-Ray scattering techniques as well as environmental scanning electron microscopy (ESEM) and optical coherence tomography (OCT) were used. Two HPMC capsules manufactured via chemical gelling, one capsule shell manufactured via thermal gelling and one thermally gelled transparent capsule were included. Characteristic micro-structural alterations (associated manufacturing processes) such as mechanical and physical properties relevant to capsule performance and processability were thoroughly elucidated with the integration of data obtained from multi-methodological investigations. The physico-chemical and physico-mechanical data obtained from a gamut of techniques implied that thermally gelled HPMC hard capsule shells could offer an advantage in terms of machinability during capsule filling, owing to their superior micro- and macroscopic structure as well as specifically the mechanical stability under dry or humid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, Jianguo; Dong, Xiaobo; Yang, M.; -Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.
2016-02-01
We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical-infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Detecting apoptosis in vivo and ex vivo using spectroscopic OCT and dynamic light scattering
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Giles, Anoja; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.
2014-03-01
We present an in vivo implementation of a multi-parametric technique for detecting apoptosis using optical coherence tomography in a mouse tumor model. Solid tumors were grown from acute myeloid leukemia cells in the hind leg of SCID mice and treated with a single dose of cisplatin and dexamethasone to induce apoptosis. Both spectral features and speckle decorrelation times indicated good consistency between control mice and reasonable agreement with in vitro measurements. The integrated backscatter increased significantly in tumors responding to treatment while the spectral slope and decorrelation time did not show significant changes. This study demonstrates the feasibility of using spectroscopic OCT and dynamic light scattering for treatment monitoring in vivo.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
Singh, U R; Enayat, M; White, S C; Wahl, P
2013-01-01
We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.
49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...
49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...
49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...
49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...
NASA's Laboratory Astrophysics Workshop: Opening Remarks
NASA Technical Reports Server (NTRS)
Hasan, Hashima
2002-01-01
The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.
Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.
Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan
2018-01-28
Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization
NASA Astrophysics Data System (ADS)
Selvaraju, R.; Raja, A.; Thiruppathi, G.
2015-02-01
In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.
2006-05-01
d). (e) In the histogram analysis eld units are observed initially for voxels located on the d to 250 Hounsfield units.ses (a) el the tration...CT10, CT20, and CT30. Histogram ximum difference of 250 Hounsfield units . Only 0.01% d units.d imag ts a mand finite-element model. The fluid flow...cause Hounsfield unit calibration problems. While this does not seem to influence the image registration, the use of CBCT for dose calculation should
Confirmation of 5 SN in the Kepler/K2 C16 Field with Gemini
NASA Astrophysics Data System (ADS)
Margheim, S.; Tucker, B. E.; Garnavich, P. M.; Rest, A.; Narayan, G.; Smith, K. W.; Smartt, S.; Kasen, D.; Shaya, E.; Mushotzky, R.; Olling, R.; Villar, A.; Forster, F.; Zenteno, A.; James, D.; Smith, R. Chris
2018-01-01
We report new spectroscopic classifications by KEGS of supernova discovered by Pan-STARRS1 during a targeted search of the Kepler/K2 Campaign 16 field using the Gemini Multi-Object Spectrograph (GMOS) on both the Gemini North Observatory on Mauna Kea, and the Gemini South Observatory on Cerro Pachon.
A Search for Binary Systems in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Brown, Cody; Nidever, David L.
2018-06-01
The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.
NASA Astrophysics Data System (ADS)
Li, Qimeng; Li, Shichun; Hu, Xianglong; Zhao, Jing; Xin, Wenhui; Song, Yuehui; Hua, Dengxin
2018-01-01
The absolute measurement technique for atmospheric temperature can avoid the calibration process and improve the measurement accuracy. To achieve the rotational Raman temperature lidar of absolute measurement, the two-stage parallel multi-channel spectroscopic filter combined a first-order blazed grating with a fiber Bragg grating is designed and its performance is tested. The parameters and the optical path structure of the core cascaded-device (micron-level fiber array) are optimized, the optical path of the primary spectroscope is simulated and the maximum centrifugal distortion of the rotational Raman spectrum is approximately 0.0031 nm, the centrifugal ratio of 0.69%. The experimental results show that the channel coefficients of the primary spectroscope are 0.67, 0.91, 0.67, 0.75, 0.82, 0.63, 0.87, 0.97, 0.89, 0.87 and 1 by using the twelfth channel as a reference and the average FWHM is about 0.44 nm. The maximum deviation between the experimental wavelength and the theoretical value is approximately 0.0398 nm, with the deviation degree of 8.86%. The effective suppression to elastic scattering signal are 30.6, 35.2, 37.1, 38.4, 36.8, 38.2, 41.0, 44.3, 44.0, 46.7 dB. That means, combined with the second spectroscope, the suppression at least is up to 65 dB. Therefore we can fine extract single rotational Raman line to achieve the absolute measurement technique.
NASA Astrophysics Data System (ADS)
Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten
2017-11-01
We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.
NASA Astrophysics Data System (ADS)
Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.
2018-06-01
Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement between our derived effective temperatures and gravities and those obtained by means of more traditional "by-eye" techniques and different stellar atmosphere codes. The overall agreement between the synthetic spectra associated with the IACOB-GBAT/FASTWIND best fitting models and the observed spectra is good for most of the analyzed targets, but 46 stars out of the 128 present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar emitting components contaminating the wind diagnostic lines (e.g., disks, magnetospheres). Last, our spectroscopic variability study has led to the detection of clear or likely signatures of spectroscopic binarity in 27% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30%. Additionally, 31% of the investigated stars show variability in the wind diagnostic lines. Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A65
ERIC Educational Resources Information Center
Klier, Kamil
2010-01-01
The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…
NASA Astrophysics Data System (ADS)
Devost, Daniel; McConnachie, Alan; Chambers, Kenneth; Gallagher, Sarah; Maunakea Spectroscopic Explorer Project office, MSE Science Advisory group, MSE Science Team
2018-01-01
Numerous international reports have recently highlighted the need for fully dedicated, large aperture, highly multiplexed spectroscopy at a range of spectral resolutions in the OIR wavelength range. Such a facility is the most obvious missing link in the emerging network of international multi-wavelength, astronomy facilities, and enables science from reverberation mapping of black holes to the nucleosynthetic history of the Galaxy, and will follow-up discoveries from the optical through to the radio with facilities such as LSST. The only fully dedicated large aperture MOS facility that is in the design phase is the Maunakea Spectroscopic Explorer (MSE), an 11.4m segmented mirror prime focus telescope with a 1.5 square degree field of view that has 3200 fibers at low (R~2500) and moderate (R~6000) resolution, and 1000 fibers at high (R=20/40000) resolution. I will provide an overview of MSE, describing the science drivers and the current design status, as well as the international partnership, and the results of multiple, newly completed, external reviews for the system and subsystems. The anticipated cost and timeline to first light will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi
2016-02-15
We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra inmore » DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.« less
NASA Astrophysics Data System (ADS)
Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.
2018-05-01
This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.
Komori, Hirofumi; Miyazaki, Kentaro; Higuchi, Yoshiki
2009-04-02
A multi-copper protein with two cupredoxin-like domains was identified from our in-house metagenomic database. The recombinant protein, mgLAC, contained four copper ions/subunits, oxidized various phenolic and non-phenolic substrates, and had spectroscopic properties similar to common laccases. X-ray structure analysis revealed a homotrimeric architecture for this enzyme, which resembles nitrite reductase (NIR). However, a difference in copper coordination was found at the domain interface. mgLAC contains a T2/T3 tri-nuclear copper cluster at this site, whereas a mononuclear T2 copper occupies this position in NIR. The trimer is thus an essential part of the architecture of two-domain multi-copper proteins, and mgLAC may be an evolutionary precursor of NIR.
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.
Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina
2016-03-21
Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.
Arvinte, Tudor; Bui, Tam T T; Dahab, Ali A; Demeule, Barthélemy; Drake, Alex F; Elhag, Dhia; King, Peter
2004-09-01
Circular dichroism (CD) is an important spectroscopic technique for monitoring chirality and biological macromolecule conformation. However, during a CD measurement, absorbance, light scattering/turbidity, and fluorescence can also be detected. The simultaneous measurement of these different spectral features for a single sample is the basis of a multi-mode optical spectrometer. This allows time-efficient gathering of complementary information and provides a scheme to ensure that CD measurements are reliable. Aspects of circular polarization differential light scattering, pH, and temperature variation of a protein (antibody) solution are described. A procedure to help ensure that CD measurements are reliable is described.
Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi
2016-09-01
The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.
The Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke
2018-06-01
The Maunakea Spectroscopic Explorer (MSE) is an ambitious project to transform the Canada-France-Hawaii 3.6-metre telescope into an 11.25-metre facility dedicated to wide field multi-object spectroscopy. Following a successful conceptual design review of ten subsystems and the systems-level review in January 2018, MSE is preparing to move into the Preliminary Design Phase. MSE will simultaneously deploy over 3000 fibers that feed low/medium resolution spectrometers and 1000 fibers that feed high-resolution (R~40,000) spectrometers. This design is expected to revolutionize astrophysical studies requiring large spectroscopic datasets: i.e., reconstructing the Milky Way's formation history through the chemical tagging of stars, searches for the effects of dark matter on stellar streams, determination of environmental influences on galaxy formation since cosmic noon, measuring black hole masses through repeat spectroscopy of quasars, follow-up of large samples identified in other surveys (Gaia, LSST, SKA, etc.), and more. MSE will reuse a large fraction of CFHT’s existing facilities while tripling the diameter of the telescope’s primary mirror and increasing the height of the enclosure by only 10%. I will discuss the progress to date and opportunities for partnerships.
NASA Astrophysics Data System (ADS)
Molenda-Żakowicz, Joanna; Frasca, Antonio; De Cat, Peter; Catanzaro, Giovanni
2017-09-01
We summarize the results of the completed first round of the LAMOST-Kepler project, and describe the status of its on-going second round. As a result of the first round of this project, the atmospheric parameters (Teff, log g, and [Fe/H]), the spectral classification (spectral type and luminosity class), and the radial velocities (RV) have been measured for 51,385 stars. For 4031 stars, we were able to measure the projected rotational velocity, while the minimum detectable v sin i was 120 km s-1. For 8821 stars with more than one observation, we computed the χ-square probability that the detected RV variations have a random occurrence. Finally, we classified 442 stars as chromospherically active on the basis of the analysis of their Hα and Ca II-IRT fluxes. All our results have been obtained from the low-resolution (R ˜ 1800) spectroscopic observations acquired with the LAMOST instrument. Based on observations collected with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) located at the Xinglong Observatory, China.
Science capabilities of the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Devost, Daniel; McConnachie, Alan; Flagey, Nicolas; Cote, Patrick; Balogh, Michael; Driver, Simon P.; Venn, Kim
2017-01-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multiobject spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations nominally starting in 2025. MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. I will give an update on the status of the project and review some of the most exciting scientific capabilities of the observatory.
Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging.
Lanzarotta, Adam
2016-02-24
A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach.
Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging †
Lanzarotta, Adam
2016-01-01
A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101
A high abundance of massive galaxies 3-6 billion years after the Big Bang.
Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G
2004-07-08
Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...
49 CFR 172.330 - Tank cars and multi-unit tank car tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...
49 CFR 172.330 - Tank cars and multi-unit tank car tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...
49 CFR 172.330 - Tank cars and multi-unit tank car tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...
Uncertain Photometric Redshifts with Deep Learning Methods
NASA Astrophysics Data System (ADS)
D'Isanto, A.
2017-06-01
The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.
Near Field Cosmology with the Pan-Andromeda Archaeological Survey
NASA Astrophysics Data System (ADS)
McConnachie, A. W.; PAndAS Collaboration
2012-08-01
I describe the Pan-Andromeda Archaeological Survey (PAndAS), and discuss several recent science highlights, including studies of its dwarf satellite systems, its stellar halo, and correlations with the HI content. I also discuss the need for a large scale, wide field, multi-object spectroscopic survey, such as the type made possible with the proposed Next Generation Canada-France-Hawaii Telescope (NG-CFHT).
Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.
Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan
2007-12-01
Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.
ERIC Educational Resources Information Center
Teo, Boon K.; Li, Wai-Kee
2011-01-01
This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…
Spectroscopic and Photometric Properties of Carbon Stars in the Disk of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Toloba, E.; Guha, S.; Rushing, C.; Dorman, C.; PHAT Collaboration; SPLASH Collaboration
2013-01-01
We explore the spectroscopic properties of a couple hundred carbon stars discovered in the disk of the Andromeda galaxy (M31) in the course of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. The spectra were obtained using the DEIMOS spectrograph on the Keck II 10-meter telescope. About 5000 stars were targeted for spectroscopy during observing runs in 2010 and 2011 using DEIMOS's 1200 lines/mm grating with a spectral resolving power of R ~ 5000 to 6000 and spectral coverage from 6500-9000 Angstrom. In September 2012, another 5000 stars were observed this time with the 600 lines/mm grating and R ~ 2500 and spectral coverage from 4500-9000 Angstrom. For both types of spectroscopic observations, targets were selected from the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle treasury program with the Hubble Space Telescope. Six-filter photometry in the ultraviolet (F275W, F336W), optical (F439W, F814W), and near infrared (F110W, F160W) is available for most targets. These carbon star samples are used to constrain the intermediage-age population in M31's disk. They are also compared to spectra of previously known carbon samples in the dwarf elliptical satellites of M31, NGC 147, NGC 185, and NGC 205. The authors thank the National Science Foundation, NASA/STScI, and UCSC's Summer Internship Program for support.
VizieR Online Data Catalog: Australian Dark Energy Survey (OzDES) quasar catalog (Tie+, 2017)
NASA Astrophysics Data System (ADS)
Tie, S. S.; Martini, P.; Mudd, D.; Ostrovski, F.; Reed, S. L.; Lidman, C.; Kochanek, C.; Davis, T. M.; Sharp, R.; Uddin, S.; King, A.; Wester, W.; Tucker, B. E.; Tucker, D. L.; Buckley-Geer, E.; Carollo, D.; Childress, M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Macaulay, E.; O'Neill, C. R.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Depoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Garcia-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration
2017-07-01
The Australian Dark Energy Survey (OzDES; Yuan et al. 2015MNRAS.452.3047Y) is a spectroscopic survey of the DES supernova fields using the AAOmega spectrograph (Smith et al. 2004SPIE.5492..410S) on the Anglo-Australian Telescope (AAT). The field of view of the AAT multi-object fiber-positioning system (Lewis et al. 2002MNRAS.333..279L) is well matched to DECam, making the AAT a well-suited spectroscopic follow-up instrument for DES. OzDES commenced observations at the same time as DES in 2013B and aims to measure redshifts for thousands of host galaxies of Type Ia supernovae and black hole masses for hundreds of AGNs and quasars (King et al. 2015MNRAS.453.1701K) using reverberation mapping (Blandford & McKee 1982ApJ...255..419B; Peterson 1993PASP..105..247P). The observing targets and results of OzDES observations are compiled into a spectroscopic catalog known as the Global Redshift Catalog (GRC). The GRC is updated after every OzDES observing season. In this work, we used the 2016 February version of the OzDES GRC. Here we present the OzDES Quasar Catalog of 1263 OzDES sources with Mi<-22 mag and i<22 mag that are spectroscopically confirmed quasars. (1 data file).
Sun, Alexander; Venkatesh, A G; Hall, Drew A
2016-10-01
This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients ( ∼ 200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...
NASA Astrophysics Data System (ADS)
Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure
2014-07-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE image quality and throughput directly onto the sky.
NASA Astrophysics Data System (ADS)
Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme
2016-04-01
We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).
The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9
NASA Astrophysics Data System (ADS)
Silva, M.; Humphrey, A.; Lagos, P.; Villar-Martín, M.; Morais, S. G.; di Serego Alighieri, S.; Cimatti, A.; Fosbury, R.; Overzier, R. A.; Vernet, J.; Binette, L.
2018-03-01
We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly α emitting nebula and the giant H I absorber associated with the z = 2.92 radio galaxy MRC 0943-242, using spectroscopic observations from Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE), VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765-6378 Å at z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localized compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of supersolar metallicity gas (Z/Z⊙ = 2.1) by an active galactic nuclei-like continuum (α = -1.0) at a moderate ionization parameter (U = 0.018) gives the best overall fit to the complete X-SHOOTER emission-line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the H I absorption feature across the range log N(H I/cm-2) = 15.20 and 19.63, with the two best fitting occurring near the extreme ends of this range. The extended H I absorber is blueshifted relative to the emission-line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large-scale expanding shell.
White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9
NASA Astrophysics Data System (ADS)
Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.
2014-06-01
We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.
NASA Astrophysics Data System (ADS)
Husemann, B.; Bennert, V. N.; Scharwächter, J.; Woo, J.-H.; Choudhury, O. S.
2016-01-01
We report deep optical integral-field spectroscopy with the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope of the luminous radio-quiet quasi-stellar object (QSO) PG 1307+085 obtained during commissioning. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact (re ˜ 1.3 arcsec) elliptical host galaxy. After spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of σ* = 155 ± 19 km s-1. This places PG 1307+085 on the local MBH-σ* relation within its intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The MUSE observations reveal a large extended narrow-line region (ENLR) around PG 1307+085 reaching out to ˜30 kpc. In addition, we detect a faint ionized gas bridge towards the most massive galaxy of the galaxy group at 50 kpc distance. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of Lbol > 1046 erg s-1. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or gas accretion as the likely scenarios. We conclude that PG 1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is likely affected by the environment through gravity or ambient pressure. It is possible that the interaction with the environment, seen in the ionized gas, might be responsible for driving sufficient gas to the black hole.
Measuring the Value of the Hubble Constant “à la Refsdal”
NASA Astrophysics Data System (ADS)
Grillo, C.; Rosati, P.; Suyu, S. H.; Balestra, I.; Caminha, G. B.; Halkola, A.; Kelly, P. L.; Lombardi, M.; Mercurio, A.; Rodney, S. A.; Treu, T.
2018-06-01
Realizing Refsdal’s original idea from 1964, we present estimates of the Hubble constant that are complementary to, and potentially competitive with, those of other cosmological probes. We use the observed positions of 89 multiple images, with extensive spectroscopic information, from 28 background sources and the measured time delays between the images S1–S4 and SX of supernova “Refsdal” (z = 1.489), which were obtained thanks to Hubble Space Telescope deep imaging and Multi Unit Spectroscopic Explorer data. We extend the strong-lensing modeling of the Hubble Frontier Fields galaxy cluster MACS J1149.5+2223 (z = 0.542), published by Grillo et al. (2016), and explore different ΛCDM models. Taking advantage of the lensing information associated to the presence of very close pairs of multiple images at various redshifts, and to the extended surface brightness distribution of the SN Refsdal host, we can reconstruct the total mass-density profile of the cluster very precisely. The combined dependence of the multiple-image positions and time delays on the cosmological parameters allows us to infer the values of H 0 and Ωm with relative (1σ) statistical errors of, respectively, 6% (7%) and 31% (26%) in flat (general) cosmological models, assuming a conservative 3% uncertainty on the final time delay of image SX and, remarkably, no priors from other cosmological experiments. Our best estimate of H 0, based on the model described in this work, will be presented when the final time-delay measurement becomes available. Our results show that it is possible to utilize time delays in lens galaxy clusters as an important alternative tool for measuring the expansion rate and the geometry of the universe.
Uniting of NuSTAR Spacecraft and Rocket
2012-02-23
Inside an environmental enclosure at Vandenberg Air Force Base processing facility in California, solar panels line the sides of NASA Nuclear Spectroscopic Telescope Array NuSTAR, which was just joined to the Orbital Sciences Pegasus XL rocket.
Study of gamma detection capabilities of the REWARD mobile spectroscopic system
NASA Astrophysics Data System (ADS)
Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.
2017-07-01
REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.
SIproc: an open-source biomedical data processing platform for large hyperspectral images.
Berisha, Sebastian; Chang, Shengyuan; Saki, Sam; Daeinejad, Davar; He, Ziqi; Mankar, Rupali; Mayerich, David
2017-04-10
There has recently been significant interest within the vibrational spectroscopy community to apply quantitative spectroscopic imaging techniques to histology and clinical diagnosis. However, many of the proposed methods require collecting spectroscopic images that have a similar region size and resolution to the corresponding histological images. Since spectroscopic images contain significantly more spectral samples than traditional histology, the resulting data sets can approach hundreds of gigabytes to terabytes in size. This makes them difficult to store and process, and the tools available to researchers for handling large spectroscopic data sets are limited. Fundamental mathematical tools, such as MATLAB, Octave, and SciPy, are extremely powerful but require that the data be stored in fast memory. This memory limitation becomes impractical for even modestly sized histological images, which can be hundreds of gigabytes in size. In this paper, we propose an open-source toolkit designed to perform out-of-core processing of hyperspectral images. By taking advantage of graphical processing unit (GPU) computing combined with adaptive data streaming, our software alleviates common workstation memory limitations while achieving better performance than existing applications.
2005-05-01
constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered...of the corresponding organ, and -b(i) is the target, we define the effective dose at a voxel as the physical functional unit density. The value of n...cr, tended to include the nonuniform functional unit density dis- D,(i) the calculated dose in voxel i, DO(i) the prescription tribution using Eq. (8
Parallel detecting, spectroscopic ellipsometers/polarimeters
Furtak, Thomas E.
2002-01-01
The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.
Emission line galaxy pairs up to z=1.5 from the WISP survey
NASA Astrophysics Data System (ADS)
Teplitz, Harry I.; Dai, Yu Sophia; Malkan, Matthew Arnold; Scarlata, Claudia; Colbert, James W.; Atek, Hakim; Bagley, Micaela B.; Baronchelli, Ivano; Bedregal, Alejandro; Beck, Melanie; Bunker, Andrew; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Mehta, Vihang; Pahl, Anthony; Rafelski, Marc; Ross, Nathaniel; Rutkowski, Michael J.; Siana, Brian D.; WISPs Team
2016-01-01
We present a sample of spectroscopically identified emission line galaxy pairs up to z=1.5 from WISPs (WFC3 Infrared Spectroscopic Parallel survey) using high resolution direct and grism images from HST. We searched ~150 fields with a covered area of ~600 arcmin^2, and a comoving volume of > 400 Gpc^3 at z=1-2, and found ~80 very close physical pairs (projected separation Dp < 50 h^{-1}kpc, relative velocity d_v < 500 kms^{-1}), and ~100 close physical pairs (50 < Dp < 100 h^{-1}kpc, d_v < 1000 kms^{-1}) of emission line galaxies, including two dozen triplets and quadruples. In this poster we present the multi-wavelength data, star formation rate (SFR), mass ratio, and study the merger rate evolution with this special galaxy pair sample.
Integrated RF-shim coil allowing two degrees of freedom shim current.
Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin
2016-08-01
High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.
Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan
2015-04-01
This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Guo, Hongqin; Cai, Changqun; Gong, Hang; Chen, Xiaoming
2011-06-01
Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), (1)H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na(2)HPO(4) buffer (pH=6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.20×10(-6)-1.0×10(-5) mol/L, and its detection limit (3σ) is 1.33×10(-9) mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Hongqin; Cai, Changqun; Gong, Hang; Chen, Xiaoming
2011-06-01
Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), 1H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na 2HPO 4 buffer (pH = 6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.20 × 10 -6-1.0 × 10 -5 mol/L, and its detection limit (3 σ) is 1.33 × 10 -9 mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results.
NASA Astrophysics Data System (ADS)
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-01
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH 7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 103 M- 1, which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH0) and entropy change (ΔS0) were - 63.19 kJ mol- 1 and - 141.92 J mol- 1 K- 1, indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA.
NASA Astrophysics Data System (ADS)
Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2017-04-01
This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds
Community Resource Curriculum Development: Grades 3-4.
ERIC Educational Resources Information Center
Bentley, Michael L.; And Others
This manual was developed by the Community Resource Curriculum Development Project (CRCDP), a cooperative project to develop multi-disciplinary, multi-ethnic, multi-cultural science/social sciences teaching units based upon the Illinois State Goals for Learning. This manual contains seven teaching units that include several experience-based…
ERIC Educational Resources Information Center
Hohenfeldt, Harold H., Ed.
The first part of this resource guide is designed to help secondary teachers provide a multi-ethnic/non-sexist thrust to United States history. The second part will help them develop a multi-disciplinary approach to U.S. history. Part one is organized by the following ethnic groups: Blacks, Asians, Europeans, Hispanics, Jews, American Indians, and…
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.
2003-01-01
OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and monitored intensive care period. Near infrared spectroscopic pH decreased significantly during cardiopulmonary bypass, decreased significantly during rewarming, and remained depressed 6 hrs after cardiopulmonary bypass. Diabetic patients responded differently than nondiabetic subjects to cardiopulmonary bypass, with lower muscle pH values (p =.02). CONCLUSIONS: Near infrared spectroscopic-measured muscle pH and Po2 are sensitive to changes in tissue perfusion during cardiopulmonary bypass.
Comparing Simulated and Observed Spectroscopic Signatures of Mix in Omega Capsules
NASA Astrophysics Data System (ADS)
Tregillis, I. L.; Shah, R. C.; Hakel, P.; Cobble, J. A.; Murphy, T. J.; Krasheninnikova, N. S.; Hsu, S. C.; Bradley, P. A.; Schmitt, M. J.; Batha, S. H.; Mancini, R. C.
2012-10-01
The Defect-Induced Mix Experiment (DIME) campaign at Los Alamos National Laboratory uses multi-monochromatic X-ray imaging (MMI)footnotetextT. Nagayama, R.C. Mancini, R. Florido, et al, J. App. Phys. 109, 093303 (2011) to detect the migration of high-Z spectroscopic dopants into the hot core of an imploded capsule. We have developed an MMI post-processing tool for producing synthetic datasets from two- and three-dimensional Lagrangian numerical simulations of Omega and NIF shots. These synthetic datasets are of sufficient quality, and contain sufficient physics, that they can be analyzed in the same manner as actual MMI data. We have carried out an extensive comparison between simulated and observed MMI data for a series of polar direct-drive shots carried out at the Omega laser facility in January, 2011. The capsule diameter was 870 microns; the 15 micron CH ablators contained a 2 micron Ti-doped layer along the inner edge. All capsules were driven with 17 kJ; some capsules were manufactured with an equatorial ``trench'' defect. This talk will focus on the construction of spectroscopic-quality synthetic MMI datasets from numerical simulations, and their correlation with MMI measurements.
NASA Astrophysics Data System (ADS)
Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wirth, H.-F.
2014-03-01
Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(overrightarrow {{d}} ,p)112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p) study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.
Spectroscopic studies of the molecular parentage of radical species in cometary comae
NASA Astrophysics Data System (ADS)
Lewis, Benjamin; Pierce, Donna; Cochran, Anita
2015-11-01
We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.
NASA Astrophysics Data System (ADS)
Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang
2018-04-01
Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Poletto, Luca; Crescenzio, Giuseppe; Fineschi, Silvano; Antonucci, Ester; Naletto, Giampiero
2017-11-01
METIS, the Multi Element Telescope for Imaging and Spectroscopy, is the solar coronagraph foreseen for the ESA Solar Orbiter mission. METIS is conceived to image the solar corona from a near-Sun orbit in three different spectral bands: in the HeII EUV narrow band at 30.4 nm, in the HI UV narrow band at 121.6 nm, and in the polarized visible light band (590 - 650 nm). It also incorporates the capability of multi-slit spectroscopy of the corona in the UV/EUV range at different heliocentric heights. METIS is an externally occulted coronagraph which adopts an "inverted occulted" configuration. The Inverted external occulter (IEO) is a small circular aperture at the METIS entrance; the Sun-disk light is rejected by a spherical mirror M0 through the same aperture, while the coronal light is collected by two annular mirrors M1-M2 realizing a Gregorian telescope. To allocate the spectroscopic part, one portion of the M2 is covered by a grating (i.e. approximately 1/8 of the solar corona will not be imaged). This paper presents the error budget analysis for this new concept coronagraph configuration, which incorporates 3 different sub-channels: UV and EUV imaging sub-channel, in which the UV and EUV light paths have in common the detector and all of the optical elements but a filter, the polarimetric visible light sub-channel which, after the telescope optics, has a dedicated relay optics and a polarizing unit, and the spectroscopic sub-channel, which shares the filters and the detector with the UV-EUV imaging one, but includes a grating instead of the secondary mirror. The tolerance analysis of such an instrument is quite complex: in fact not only the optical performance for the 3 sub-channels has to be maintained simultaneously, but also the positions of M0 and of the occulters (IEO, internal occulter and Lyot stop), which guarantee the optimal disk light suppression, have to be taken into account as tolerancing parameters. In the aim of assuring the scientific requirements are optimally fulfilled for all the sub-channels, the preliminary results of manufacturing, alignment and stability tolerance analysis for the whole instrument will be described and discussed.
Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)
NASA Astrophysics Data System (ADS)
Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.
2017-11-01
Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.
HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu
2015-08-01
We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less
Minneapolis Multi-Ethnic Curriculum Project--Migration Unit.
ERIC Educational Resources Information Center
Minneapolis Public Schools, Minn. Dept. of Intergroup Education.
The student booklet presents short chapters illustrating the migration unit of the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. Sixteen brief chapters describe migration, immigration, and emigration in the United States. The first six chapters offer first person accounts of immigrants from Norway, Korea, Egypt, Hitler's…
Scholastics, Pabulum, Clans, Transformation: A Journey into Otherness
ERIC Educational Resources Information Center
Lausch, David; Teman, Eric; Perry, Cody
2017-01-01
International students' identities are complex and so are their needs. Semi-structured interviews with 13 of the lead researcher's former students from Dubai, United Arab Emirates, who are multi-national, multi-lingual and pursuing degrees in law, business, economics, medicine, education, art and media, in the United States, United Kingdom and…
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ram, R. S.; Bernath, Peter F.; Parsons, C. G.; Galehouse, D.; Arnold, James O. (Technical Monitor)
2001-01-01
The spectrum of CrH has been reinvestigated in the 9000-15000/cm region using the Fourier transform spectrometer of the National Solar Observatory. The 1-0 and 1-1 bands of the A6Sigma+ - X6Sigma+ transition have been measured and improved spectroscopic constants have been determined. A value for the 2-0 band origin has been obtained from the band head using estimated spectroscopic constants. These data provide a set of much improved equilibrium vibrational and rotational constants for the A6Sigma+ state. An accurate description of the A-X transition has been obtained using a multi-reference configuration interaction approach. The inclusion of both scalar relativity and Cr 3s3p correlation are required to obtain a good description of both states. The ab initio computed Einstein coefficients and radiative lifetimes are reported.
Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument
NASA Technical Reports Server (NTRS)
Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather;
2011-01-01
NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.
Type Ia supernova rate studies from the SDSS-II Supernova Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilday, Benjamin
2008-08-01
The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less
LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Corbally, C. J.; Cat, P. De
2016-01-15
The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101,086 spectra of 80,447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectralmore » types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.« less
NASA Astrophysics Data System (ADS)
Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake
2005-08-01
The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.
NIRcam-NIRSpec GTO Observations of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Rieke, Marcia J.; Ferruit, Pierre; Alberts, Stacey; Bunker, Andrew; Charlot, Stephane; Chevallard, Jacopo; Dressler, Alan; Egami, Eiichi; Eisenstein, Daniel; Endsley, Ryan; Franx, Marijn; Frye, Brenda L.; Hainline, Kevin; Jakobsen, Peter; Lake, Emma Curtis; Maiolino, Roberto; Rix, Hans-Walter; Robertson, Brant; Stark, Daniel; Williams, Christina; Willmer, Christopher; Willott, Chris J.
2017-06-01
The NIRSpec and and NIRCam GTO Teams are planning a joint imaging and spectroscopic study of the high redshift universe. By virtue of planning a joint program which includes medium and deep near- and mid-infrared imaging surveys and multi-object spectroscopy (MOS) of sources in the same fields, we have learned much about planning observing programs for each of the instruments and using them in parallel mode to maximize photon collection time. The design and rationale for our joint program will be explored in this talk with an emphasis on why we have chosen particular suites of filters and spectroscopic resolutions, why we have chosen particular exposure patterns, and how we have designed the parallel observations. The actual observations that we intend on executing will serve as examples of how to layout mosaics and MOS observations to maximize observing efficiency for surveys with JWST.
Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Richter, D.; Tittel, F. K.
1999-01-01
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 micrometers is generated by a compact fiber-coupled, difference-frequency-based spectroscopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2cm) (corresponding to a power of approximately equal to 3 microW at 3.3 micrometers) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work.
Wu, Xue; Sengupta, Kaushik
2018-03-19
This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.
The Maunakea Spectroscopic Explorer: Design and Project Status
NASA Astrophysics Data System (ADS)
Murowinski, Rick
2015-08-01
The Maunakea Spectroscopic Explorer (MSE) will be a 10-m class telescope feeding a dedicated massively-multiplexed multi-object spectrometer. The project formally kicked off in March 2014, with a Project Office hosted at the Canada France Hawaii Telescope's (CFHT's) Waimea office facility. The MSE observatory will be ultimately realized my means of an upgrade to the CFHT telescope and partnership, resulting in a new observatory with forefront transformational capability and serving a new international partnership. This new observatory will be housed within the facade of the current CFHT and using the same summit site that CFHT now occupies. We present a description, and the status, of the project. We will show the level one design choices that have been made and those under consideration. We will show our progress in gaining permitting permission as the first major observatory that will re-use an existing Maunakea telescope site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smee, Stephen A.; Gunn, James E.; Uomoto, Alan
2013-07-12
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less
Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.
2009-06-01
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br
Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha
2012-06-01
Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.
The MUSE project face to face with reality
NASA Astrophysics Data System (ADS)
Caillier, P.; Accardo, M.; Adjali, L.; Anwand, H.; Bacon, Roland; Boudon, D.; Brotons, L.; Capoani, L.; Daguisé, E.; Dupieux, M.; Dupuy, C.; François, M.; Glindemann, A.; Gojak, D.; Hansali, G.; Hahn, T.; Jarno, A.; Kelz, A.; Koehler, C.; Kosmalski, J.; Laurent, F.; Le Floch, M.; Lizon, J.-L.; Loupias, M.; Manescau, A.; Migniau, J. E.; Monstein, C.; Nicklas, H.; Parès, L.; Pécontal-Rousset, A.; Piqueras, L.; Reiss, R.; Remillieux, A.; Renault, E.; Rupprecht, G.; Streicher, O.; Stuik, R.; Valentin, H.; Vernet, J.; Weilbacher, P.; Zins, G.
2012-09-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument built for ESO (European Southern Observatory) to be installed in Chile on the VLT (Very Large Telescope). The MUSE project is supported by a European consortium of 7 institutes. After the critical turning point of shifting from the design to the manufacturing phase, the MUSE project has now completed the realization of its different sub-systems and should finalize its global integration and test in Europe. To arrive to this point many challenges had to be overcome, many technical difficulties, non compliances or procurements delays which seemed at the time overwhelming. Now is the time to face the results of our organization, of our strategy, of our choices. Now is the time to face the reality of the MUSE instrument. During the design phase a plan was provided by the project management in order to achieve the realization of the MUSE instrument in specification, time and cost. This critical moment in the project life when the instrument takes shape and reality is the opportunity to look not only at the outcome but also to see how well we followed the original plan, what had to be changed or adapted and what should have been.
Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, Yun-Kyeong; Kim, Minjin; Smith, Rory
Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gasmore » disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.« less
The MUSE view of the host galaxy of GRB 100316D
NASA Astrophysics Data System (ADS)
Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.
2017-12-01
The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.
Jovian Hotspots in the NEB in the Visible and Near-IR from Hubble and Ground-Based IR Observations
NASA Astrophysics Data System (ADS)
Wittal, Matthew Michael; Orton, Glenn; Sinclair, James; Wong, Michael; Simon, Amy; Irwin, Patrick; Braude, Ashwin
2018-01-01
In order to better understand the composition and behavior of Jupiter's atmosphere, radiating regions in the infrared known as ‘hotspots’ are compared with darker spots in the visible at the same locations within the Northern Equatorial Band (NEB). Hubble images taken in across the visible and into the near-infrared (between 275 nm and 889 nm) are compared with 5.1 µm images taken using the Subaru telescope and other ground-based observations. The connection between these regions has been known for some time, and comparison between them at these wavelengths showed a general correlation between dimness in the visible and brightness in the infrared, but this was not the case in all observed locations. The origins and cause of these hotspots remains unclear, but because of their quasi-stable nature and reoccurrence at roughly 30-degree longitudes suggests a relationship with Rossby Waves. Continuous spectra from Multi Unite Spectroscopic Explorer (MUSE) also shows that measured values from the near-infrared fit well with observations, and hints at the composition of the discolored region through the use of NEMESIS software cross-correlation.
Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670
NASA Astrophysics Data System (ADS)
Sheen, Yun-Kyeong; Smith, Rory; Jaffé, Yara; Kim, Minjin; Yi, Sukyoung K.; Duc, Pierre-Alain; Nantais, Julie; Candlish, Graeme; Demarco, Ricardo; Treister, Ezequiel
2017-05-01
Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.
Gas flows in the circumgalactic medium around simulated high-redshift galaxies
NASA Astrophysics Data System (ADS)
Mitchell, Peter D.; Blaizot, Jérémy; Devriendt, Julien; Kimm, Taysun; Michel-Dansac, Léo; Rosdahl, Joakim; Slyz, Adrianne
2018-03-01
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z ≥ 3, utilizing a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman α (Ly α) emitters recently obtained with the multi unit spectroscopic explorer (MUSE) instrument (halo masses ˜1010-1011 M⊙). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium (CGM) by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs, we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photoionization/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (˜50 km s-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
UV spectroscopy of the most metal-poor galaxies: clues for interpreting distant galaxy observations
NASA Astrophysics Data System (ADS)
Wofford, A.; Vidal-García, A.; Feltre, A.; Chevallard, J.; Herenz, E.; Charlot, S., Stark, D. P.; Hayes, M.
2017-11-01
Among the most metal-poor galaxies known, SBS 0335-052E is on one of the most well-studied. For this galaxy, we present Hubble Space Telescope (HST) / Cosmic Origins Spectrograph (COS) detections of the C IV λλ1549, 1551, He II λ1640, O III] λλ1661, 1666, [C III] λ1907, and C III] λ1909 UV emission lines; and a Very Large Telescope (VLT) / Multi Unit Spectroscopic Explorer (MUSE) spectrum covering from 4600 to 9400 Å, which is co-spatial with the UV data and integrated over the same area. Using these datasets we test: a) the latest Charlot & Bruzal spectral synthesis models with very massive (300 M_⊙) single non-rotating stars; b) the ability of the tool, BayEsian Analysis of GaLaxy sEds (BEAGLE) to reproduce the observed emission line fluxes; and c) the extent to which physical properties of the gas and dust derived independently from the UV and optical with BEAGLE are constrained. The UV observations are part of a pilot program where we also observed UGC 5340-1 and I Zw 18 SE, whose spectra we also present in this contribution.
SPLASH-SXDF Multi-wavelength Photometric Catalog
NASA Astrophysics Data System (ADS)
Mehta, Vihang; Scarlata, Claudia; Capak, Peter; Davidzon, Iary; Faisst, Andreas; Hsieh, Bau Ching; Ilbert, Olivier; Jarvis, Matt; Laigle, Clotilde; Phillips, John; Silverman, John; Strauss, Michael A.; Tanaka, Masayuki; Bowler, Rebecca; Coupon, Jean; Foucaud, Sébastien; Hemmati, Shoubaneh; Masters, Daniel; McCracken, Henry Joy; Mobasher, Bahram; Ouchi, Masami; Shibuya, Takatoshi; Wang, Wei-Hao
2018-04-01
We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ∼1.17 million objects over ∼4.2 deg2, with ∼800,000 objects in the 2.4 deg2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
NASA Astrophysics Data System (ADS)
Gurcay, S.; Cifci, G.; Dondurur, D.; Sozbilir, H.
2012-12-01
Gulfes of Sigacik and Kusadasi (Western Anatolia) are located south of the Middle Eastern Aegean depression which formed by vertical displacements along the NB- to N-trending structural planes. This study consists of the results of the multi-channel seismic reflection and chirp data acquisition by K. Piri Reis, research vessel of Dokuz Eylül University (Izmir-TURKEY), in Sigacik Gulf and Kusadasi Gulf (West Anatolia) in August-2005 and in March-2008. Data were acquired approximately along the 1300km seismic lines. Two main seismic units, lower unit (Pre-Neogene) and upper unit (Neogene), can easily be determined on multi channel seismic sections. It is also observed on seismic sections that there are many active faults deform these units. Two main submarine basins can be determined from multi-channel seismic sections, Sigacik Basin and Kusadasi Basin. The upper unit in Sigacik Basin is deformed generally by strike slip faults. But there are some faults that have sharp vertical movements on lower unit. Some of these vertical movements are followed by strike-slip active faults along the upper unit indicating that these normal movements have changed to lateral movements, recently.
NASA Astrophysics Data System (ADS)
Di Giorgio, Anna Maria; Biondi, David; Saggin, Bortolino; Shatalina, Irina; Viterbini, Maurizio; Giusi, Giovanni; Liu, Scige J.; Cerulli-Irelli, Paquale; Van Loon, Dennis; Cara, Christophe
2012-09-01
We present the preliminary design of the Instrument Control Unit (ICU) of the SpicA FAR infrared Instrument (SAFARI), an imaging Fourier Transform Spectrometer (FTS) designed to give continuous wavelength coverage in both photometric and spectroscopic modes from around 34 to 210 µm. Due to the stringent requirements in terms of mass and volume, the overall SAFARI warm electronics will be composed by only two main units: Detector Control Unit and ICU. ICU is therefore a macro-unit incorporating the four digital sub-units dedicated to the control of the overall instrument functionalities: the Cooler Control Unit, the Mechanism Control Unit, the Digital processing Unit and the Power Supply Unit. Both the mechanical solution adopted to host the four sub-units and the internal electrical architecture are presented as well as the adopted redundancy approach.
Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii.
Liu, Juan; Li, Famei; Kim, Eun La; Li, Jian Lin; Hong, Jongki; Bae, Kyung Sook; Chung, Hae Young; Kim, Hyung Sik; Jung, Jee H
2011-08-26
Four new polyketides (1-4) were isolated from the fungus Paecilomyces variotii, which was derived from the jellyfish Nemopilema nomurai. The planar structures and relative configurations of these polyketides were elucidated on the basis of spectroscopic analyses, including 2D NMR experiments. The compounds showed inhibitory activity against pathogenic bacteria including methicillin-resistant Staphylococcus aureus 3089 and multi-drug-resistant Vibrio parahemolyticus 7001 with MIC values in the range 5-40 μg/mL.
The database design of LAMOST based on MYSQL/LINUX
NASA Astrophysics Data System (ADS)
Li, Hui-Xian, Sang, Jian; Wang, Sha; Luo, A.-Li
2006-03-01
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) will be set up in the coming years. A fully automated software system for reducing and analyzing the spectra has to be developed with the telescope. This database system is an important part of the software system. The requirements for the database of the LAMOST, the design of the LAMOST database system based on MYSQL/LINUX and performance tests of this system are described in this paper.
Bai, Leilei; Zhao, Zhen; Wang, Chunliu; Wang, Changhui; Liu, Xin; Jiang, Helong
2017-11-01
Interactions of antibiotics with algae-derived dissolved organic matter (ADOM) and macrophyte-derived dissolved organic matter (MDOM) are of vital importance to the transport and ecotoxicity of antibiotics in eutrophic freshwater lakes. Multi-spectroscopic techniques were used to investigate the complexation of tetracycline (TTC) with ADOM and MDOM collected from Lake Taihu (China). The 3 fluorescent components, tyrosine-, tryptophan-, and humic-like component, were identified by excitation emission matrix spectra with parallel factor analysis. Their fluorescence was quenched at different degree by TTC titration through static quenching. The complexation of TTC induced conformational changes in DOM fractions. Synchronous fluorescence spectra combined with two dimensional correlation spectroscopy further suggested that the formation of TTC-DOM complexes occurred on the sequential order of tryptophan-like→tyrosine-like→humic-like component. The effective quenching constants of tryptophan- and tyrosine-like component were similar, higher than those of humic-like component. The strong binding ability and abundant content of protein-like substances indicated their prominent role in the TTC-DOM complexation. Fourier transform infrared spectroscopy further revealed that the heterogeneous functional groups, including amide I and II, aromatics, and aliphatics, were responsible for the complexation. These results highlight the significant impact of the overgrowth of algae and macrophyte on the environmental behavior of antibiotics in waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-15
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 10 3 M -1 , which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were -63.19kJ mol -1 and -141.92J mol -1 K -1 , indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA. Copyright © 2017 Elsevier B.V. All rights reserved.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
Usman, Afia; Ahmad, Masood
2017-08-01
BPF (Bisphenol-F), a member of the bisphenol family, having a wide range of industrial applications is gradually replacing Bisphenol-A. It is a recognized endocrine disrupting chemical (EDC). EDCs have been implicated in increased incidences of breast, prostate and testis cancers besides diabetes, obesity and decreased fertility. Due to the adverse effects of EDCs on human health, attempts have been directed towards their mechanism of toxicity especially at the molecular level. Hence, to understand the mechanism at the DNA level, interaction of BPF with calf thymus DNA was studied employing multi-spectroscopic, voltammetric and molecular docking techniques. Fluorescence spectra, cyclic voltammetry (CV), circular dichroism (CD) and molecular docking studies of BPF with DNA were suggestive of minor groove binding of BPF. UV-visible absorption and fluorescence spectra suggested static quenching due to complex formation between BPF and ctDNA. Hoechst 33258 (HO) and ethidium bromide (EB) displacement studies further confirmed such mode of BPF interaction. Thermodynamic and molecular docking parameters revealed the mechanism of binding of BPF with ctDNA to be favorable and spontaneous due to negative ΔG and occurring through hydrogen bonds and van der waals interactions. BPF induced DNA cleavage under in vitro conditions by plasmid nicking assay suggested it to be genotoxic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Project Physics Handbook 5, Models of the Atom.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Five experiments and 19 activities are presented in this Unit 5 handbook. The experiments are related to electrolysis, charge-to-mass ratio, elementary charge determination, photoelectric effects, and spectroscopic analyses. The activities are concerned with Dalton's theory, water electrolysis, periodic tables, single-electron plating, cloud…
NASA Astrophysics Data System (ADS)
Fischer, Rudolf Fritz; Baltes, Christof; Weiss, Kilian; Pazhenkottil, Aju; Rudin, Markus; Boesiger, Peter; Kozerke, Sebastian
2011-07-01
In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95 × 1.15 × 1.15 mm 3 on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2012-09-01
An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses
NASA Astrophysics Data System (ADS)
Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.
2009-08-01
We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.
VizieR Online Data Catalog: Imaging and spectroscopy in Lynx W (Jorgensen+, 2014)
NASA Astrophysics Data System (ADS)
Jorgensen, I.; Chiboucas, K.; Toft, S.; Bergmann, M.; Zirm, A.; Schiavon, R. P.; Grutzbauch, R.
2017-01-01
Ground-based imaging of RX J0848.6+4453 was obtained primarily to show the performance gain provided by replacing the original E2V charge-coupled devices (E2V CCDs) in Gemini Multi-Object Spectrograph on Gemini North (GMOS-N) with E2V Deep Depletion CCDs (E2V DD CCDs). This replacement was done in 2011 October. Imaging of RX J0848.6+4453 was obtained with the original E2V CCDs in 2011 October (UT 2011 Oct 1 to 2011 Oct 2; Program ID: GN-2011B-DD-3) and repeated with the E2V DD CCDs in 2011 November. The imaging was done in the z' filter. For the observations with the original E2V CCDs the total exposure time was 60 minutes (obtained as 12 five-minute exposures) and the co-added image had an image quality of FWHM=0.52'' measured from point sources in the field. For the E2V DD CCDs a total exposure time of 55 minutes was obtained and the resulting image quality was FWHM=0.51''. Imaging of RX J0848.6+4453 was also obtained with Hubble Space Telescope /Advanced Camera for Surveys (HST/ACS using the filters F775W and F850LP) under the program ID 9919. The spectroscopic observations were obtained in multi-object spectroscopic (MOS) mode with GMOS-N (UT 2011 Nov 24 to 2012 Jan 4, Program ID: GN-2011B-DD-5; UT 2013 Mar 9 to 2013 May 18, Program ID: GN-2013A-Q-65). Table10 lists the photometric parameters for the spectroscopic sample as derived from the HST/ACS observations in F850LP and F775W. Tables 11 and 12 list the results from the template fitting and the derived line strengths, respectively. (3 data files).
29 CFR 779.310 - Employees of employers operating multi-unit businesses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... multi-unit businesses. (a) Where the employer's business operations are conducted in more than one establishment, as in the various units of a chain-store system or where branch establishments are operated in conjunction with a main store, the employer is entitled to exemption under section 13(a)(2) or (4) for those...
29 CFR 779.310 - Employees of employers operating multi-unit businesses.
Code of Federal Regulations, 2012 CFR
2012-07-01
... multi-unit businesses. (a) Where the employer's business operations are conducted in more than one establishment, as in the various units of a chain-store system or where branch establishments are operated in conjunction with a main store, the employer is entitled to exemption under section 13(a)(2) or (4) for those...
29 CFR 779.310 - Employees of employers operating multi-unit businesses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... multi-unit businesses. (a) Where the employer's business operations are conducted in more than one establishment, as in the various units of a chain-store system or where branch establishments are operated in conjunction with a main store, the employer is entitled to exemption under section 13(a)(2) or (4) for those...
Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera
NASA Astrophysics Data System (ADS)
Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto
2017-02-01
Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.
Cataclysmic variables based on the stellar spectral survey LAMOST DR3
NASA Astrophysics Data System (ADS)
Han, Xianming L.; Zhang, Li-Yun; Shi, Jian-Rong; Pi, Qing-Feng; Lu, Hong-Peng; Zhao, Li-Bo; Terheide, Rachel K.; Jiang, Lin-Yang
2018-06-01
Big data in the form of stellar spectra from the spectroscopic survey associated with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) are important for studying properties of cataclysmic variables (CVs). By cross matching the catalogs of CVs compiled with LAMOST DR3, acquired from October 2011 to July 2015, we obtained the first spectroscopic catalog for CVs observed by LAMOST with high signal to noise ratio, above 8. By integrating line profiles, their equivalent widths (EWs) of the Hα, Hβ, Hγ and Hδ, as well as He I 5876 and 6678 Å lines, were calculated. There were 74 stellar spectra from 48 known CVs and three spectra from three new CV candidates. At the same time, we also collected their previously published EWs. Thirty-three objects had repeated spectra and 30 stars showed spectral variability in the Hα line. Moreover, we carried out photometric follow-up studies for five CVs (UU Aqr, TT Tri, PX And, BP Lyn and RW Tri). We obtained nine new light curves and revised their linear ephemerides. For RW Tri, there is a possible oscillation with an amplitude of 0.0031(2) days and a period of 47.6 ± 0.4 years, which might be caused by a third body (brown dwarf) or magnetic activity cycle.
NASA Astrophysics Data System (ADS)
Mohini, G. Jagan; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Rao, P. Venkateswara; Veeraiah, N.
2013-12-01
Bioactive multi component glasses of the composition of 27.4 B2O3-6.4 SiO2-2.5 P2O5-25.5 Na2O-(38.2 - x) CaO: x Al2O3 (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al2O3 concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.
Tracing the properties of the Sagittarius stream across the sky with LAMOST spectra
NASA Astrophysics Data System (ADS)
Walder, Madison Victoria; Carlin, Jeffrey
2018-01-01
The Sagittarius dwarf galaxy is a satellite that is currently being consumed by the Milky Way’s gravity. Its disruption has created the most prominent and widely studied tidal stream in our halo which wraps around our Galaxy with its leading arm in the northern Galactic hemisphere and its trailing arm in the southern hemisphere. Using optical spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, we identify stars that belong to the Sagittarius tidal stream based on their positions, distances, velocities, stellar parameters, and metallicities. We trace the velocity, metallicity, and distance of the Sagittarius stream over 200 degrees of its extent on the sky using a homogenous spectroscopic data set. In doing this, we will be able to trace the stream in regions where the disk of the Galaxy makes it difficult to distinguish Sagittarius members from the far more numerous foreground stars, and therefore use the entirety of the stream to deepen our understanding of tidal disruption. We use the spectroscopic metallicities from LAMOST to derive the metallicity as a function of position along the stream, providing an important probe of the ongoing process of tidal disruption, and a window into the stellar populations that made up the Sagittarius dwarf before its cannibalization by the Milky Way.
Predictive spectroscopy and chemical imaging based on novel optical systems
NASA Astrophysics Data System (ADS)
Nelson, Matthew Paul
1998-10-01
This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.
NASA Astrophysics Data System (ADS)
Dorez, Hugo; Sablong, Raphaël.; Canaple, Laurence; Saint-Jalmes, Hervé; Gaillard, Sophie; Moussata, Driffa; Beuf, Olivier
2015-07-01
The purpose of this research project is to assess mice colon wall, using three optical modalities (conventional endoscopy, confocal endomicroscopy and optical spectroscopy) and endoluminal MRI. The study is done in the context of inflammatory bowel disease and colorectal cancer that represent 13% of new cases of cancer, every year in western countries. An optical spectroscopic bench (autofluorescence and reflectance) was developed with a flexible fiber probe. This latter has been combined with a mini multi-purpose rigid endoscope and a confocal endomicroscope. The optical modalities were first used in vivo on SWISS mice. Then, a specific optical a phantom (containing two layers of distinct fluorophores) was developed in order to evaluate our two-channel spectroscopic probe as a basic depth-sensitive measurement tool. The preliminary results show the feasibility to combine such modalities in the same in vivo protocol. Conventional endoscopy is useful to depict inflammation along colon wall. Confocal endomicroscopy provides high-contrasted images of microvascularization. Measured optical spectra both depend on biochemical tissue content and layered structure of the medium. The light collected from one channel is not similar to the other, in terms of intensity and spectroscopic profile as the interaction with the medium observed volume is different. A comparative analysis of the spectra based on our in vitro model exhibits a strong correlation between simple index extracted from spectral data and two main phantom characteristics (fluorophore concentrations and superficial layer thickness). This work suggests that this technique could contribute to assess tissues alterations through autofluorescence spectroscopic measurement under endoscopy.
NASA Astrophysics Data System (ADS)
Kasoju, Naresh; Bora, Debajeet K.; Bhonde, Ramesh R.; Bora, Utpal
2010-03-01
We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.
Biosynthesis of Rishirilide B.
Schwarzer, Philipp; Wunsch-Palasis, Julia; Bechthold, Andreas; Paululat, Thomas
2018-03-07
Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13 C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.
Resonant-frequency discharge in a multi-cell radio frequency cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, S; Upadhyay, J; Mammosser, J
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less
MuSICa: the Multi-Slit Image Slicer for the est Spectrograph
NASA Astrophysics Data System (ADS)
Calcines, A.; López, R. L.; Collados, M.
2013-09-01
Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.
Granular computing with multiple granular layers for brain big data processing.
Wang, Guoyin; Xu, Ji
2014-12-01
Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.
Effect of volumetric concentration of MWCNTs on the stability and thermal conductivity of nanofluids
NASA Astrophysics Data System (ADS)
Rehman, Wajid Ur; Bhat, A. H.; Suliamon, A. A.; Khan, Ihsan Ullah; Ullah, Hafeez
2016-11-01
Environmental concerns and running down of the fossil fuel deposits which are generally being used as base oil in Drilling Fluid/Mud have attended worldwide attention and thereby, researchers have focused on using environmentally friendly drilling fluids. This study demonstrates the preparation of drilling fluids and to explore the effect of increase in the volumetric concentration of nanoparticles on the stability and thermal conductivity of nanofluids. In this research, for the formation of nanofluids, Jatropha Seed Oil was used as the base oil with the addition of multi-walled carbon nanotubes as the nanoparticles using sonication technique. The raw multi-walled carbon nanotubes were characterized by using SEM for morphological examination. The prepared drilling fluid were characterized by using UV-Visible spectroscopic technique for analyzing the stability. Thermal Conductivity measurements were also carried out for heat transfer efficiency. It was observed that the heat transfer capability of the nanofluid ameliorates with the increase in the loading percentage of multi-walled carbon nanotubes.
Competitive Adsorption and Oxidation Behavior of Heavy Metals on nZVI Coated with TEOS.
Eglal, Mahmoud M; Ramamurthy, Amruthur S
2015-11-01
Zero valent iron nanoparticle (nanofer ZVI) is a powerful substance due to its coating with tetraethyl orthosilicate (TEOS). Tetraethyl orthosilicate imparts higher reactivity and decreases particle agglomeration. The competitive removal and displacement of multi-metals are influenced by time, pH, and initial concentration, the presence and properties of competing metals ion in the solution. For both the isotherm and kinetic studies performed for multi-metal removal experiments, compared to Pb II and Cd II, Cu II experienced a higher removal rate during the initial 5 minutes. After 120 minutes, all metals achieved removal efficiency in the range of 95 to 99%. The results of single and competitive kinetic tests for all three metals during the initial 5 minutes indicated that the presence of other metals generally reduce removal efficiency of metals. Both kinetic test and electron dispersive spectroscope (EDS) studies found that Cu II gets removed faster than the other metals. Pseudo-second order behavior was noted for the multi-metal removal systems.
Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method
NASA Astrophysics Data System (ADS)
Lindsey, Adam C.; Wu, Yuntao; Zhuravleva, Mariya; Loyd, Matthew; Koschan, Merry; Melcher, Charles L.
2017-07-01
We investigate the multi-ampoule growth at 25 mm diameter of ternary iodide single crystal scintillator KCaI3:Eu using the randomly oriented self-seeded Bridgman method. We compare scintillation performance between cubic inch scale crystals containing small variations of low nominal europium concentrations previously shown to balance light yield with self-absorption in the host crystal. Growth conditions were optimized in the developmental furnace and four 2 in3 KCaI3:Eu crystals were grown simultaneously producing a total of six 25 mm × 25 mm cylinders. Small variations in activator concentration did not result in significant performance differences among the six measured crystals. A range of energy resolutions of 3.5-4.7% at 662 keV was achieved, surpassing that of NaI:Tl crystals commonly used in spectroscopic detection applications. The function and basic design of the multi-ampoule furnace as well as the process of growing single crystals of KCaI3 is included here.
Orthogonal strip HPGe planar SmartPET detectors in Compton configuration
NASA Astrophysics Data System (ADS)
Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.
2007-10-01
The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
The Size Distribution Of Cluster Galaxies
NASA Astrophysics Data System (ADS)
Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.
2017-06-01
We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Geoffrey
United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).
Spectroscopic Classification of ASASSN-13dn
NASA Astrophysics Data System (ADS)
Martini, P.; Elias, J.; Points, S.; Prieto, J. L.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Jencson, J.; Basu, U.; Beacom, J. F.; Szczygiel, D.; Pojmanski, G.; Brimacombe, J.; Bersier, D.
2013-12-01
We obtained optical spectra of ASASSN-13dn (ATel #5665). The candidate was confirmed with the new KOSMOS instrument (Kitt Peak Ohio State Multi-Object Spectrograph), which is presently being commissioned at the KPNO 4-m Mayall telescope. Observations were obtained with both the blue and red VPH grisms (50 min each) for a combined wavelength range of 380nm to 965nm at R ~ 2000. The spectrum of ASASSN-13dn is characteristic of a Type II SN at the redshift of its host galaxy (z=0.023).
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Lopez, Bruno; Augereau, Jean-Charles; Delbo, Marco; Dominik, Carsten; Henning, Thomas; Hofmann, Karl-Heinz; Hogerheijde, Michiel; Hron, Josef; Jaffe, Walter; Lanz, Thierry; Meisenheimer, Klaus; Millour, Florentin; Pantin, Eric; Petrov, Roman; Schertl, Dieter; van Boekel, Roy; Weigelt, Gerd; Chiavassa, Andrea; Juhasz, Attila; Matter, Alexis; Meilland, Anthony; Nardetto, Nicolas; Paladini, Claudia
2016-07-01
We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star and planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.
Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.
Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V
2011-07-22
From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.
Spectroscopy of γ Doradus stars
NASA Astrophysics Data System (ADS)
Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.; Kilmartin, P. M.
2014-02-01
The musician programme at the University of Canterbury has been successfully identifying pulsation modes in many γ Doradus stars using hundreds of ground-based spectroscopic observations. This paper describes some of the successful mode identifications and emerging patterns of the programme. The hybrid γ Doradus/δ Scuti star HD 49434 remains an enigma, despite the analysis of more than 1700 multi-site high-resolution spectra. A new result for this star is apparently distinct line-profile variations for the γ Doradus and δ Scuti frequencies.
VizieR Online Data Catalog: Velocities of galaxies in Abell 520 (Girardi+, 2008)
NASA Astrophysics Data System (ADS)
Girardi, M.; Barrena, R.; Boschin, W.; Ellingson, E.
2009-01-01
Multi-object spectroscopic observations of A520 were carried out at the TNG telescope in December 2006. We used DOLORES/MOS with the LR-B Grism 1. As far as photometry is concerned, our observations were carried out with the Wide Field Camera (WFC), mounted at the prime focus of the 2.5m INT telescope (located at Roque de los Muchachos observatory, La Palma, Spain). We observed A520 in January 2008. (1 data file).
VizieR Online Data Catalog: Velocity catalog of A545 galaxies (Barrena+, 2011)
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Eckert, D.; Rossetti, M.
2011-08-01
Multi-object spectroscopic observations of A545 were carried out at the TNG telescope in October 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the new 2048x2048pixels E2V CCD, with a pixel size of 13.5um. In total, we observed 4 MOS masks for a total of 142 slits. We acquired three exposures of 1200s for each mask. (1 data file).
[Incidence of multi-resistant bacteria in Intensive Care Units of Chilean hospitals].
Acuña, M Paz; Cifuentes, Marcela; Silva, Francisco; Rojas, Álvaro; Cerda, Jaime; Labarca, Jaime
2017-12-01
Incidence of multi-resistant bacteria is an indicator that permits better estimation of the magnitude of bacterial resistance in hospitals. To evaluate the incidence of relevant multi-drug resistant bacteria in intensive care units (ICUs) of Chile. Participating hospitals submitted information about the number of isolates from infected or colonized patients with 7 epidemiologically relevant multi-resistant bacteria in adult and pediatric ICUs between January 1, 2014 and October 31, 2015 and the number of bed days occupied in these units in the same period was requested. With these data incidence was calculated per 1,000 patient days for each unit. Information from 20 adults and 9 pediatric ICUs was reviewed. In adult ICUs the bacteria with the highest incidence were K. pneumoniae ESBL [4.72 × 1,000 patient day (1.21-13.89)] and oxacillin -resistant S. aureus [3.85 (0.71-12.66)]. In the pediatric units the incidence was lower, highlighting K. pneumoniae ESBL [2.71 (0-7.11)] and carbapenem -resistant P. aeruginosa [1.61 (0.31-9.25)]. Important differences between hospitals in the incidence of these bacteria were observed. Incidence of multi-resistant bacteria in adult ICU was significantly higher than in pediatric ICU for most of the studied bacterias.
Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W
2018-02-01
Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.
A NEARLY VOLUME-COMPLETE SPECTROSCOPIC SURVEY OF THE CLOSESTMID-TO-LATE M DWARFS
NASA Astrophysics Data System (ADS)
Winters, Jennifer; Irwin, Jonathan; Newton, Elisabeth; Charbonneau, David; Latham, David W.; Mink, Jessica; Esquerdo, Gil; Berlind, Perry; Calkins, Mike
2018-01-01
Recent results from Kepler estimate that M dwarfs harbor 2.5 planets per star. Yet, we will understand our exoplanet discoveries only as well as we understand their host stars, and much remains unknown about our low-mass stellar neighbors, such as their kinematics, ages, and multiplicity. A nearly volume-complete sample of M dwarfs lies within 15 pc of the Sun, and it is only for planets orbiting these nearest and smallest stars that thorough follow-up work for characterization will be possible. Unfortunately, more than half of this sample have only low-resolution (R < 19,000) spectroscopic measurements available from the literature, while ten percent have no published spectrum at all.We have undertaken a multi-epoch, high-resolution (R ~ 44,000) spectroscopic survey of the mid-to-late M dwarfs that lie within 15 pc via acurate trigonometric parallaxes. Observations with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5m telescope at the Fred Lawrence Whipple Observatory (FLWO) on Mt. Hopkins, AZ, are currently underway. We will shortly begin the southern part of this survey with CHIRON at the Cerro Tololo Inter-American Observatory / Small and Moderate Aperture Research Telescope System (CTIO/SMARTS) 1.5m. We present here results from year one of our TRES survey. We have measured radial velocities, rotational broadening, and H-alpha equivalent widths for 305 mid-to-late M dwarfs. We have discovered five new spectroscopic binaries, one of which is a rare M dwarf - (likely) brown dwarf binary within 10 pc, for which we have determined the orbit.Our survey more than doubles the number of mid-M dwarfs within 15 pc with complete high-resolution spectroscopic and trigonometric characterization. We hope to provide a legacy dataset for the use of future generations of astronomers.This work is being supported by grants from the National Science Foundation and the John Templeton Foundation.
NASA Astrophysics Data System (ADS)
Jaehnig, Karl; Bird, Jonathan C.; Stassun, Keivan G.; Da Rio, Nicola; Tan, Jonathan C.; Cotaar, Michiel; Somers, Garrett
2017-12-01
We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R = 22,500 for sources with H < 12 mag. Radial velocity precisions of ˜0.3 {km} {{{s}}}-1 were achieved, which we use to identify radial velocity variations indicative of undetected companions. We use Monte Carlo simulations to assess the types of spectroscopic binaries to which we are sensitive, finding sensitivity to binaries with orbital periods ≲ {10}3.5 days, for stars with 2500 {{K}}≤slant {T}{eff}≤slant 6000 {{K}} and v \\sin i < 100 {km} {{{s}}}-1. Using Bayesian inference, we find evidence for a decline in the spectroscopic binary fraction, by a factor of 3-4, from the age of our pre-main-sequence (PMS) sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the PMS clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five PMS clusters, and the decline reaches a statistical significance of greater than 95% confidence when considering the PMS clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries ({P}{orb}≈ {10}3{--}{10}4 days) as clusters age, indicating that this occurs early in the stars’ evolution, while they still reside within their nascent clusters.
NASA Astrophysics Data System (ADS)
Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng
2018-01-01
We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).
The United States Environmental Protection Agency (EPA) is developing a comprehensive environmental exposure and risk analysis software system for agency-wide application using the methodology of a Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) model. This sof...
High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system
NASA Astrophysics Data System (ADS)
Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.
2015-11-01
Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.
Chen, Xiao-Fei; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P
2018-03-12
A series of light-harvesting conjugates based on a zinc(II) phthalocyanine core with either two or four boron dipyrromethene (BODIPY) or porphyrin units have been synthesized and characterized. The conjugation of BODIPY/porphyrin units can extend the absorptions of the phthalocyanine core to cover most of the visible region. Upon addition of an imidazole-substituted C 60 (C 60 Im), it can axially bind to the zinc(II) center of the phthalocyanine core through metal-ligand interactions. The resulting complexes form photosynthetic antenna-reaction center mimics in which the BODIPY/porphyrin units serve as the antennas to capture the light and transfer the energy to the phthalocyanine core by efficient excitation energy transfer. The excited phthalocyanine is then quenched by the axially bound C 60 Im moiety by electron transfer, which has been supported by computational studies. The photoinduced processes of the assemblies have been studied in detail by various steady-state and time-resolved spectroscopic methods. By femtosecond transient absorption spectroscopic studies, the lifetimes of the charge-separated state of the bis(BODIPY) and bis(porphyrin) systems have been determined to be 3.2 and 4.0 ns, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Otazo, Ricardo; Mueller, Bryon; Ugurbil, Kamil; Wald, Lawrence; Posse, Stefan
2006-12-01
This study characterizes gains in sensitivity and spectral resolution of proton echo-planar spectroscopic imaging (PEPSI) with increasing magnetic field strength (B(0)). Signal-to-noise ratio (SNR) per unit volume and unit time, and intrinsic linewidth (LW) of N-acetyl-aspartate (NAA), creatine (Cr), and choline (Cho) were measured with PEPSI at 1.5, 3, 4, and 7 Tesla on scanners that shared a similar software and hardware platform, using circularly polarized (CP) and eight-channel phased-array (PA) head coils. Data were corrected for relaxation effects and processed with a time-domain matched filter (MF) adapted to each B(0). The SNR and LW measured with PEPSI were very similar to those measured with conventional point-resolved spectroscopy (PRESS) SI. Measurements with the CP coil demonstrated a nearly linear SNR gain with respect to B(0) in central brain regions. For the PA coil, the SNR-B(0) relationship was less than linear, but there was a substantial SNR increase in comparison to the CP coil. The LW in units of ppm decreased with B(0), resulting in improved spectral resolution. These studies using PEPSI demonstrated linear gains in SNR with respect to B(0), consistent with theoretical expectations, and a decrease in ppm LW with increasing B(0).
Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.
Padmaja, G; Kistaiah, P
2009-03-19
A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.
Minneapolis Multi-Ethnic Curriculum Project. Unit Overviews.
ERIC Educational Resources Information Center
Skjervold, Christian K.; Tipple, Bruce
The document presents unit overviews describing activities in the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. It is divided into seven sections, each relating to a specific topic. Sections are entitled ethnicity, migration, acculturation, ethnic enclaves, family, prejudice/discrimination, and power. Each section offers from…
NASA Astrophysics Data System (ADS)
Annunziatella, M.; Bonamigo, M.; Grillo, C.; Mercurio, A.; Rosati, P.; Caminha, G.; Biviano, A.; Girardi, M.; Gobat, R.; Lombardi, M.; Munari, E.
2017-12-01
We present a high-resolution dissection of the two-dimensional total mass distribution in the core of the Hubble Frontier Fields galaxy cluster MACS J0416.1‑2403, at z = 0.396. We exploit HST/WFC3 near-IR (F160W) imaging, VLT/Multi Unit Spectroscopic Explorer spectroscopy, and Chandra data to separate the stellar, hot gas, and dark-matter mass components in the inner 300 kpc of the cluster. We combine the recent results of our refined strong lensing analysis, which includes the contribution of the intracluster gas, with the modeling of the surface brightness and stellar mass distributions of 193 cluster members, of which 144 are spectroscopically confirmed. We find that, moving from 10 to 300 kpc from the cluster center, the stellar to total mass fraction decreases from 12% to 1% and the hot gas to total mass fraction increases from 3% to 9%, resulting in a baryon fraction of approximatively 10% at the outermost radius. We measure that the stellar component represents ∼30%, near the cluster center, and 15%, at larger clustercentric distances, of the total mass in the cluster substructures. We subtract the baryonic mass component from the total mass distribution and conclude that within 30 kpc (∼3 times the effective radius of the brightest cluster galaxy) from the cluster center the surface mass density profile of the total mass and global (cluster plus substructures) dark-matter are steeper and that of the diffuse (cluster) dark-matter is shallower than an NFW profile. Our current analysis does not point to a significant offset between the cluster stellar and dark-matter components. This detailed and robust reconstruction of the inner dark-matter distribution in a larger sample of galaxy clusters will set a new benchmark for different structure formation scenarios.
Paving the way for the JWST: witnessing globular cluster formation at z > 3
NASA Astrophysics Data System (ADS)
Vanzella, E.; Calura, F.; Meneghetti, M.; Mercurio, A.; Castellano, M.; Caminha, G. B.; Balestra, I.; Rosati, P.; Tozzi, P.; De Barros, S.; Grazian, A.; D'Ercole, A.; Ciotti, L.; Caputi, K.; Grillo, C.; Merlin, E.; Pentericci, L.; Fontana, A.; Cristiani, S.; Coe, D.
2017-06-01
We report on five compact, extremely young (<10 Myr) and blue (βUV < -2.5, Fλ = λβ) objects observed with VLT/Multi Unit Spectroscopic Explorer at redshifts 3.1169 and 3.235, in addition to three objects at z = 6.145. These sources are strongly magnified (3-40 times) by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their delensed half-light radii (Re) are between 16 and 140 pc, the stellar masses are ≃1-20 × 106 M⊙, the magnitudes are mUV = 28.8-31.4 (-17 < MUV < -15) and specific star formation rates can be as large as ˜800 Gyr-1. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-GCs discovered so far. Rest-frame optical high-dispersion spectroscopy of one of them at z = 3.1169 yields a velocity dispersion σv ≃ 20 km s-1, implying a dynamical mass dominated by the stellar mass. Another object at z = 6.145, with delensed MUV ≃ -15.3 (mUV ≃ 31.4), shows a stellar mass and a star formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z = 6.145, with delensed mUV ≃ 32, a stellar mass of 0.5 × 106 M⊙ and a star formation rate of 0.06 M⊙ yr-1 is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z > 3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the Universe and augment Lyα visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.
Perisic, Nebojsa; Afseth, Nils Kristian; Ofstad, Ragni; Hassani, Sahar; Kohler, Achim
2013-05-01
In this paper a combination of NIR spectroscopy and FTIR and Raman microspectroscopy was used to elucidate the effects of different salts (NaCl, KCl and MgSO(4)) on structural proteins and their hydration in muscle tissue. Multivariate multi-block technique Consensus Principal Component Analysis enabled integration of different vibrational spectroscopic techniques: macroscopic information obtained by NIR spectroscopy is directly related to microscopic information obtained by FTIR and Raman microspectroscopy. Changes in protein secondary structure observed at different concentrations of salts were linked to changes in protein hydration affinity. The evidence for this was given by connecting the underlying FTIR bands of the amide I region (1700-1600 cm(-1)) and the water region (3500-3000 cm(-1)) with water vibrations obtained by NIR spectroscopy. In addition, Raman microspectroscopy demonstrated that different cations affected structures of aromatic amino acid residues differently, which indicates that cation-π interactions play an important role in determination of the final structure of protein molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Spectroscopic Survey of Lensed Dwarf Galaxies at 1
NASA Astrophysics Data System (ADS)
Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi
2018-01-01
High-redshift dwarf galaxies (M<109 M⊙) are one of the primary targets of the James Web Space Telescope. Recent studies have suggested that these galaxies are different than their bright counterparts, as they follow a divergent evolutionary history of star formation. In our previous study, utilizing the magnification from massive clusters of galaxies (Hubble Frontier Fields), we found a large sample of dwarf star-forming galaxies at the peak epoch of star formation (1
Weak Magnetic Fields in Two Herbig Ae Systems: The SB2 AK Sco and the Presumed Binary HD 95881
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Carroll, T. A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Castelli, F.; Hummel, C. A.; Petr-Gotzens, M. G.; Korhonen, H.; Weigelt, G.; Pogodin, M. A.; Drake, N. A.
2018-05-01
We report the detection of weak mean longitudinal magnetic fields in the Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 using observations with the High Accuracy Radial velocity Planet Searcher polarimeter (HARPSpol) attached to the European Southern Observatory’s (ESO’s) 3.6 m telescope. Employing a multi-line singular value decomposition method, we detect a mean longitudinal magnetic field < {B}{{z}}> =-83+/- 31 G in the secondary component of AK Sco on one occasion. For HD 95881, we measure < {B}{{z}}> =-93+/- 25 G and < {B}{{z}}> =105+/- 29 G at two different observing epochs. For all the detections the false alarm probability is smaller than 10‑5. For AK Sco system, we discover that accretion diagnostic Na I doublet lines and photospheric lines show intensity variations over the observing nights. The double-lined spectral appearance of HD 95881 is presented here for the first time.
Methane and water spectroscopic database for TROPOMI/Sentinel-5 Precursor in the 2.3 μm region
NASA Astrophysics Data System (ADS)
Birk, Manfred; Wagner, Georg; Loos, Joep; Wilzewski, Jonas; Mondelain, Didier; Campargue, Alain; Hase, Frank; Orphal, Johannes; Perrin, Agnes; Tran, Ha; Daumont, Ludovic; Rotger-Languereau, Maud; Bigazzi, Alberto; Zehner, Claus
2017-04-01
The ESA project „SEOM-Improved Atmospheric Spectroscopy Databases (IAS)" will improve the spectroscopic database for retrieval of the data products CO, CH4, O3 and SO2 column amounts measured by the TROPOMI instrument (TROPOspheric Monitoring Instrument) aboard the Sentinel-5 Precursor. The project was launched in February 2014 with 3 years duration extended to 4 years recently. The spectroscopy of CO, CH4 and O3 in the 2.3 μm region is covered first while UV measurements of SO2 and UV/FIR/IR measurements of ozone will be carried out later. Measurements were mainly taken with a high resolution Fourier Transform spectrometer combined with a coolable multi reflection cell. Cavity ring down measurements served for validation. The analysis has been completed. A clear improvement can be seen when using the new data for CH4, H2O and CO retrieval from ground-based high resolution solar occultation measurements obtained with instrumentation in the TCCON and NDACC network.
New Insights on the White Dwarf Luminosity and Mass Functions from the LSS-GAC Survey
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, Alberto; Liu, Xiaowei; Cojocaru, Ruxandra; Torres, Santiago; García–Berro, Enrique; Yuan, Haibo; Huang, Yang; Xiang, Maosheng
2015-06-01
The white dwarf (WD) population observed in magnitude-limited surveys can be used to derive the luminosity function (LF) and mass function (MF), once the corresponding volume corrections are employed. However, the WD samples from which the observational LFs and MFs are built are the result of complicated target selection algorithms. Thus, it is difficult to quantify the effects of the observational biases on the observed functions. The LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) spectroscopic survey of the Galactic anti-center (LSS-GAC) has well-defined selection criteria. This is a noticeable advantage over previous surveys. Here we derive the WD LF and MF of the LSS-GAC, and use a Monte Carlo code to simulate the WD population in the Galactic anti-center. We apply the well-defined LSS-GAC selection criteria to the simulated populations, taking into account all observational biases, and perform the first meaningful comparison between the simulated WD LFs and MFs and the observed ones.
The Dynamic Atmospheres of Carbon Rich Giants: Constraining Models Via Interferometry
NASA Astrophysics Data System (ADS)
Rau, Gioia; Hron, Josef; Paladini, Claudia; Aringer, Bernard; Eriksson, Kjell; Marigo, Paola
2016-07-01
Dynamic models for the atmospheres of C-rich Asymptotic Giant Branch stars are quite advanced and have been overall successful in reproducing spectroscopic and photometric observations. Interferometry provides independent information and is thus an important technique to study the atmospheric stratification and to further constrain the dynamic models. We observed a sample of six C-rich AGBs with the mid infrared interferometer VLTI/MIDI. These observations, combined with photometric and spectroscopic data from the literature, are compared with synthetic observables derived from dynamic model atmospheres (DMA, Eriksson et al. 2014). The SEDs can be reasonably well modelled and the interferometry supports the extended and multi-component structure of the atmospheres, but some differences remain. We discuss the possible reasons for these differences and we compare the stellar parameters derived from this comparison with stellar evolution models. Finally, we point out the high potential of MATISSE, the second generation VLTI instrument allowing interferometric imaging in the L, M, and N bands, for further progress in this field.
VizieR Online Data Catalog: SPT-SZ survey galaxy clusters optical spectroscopy (Ruel+, 2014)
NASA Astrophysics Data System (ADS)
Ruel, J.; Bazin, G.; Bayliss, M.; Brodwin, M.; Foley, R. J.; Stalder, B.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Suhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Starsk, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2017-04-01
Most of the galaxy clusters for which we report spectroscopic observations were published as SPT cluster detections (and new discoveries) in Vanderlinde et al. (2010ApJ...722.1180V), Williamson et al. (2011ApJ...738..139W), and Reichardt et al. (2013, J/ApJ/763/127); we refer the reader to those publications for details of the SPT observations. The spectroscopic observations presented in this work are the first of our ongoing follow-up program. The data were taken from 2008 to 2012 using the Gemini Multi Object Spectrograph (GMOS; Hook et al. 2004PASP..116..425H) on Gemini South, the Focal Reducer and low dispersion Spectrograph (FORS2; Appenzeller et al. 1998Msngr..94....1A) on VLT Antu, the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006SPIE.6269E..0FD) on Magellan Baade, and the Low Dispersion Survey Spectrograph (LDSS339; Allington-Smith et al. 1994PASP..106..983A) on Magellan Clay. (2 data files).
Photometric Supernova Classification with Machine Learning
NASA Astrophysics Data System (ADS)
Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.
2016-08-01
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.
NASA Astrophysics Data System (ADS)
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2014-03-01
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.
RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prato, L.; Mace, G. N.; Rice, E. L.
2015-07-20
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2016-01-01
Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David
2017-08-01
An X1.6 flare on 2014 October 22 was observed by multiple spectrometers in UV, EUV and X-ray (Hinode/EIS, IRIS, and RHESSI), and multi-wavelength imaging observations (SDO/AIA and HMI). We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. We calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3-7.7)x1010 erg cm-2 s-1 for a given low-energy cutoff of 30-40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg II subordinate line is about (4.6-6.7)×109 erg cm-2 s-1: ˜6%-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.
NASA Astrophysics Data System (ADS)
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-01-01
Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH 7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site ( 103 M- 1, 310 K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 110AW). 179.300 Section 179.300 Transportation Other Regulations Relating to Transportation PIPELINE AND... SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...
77 FR 65665 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
...: National Institute of Standards and Technology (NIST). Title: Usage of Elevators for Occupant Evacuation... elevators are currently used by occupants of existing multi- story buildings in the United States during... with or in charge of developing emergency procedures for multi-story buildings in the United States...
eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data
Dorazio, Robert; Erickson, Richard A.
2017-01-01
In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.
NASA Astrophysics Data System (ADS)
Rubin, Adam; PTF
2018-01-01
I will discuss our results studying light curves of hydrogen-rich supernovae during the first few days after explosion. The first days of emission encode important information about the physical system, and it is possible to relate the early-time light curve to the radius of the progenitor star by using shock-cooling models. I will show the first systematic application of these models to data from the Palomar Transient Factory (PTF). We found that R-band data alone at PTF cadence cannot constrain the radius but can constrain the energy per unit mass of the explosion, uncovering new correlations with other supernova observables. We constrained the radii for events with multi-wavelength observations, and for two events observed with the Kepler mission at 30 min cadence. I will discuss improved observing strategies to obtain more constraining results in the future. Some tensions have arisen between our results and the expected radii from identified progenitors of hydrogen-rich supernovae. The resolution of these tensions may be related to the effect of circumstellar material on the light curves, motivating future systematic spectroscopic sequencing of these events. To this end, we have designed a new medium resolution UV-VIS spectrograph. The Multi-Imaging Transient Spectrograph (MITS) is the R~4500 UV-VIS arm of the Son Of X-Shooter (SOXS) spectrograph proposed for ESO’s 3.6 m New Technology Telescope. Our design divides the spectrum into several sub-bands, allowing optimization for each narrow part of the spectrum. We estimate a 50-100% improvement in throughput relative to a classical 4-C echelle design. Our design has passed a preliminary design review and is expected on the telescope in early 2021.
Real-time soil sensing based on fiber optics and spectroscopy
NASA Astrophysics Data System (ADS)
Li, Minzan
2005-08-01
Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.
MUSE optical alignment procedure
NASA Astrophysics Data System (ADS)
Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli
2012-09-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.
ERIC Educational Resources Information Center
Beaulieu, Barbara; And Others
This unit of instruction on selection and living styles for energy conservation in single-family and multi-family housing and mobile homes was designed for use by home economics teachers in Florida high schools and by home economics extension agents as they work with their clientele. It is one of a series of 11 instructional units (see note)…
Arshad, Muhammad Nadeem; Birinji, Abdulhadi Salih; Khalid, Muhammad; Asiri, Abdullah M; Al-Amry, Khalid A; Aqlan, Faisal M S; Braga, Ataualpa A C
2018-09-05
Pyrazoline are widely being studied due to their potential applications in chemical field. Herein, five pyrazolines compounds were synthesized and characterized spectroscopically using nuclear magnetic resonance techniques ( 1 H NMR & 13 C NMR) to determine the structures of molecules along-with UV-Visible and infrared (FT-IR) studies for additional spectroscopic support in characterization of entitle synthesized molecules. Unit cells, specific space groups, bond lengths, bond angles and hydrogen bonding interactions were determined by the x-ray diffraction studies. Further, computational study of compounds with B3LYP/6-311 + G(d,p) level were carried out to explore optimized geometry, spectroscopic data for FT-IR, frontier molecular orbitals (FMOs) and non-linear optical (NLO) parameters. While, UV-Vis spectral were performed by TD-DFT/B3LYP/6-311 + G(d,p) level. The experimental results of spectroscopic and single crystal studies were compared and found in good agreement with the computational. The global reactivity parameters have been calculated with the help of the energy of FMOs. The order for the total first and second order hyperpolarizabilities of 1-5 is found in the following orders: 1 > 4 > 3 > 5 > 2 and 1 > 4 > 5 > 2 > 3 respectively. Overall, greater NLO response than urea molecule prove that investigated molecules are excellent candidate for NLO applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Oligomeric secoiridoid glucosides from Jasminum abyssinicum.
Gallo, Francesca Romana; Palazzino, Giovanna; Federici, Elena; Iurilli, Raffaella; Monache, Franco Delle; Chifundera, Kusamba; Galeffi, Corrado
2006-03-01
From the root bark of Jasminum abyssinicum (Oleaceae) collected in Congo was isolated tree oligomeric secoiridoid glucosides named craigosides A-C. The three compounds are esters of a cyclopentanoid monoterpene with an iridane skeleton, esterified with three, two and two, respectively, units of oleoside 11-methyl ester. The structures were elucidated by spectroscopic methods and chemical correlations.
Characterization of Organosolv Lignins using Thermal and FT-IR Spectroscopic Analysis
Rhea J. Sammons; David P. Harper; Nicole Labbe; Joseph J. Bozell; Thomas Elder; Timothy G. Rials
2013-01-01
A group of biomass-derived lignins isolated using organosolv fractionation was characterized by FT-IR spectral and thermal property analysis coupled with multivariate analysis. The principal component analysis indicated that there were significant variations between the hardwood, softwood, and grass lignins due to the differences in syringyl and guaiacyl units as well...
Weis, Eric M; Barnes, Charles L; Duval, Paul B
2006-12-11
The first example of a lanthanide tetrakis(dithiolene) complex, [Na5(THF)10Ce(mnt)4] (1) (mnt = 1,2-maleonitrile-1,2-dithiolate), has been synthesized and characterized by X-ray crystallography and spectroscopic methods. In the solid state, 1 exists as a 2-D corrugated honeycomb network polymer in which the monomeric units comprising the trigonal nodes are knitted together by interlocking dative Na-N bonds extended from nitrile groups of bifunctional mnt ligands coordinated through the sulfur atoms to adjacent cerium centers. Individual honeycomb sheets are separated by 14.8 A. Compound 1 dissolves in donor solvents such as THF and acetonitrile to give soluble [Ce(mnt)4]5- units that exhibit spectroscopic features (i.e., NMR, luminescence, UV-vis) that are consistent with the 4f1 Ce(III) ion. In the first examination of the redox chemistry of a lanthanide dithiolene complex, cyclic voltammetry measurements conducted on 1 reveal a single irreversible oxidation wave that is likely attributable to ligand-centered oxidation.
Frost, Ray L; Dickfos, Marilla J
2008-11-01
The Raman spectra of shortite and barytocalcite complimented with infrared spectra have been used to characterise the structure of these carbonate minerals. The Raman spectrum of barytocalcite shows a single band at 1086 cm(-1) attributed to the (CO3)(2-) symmetric stretching mode, in contrast to shortite where two bands are observed. The observation of two bands for shortite confirms the concept of more than one crystallographically distinct carbonate unit in the unit cell. Multiple bands are observed for the antisymmetric stretching and bending region for these minerals proving that the carbonate unit is distorted in the structure of both shortite and barytocalcite.
Using Spectroscopic Profiles to Study the Morphology of Comets
NASA Astrophysics Data System (ADS)
Harris, Ien; Pierce, Donna M.; Cochran, Anita L.
2016-10-01
We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3. CH, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets. We will present results for several comets, including 2009P1 (Garradd). This work was funded by NASA's Planetary Atmospheres program (Award No. NNX14AH186).
Minneapolis Multi-Ethnic Curriculum Project--Prejudice/Discrimination Unit.
ERIC Educational Resources Information Center
Skjervold, Christian K.; And Others
The student booklet presents short chapters illustrating the prejudice/discrimination unit of the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. Fifteen brief chapters describe the ways Americans have and still do discriminate against the people of various ethnic groups. Topics cover the history and policies of the Know-Nothing…
Minneapolis Multi-Ethnic Curriculum Project--Acculturation Unit.
ERIC Educational Resources Information Center
Skjervold, Christian K.; And Others
The student booklet presents short case studies illustrating the acculturation unit of the Minneapolis Multi-Ethnic Curriculum Project for secondary schools. It is presented in nine chapters. Chapter I provides background information on immigration and points out ways acculturation takes place. Chapter II, "Barrio Boy," tells of life in…
Urban Multi-Unit Community Colleges: Adaptation for the '70s.
ERIC Educational Resources Information Center
Palola, Ernest G.; Oswald, Arthur R.
This study examines the relationship between the organizational structure of multi-unit community college districts and the performance of urban campuses in serving disadvantaged students. Emphasis is on the expanding functions and changing structure of urban community colleges, the relationship between district office and district colleges, and…
The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation. PMID:28788116
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-07-02
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and K u -band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn
2013-04-01
Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less
VizieR Online Data Catalog: GCs in 27 nearby ETGs from the SLUGGS survey (Forbes+, 2017)
NASA Astrophysics Data System (ADS)
Forbes, D. A.; Alabi, A.; Brodie, J. P.; Romanowsky, A. J.; Strader, J.; Foster, C.; Usher, C.; Spitler, L.; Bellstedt, S.; Pastorello, N.; Villaume, A.; Wasserman, A.; Pota, V.
2018-04-01
Our sample consists of GC systems associated with 25 early-type galaxies from the SLUGGS survey (Brodie et al. 2014ApJ...796...52B) plus two of the three bonus galaxies (NGC 3607 and NGC 5866) that were observed with the same setup. We have obtained wide-field multi-filter imaging of the SLUGGS galaxies using the Subaru telescope under =<1 arcsec seeing conditions. This is supplemented by HST and CFHT imaging. Spectroscopic observations of GC candidates were obtained over the last decade using the DEIMOS spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck II 10 m telescope. The DEIMOS instrument is used in multi-slit mode, with each slit mask covering an area of ~16x5 arcmin2. (5 data files).
NASA Astrophysics Data System (ADS)
Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong
2017-09-01
Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.
NASA Astrophysics Data System (ADS)
Barrena, R.; Rubiño-Martín, J. A.; Streblyanska, A.; Ferragamo, A.
2016-10-01
La Palma Observatory offers four multi-object spectrographs installed on 4 and 10 m class telescopes. We present an overview of these four instruments. As a scientific case for two of them, we present the optical follow-up of Sunyaev-Zeldovich (SZ) sources undertaken by the Planck collaboration, focused on the detection, redshifts determination and mass estimation of the (SZ) galaxies cluster candidates. After three years of observations we have found optical counterparts for 120 candidates confirmed spectroscopically. We have determined dynamical masses for more than 30 systems with redshifts of z<0.85. Our experience demonstrates that DOLORES (TNG) and OSIRIS (GTC) are the ideal multi-object spectroscopy (MOS) instruments to investigate galaxy clusters at z<0.45 and 0.45
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
NASA Astrophysics Data System (ADS)
Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.
2016-05-01
We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.
Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.
2015-01-01
Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361
Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg^2 SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Khullar, Gourav; Bleem, Lindsey; Bayliss, Matthew; Gladders, Michael; South Pole Telescope (SPT) Collaboration
2018-06-01
We present spectroscopic confirmation of 5 galaxy clusters at 1.25 < z < 1.5, discovered in the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. These clusters, taken from a nearly redshift-independent mass-limited sample of clusters, have multi-wavelength follow-up imaging data from the X-ray to the near-IR, and currently form the most homogenous massive high-redshift cluster sample in existence. We briefly describe the analysis pipeline used on the low S/N spectra of these faint galaxies, and describing the multiple techniques used to extract robust redshifts from a combination of absorption-line (Ca II H&K doublet - λλ3934,3968Å) and emission-line ([OII] λλ3727,3729Å) spectral features. We present several ensemble analyses of cluster member galaxies that demonstrate the reliability of the measured redshifts. We also identify modest [OII] emission and pronounced CN and Hδ absorption in a composite stacked spectrum of 28 low S/N passive galaxy spectra with redshifts derived primarily from Ca II H&K features. This work increases the number of spectroscopically-confirmed SPT-SZ galaxy clusters at z > 1.25 from 2 to 7, further demonstrating the efficacy of SZ selection for the highest redshift massive clusters, and enabling further detailed study of these confirmed systems.
Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST
NASA Astrophysics Data System (ADS)
Lee, Chien-Hsiu; Lin, Chien-Cheng
2017-02-01
Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.
Molecular Gas Content of an Extremely Star-forming Herschel Observed Lensed Dusty Galaxy at z=2.685
NASA Astrophysics Data System (ADS)
Nayyeri, Hooshang; Cooray, Asantha R.; H-ATLAS
2017-01-01
We present the results of combined deep near-infrared, far infrared and millimeter observations of an extremely star forming lensed dusty star-forming galaxy (DSFG) identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The high redshift DSFG is gravitationally lensed by a massive WISE identified cluster at z~1 (spectroscopically confirmed with Keck/DEIMOS and Gemini/GMOS) producing multiply lensed images and arcs observed in the optical. The DSFG is spectroscopically confirmed at z=2.685 from CO(1-0) observations by GBT and separately from CO(3-2) observations by CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background DSFG which allowed us to study the sources plane properties of the target. Multi-band data from Keck/NIRC2, HST/WFC3 and Herschel yields star formation rate and stellar mass well above the main sequence. Observations of the dust continuum by the Sub-millimeter Array yields an observed total ISM mass of 6.5E+11 M* which is responsible for the intense observed star formation rates. Comparing the measured SFR with molecular gas measurements from CO(1-0) observations reveals that this system has relatively short gas depletion time scale which is consistent with the starburst phase observed in high redshift sub-millimeter galaxies.
Saturn V Instrument Unit Being Checked At MSFC
NASA Technical Reports Server (NTRS)
1967-01-01
A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo R.; Vogt, Frédéric P. A.; Terry, Jason P.; Ghavamian, Parviz; Dopita, Michael A.; Ruiter, Ashley J.; Sukhbold, Tuguldur
2018-02-01
We study the optical emission from heavy element ejecta in the oxygen-rich young supernova remnant 1E 0102.2–7219 (1E 0102) in the Small Magellanic Cloud. We have used the Multi-Unit Spectroscopic Explorer optical integral field spectrograph at the Very Large Telescope on Cerro Paranal and the wide field spectrograph (WiFeS) at the ANU 2.3 m telescope at Siding Spring Observatory to obtain deep observations of 1E 0102. Our observations cover the entire extent of the remnant from below 3500 Å to 9350 Å. Our observations unambiguously reveal the presence of fast-moving ejecta emitting in [S II], [S III], [Ar III], and [Cl II]. The sulfur-rich ejecta appear more asymmetrically distributed compared to oxygen or neon, a product of carbon burning. In addition to the forbidden line emission from products of oxygen burning (S, Ar, Cl), we have also discovered Hα and Hβ emission from several knots of low surface brightness, fast-moving ejecta. The presence of fast-moving hydrogen points toward a progenitor that had not entirely shed its hydrogen envelope prior to the supernova. The explosion that gave rise to 1E 0102 is therefore commensurate with a Type IIb supernova.
Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710
NASA Astrophysics Data System (ADS)
Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.
2017-03-01
Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.
van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit
2016-09-19
Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery of a faint, star-forming, multiply lensed, Lyman-α blob
NASA Astrophysics Data System (ADS)
Caminha, G. B.; Karman, W.; Rosati, P.; Caputi, K. I.; Arrigoni Battaia, F.; Balestra, I.; Grillo, C.; Mercurio, A.; Nonino, M.; Vanzella, E.
2016-11-01
We report the discovery of a multiply lensed Lyman-α blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z = 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of LLyα = 1.9 × 1042 erg s-1, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-α (Lyα) emission, we find C iv, He II, and O III] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the Lyα nebula is likely powered by embedded star formation. Resonant scattering of the Lyα photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L∗ galaxies at z ≈ 3.
A measurement of the z = 0 UV background from Hα fluorescence
NASA Astrophysics Data System (ADS)
Fumagalli, Michele; Haardt, Francesco; Theuns, Tom; Morris, Simon L.; Cantalupo, Sebastiano; Madau, Piero; Fossati, Matteo
2017-06-01
We report the detection of extended Hα emission from the tip of the H I disc of the nearby edge-on galaxy UGC 7321, observed with the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope. The Hα surface brightness fades rapidly where the H I column density drops below N_{H I}˜ 10^{19} cm-2, consistent with fluorescence arising at the ionization front from gas that is photoionized by the extragalactic ultraviolet background (UVB). The surface brightness measured at this location is (1.2 ± 0.5) × 10-19 erg s- 1 cm- 2 arcsec- 2, where the error is mostly systematic and results from the proximity of the signal to the edge of the MUSE field of view, and from the presence of a sky line next to the redshifted Hα wavelength. By combining the Hα and the H I 21 cm maps with a radiative transfer calculation of an exponential disc illuminated by the UVB, we derive a value for the H I photoionization rate of Γ _{H I} ˜ (6-8)× 10^{-14} s^{-1}. This value is consistent with transmission statistics of the Lyα forest and with recent models of a UVB that is dominated by quasars.
NASA Astrophysics Data System (ADS)
Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.
2013-12-01
During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir
2018-03-01
The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.
VizieR Online Data Catalog: VIPERS Multi-Lambda Survey (Moutard+, 2016)
NASA Astrophysics Data System (ADS)
Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; van Werbaeke, L.
2016-05-01
The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) is an imaging survey performed with Mega-Cam in five optical bands u*, g, r, i, z. we use the images and photometric catalogues of the W1 and W4 fields from the worldwide T00073 release produced by TERAPIX4. Since 2010, we have conducted a Ks-band follow-up of the VIPERS fields with the WIRCam instrument at CFHT. The original motivation was to guarantee an almost complete detection in Ks band of the VIPERS spectroscopic galaxies. (2 data files).
Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7
NASA Astrophysics Data System (ADS)
Gao, Shufang; Xu, Shan
2018-05-01
Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.
VizieR Online Data Catalog: New redshifts for Abell 1758N galaxies (Boschin+, 2012)
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.; Nonino, M.
2012-06-01
Multi-object spectroscopic observations of A1758N were carried out at the TNG, a 4m-class telescope, in May 2008 and May 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. The detector is a 2048x2048 pixels E2V CCD, with a pixel size of 13.5um. In total, we observed four MOS masks (one in 2008 and three in 2009) for a total of 146 slits. (1 data file).
NASA Astrophysics Data System (ADS)
Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun
2013-06-01
Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.
NASA Astrophysics Data System (ADS)
Ciaffoni, L.; Hancock, G.; Hurst, P. L.; Kingston, M.; Langley, C. E.; Peverall, R.; Ritchie, G. A. D.; Whittaker, K. E.
2013-02-01
In this paper we report the characterization of a novel, widely tunable, diode laser source operating over the full telecom L-band (1563-1613 nm), namely the digital supermode distributed Bragg reflector (DS-DBR) laser, and its application to multi-wavelength gas sensing via absorption strategies. The spectroscopic performance of the laser has been assessed by investigating the ro-vibrational spectrum of CO2, and wavelength modulation spectroscopy was accomplished for proof-of-principle sensitive measurements in discrete spectral regions.
Phytotoxicity, structural and computational analysis of 2-methyl-1,5-diarylpentadienones
NASA Astrophysics Data System (ADS)
Din, Zia Ud; Rodrigues-Filho, Edson; de Cassia Pereira, Viviane; Gualtieri, Sonia Cristina Juliano; Deflon, Victor Marcelo; da Silva Maia, Pedro Ivo; Kuznetsov, Aleksey E.
2017-08-01
In our studies aimed to produce new chemicals used in weed control, 2-methyl-1,5-diarylpentadienones were synthesized by the reaction of p-methoxybenzaldehyde, p-nitrobenzaldehyde and p-N,N-dimethylbenzaldehyde, respectively, with 2-butanone, resulting in four model compounds. The phytotoxicity of these compounds against wheat coleoptiles and Sesame seedling was observed at μM concentrations, indicating good potential for their usage in weed management in the field. Spectroscopic and computational studies were performed in order to gain understanding on their mechanisms of action and to clarify some structural complexities due existence of conformers and substituent effects. These compounds probably act as hydroxyphenylpyruvate dioxygenase inhibitors. The tested compounds were characterized by spectroscopic and single crystal X-ray diffraction analyses. Solid crystalline state of the compound A (2-Methyl-1-(p-methophyphenyl)-5-(phenyl)-diarylpentadienone) is observed in the monoclinic space group P21/c with unit cell dimensions a = 14.3366(4) Å, b = 11.3788(4) Å, c = 9.6319(3) Å, β = 96.596, V = 1560.88(9) Å3 and Z = 4. Compound C (2-Methyl-1-(p-methophyphenyl)-5-(p-nitrophenyl)-diarylpentadienone) crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 17.8276(9) Å, b = 7.3627(4) Å, c = 12.9740(6) Å, β = 107.6230(10), V = 1623.04(14) Å3 and Z = 4. LC-UV-MS analysis furnished important data helpful for their characterization. The spectroscopic data and computational (DFT) analysis revealed the fact that each of the compounds A-D occurs in solution as four conformers.
49 CFR 179.300-13 - Venting, loading and unloading valves.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-13 Venting... (h)(3)(ii). Threads for the clean-out/inspection ports of DOT Specification 110A multi-unit tank car...
Introduction: Spatial heterogeneity of effect estimates in associations between PM2.5 and total non-accidental mortality (TNA) in the United States (US), is an issue in epidemiology. This study uses rate ratios generated from the Multi-City/Multi-Pollutant study (1999-2005) for 3...
Navigating Local Smoke-Free Multi-Unit Housing Policy Adoption
ERIC Educational Resources Information Center
Satterlund, Travis D.; Treiber, Jeanette; Cassady, Diana
2013-01-01
California state-funded local tobacco control projects have instituted smoke-free multi-unit housing (MUH) policy adoption campaigns in order to secure voluntary policy throughout the state. While landlords can legally prohibit smoking at MUH complexes in California, they often oppose such measures. The objective of this study was to analyze…
Native Americans in Oklahoma, K-6.
ERIC Educational Resources Information Center
Cunningham, Patricia; And Others
The study unit on American Indians in Oklahoma for grades K-6 provides suggested multi-curriculum activities and resources for educators to use as an introduction for all students, Indian and non-Indian. Goals of the multi-curriculum based study unit include: (1) developing an awareness of the origin of Native American culture; (2) making the…
13C NMR spectroscopic analysis of poly(electrolyte) cement liquids.
Watts, D C
1979-05-01
13C NMR spectroscopy has been applied to the analysis of carboxylic poly-acid cement liquids. Monomer incorporation, composition ratio, sequence statistics, and stereochemical configuration have been considered theoretically, and determined experimentally, from the spectra. Conventionally polymerized poly(acrylic acid) has an approximately random configuration, but other varieties may be synthesized. Two commercial glass-ionomer cement liquids both contain tartaric acid as a chelating additive but the composition of their poly-acids are different. Itaconic acid units, distributed randomly, constitute 21% of the repeating units in one of these polyelectrolytes.
NASA Astrophysics Data System (ADS)
Pandey, M.; Banerjee, D.; Sudarsan, V.; Kshirsagar, R. J.
2018-04-01
Effect of TiO2 addition in Cs containing Sodium-borosilicate glasses is studied using Raman and infrared spectroscopic techniques. As revealed from infrared and Raman studies, TiO2 does not form segregated phase, but instead enters into the borosilicate network. It is further observed that TiO2 addition results in modifications of the borate and silicate structural units by transforming into tetraborates and metasilicate structural units. These structural modifications are responsible for Cs immobilization, leach rate and chemical durability of these glasses.
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun
2014-11-01
The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.
NASA Astrophysics Data System (ADS)
Zhuang, Chao; Zhou, Zhifang; Illman, Walter A.; Guo, Qiaona; Wang, Jinguo
2017-09-01
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity ( K v) and elastic ( S ske) and inelastic ( S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10-4 m-1, while K v ranged over 10-10-10-8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.
Testing a model of componential processing of multi-symbol numbers-evidence from measurement units.
Huber, Stefan; Bahnmueller, Julia; Klein, Elise; Moeller, Korbinian
2015-10-01
Research on numerical cognition has addressed the processing of nonsymbolic quantities and symbolic digits extensively. However, magnitude processing of measurement units is still a neglected topic in numerical cognition research. Hence, we investigated the processing of measurement units to evaluate whether typical effects of multi-digit number processing such as the compatibility effect, the string length congruity effect, and the distance effect are also present for measurement units. In three experiments, participants had to single out the larger one of two physical quantities (e.g., lengths). In Experiment 1, the compatibility of number and measurement unit (compatible: 3 mm_6 cm with 3 < 6 and mm < cm; incompatible: 3 cm_6 mm with 3 < 6 but cm > mm) as well as string length congruity (congruent: 1 m_2 km with m < km and 2 < 3 characters; incongruent: 2 mm_1 m with mm < m, but 3 > 2 characters) were manipulated. We observed reliable compatibility effects with prolonged reaction times (RT) for incompatible trials. Moreover, a string length congruity effect was present in RT with longer RT for incongruent trials. Experiments 2 and 3 served as control experiments showing that compatibility effects persist when controlling for holistic distance and that a distance effect for measurement units exists. Our findings indicate that numbers and measurement units are processed in a componential manner and thus highlight that processing characteristics of multi-digit numbers generalize to measurement units. Thereby, our data lend further support to the recently proposed generalized model of componential multi-symbol number processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Huaying, E-mail: zhaoh3@mail.nih.gov; Schuck, Peter, E-mail: zhaoh3@mail.nih.gov
2015-01-01
Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysicalmore » techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.« less
Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara J. M.; Higgins, J.; DAgostino, A.
2012-01-17
The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a singlemore » operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.« less
[Aftercare for durability and profitability of single-unit and multi-unit fixed dental prostheses].
de Baat, C; van Loveren, C; van der Maarel-Wierink, C D; Witter, D J; Creugers, N H J
2013-01-01
An important aim ofa treatment with single-unit and multi-unit fixed dental prostheses is a durable and profitable treatment outcome. That requires aftercare, too. First, the frequency of routine oral examinations should be assessed, using an individual risk profile. The objectives of the routine oral examinations are the prevention and, when necessary, the treatment of pathological conditions and complications. With regard to prevention, attention should be paid to information and instruction, oral biofilm and calculus, non-functional activities, hard tooth tissues, periodontal and peri-implant tissues, and saliva. Subsequently, it can be determined whether the intended durability and profitability have been achieved or can still be achieved, whether or not through indicated adjustments. Special attention should be paid to endodontically treated teeth. Restorative, repair or replacement treatments may be indicated in case ofcomplications, such as loose single- or multi-unitfixed dental prosthesis, fracture of a fixed dental prosthesis unit, lost tooth pulp vitality, tooth root fracture, and implant or implant abutment problems.
Translating Strategy, Values and Identities in Higher Education: The Case of Multi-Campus Systems
ERIC Educational Resources Information Center
Pinheiro, Rómulo; Charles, David; Jones, Glen
2017-01-01
Multi-campus university systems are not a new phenomenon. In their foundational analysis of multi-campus universities in the United States published in 1971, Lee and Bowen noted that almost 40% of American students were enroled in institutions that were part of multi-campus systems. The role of these complex multi-campus systems has continued to…
Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.
2018-01-01
The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with respect to the thin film reference. The results are discussed in the light of the existing literature on nanofilms of amorphous oxides.
Second Language Learners' Contiguous and Discontiguous Multi-Word Unit Use over Time
ERIC Educational Resources Information Center
Yuldashev, Aziz; Fernandez, Julieta; Thorne, Steven L.
2013-01-01
Research has described the key role of formulaic language use in both written and spoken communication (Schmitt, 2004; Wray, 2002), as well as in relation to L2 learning (Ellis, Simpson--Vlach, & Maynard, 2008). Relatively few studies have examined related fixed and semi-fixed multi-word units (MWUs), which comprise fixed parts with the potential…
Outer Space: A Multi-Age, Integrated Subjects Curriculum Unit.
ERIC Educational Resources Information Center
Hall, William D.
This multi-age integrated teaching unit on outer space was developed by 19 rural teachers (grades K-8) from 12 Gallatin County (Montana) districts to associate all school subjects with a common theme, promote teaching efficiency by focusing on more than one subject at the same time, and increase student excitement. Topics explored by each grade…
Electro-Optic Computing Architectures. Volume I
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impac...
Spectroscopic Profiles of Comets Garradd and McNaught
NASA Astrophysics Data System (ADS)
Harris, Ien; Pierce, Donna M.; Cochran, Anita L.
2017-10-01
We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).
[Raman spectroscopic study of binary PbO-TeO2 glasses].
Huang, Li; You, Jing-Lin; Chen, Hui; Jiang, Guo-Chang
2008-07-01
Raman spectra of lead tellurite glasses and their melts were measured. Results show that four coordinate tellurite units convert into three coordinate units with increasing the concentration of PbO, and the number of non-bridging oxygen bonds (NBO) increases accordingly in this system. Three spectral peaks in the high frequency range were assigned to stretching vibration of bridging oxygen in four coordinate tellurite units (Q(b)), stretching vibration of non-bridging oxygen in four coordinate tellurite units (Q(nb)) and in three coordinate tellurite units (T(nb)). The relative density of four coordinate structure units decreases and the three coordinate tellurite units considerably exist in tellurite glasses when the concentration of PbO > 50%. Besides, the Raman frequencies of the three species' peaks become blue-shifted because of the temperature induced crystallization at high temperature, and the peak intensities increase and the peaks sharpen. The peaks merge together and become much broader while the glass is heated above the melting point because of multiple microstructure units coexisting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Briley, M. M.; Lambert, R. A.
2015-12-15
This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indicesmore » based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short (minutes to hours) timescales.« less
NASA Astrophysics Data System (ADS)
Vyskubenko, Oleg; Sugimoto, Daichi; Watanabe, Goro; Tei, Kazuyoku; Nanri, Kenzo; Fujioka, Tomoo
2005-05-01
The present study compares the laser medium properties for subsonic and transonic iodine injection schemes of a multi-kW grid-nozzle supersonic chemical oxygen iodine laser (COIL). Two supersonic nozzles of similar geometry having subsonic or transonic iodine injectors were investigated in the present study. Small signal gain (SSG) and internal cavity temperature (ICT) were experimentally measured as a function of the iodine flow rate and coordinate in the direction of the gas flow. Dissociated fraction of iodine F and the number N of O2(1Δ) molecules consumed for the dissociation of one iodine molecule were estimated by an analytical method, utilizing SSG and ICT as input parameters. Both gain and temperature were measured by diode laser spectroscopy. Pressure broadening of the spectroscopic line of iodine atom was taken into account when calculating the gas temperature in the cavity.
K-shell X-ray transition energies of multi-electron ions of silicon and sulfur
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.
2017-10-01
Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.
McBirney, Samantha E; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M
2016-10-01
Optical density (OD) measurements are the standard approach used in microbiology for characterizing bacteria concentrations in culture media. OD is based on measuring the optical absorbance of a sample at a single wavelength, and any error will propagate through all calculations, leading to reproducibility issues. Here, we use the conventional OD technique to measure the growth rates of two different species of bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. The same samples are also analyzed over the entire UV-Vis wavelength spectrum, allowing a distinctly different strategy for data analysis to be performed. Specifically, instead of only analyzing a single wavelength, a multi-wavelength normalization process is implemented. When the OD method is used, the detected signal does not follow the log growth curve. In contrast, the multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations.
Lou, Kai; Zhu, Zhaohua; Zhang, Hongmei; Wang, Yanqing; Wang, Xiaojiong; Cao, Jian
2016-01-05
Herein, the interaction between carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and bovine serum albumin has been investigated by using circular dichroism, UV-vis, and fluorescence spectroscopic methods and molecular modeling in order to better understand the basic behavior of carbon nanotubes in biological systems. The spectral results showed that MWCNTs-COOH bound to BSA and induced the relatively large changes in secondary structure of protein by mainly hydrophobic forces and π-π stacking interactions. Thermal denaturation of BSA in the presence of MWCNTs-COOH indicated that carbon nanotubes acted as a structure destabilizer for BSA. In addition, the putative binding site of MWCNTs-COOH on BSA was near to domain II. With regard to human health, the present study could provide a better understanding of the biological properties, cytotocicity of surface modified carbon nanotubes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin
2012-07-01
TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.
K-shell X-ray transition energies of multi-electron ions of silicon and sulfur
Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...
2017-04-20
Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less
Kouveliotou, Chryssa; Granot, J.; Racusin, J. L.; ...
2013-11-21
Here, GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray ( NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (~1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation.more » Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.« less
"First Light" Approaches for VLT MELIPAL
NASA Astrophysics Data System (ADS)
2000-01-01
The year 1999 was a very busy one at ESO's Paranal Observatory , the site of the Very Large Telescope (VLT). Soon after the official Inauguration on March 5, 1999, regular observations started with the first 8.2-m VLT Unit Telescope ANTU . During the first nine months of operation (April - December 1999), about 79,000 exposures were made with the FORS1 and ISAAC astronomical instruments at this telescope. Altogether, more than 68 Gigabytes of unique data were gathered during this period for about 200 individual research programmes and stored in the VLT Data Archive. "First Light" was successfully achieved early in the year for the second 8.2-m VLT Unit telescope, KUEYEN . It has since been equipped with two powerful instruments, UVES and FORS2. Science observations with this telescope will start on April 1, 2000. Already in early December 1999, ahead of the schedule, the third 8.2-m Zerodur mirror in its cell was attached to the third 8.2-m VLT Unit Telescope, MELIPAL , cf. ESO PR Photos 42a-ad/99. The moment of "First Light" is approaching for this telescope. Originally planned for mid-February 2000, this significant event is now expected to take place about two weeks ahead of schedule, in late January 2000. From then on, the VLT will possess nearly 160 square metres of extremely accurate, highly reflecting mirror surface. While the observations for "First Light" and the subsequent commissioning period will be carried out with the VLT Test Camera, MELIPAL will receive its first special astronomical instrument, the VIsible MultiObject Spectrograph (VIMOS) towards the middle of the year. It is optimized for large field imaging and spectroscopic surveys and will become a real workhorse of the VLT for this type of research projects, together with the Near InfraRed MultiObject Spectrograph (NIRMOS) , to be installed later at the fourth 8.2-m Unit Telescope, YEPUN . YEPUN will have "First Light" later this year and the work on this telescope also progresses well. The "M1 Dummy" that was mounted on the telescope frame for balance during the mechanical assembly was removed on January 4. The next day, it was transported down to the Base Camp storage area where it was lifted off the Carriage using a combination of two cranes. The empty M1 Carriage was then moved to the Mirror Maintenance Building (MMB) where the fourth M1 Cell with a dummy concrete mirror was loaded. Later that day it was transported up to YEPUN and the next morning (January 6), the Mirror Cell was moved inside the enclosure. Over the next weeks, it will be fitted to the back of the telescope structure. In parallel, the "M2 Unit" on which the 1.1-m secondary mirror of beryllium will later be mounted, is now being assembled in the Integration Laboratory in the MMB. The following digital photos were obtained during the past days and illustrate the recent work.
PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models tomore » curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.« less
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-01-05
Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site (~10 3 M -1 , 310K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH 0 ), entropy change (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR). Copyright © 2017 Elsevier B.V. All rights reserved.
de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun
2018-03-20
The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.
ERIC Educational Resources Information Center
Goldzer, Beatrice F.
This manual for use by professionals, paraprofessionals, and tutors provides 10 multi-level, multi-purpose units for teaching children with reading, writing, or speech problems. The units were designed for use with preschool through sixth-grade students and consist of games, exercises, drills, evaluation, and suggestions for activities. The manual…
Code of Federal Regulations, 2012 CFR
2012-10-01
... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...
Code of Federal Regulations, 2011 CFR
2011-10-01
... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...
A Multi-Scale Comparative Study of Shape and Sprawl in Metropolitan Regions of the United States
ERIC Educational Resources Information Center
Kugler, Tracy A.
2012-01-01
This dissertation constitutes a multi-scale quantitative and qualitative investigation of patterns of urban development in metropolitan regions of the United States. This work has generated a comprehensive data set on spatial patterns of metropolitan development in the U.S. and an approach to the study of such patterns that can be used to further…
ERIC Educational Resources Information Center
Larson, Eric Christopher
2012-01-01
Large, multi-business unit firms are decentralizing their overall corporate structures. At the same time, the structures of their IT organizations are becoming more centralized. This is contrary to current wisdom that the IT organization structure will mimic the structure of the corporation, all else being equal. Because the general business…
VizieR Online Data Catalog: RMS survey: NIR spectroscopy of massive YSOs (Cooper+, 2013)
NASA Astrophysics Data System (ADS)
Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.
2014-04-01
Spectroscopic observations of the YSO candidates were made using the UIST instrument at the United Kingdom Infra-Red Telescope (UKIRT) observatory from 2002 to 2008. 247 objects were successfully observed over 84 nights. Sources were selected from the ~2000 candidate MYSOs found using the MSX catalogue in the preceding stages of the RMS survey. (6 data files).
Clustering properties of g -selected galaxies at z ~ 0.8
Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...
2016-06-21
In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less
NASA Astrophysics Data System (ADS)
Treu, Tommaso; Abramson, L.; Bradac, M.; Brammer, G.; Fontana, A.; Henry, A.; Hoag, A.; Huang, K.; Mason, C.; Morishita, T.; Pentericci, L.; Wang, X.
2017-11-01
We propose a carefully designed set of observations of the lensing cluster Abell 2744 to study intrinsically faint magnified galaxies from the epoch of reionization to redshift of 1, demonstrating and characterizing complementary spectroscopic modes with NIRSPEC and NIRISS. The observations are designed to address the questions: 1) when did reionization happen and what were the sources of reionizing photons? 2) How do baryons cycle in and out of galaxies? This dataset with deep spectroscopy on the cluster and deep multiband NIRCAM imaging in parallel will enable a wealth of investigations and will thus be of interest to a broad section of the astronomical community. The dataset will illustrate the power and challenges of: 1) combining rest frame UV and optical NIRSPEC spectroscopy for galaxies at the epoch of reionization, 2) obtaining spatially resolved emission line maps with NIRISS, 3) combining NIRISS and NIRSPEC spectroscopy. Building on our extensive experience with HST slitless spectroscopy and imaging in clusters of galaxies as part of the GLASS, WISP, SURFSUP, and ASTRODEEP projects, we will provide the following science-enabling products to the community: 1)quantitative comparison of spatially resolved (NIRISS) and spectrally resolved (NIRSPEC) spectroscopy, 2) Object based interactive exploration tools for multi-instrument datasets, 3) Interface for easy forced extractionof slitless spectra based on coordinates, 4) UV-optical spectroscopic templates of highredshift galaxies, 5) NIRCAM parallel catalogs and a list of 26 z>=9 dropouts for spectroscopic follow-up in Cycle-2.
4MOST optical system: presentation and design details
NASA Astrophysics Data System (ADS)
Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland
2017-09-01
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
NASA Astrophysics Data System (ADS)
Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven
2017-08-01
The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.
Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129
NASA Astrophysics Data System (ADS)
Monna, A.; Seitz, S.; Balestra, I.; Rosati, P.; Grillo, C.; Halkola, A.; Suyu, S. H.; Coe, D.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Mercurio, A.; Nonino, M.; Postman, M.; Zitrin, A.
2017-04-01
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACS J2129.4-0741 (zcl = 0.589) obtained by combining high-resolution Hubble Space Telescope photometry from the CLASH (Cluster Lensing And Supernovae survey with Hubble) survey with new spectroscopic observations from the CLASH-VLT (Very Large Telescope) survey. A background bright red passive galaxy at zsp = 1.36, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region (R < 100 kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of 0.4 arcsec. This translates to a high-precision mass reconstruction of MACS 2129, which is constrained at a level of 2 per cent. The cluster has Einstein parameter ΘE = (29 ± 4) arcsec and a projected total mass of Mtot(<ΘE) = (1.35 ± 0.03) × 1014 M⊙ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic data set for the cluster members and lensed images measured with VLT/Visible Multi-Object Spectrograph within the CLASH-VLT survey.
Progress Toward Modeling Spectroscopic Signatures of Mix on Omega and NIF
NASA Astrophysics Data System (ADS)
Tregillis, I. L.; Schmitt, M. J.; Hsu, S. C.; Wysocki, F. J.; Cobble, J. A.; Murphy, T. J.
2011-10-01
Defect-induced mix processes may degrade the performance of ICF and ICF-like targets at Omega and NIF. An improved understanding of the relevant physics requires an experimental program built on a foundation of radiation-hydrodynamic simulations plus reliable synthetic diagnostic outputs. To that end, the Applications of Ignition (AoI) and Defect Implosion Experiment (DIME) efforts at LANL have focused on directly driven plastic capsules containing high-Z dopants and manufactured with an equatorial ``trench'' defect. One of the key diagnostic techniques for detecting and diagnosing the migration of dopant material into the hot core is Multi-Monochromatic X-ray Imaging (MMI). This talk will focus on recent efforts to model spectroscopic signatures of mix processes in AoI/DIME capsules via simulated MMI-type diagnostic instruments. It will also include data from recent Omega shots and calculations in support of Tier 1 experiments at NIF in FY2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cave, Robert J., E-mail: Robert-Cave@hmc.edu; Stanton, John F., E-mail: JFStanton@gmail.com
We present a simple quasi-diabatization scheme applicable to spectroscopic studies that can be applied using any wavefunction for which one-electron properties and transition properties can be calculated. The method is based on rotation of a pair (or set) of adiabatic states to minimize the difference between the given transition property at a reference geometry of high symmetry (where the quasi-diabatic states and adiabatic states coincide) and points of lower symmetry where quasi-diabatic quantities are desired. Compared to other quasi-diabatization techniques, the method requires no special coding, facilitates direct comparison between quasi-diabatic quantities calculated using different types of wavefunctions, and ismore » free of any selection of configurations in the definition of the quasi-diabatic states. On the other hand, the method appears to be sensitive to multi-state issues, unlike recent methods we have developed that use a configurational definition of quasi-diabatic states. Results are presented and compared with two other recently developed quasi-diabatization techniques.« less
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.
Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D
2016-04-19
The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.
Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy
NASA Astrophysics Data System (ADS)
Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.
2015-10-01
For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.
A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.
2017-02-20
We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s{sup −1} with a velocity dispersion of 7.4 ± 0.4 km s{sup −1}. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams.more » The stars show a strong metallicity gradient of −1.53 ± 0.10 dex kpc{sup −1} and have a mean metallicity of −1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.« less
Compressive Force Spectroscopy: From Living Cells to Single Proteins.
Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark
2018-03-23
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging
Golovin, G.; Banerjee, S.; Liu, C.; ...
2016-04-19
Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less
Kaur, Jasmeet; Katopo, Lita; Hung, Andrew; Ashton, John; Kasapis, Stefan
2018-06-30
The molecular nature of interactions between β-casein and p-coumaric acid was studied following exposure of their solutions to ultra-high temperature (UHT at 145 °C). Interactions were characterised by employing multi-spectroscopic methods, molecular docking and quantum mechanics calculations. FTIR demonstrates that the ligand lies in the vicinity of the protein, hence inverting the absorbance spectrum of the complex. This outcome changes the conformational characteristics of the protein leading to a flexible and open structure that accommodates the phenolic microconstituent. Results are supported by UV-vis, CD and fluorescence quenching showing considerable shifts in spectra with complexation. Molecular docking indicates that there is at least a hydrogen bond between p-coumaric acid and the peptide backbone of isoleucine (Ile27). Quantum mechanics calculations further argue that changes in experimental observations are also due to a covalent interaction in the protein-phenolic adduct, which according to the best predicted binding pose involves the side chain of lysine 47. Copyright © 2018. Published by Elsevier Ltd.
Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro
2017-06-27
A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.
NASA Astrophysics Data System (ADS)
Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua
2016-03-01
The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.
NASA Astrophysics Data System (ADS)
Klitsch, A.; Péroux, C.; Zwaan, M. A.; Smail, I.; Oteo, I.; Biggs, A. D.; Popping, G.; Swinbank, A. M.
2018-03-01
Studying the flow of baryons into and out of galaxies is an important part of understanding the evolution of galaxies over time. We present a detailed case study of the environment around an intervening Ly α absorption line system at zabs = 0.633, seen towards the quasar J0423-0130 (zQSO = 0.915). We detect with ALMA the 12CO(2-1), 12CO(3-2), and 1.2 mm continuum emission from a galaxy at the redshift of the Ly α absorber at a projected distance of 135 kpc. From the ALMA detections, we infer interstellar medium conditions similar to those in low-redshift luminous infrared galaxies. Director's Discretionary Time (DDT) Multi-Unit Spectroscopic Explorer (MUSE) integral field unit observations reveal the optical counterpart of the 12CO emission line source and three additional emission line galaxies at the absorber redshift, which together form a galaxy group. The 12CO emission line detections originate from the most massive galaxy in this group. While we cannot exclude that we miss a fainter host, we reach a dust-uncorrected star formation rate (SFR) limit of >0.3 M⊙yr-1 within 100 kpc from the sightline to the background quasar. We measure the dust-corrected SFR (ranging from 3 to 50 M⊙ yr-1), the morpho-kinematics and the metallicities of the four group galaxies to understand the relation between the group and the neutral gas probed in absorption. We find that the Ly α absorber traces either an outflow from the most massive galaxy or intragroup gas. This case study illustrates the power of combining ALMA and MUSE to obtain a census of the cool baryons in a bounded structure at intermediate redshift.
A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Privon, G. C.; Stierwalt, S.; Johnson, K. E.
Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The H α emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M {sub ⊙} yr{sup −1}, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) formore » the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.« less
ASSESSING ECOLOGICAL RISKS AT LARGE SPATIAL SCALES
The history of environmental management and regulation in the United States has been one of initial focus on localized, end-of-the-pipe problems to increasing attention to multi-scalar, multi-stressor, and multi- resource issues. Concomitant with this reorientation is the need fo...
Use of Multi-Disciplinary Projects To Develop Competence.
ERIC Educational Resources Information Center
Trotman-Dickenson, Danusia
1992-01-01
Undergraduate technology and business students at the Polytechnic of Wales (United Kingdom) participated in multi-disciplinary team projects to experience real life business challenges and develop competences that employers expect in professionals. Lists characteristics of successful multi-disciplinary projects, discusses cost and industry…
SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies
NASA Astrophysics Data System (ADS)
Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.
2018-06-01
We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.
Setting the Record Straight: Bottom-Up Carbon Nanostructures via Solid-State Reactions
NASA Astrophysics Data System (ADS)
Jordan, Robert Stanley
Chapter 1 describes the development and spectroscopic investigation of a novel synthetic route to N = 8 armchair graphene nanoribbons from polydiacetylene polymers. Four distinct diphenyl polydiacetylene polymers are produced from the crystal-phase topochemical polymerization of their corresponding diphenyl-1,4-butadiynes. These polydiacetylene polymers are transformed into spectroscopically indistinguishable N = 8 armchair graphene nanoribbons via simple heating in the bulk, solid-state. The stepwise transformation of polydiacetylenes to graphene nanoribbons is examined in detail by the use of complementary spectroscopic methods, namely solid-state nuclear magnetic resonance, infrared, Raman and X-ray photoelectron spectroscopy. The final morphology and width of the nanoribbons is established through the use of high-resolution transmission electron microscopy. Chapter 2 chronicles the implementation of a similar approach to N = 12 armchair graphene nanoribbons from a dinaphthyl substituted polydiacetylene polymer. The mild nature of the process and pristine structure of the nanoribbons is again confirmed with the use of spectroscopic and microscopic methods. The chapter concludes with preliminary electrical measurements of the nanoribbons confirming that they are indeed conductive. Chapter 3 details the development of a synthetic route to diaryl trans-enediynes as structural models of individual reactive units within a polydiacetylene polymer. The trans-enediynes described are found to undergo three distinct annulation reactions depending on reaction conditions. Finally, the synthetic routes developed are utilized to access diethynyl [5]helicenes and phenanthrenes which fueled studies on the mechanism of the Bergman polymerization reaction.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample
NASA Astrophysics Data System (ADS)
Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher
2017-05-01
RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.
VizieR Online Data Catalog: Abell 315 spectroscopic dataset (Biviano+, 2017)
NASA Astrophysics Data System (ADS)
Biviano, A.; Popesso, P.; Dietrich, J. P.; Zhang, Y.-Y.; Erfanianfar, G.; Romaniello, M.; Sartoris, B.
2017-03-01
Abell 315 was observed at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the VIsible MultiObject Spectrograph (VIMOS). The VIMOS data were acquired using 8 separate pointings, plus 2 additional pointings required to provide the needed redundancy within the central region and to cover the gaps between the VIMOS quadrants. Catalog of galaxies with redshifts in the region of the cluster Abell 315, with flags indicating whether these galaxies are members of the cluster, members of substructures within the cluster, and with probabilities for the cluster members to belong to the main cluster structure. (1 data file).
NASA Astrophysics Data System (ADS)
George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.
2007-07-01
Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.
Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs
NASA Technical Reports Server (NTRS)
Gully-Santiago, Michael A.; Marley, Mark S.
2017-01-01
In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.
VizieR Online Data Catalog: Velocities in the A2345 cluster (Boschin+, 2010)
NASA Astrophysics Data System (ADS)
Boschin, W.; Barrena, R.; Girardi, M.
2011-08-01
Multi-object spectroscopic observations of A2345 were carried out at the TNG telescope in August 2008. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the new E2V CCD, a matrix of 2048x2048 pixels with a pixel size of 13.5um. In total we observed four MOS masks for a total of 147 slits. Total exposure times were of 1h for three masks and 1.5h for the remaining mask. (1 data file).
The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design
NASA Astrophysics Data System (ADS)
France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason
2017-08-01
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh Babu, P.; Vijay, R.; Nageswara Rao, P.
2013-11-15
Graphical abstract: The plots between ε″(ω)ω vs. ε′(ω) and ε″(ω)/ω vs. ε′(ω) yield straight lines with slope 1/τ and τ, respectively. Considerable deviation from the straight line is observed in the high frequency region. Such deviation suggests spreading of relaxation times and this is attributed to the presence of multiple type of dipoles in the glass matrix. Variation of the parameters ωε″(ω) and ε″(ω)/ω with ε′(ω) of glass Li{sub 2}O–PbO–B{sub 2}O{sub 3}–SiO{sub 2}–Bi{sub 2}O{sub 3}–MnO multi-component glasses mixed with 2.0 mol% of Ga{sub 2}O{sub 3} measured at 373 K. - Highlights: • A series of Li{sub 2}O–PbO–B{sub 2}O{sub 3}–SiO{sub 2}–Bi{submore » 2}O{sub 3}–MnO:Ga{sub 2}O{sub 3} glasses have been synthesized. • A variety of spectroscopic and dielectric properties have been investigated. • Analysis of the results indicated that glasses with below 3.0 mol% Ga{sub 2}O{sub 3} are good conducting materials. - Abstract: Multi-component glasses of the chemical composition 19.5Li{sub 2}O–20PbO–20B{sub 2}O{sub 3}–30SiO–(10 − x)Bi{sub 2}O{sub 3}–0.5MnO:xGa{sub 2}O{sub 3} with 0 ≤ x ≤ 5.0 have been synthesized. Spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties were investigated. Optical absorption and ESR spectral studies have indicated that managanese ions do exist in Mn{sup 3+} state in addition to Mn{sup 2+} state in the samples containing low concentration of Ga{sub 2}O{sub 3}. The IR and Raman studies indicated increasing degree of disorder in the glass network with the concentration of Ga{sub 2}O{sub 3} up to 3.0 mol%. The dielectric constant, loss and ac conductivity are observed to increase with the concentration of Ga{sub 2}O{sub 3} up to 3.0 mol%. The quantitative analysis of the results of dielectric properties has indicated an increase in the insulating strength of the glasses as the concentration of Ga{sub 2}O{sub 3} is raised beyond 3.0 mol%. This has been attributed to adaption of gallium ions from octahedral to tetrahedral coordination.« less
Stehman, S.V.; Wickham, J.D.; Wade, T.G.; Smith, J.H.
2008-01-01
The database design and diverse application of NLCD 2001 pose significant challenges for accuracy assessment because numerous objectives are of interest, including accuracy of land-cover, percent urban imperviousness, percent tree canopy, land-cover composition, and net change. A multi-support approach is needed because these objectives require spatial units of different sizes for reference data collection and analysis. Determining a sampling design that meets the full suite of desirable objectives for the NLCD 2001 accuracy assessment requires reconciling potentially conflicting design features that arise from targeting the different objectives. Multi-stage cluster sampling provides the general structure to achieve a multi-support assessment, and the flexibility to target different objectives at different stages of the design. We describe the implementation of two-stage cluster sampling for the initial phase of the NLCD 2001 assessment, and identify gaps in existing knowledge where research is needed to allow full implementation of a multi-objective, multi-support assessment. ?? 2008 American Society for Photogrammetry and Remote Sensing.
ERIC Educational Resources Information Center
Wahl-Alexander, Zachary; Curtner-Smith, Matthew D.
2015-01-01
The purpose of this study was to examine the influence of negotiations between pupils and preservice teachers (PTs) on PTs' instruction within multi-activity (MA) teaching and sport education (SE). Participants were 17 PTs engaged in a secondary early field experience in which they taught 12-lesson MA and SE soccer units. Data were collected using…
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false General specifications applicable to multi-unit tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and 110AW). 179.300 Section 179.300 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...
Greenridge Multi-Pollutant Control Project Preliminary Public Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, Daniel P
2009-01-12
The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, andmore » HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.« less
NASA Technical Reports Server (NTRS)
Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.
2003-01-01
Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.
Arapitsas, Panagiotis; Menichetti, Stefano; Vincieri, Franco F; Romani, Annalisa
2007-01-10
This study was designed to develop efficient analytical tools for the difficult HPLC-DAD-MS identification of hydrolyzable tannins in natural tissue extracts. Throughout the study of the spectroscopic characteristics of properly synthesized stereodefined standards, it was observed that the UV-vis spectra of compounds with the m-depsidic link showed a characteristic shoulder at 300 nm, consistent with the simple glucogalloyl esters, whereas compounds with the hexahydroxydiphenoyl (HHDP) unit gave a diagnostic fragmentation pattern, caused by a spontaneous lactonization in the mass spectrometer. These observations were confirmed by HPLC-DAD-MS analyses of tannic acid and raspberry extracts, which are rich in hydrolyzable tannins with the m-depsidic link and the HHDP unit, respectively.
The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates
NASA Astrophysics Data System (ADS)
Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.
2017-12-01
Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims: Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods: We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n ≥ 2). Results: We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions: Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the efficient discovery of many new multiple systems. With the detection of the SB1 candidates that will be the subject of a forthcoming paper, the study of the statistical and physical properties of the spectroscopic multiple systems will soon be possible for the entire GES sample. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.
NASA Astrophysics Data System (ADS)
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2017-10-01
Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling offers new insight into the nature of pulsating stars.
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano
2014-07-01
The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe2+Fe53+(PO4)4(OH)5ṡ4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm-1 and 1011 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm-1 are assigned to the PO43- ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.
Community Resource Curriculum Development: Grades K-2.
ERIC Educational Resources Information Center
Bentley, Michael L.; And Others
This manual was developed by the Community Resource Curriculum Development Project (CRCDP), a cooperative project to develop multi-disciplinary, multi-ethnic, multi-cultural science/social sciences teaching units based upon the Illinois State Goals for Learning and the Chicago Public Schools outcomes for a seamless kindergarten, first, and second…
75 FR 56509 - Multi-Sector Trade Mission to Nigeria
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... DEPARTMENT OF COMMERCE International Trade Administration Multi-Sector Trade Mission to Nigeria...: Multi-Sector Trade Mission to Nigeria, March 8-10, 2011 I. Mission Description The United States... Mission to Nigeria March 8-10, 2011, to help U.S. firms find business partners and sell equipment and...
The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Init...
1967-11-07
A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Spectroscopic investigation of species separation in opening switch plasmas
NASA Astrophysics Data System (ADS)
Jackson, S. L.; Phipps, D. G.; Richardson, A. S.; Commisso, R. J.; Hinshelwood, D. D.; Murphy, D. P.; Schumer, J. W.; Weber, B. V.; Boyer, C. N.; Doron, R.; Biswas, S.; Maron, Y.
2015-11-01
Interactions between magnetic fields and current-carrying plasmas that lead to the separation of plasma species in multi-species plasmas are being studied in a plasma opening switch geometry. Several Marshall guns are used to inject single or multi-species plasmas between coaxial conductors connected to the output of the Naval Research Laboratory's Hawk pulsed-power generator. Following injection of the plasma, the generator is used at roughly half power to apply an electrical pulse with a peak current of 450 kA, a peak voltage of 400 kV, and a rise time of 1.2 μs. The resulting magnetic field interacts with the plasma through a combination of field penetration and magnetohydrodynamic (MHD) pushing that is not well understood but can lead to the separation of plasma species in multi-species plasmas. An ICCD-coupled spectrometer has been used in combination with magnetic probes, a ribbon-beam interferometer, and particle-in-cell (PIC) modeling to diagnose and understand conditions in the plasma from the time it is injected until the end of the conduction phase of the opening switch. This work supported by the Naval Research Laboratory Base Program and the Office of Naval Research.
Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.;
2012-01-01
Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.
Exploring the Structure of the Distant Universe with MUSE Data Cubes
NASA Astrophysics Data System (ADS)
MacDougall, Mason; Christensen, Lise
2018-01-01
The mass distribution in intergalactic and circumgalactic space is not well known since it is difficult to characterize objects in the distant universe. An ideal tool for studying such distant structure is the Multi-Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope array, which employs a wide field-of-view and a large spectral range to produce high spatial resolution datasets. Here we exploit the 2 spatial dimensions and 1 spectral dimension of a particular MUSE “data cube” to identify and characterize emission line sources near the line-of-sight to quasar PKS1937-101, which lies at a redshift of z=3.787. In particular, we search for galaxy companions to a z=3.572 Lyman-limit system measured in the quasar spectrum and find an associated Lyman-alpha emitter at z=3.556 with a projected distance of 30.2 kpc from the quasar line-of-sight. Through a combination of automated source extraction and manual investigation, we also identify 25 emission line galaxies and 1 other Lyman-alpha emitter in our field. The proximity of several of these objects to the quasar line-of-sight allows us to reliably identify absorption lines in the quasar spectrum that can be associated with observed emission lines with resolved fluxes. This will help characterize the metallicities and kinematics of galaxy halos and circumgalactic media in the early universe.
Laser driving and data processing concept for mobile trace gas sensing: Design and implementation
NASA Astrophysics Data System (ADS)
Liu, Chang; Tuzson, Béla; Scheidegger, Philipp; Looser, Herbert; Bereiter, Bernhard; Graf, Manuel; Hundt, Morten; Aseev, Oleg; Maas, Deran; Emmenegger, Lukas
2018-06-01
High precision mobile sensing of multi-species gases is greatly demanded in a wide range of applications. Although quantum cascade laser absorption spectroscopy demonstrates excellent field-deployment capabilities for gas sensing, the implementation of this measurement technique into sensor-like portable instrumentation still remains challenging. In this paper, two crucial elements, the laser driving and data acquisition electronics, are addressed. Therefore, we exploit the benefits of the time-division multiplexed intermittent continuous wave driving concept and the real-time signal pre-processing capabilities of a commercial System-on-Chip (SoC, Red Pitaya). We describe a re-designed current driver that offers a universal solution for operating a wide range of multi-wavelength quantum cascade laser device types and allows stacking for the purpose of multiple laser configurations. Its adaptation to the various driving situations is enabled by numerous field programmable gate array (FPGA) functionalities that were developed on the SoC, such as flexible generation of a large variety of synchronized trigger signals and digital inputs/outputs (DIOs). The same SoC is used to sample the spectroscopic signal at rates up to 125 MS/s with 14-bit resolution. Additional FPGA functionalities were implemented to enable on-board averaging of consecutive spectral scans in real-time, resulting in optimized memory bandwidth and hardware resource utilisation and autonomous system operation. Thus, we demonstrate how a cost-effective, compact, and commercial SoC can successfully be adapted to obtain a fully operational research-grade laser spectrometer. The overall system performance was examined in a spectroscopic setup by analyzing low pressure absorption features of CO2 at 4.3 μm.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.
M31N 2008-12a-The Remarkable Recurrent Nova in M31-Panchromatic Observations of the 2015 Eruption
NASA Technical Reports Server (NTRS)
Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J.- U.; Osborne, J. P.;
2016-01-01
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of Prec = 351+/-13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground- and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28 +/- 0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities approx. 13,000 km/s, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early supersoft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is Prec 174 +/- 10 days, and we expect the next eruption of M31N 2008-12a to occur around 2016 mid-September.
The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6
NASA Astrophysics Data System (ADS)
Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.
2017-11-01
We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).
THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Brandt, W. N.; Dawson, Kyle S.
2015-01-01
The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bandsmore » was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.« less
LBT/LUCIFER view of star-forming galaxies in the cluster 7C 1756+6520 at z ˜ 1.4
NASA Astrophysics Data System (ADS)
Magrini, Laura; Sommariva, Veronica; Cresci, Giovanni; Sani, Eleonora; Galametz, Audrey; Mannucci, Filippo; Petropoulou, Vasiliki; Fumana, Marco
2012-10-01
Galaxy clusters are key places to study the contribution of nature (i.e. mass and morphology) and nurture (i.e. environment) in the formation and evolution of galaxies. Recently, a number of clusters at z > 1, i.e. corresponding to the first epochs of the cluster formation, have been discovered and confirmed spectroscopically. We present new observations obtained with the LBT Near Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER) spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large-scale structure around the radio galaxy 7C 1756+6520 at z = 1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analysing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called fundamental metallicity relation (FMR), which is known not to evolve with redshift up to z = 2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshifts. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright active galactic nucleus, belonging to the cluster, which shows a significant outflow of gas.
Tactical Operations Analysis Support Facility.
1981-05-01
Punch/Reader 2 DMC-11AR DDCMP Micro Processor 2 DMC-11DA Network Link Line Unit 2 DL-11E Async Serial Line Interface 4 Intel IN-1670 448K Words MOS Memory...86 5.3 VIRTUAL PROCESSORS - VAX-11/750 ........................... 89 5.4 A RELATIONAL DATA MANAGEMENT SYSTEM - ORACLE...Central Processing Unit (CPU) is a 16 bit processor for high-speed, real time applications, and for large multi-user, multi- task, time shared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearl, Alan N.; Newberg, Heidi Jo; Smith, R. Fiona
We confirm, quantify, and provide a table of the coherent velocity substructure of the Milky Way disk within 2 kpc of the Sun toward the Galactic anticenter, with a 0.2 kpc resolution. We use the radial velocities of ∼340,000 F-type stars obtained with the Guoshoujing Telescope (also known as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST), and proper motions derived from the PPMXL catalog. The PPMXL proper motions have been corrected to remove systematic errors by subtracting the average proper motions of galaxies and QSOs that have been confirmed in the LAMOST spectroscopic survey, and that are withinmore » 2.°5 of the star’s position. We provide the resulting table of systematic offsets derived from the PPMXL proper motion measurements of extragalactic objects identified in the LAMOST spectroscopic survey. Using the corrected phase-space stellar sample, we find statistically significant deviations in the bulk disk velocity of 20 km s{sup −1} or more in the three-dimensional velocities of Galactic disk stars. The bulk velocity varies significantly over length scales of half a kiloparsec or less. The rotation velocity of the disk increases by 20 km s{sup −1} from the Sun’s position to 1.5 kpc outside the solar circle. Disk stars in the second quadrant, within 1 kpc of the Sun, are moving radially toward the Galactic center and vertically toward a point a few tenths of a kiloparsec above the Galactic plane; looking down on the disk, the stars appear to move in a circular streaming motion with a radius of the order of 1 kpc.« less
Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z = 1.416
NASA Astrophysics Data System (ADS)
Galametz, A.; Stern, D.; Stanford, S. A.; De Breuck, C.; Vernet, J.; Griffith, R. L.; Harrison, F. A.
2010-06-01
We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 ± 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets <2 Mpc relative to the radio galaxy position and have velocity offsets <1000 km s-1 relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z ~ 1.437, forming a sub-group offset by Δv ~ 3000 km s-1 and approximately 1.'5 east of the radio galaxy.
More SPECTRA! a Lot MORE! Better TOO! now What?
NASA Astrophysics Data System (ADS)
Field, Robert W.
2017-06-01
I have been a card-carrying spectroscopist for 52 years. I began my career studying spectroscopic perturbations in CS and CO. I eventually graduated to vibrational polyads in acetylene and Multichannel Quantum Defect Theory (MQDT) models for Rydberg states of CaF. My experimental arsenal evolved from atomic resonance lamps to finicky cw dye lasers to user-friendly Nd:YAG pumped dye lasers, ending up with Chirped Pulse Millimeter Waves, non-finicky solid state cw lasers, and death-defying dreams about Stimulated Raman Adiabatic Passage (STIRAP). It has become possible to record an enormous quantity of unimaginably high quality spectra quickly. Increases by factors of 10^{6} in spectral velocity have been claimed. Yet everything rests on assigning the spectrum. But the assignment game has changed. Instead of looking for patterns, we deal with meta-patterns. Our goal is to build a complex model that represents all of the energy levels and associates a multi-component eigenvector with each observed eigenstate. Eigenvectors can reveal what a molecule is thinking about doing when it grows up. Spectroscopy becomes a form of molecular psychoanalysis. A spectroscopist can observe the emergence and describe the mechanistic origin of new classes of large-amplitude intramolecular motions. This makes it possible to directly characterize things, such as transition states, which dogma has labeled "spectroscopically unobservable." Where is 21st century spectroscopy headed? I will discuss examples that include: spectroscopic perturbations of the S_{2} B^{3}Σ^{-}_{u} state, the SO_{2} C state with its unequal SO bond-lengths, and the transition state for trans-cis isomerization in the S_{1} state of acetylene.
NASA Astrophysics Data System (ADS)
Lohle, Stefan; Marynowski, Thomas; Knapp, Andreas; Wernitz, Ricarda; Lips, Tobias
2011-05-01
The first Automated Transfer Vehicle (ATV1) named Jules Verne was launched in March 2009 to carry over seven tons of experiments, fuel, water, food and other supplies to the International Space Station (ISS) orbiting at about 350 km. Attached to the ISS, it served as an extension to the space station, giving extra space for the six astronauts and cosmonauts who will ultimately form the permanent ISS Crew. On September 29, 2009, a controlled de-orbit maneuver lead the spacecraft to enter the Earth's atmosphere over the south pacific ocean. The following destructive re-entry was observed by two aircraft equipped with a wide variety of imaging and spectroscopic instruments. In this paper, we present quantitative results from the near-UV spectroscopic measurements acquired aboard an experimental DC-8 aircraft operated by NASA. The wavelength range of observation allows a determination of temperatures from radiation and the investigation of atomic radiation with respect to the identification of the destructive process. Furthermore, the excitation temperatures of chromium give an insight into the explosive events occurring during re-entry. Analysing the continuum of the measured spectra, the Planck radiation temperature is fitted to the data. These temperatures indicate that most of the radiating parts are titanium alloys, i.e. the outer structure of ATV1. All results within this paper are compared to a simulated break-up scenario and related to basic results from other experimenters which allows drawing an overall scenario for this destructive re-entry.
Reconstructing the colour palette of the Konstantinos Parthenis' burnt paintings.
Antonopoulou-Athera, N; Chatzitheodoridis, E; Terlixi, A; Doulgerides, M; Serafetinides, A A
2018-05-09
This case study focuses on the reconstruction of the colour palette and the possibility of laser cleaning of burnt paintings. The paintings ORPHEUS IN THE UNDERWORLD and CONCORDIA, composed by the Greek artist Konstantinos Parthenis (1878-1967), have been severely damaged by fire. The colour palette of Parthenis is thoroughly investigated for the first time, and to perform this, a multi-analytical spectroscopic approach was employed. Non-destructive in situ analysis was performed on multiple areas of the paintings by portable XRF. SEM-EDS and Raman, supported by reflected visible light optical microscopy, and ultraviolet light microscopy, as well as structural XRD and molecular FTIR were performed for identifying the pigments, the binder and the substrate of the paintings. This work also unveiled new aspects of the painting technique used by the artist, such as the uncommon use of multiple pigments of red hue in the upper paint layers, comparatively with the rest of Parthenis' paintings. Molecular spectroscopic techniques (i.e., Raman and FTIR) were effective in identifying pigments like chrome yellow (crocoite mineral), chrome orange (phoenicochroite mineral) and viridian green (hydrated chromium oxide). The spectroscopic analyses were also essential in the laser cleaning restoration because of the detection of pigments (i.e., lead white, vermilion etc.) prone to phase transformations due to photothermal and/or photochemical effects. Our investigation establishes the basis on the application of non-conventional cleaning methods on damaged paintings, such as laser irradiation, in order to remove the damaged layer and/or the superficial accretions, while preserving the hues of the original painting. Copyright © 2018 Elsevier B.V. All rights reserved.
ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Wu, Yue; Deng, Li-Cai
2015-07-01
Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surfacemore » gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.« less
SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson
2015-02-01
The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.
Structural and spectroscopic studies of a commercial glassy carbon
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.
2013-12-01
Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.
Enengl, Christina; Enengl, Sandra; Bouguerra, Nassima; Havlicek, Marek; Neugebauer, Helmut; Egbe, Daniel A M
2017-01-04
Poly(1,4-phenylene-ethynylene)-alt-poly(1,4-phenylene-vinylene) (PPE-PPV) copolymers have attracted quite a lot of attention in the last few years for electronic device applications owing to their enhanced fluorescence. In this work, we focus on one particular PPE-PPV copolymer with dissymmetrically substituted 1,4-phenylene-ethynylene and symmetrically substituted 1,4-phenylene-vinylene building units. Six successively performed cyclic voltammograms are presented, measured during the oxidation reactions. As the oxidation onset of the electrochemical reaction shifts to lower potentials in each cycle, this behavior is elucidated by using spectroscopic techniques ranging from UV/Vis/near-IR to mid-IR including spin-resonance techniques. Hence, these findings help to explain some of the copolymer's most advantageous properties in terms of possible oxidation products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of particle in liquid using excitation-fluorescence spectral flow cytometer
NASA Astrophysics Data System (ADS)
Takenaka, Kei; Togashi, Shigenori
2018-01-01
We have developed a new flow cytometer that can measure the excitation-fluorescence spectra of a single particle. This system consists of a solution-transmitting unit and an optical unit. The solution-transmitting unit allows a sample containing particles to flow through the center of a flow cell by hydrodynamic focusing. The optical unit irradiates particles with dispersed white light (wavelength band: 400-650 nm) along the flow direction and measures their fluorescence spectra (wavelength band: 400-700 nm) using a spectroscopic photodetector array. The fluorescence spectrum of a particle changes with the shift of the wavelength of the excitation light. Using this system, the excitation-fluorescence spectra of a fluorescent particle were measured. Additionally, a homogenized tomato suspension and a homogenized spinach suspension were measured using the system. Measurement results show that it is possible to determine the components of vegetables by comparing measured fluorescence spectra of particles in a vegetable suspension.
Inducamides A–C, Chlorinated Alkaloids from an RNA Polymerase Mutant Strain of Streptomyces sp.
2015-01-01
Inducamides A–C (1–3), three new chlorinated alkaloids featuring an amide skeleton generated by a tryptophan fragment and a 6-methylsalicylic acid unit, were isolated from a chemically induced mutant strain of Streptomyces sp. with the inducamides only being produced in the mutant strain. Their structures, including stereochemistry, were determined by spectroscopic analysis, Marfey’s method, and CD spectroscopy. PMID:25338006
A new feruloyl amide derivative from the fruits of Tribulus terrestris.
Zhang, Xiaopo; Wei, Na; Huang, Jian; Tan, Yinfeng; Jin, Dejun
2012-01-01
A new feruloyl amide derivative, named tribulusamide C, was isolated from the fruits of Tribulus terrestris. Its structure was determined on the basis of spectroscopic analysis including IR, 1-D-, 2-D-NMR and HR-ESI-MS. The structure of tribulusamide C was characterised by a unit of pyrrolidine-2,5-dione, which distinguished it from other lignanamides previously isolated from the fruits of T. terrestris.
Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa
2017-10-15
An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng
2017-01-01
In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
NASA Astrophysics Data System (ADS)
Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.
2017-01-01
We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.
Cytotoxic triterpenoid saponins from Aesculus glabra Willd.
Yuan, Wei; Wang, Ping; Deng, Guangrui; Li, Shiyou
2012-03-01
Twenty-four acylated polyhydroxyoleanene saponins were isolated from the seeds of Aesculus glabra. Sixteen of them, namely aesculiosides G1-G16 (1-16), were determined as compounds by spectroscopic and chemical analysis. The structural features of all 24 saponins are: (1) arabinofuranosyl units affixed to C-3 of the glucuronopyranosyl unit in the trisaccharide chain; (2) no 24-OH substitution; (3) C-2 sugar moiety substitution of the 3-O-glucuronopyranosyl unit is either glucopyranosyl or galactopyranosyl. The features of these isolated saponin structures provide more evidence for chemical taxonomy within the genus Aesculus. The cytotoxicity of the aesculiosides (1-16) were tested against A549 and PC-3 cancer cell lines with GI₅₀ from 5.4 to >25 μM. Copyright © 2011 Elsevier Ltd. All rights reserved.
Estimating food portions. Influence of unit number, meal type and energy density.
Almiron-Roig, Eva; Solis-Trapala, Ivonne; Dodd, Jessica; Jebb, Susan A
2013-12-01
Estimating how much is appropriate to consume can be difficult, especially for foods presented in multiple units, those with ambiguous energy content and for snacks. This study tested the hypothesis that the number of units (single vs. multi-unit), meal type and food energy density disrupts accurate estimates of portion size. Thirty-two healthy weight men and women attended the laboratory on 3 separate occasions to assess the number of portions contained in 33 foods or beverages of varying energy density (1.7-26.8 kJ/g). Items included 12 multi-unit and 21 single unit foods; 13 were labelled "meal", 4 "drink" and 16 "snack". Departures in portion estimates from reference amounts were analysed with negative binomial regression. Overall participants tended to underestimate the number of portions displayed. Males showed greater errors in estimation than females (p=0.01). Single unit foods and those labelled as 'meal' or 'beverage' were estimated with greater error than multi-unit and 'snack' foods (p=0.02 and p<0.001 respectively). The number of portions of high energy density foods was overestimated while the number of portions of beverages and medium energy density foods were underestimated by 30-46%. In conclusion, participants tended to underestimate the reference portion size for a range of food and beverages, especially single unit foods and foods of low energy density and, unexpectedly, overestimated the reference portion of high energy density items. There is a need for better consumer education of appropriate portion sizes to aid adherence to a healthy diet. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Challenges with secondary use of multi-source water-quality data in the United States
Sprague, Lori A.; Oelsner, Gretchen P.; Argue, Denise M.
2017-01-01
Combining water-quality data from multiple sources can help counterbalance diminishing resources for stream monitoring in the United States and lead to important regional and national insights that would not otherwise be possible. Individual monitoring organizations understand their own data very well, but issues can arise when their data are combined with data from other organizations that have used different methods for reporting the same common metadata elements. Such use of multi-source data is termed “secondary use”—the use of data beyond the original intent determined by the organization that collected the data. In this study, we surveyed more than 25 million nutrient records collected by 488 organizations in the United States since 1899 to identify major inconsistencies in metadata elements that limit the secondary use of multi-source data. Nearly 14.5 million of these records had missing or ambiguous information for one or more key metadata elements, including (in decreasing order of records affected) sample fraction, chemical form, parameter name, units of measurement, precise numerical value, and remark codes. As a result, metadata harmonization to make secondary use of these multi-source data will be time consuming, expensive, and inexact. Different data users may make different assumptions about the same ambiguous data, potentially resulting in different conclusions about important environmental issues. The value of these ambiguous data is estimated at \\$US12 billion, a substantial collective investment by water-resource organizations in the United States. By comparison, the value of unambiguous data is estimated at \\$US8.2 billion. The ambiguous data could be preserved for uses beyond the original intent by developing and implementing standardized metadata practices for future and legacy water-quality data throughout the United States.
NASA Astrophysics Data System (ADS)
Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro
2016-05-01
We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.
NASA Astrophysics Data System (ADS)
Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.
2016-07-01
We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.
Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging
Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan
2010-01-01
An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245
Rotational spectroscopy with an optical centrifuge.
Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery
2014-03-07
We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.
The Information System at CeSAM
NASA Astrophysics Data System (ADS)
Agneray, F.; Gimenez, S.; Moreau, C.; Roehlly, Y.
2012-09-01
Modern large observational programmes produce important amounts of data from various origins, and need high level quality control, fast data access via easy-to-use graphic interfaces, as well as possibility to cross-correlate informations coming from different observations. The Centre de donnéeS Astrophysique de Marseille (CeSAM) offer web access to VO compliant Information Systems to access data of different projects (VVDS, HeDAM, EXODAT, HST-COSMOS,…), including ancillary data obtained outside Laboratoire d'Astrophysique de Marseille (LAM) control. The CeSAM Information Systems provides download of catalogues and some additional services like: search, extract and display imaging and spectroscopic data by multi-criteria and Cone Search interfaces.
Oscillation spectrum of WASP-33 from the MOST photometry
NASA Astrophysics Data System (ADS)
Mkrtichian, David
2015-08-01
We present results of extended continuous time series photometry of the Delta Scuti type pulsating exoplanet host star WASP-33 obtained in two seasons (2011 and 2013) with the MOST space telescope. Our frequency analysis yealds rich, low-amplitude multi-frequency spectrum of oscillation modes. We discuss possible resonances between the orbiital period of the planet and frequencies of the oscillation modes. We present results of our measurements of planets orbital O-C variations and analyze possible existence of invisible planets in the system. We review recent results of the high-resolution spectroscopic campaign on WASP-33 and confirm the retrograde orbital motion of the planet WASP-33b.
The new Heavy-ion MCP-based Ancillary Detector DANTE for the CLARA-PRISMA Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiente-Dobon, J. J.; Gadea, A.; Corradi, L.
2006-08-14
The CLARA-PRISMA setup is a powerful tool for spectroscopic studies of neutron-rich nuclei produced in multi-nucleon transfer and deep-inelastic reactions. It combines the large acceptance spectrometer PRISMA with the {gamma}-ray array CLARA. At present, the ancillary heavy-ion detector DANTE, based on Micro-Channel Plates to be installed at the CLARA-PRISMA setup, is being constructed at LNL. DANTE will open the possibility of measuring {gamma}-{gamma} Doppler-corrected coincidences for the events outside the acceptance of PRISMA. In this presentation, it is described the heavy-ion detector DANTE, as well as the performances of the first prototype.
Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tusche, C., E-mail: c.tusche@fz-juelich.de; Peter Grünberg Institut; Goslawski, P.
2016-06-27
In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency.
Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.; Han, Wei-Qiang; Walukiewicz, W.
2004-01-21
We report Raman and time-resolved photoluminescence spectroscopic studies of multiwalled BN and B{sub x}C{sub y}N{sub z} nanotubes. The Raman spectroscopy shows that the as-grown B{sub x}C{sub y}N{sub z} charge recombination, respectively. Comparison of the photoluminescence of BN nanotubes to that decay process is characterized by two time constants that are attributed to intra- and inter-BN sheet nanotubes as predicted by theory. nanotubes are radially phase separated into BN shells and carbon shells. The photoluminescence of hexagonal BN is consistent with the existence of a spatially indirect band gap in multi-walled BN.
Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid; Golbedaghi, Reza
2017-07-03
The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.
Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.
2016-04-15
We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.
A laser measurement system with multi-degree-of-freedom
NASA Astrophysics Data System (ADS)
Long, Lingli; Yang, Liangen; Wang, Xuanze; Zhai, Zhongsheng
2008-10-01
A new five-degree-of-freedom measuring system was developed as a linear guide. According to the principle of autocollimation, the system consisted of two semiconductor lasers, two right angle prisms, two lenses, two polarization spectroscopes and four quadrant Si-photoelectric detectors(QPD). Two axial displacements and three angular rotation degrees are measured by comparing the position of the spot center on the QPD. Repetitive simulations show that the accuracy of the system is 3" for measurement of angle, which proves the feasibility of this system. The advantages of the system include simple structure, easy operation, high accuracy, low cost and real-time work.
NASA Astrophysics Data System (ADS)
Korolkov, Victor P.; Konchenko, Alexander S.; Cherkashin, Vadim V.; Mironnikov, Nikolay G.; Poleshchuk, Alexander G.
2013-09-01
Detailed analysis of etch depth map for phase binary computer-generated holograms intended for testing aspheric optics is a very important task. In particular, diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. We offer a simplified version of the specular spectroscopic scatterometry method. It is based on the spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase the phase depth of the grooves by a factor of 2 and measure more precisely shallow phase gratings. Measurement uncertainty is mainly defined by the following parameters: shifts of the spectrum maximums that occur due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method we describe can ensure 1% error. However, fiber spectrometers are more convenient for scanning measurements of large area computer-generated holograms. Our experimental system for characterization of binary computer-generated holograms was developed using a fiber spectrometer.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi
2016-01-15
The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.
Spectroscopic confirmation of the low-latitude object FSR 1716 as an old globular cluster
NASA Astrophysics Data System (ADS)
Koch, Andreas; Kunder, Andrea; Wojno, Jennifer
2017-09-01
Star clusters are invaluable tracers of the Galactic components and the discovery and characterization of low-mass stellar systems can be used to appraise their prevailing disruption mechanisms and time scales. However, owing to significant foreground contamination, high extinction, and still uncharted interfaces of the underlying Milky Way components, objects at low Galactic latitudes are notoriously difficult to characterize. Here, we present the first spectroscopic campaign to identify the chemodynamical properties of the low-latitude star cluster FSR 1716. While its photometric age and distance are far from settled, the presence of RR Lyrae variables indicates a rather old cluster variety. Using medium-resolution (R 10 600) calcium triplet (CaT) spectroscopy obtained with the wide-field, multi-fiber AAOmega instrument, we identified six member candidates with a mean velocity of -30 km s-1 and a velocity dispersion of 2.5 ± 0.9 km s-1. The latter value implies a dynamic mass of 1.3 × 104M⊙, typical of a low-mass globular cluster. Combined with our derived CaT metallicity of -1.38 ± 0.20 dex, this object is finally confirmed as an old, metal-poor globular cluster.
Bagoji, Atmanand M; Gowda, Jayant I; Gokavi, Naveen M; Nandibewoor, Sharanappa T
2017-08-01
The interaction between thiamine hydrochloride (TA) and bovine serum albumin (BSA) was investigated by fluorescence, FTIR, UV-vis spectroscopic and cyclic voltammetric techniques under optimised physiological condition. The fluorescence intensity of BSA is gradually decreased upon addition of TA due to the formation of a BSA-TA complex. The binding parameters were evaluated and their behaviour at different temperatures was analysed. The quenching constants (K sv ) obtained were 2.6 × 10 4 , 2.2 × 10 4 and 2.0 × 10 4 L mol -1 at 288, 298 and 308 K, respectively. The binding mechanism was static-type quenching. The values of ΔH° and ΔS° were found to be 26.87 kJ mol -1 and 21.3 J K -1 mol -1 , and indicated that electrostatic interaction was the principal intermolecular force. The changes in the secondary structure of BSA upon interaction with TA were confirmed by synchronous and 3-D spectral results. Site probe studies reveal that TA is located in site I of BSA. The effects of some common metal ions on binding of BSA-TA complex were also investigated.
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.
2017-12-01
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.
Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M
2016-11-01
Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.
4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review
NASA Astrophysics Data System (ADS)
de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else
2016-08-01
We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.
Active coherent laser spectrometer for remote detection and identification of chemicals
NASA Astrophysics Data System (ADS)
MacLeod, Neil A.; Weidmann, Damien
2012-10-01
Currently, there exists a capability gap for the remote detection and identification of threat chemicals. We report here on the development of an Active Coherent Laser Spectrometer (ACLaS) operating in the thermal infrared and capable of multi-species stand-off detection of chemicals at sub ppm.m levels. A bench top prototype of the instrument has been developed using distributed feedback mid-infrared quantum cascade lasers as spectroscopic sources. The instrument provides active eye-safe illumination of a topographic target and subsequent spectroscopic analysis through optical heterodyne detection of the diffuse backscattered field. Chemical selectivity is provided by the combination of the narrow laser spectral bandwidth (typically < 2 MHz) and frequency tunability that allows the recording of the full absorption spectrum of any species within the instrument line of sight. Stand-off detection at distances up to 12 m has been demonstrated on light molecules such as H2O, CH4 and N2O. A physical model of the stand-off detection scenario including ro-vibrational molecular absorption parameters was used in conjunction with a fitting algorithm to retrieve quantitative mixing ratio information on multiple absorbers.
J0811+4730: the most metal-poor star-forming dwarf galaxy known
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.
2018-01-01
We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.
Moyanova, Slavianka; Kirov, Roumen; Kortenska, Lidia
2003-08-15
Conscious Wistar rats with stereotaxically and unilaterally implanted cannula just above the middle cerebral artery (MCA) were injected with the powerful vasoconstrictor peptide endothelin-1 (ET1, 60 pmol in 3 microl). The purpose was to examine the long-term (from the 1st to the 14th day) changes in neuronal bioelectrical activity together with sensorimotor deficits after ET1-induced MCA occlusion (MCAO). Extracellular multi-unit activity (MUA) recorded from the ipsilateral fronto-parietal cortical area (supplied by MCA) and sensorimotor behavior (one postural reflex test and six limb placing tests) were examined. A significant suppression of the multi-unit activity was observed until the 14th day post-ET1. The rats exhibited significant unilateral sensorimotor deficits with a maximum at the 3-7 days after ET1 and a spontaneous partial recovery by days 11-14. A significant correlation was found between the suppression of the multi-unit activity and the sensorimotor deficits between the 3rd and the 10th day post-ET1. The results suggest that studying the bioelectrical activity in combination with the behavioral sensorimotor functions may be of use to assess the functional disturbances associated with focal cerebral ischemia and would help to examine the therapeutic benefits of various cerebroprotective treatments before initiating human clinical trials.
Leadership Development Institute: A California Community College Multi-College District Case Study
ERIC Educational Resources Information Center
Leon, Bianca R.
2016-01-01
The purpose of this study is to examine a community college district Grow Your Own (GYO) leadership program in the Western United States, the Multi College Leadership Development Institute (MCLDI). The MCLDI was developed in-house for a multi-campus community college district and offered to interested employees at all position levels with the…
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
Improved Ambient Pressure Pyroelectric Ion Source
NASA Technical Reports Server (NTRS)
Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett
2011-01-01
The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.
Characterization of a spectroscopic detector for application in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.
2017-09-01
Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion. As no counts are expected in the low energy tail, a first order background correction is applied to the spectrum. The measured linear attenuation coefficient (LAC) is within 10% of the expected value in the 60 to 100 keV range. Below 60 keV, low counts in the corrected spectrum and partial energy deposition from incident photons of energy greater than 60 keV into energy bins below 60 keV impact the LAC measurements. This report ends with a demonstration of the tomographic capability of the system. The quantitative understanding of the detector developed in this report will enable further study in evaluating the system for characterization of an object's chemical make-up for industrial and security purposes.
Characterization of a spectroscopic detector for application in x-ray computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, A. A.; Fix, B. J.; Smith, J. A.
Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-locationmore » and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion. As no counts are expected in the low energy tail, a first order background correction is applied to the spectrum. The measured linear attenuation coefficient (LAC) is within 10% of the expected value in the 60 to 100 keV range. Below 60 keV, low counts in the corrected spectrum and partial energy deposition from incident photons of energy greater than 60 keV into energy bins below 60 keV impact the LAC measurements. This report ends with a demonstration of the tomographic capability of the system. The quantitative understanding of the detector developed in this report will enable further study in evaluating the system for characterization of an object’s chemical make-up for industrial and security purposes.« less
NASA Astrophysics Data System (ADS)
Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Anders, Friedrich; Anderson, Scott; Andrews, Brett H.; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barbuy, Beatriz; Barger, Kat; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Basu, Sarbani; Bates, Dominic; Battaglia, Giuseppina; Baumgarten, Falk; Baur, Julien; Bautista, Julian; Beers, Timothy C.; Belfiore, Francesco; Bershady, Matthew; Bertran de Lis, Sara; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Borissova, J.; Bovy, Jo; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burtin, Etienne; Busca, Nicolás G.; Orlando Camacho Chavez, Hugo; Cano Díaz, M.; Cappellari, Michele; Carrera, Ricardo; Chen, Yanping; Cherinka, Brian; Cheung, Edmond; Chiappini, Cristina; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert; Cunha, Katia; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; Da Costa, Luiz; Da Silva Ilha, Gabriele; Deconto Machado, Alice; Delubac, Timothée; De Lee, Nathan; De la Macorra, Axel; De la Torre, Sylvain; Diamond-Stanic, Aleksandar M.; Donor, John; Downes, Juan Jose; Drory, Niv; Du, Cheng; Du Mas des Bourboux, Hélion; Dwelly, Tom; Ebelke, Garrett; Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Escoffier, Stephanie; Evans, Michael L.; Falcón-Barroso, Jesús; Fan, Xiaohui; Favole, Ginevra; Fernandez-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gao, Yang; Garcia, Rafael A.; Garcia-Dias, R.; Garcia-Hernández, D. A.; Garcia Pérez, Ana E.; Gaulme, Patrick; Ge, Junqiang; Geisler, Douglas; Gillespie, Bruce; Gil Marin, Hector; Girardi, Léo; Goddard, Daniel; Gomez Maqueo Chew, Yilen; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul; Grier, Catherine J.; Grier, Thomas; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Matt; Harding, Paul; Harley, R. E.; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez Toledo, Hector; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Hu, Jian; Huber, Daniel; Hutchinson, Timothy Alan; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; Ivans, Inese I.; Ivory, KeShawn; Jaehnig, Kurt; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jullo, Eric; Kallinger, T.; Kinemuchi, Karen; Kirkby, David; Klaene, Mark; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Laurent, Pierre; Law, David R.; Leauthaud, Alexie; Le Goff, Jean-Marc; Li, Chen; Li, Cheng; Li, Niu; Li, Ran; Liang, Fu-Heng; Liang, Yu; Lima, Marcos; Lin, Lihwai; Lin, Lin; Lin, Yen-Ting; Liu, Chao; Long, Dan; Lucatello, Sara; MacDonald, Nicholas; MacLeod, Chelsea L.; Mackereth, J. Ted; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Olena; Malanushenko, Viktor; Dullius Mallmann, Nícolas; Manchado, Arturo; Maraston, Claudia; Marques-Chaves, Rui; Martinez Valpuesta, Inma; Masters, Karen L.; Mathur, Savita; McGreer, Ian D.; Merloni, Andrea; Merrifield, Michael R.; Meszáros, Szabolcs; Meza, Andres; Miglio, Andrea; Minchev, Ivan; Molaverdikhani, Karan; Montero-Dorta, Antonio D.; Mosser, Benoit; Muna, Demitri; Myers, Adam; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; O’Connell, Julia; Oravetz, Audrey; Oravetz, Daniel J.; Pace, Zachary; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Park, Changbom; Peacock, John A.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Percival, Jeffrey W.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew; Pinsonneault, Marc H.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Price-Jones, Natalie; Raddick, M. Jordan; Rahman, Mubdi; Raichoor, Anand; Barboza Rembold, Sandro; Reyna, A. M.; Rich, James; Richstein, Hannah; Ridl, Jethro; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Rodrigues, Thaíse S.; Roe, Natalie; Lopes, A. Roman; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Runnoe, Jessie C.; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Sebastian F.; Sanchez, Ariel G.; Sanchez-Gallego, José R.; Santiago, Basílio Xavier; Schiavon, Ricardo; Schimoia, Jaderson S.; Schlafly, Eddie; Schlegel, David J.; Schneider, Donald P.; Schönrich, Ralph; Schultheis, Mathias; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Sesar, Branimir; Shao, Zhengyi; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Victor; Skrutskie, M. F.; Slosar, Anže; Smith, Michael; Smith, Verne V.; Sobeck, Jennifer; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Storchi Bergmann, Thaisa; Strauss, Michael A.; Streblyanska, Alina; Stringfellow, Guy S.; Suarez, Genaro; Sun, Jing; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas; Trump, Jonathan R.; Unda-Sanzana, Eduardo; Valenzuela, O.; Van den Bosch, Remco; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Wang, Enci; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yeche, Christophe; Yuan, Fang-Ting; Zakamska, Nadia; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu
2017-12-01
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.
Investigating Ecosystems Services in the Arid Southwest
The Southwest Ecosystem Services Project (SwESP) is an integrated, multi-disciplinary, multi-agency project focused on how to identify, characterize, and quantify the ecosystem services in the southwestern United States and northern Mexico. The southwestern landscape is highly d...
NASA Astrophysics Data System (ADS)
Brossier, J. F.; Rodriguez, S.; Cornet, T.; Maltagliati, L.; Lucas, A.; Le Mouélic, S.; Solomonidou, A.; Coustenis, A.; Hirtzig, M.; Jaumann, R.; Stephan, K.; Brown, R. H.
2017-09-01
Over these twelve past years, near-IR imaging data from the Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini gave significant hints on the spectroscopic and geological diversity of the terrains on Titan's surface. The composition of those terrains still remains unconfirmed yet. Nonetheless, by applying a newly updated radiative transfer model, we provide excellent constraints on the composition and structure for the main IR-units present in the equatorial regions (±40˚N/S). Indeed, by combining this method of correction with a spectral mixing model for water ice and tholins, we determine the main chemical species present within IR-units and relate them to the observed geomorphology. We therefore propose a scenario that could lead to the current distribution of the IR-units.
NASA Astrophysics Data System (ADS)
Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.
2011-12-01
We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.
Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C
2011-12-21
We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, P. D.; Brown, M. E.; Trumbo, S. K.
2017-01-01
We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less
The high-redshift gamma-ray burst GRB 140515A
Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...
2015-09-09
High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is x HI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded inmore » a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Building on a unit designed to help first graders adjust to the classroom environment, this teacher's guide for the second bilingual social science instructional unit includes material which expands the conceptual field of the child to the family. The Spanish-English guide presents instructional and assessment activities for kits five through…
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION
Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; ...
2015-12-01
As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg 2 . First, a "CORE" quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ~70 deg -2 quasars at redshifts 0.9 < z < 2.2 and ~7 deg -2more » z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 deg -2 z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.« less