Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation
2006-09-01
risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level
ERIC Educational Resources Information Center
Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan
2015-01-01
In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…
Multi-agent cooperation rescue algorithm based on influence degree and state prediction
NASA Astrophysics Data System (ADS)
Zheng, Yanbin; Ma, Guangfu; Wang, Linlin; Xi, Pengxue
2018-04-01
Aiming at the multi-agent cooperative rescue in disaster, a multi-agent cooperative rescue algorithm based on impact degree and state prediction is proposed. Firstly, based on the influence of the information in the scene on the collaborative task, the influence degree function is used to filter the information. Secondly, using the selected information to predict the state of the system and Agent behavior. Finally, according to the result of the forecast, the cooperative behavior of Agent is guided and improved the efficiency of individual collaboration. The simulation results show that this algorithm can effectively solve the cooperative rescue problem of multi-agent and ensure the efficient completion of the task.
Bosse, Stefan
2015-01-01
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550
Bosse, Stefan
2015-02-16
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.
Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem
NASA Astrophysics Data System (ADS)
Faroqi, H.; Mesgari, M.-S.
2015-12-01
During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.
Integrated control of lateral and vertical vehicle dynamics based on multi-agent system
NASA Astrophysics Data System (ADS)
Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia
2014-03-01
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.
2015-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.
Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph
NASA Astrophysics Data System (ADS)
Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan
2011-04-01
This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.
Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)
2008-03-01
4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python
NASA Astrophysics Data System (ADS)
Ghavami, Seyed Morsal; Taleai, Mohammad
2017-04-01
Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.
Formalizing Knowledge in Multi-Scale Agent-Based Simulations
Somogyi, Endre; Sluka, James P.; Glazier, James A.
2017-01-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063
Formalizing Knowledge in Multi-Scale Agent-Based Simulations.
Somogyi, Endre; Sluka, James P; Glazier, James A
2016-10-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-agent systems and their applications
Xie, Jing; Liu, Chen-Ching
2017-07-14
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Multi-agent systems and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Liu, Chen-Ching
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
An Immune Agent for Web-Based AI Course
ERIC Educational Resources Information Center
Gong, Tao; Cai, Zixing
2006-01-01
To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…
Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control
NASA Astrophysics Data System (ADS)
Ma, Tiedong; Li, Teng; Cui, Bing
2018-01-01
The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.
2014-11-05
usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed Re‐use: Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we
UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis
2013-06-01
CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K
2010-01-01
An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less
An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard W.
This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
A framework for service enterprise workflow simulation with multi-agents cooperation
NASA Astrophysics Data System (ADS)
Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun
2013-11-01
Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.
Observer-based distributed adaptive iterative learning control for linear multi-agent systems
NASA Astrophysics Data System (ADS)
Li, Jinsha; Liu, Sanyang; Li, Junmin
2017-10-01
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.
Agent-based model for rural-urban migration: A dynamic consideration
NASA Astrophysics Data System (ADS)
Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid
2015-10-01
This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.
NASA Astrophysics Data System (ADS)
Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.
2016-05-01
This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Jiancheng; Zhu, Fanglai
2018-03-01
In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent's states and disturbances, but also the disturbances' high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.
NASA Astrophysics Data System (ADS)
Azimi, S.; Delavar, M. R.; Rajabifard, A.
2017-09-01
In response to natural disasters, efficient planning for optimum allocation of the medical assistance to wounded as fast as possible and wayfinding of first responders immediately to minimize the risk of natural disasters are of prime importance. This paper aims to propose a multi-agent based modeling for optimum allocation of space to emergency centers according to the population, street network and number of ambulances in emergency centers by constraint network Voronoi diagrams, wayfinding of ambulances from emergency centers to the wounded locations and return based on the minimum ambulances travel time and path length implemented by NSGA and the use of smart city facilities to accelerate the rescue operation. Simulated annealing algorithm has been used for minimizing the difference between demands and supplies of the constrained network Voronoi diagrams. In the proposed multi-agent system, after delivering the location of the wounded and their symptoms, the constraint network Voronoi diagram for each emergency center is determined. This process was performed simultaneously for the multi-injuries in different Voronoi diagrams. In the proposed multi-agent system, the priority of the injuries for receiving medical assistance and facilities of the smart city for reporting the blocked streets was considered. Tehran Municipality District 5 was considered as the study area and during 3 minutes intervals, the volunteers reported the blocked street. The difference between the supply and the demand divided to the supply in each Voronoi diagram decreased to 0.1601. In the proposed multi-agent system, the response time of the ambulances is decreased about 36.7%.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.
Narang, Sahil; Best, Andrew; Curtis, Sean; Manocha, Dinesh
2015-01-01
Pedestrian crowds often have been modeled as many-particle system including microscopic multi-agent simulators. One of the key challenges is to unearth governing principles that can model pedestrian movement, and use them to reproduce paths and behaviors that are frequently observed in human crowds. To that effect, we present a novel crowd simulation algorithm that generates pedestrian trajectories that exhibit the speed-density relationships expressed by the Fundamental Diagram. Our approach is based on biomechanical principles and psychological factors. The overall formulation results in better utilization of free space by the pedestrians and can be easily combined with well-known multi-agent simulation techniques with little computational overhead. We are able to generate human-like dense crowd behaviors in large indoor and outdoor environments and validate the results with captured real-world crowd trajectories. PMID:25875932
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
NASA Astrophysics Data System (ADS)
Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher
2018-01-01
This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.
A Multi-Agent Approach to the Simulation of Robotized Manufacturing Systems
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The recent years of eventful industry development, brought many competing products, addressed to the same market segment. The shortening of a development cycle became a necessity if the company would like to be competitive. Because of switching to the Intelligent Manufacturing model the industry search for new scheduling algorithms, while the traditional ones do not meet the current requirements. The agent-based approach has been considered by many researchers as an important way of evolution of modern manufacturing systems. Due to the properties of the multi-agent systems, this methodology is very helpful during creation of the model of production system, allowing depicting both processing and informational part. The complexity of such approach makes the analysis impossible without the computer assistance. Computer simulation still uses a mathematical model to recreate a real situation, but nowadays the 2D or 3D virtual environments or even virtual reality have been used for realistic illustration of the considered systems. This paper will focus on robotized manufacturing system and will present the one of possible approaches to the simulation of such systems. The selection of multi-agent approach is motivated by the flexibility of this solution that offers the modularity, robustness and autonomy.
Tučník, Petr; Bureš, Vladimír
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.
Cooperation based dynamic team formation in multi-agent auctions
NASA Astrophysics Data System (ADS)
Pippin, Charles E.; Christensen, Henrik
2012-06-01
Auction based methods are often used to perform distributed task allocation on multi-agent teams. Many existing approaches to auctions assume fully cooperative team members. On in-situ and dynamically formed teams, reciprocal collaboration may not always be a valid assumption. This paper presents an approach for dynamically selecting auction partners based on observed team member performance and shared reputation. In addition, we present the use of a shared reputation authority mechanism. Finally, experiments are performed in simulation on multiple UAV platforms to highlight situations in which it is better to enforce cooperation in auctions using this approach.
Agents in bioinformatics, computational and systems biology.
Merelli, Emanuela; Armano, Giuliano; Cannata, Nicola; Corradini, Flavio; d'Inverno, Mark; Doms, Andreas; Lord, Phillip; Martin, Andrew; Milanesi, Luciano; Möller, Steffen; Schroeder, Michael; Luck, Michael
2007-01-01
The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this article, we report on the activity of the Working Group on Agents in Bioinformatics (BIOAGENTS) founded during the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different (agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applications and integrated tools that we summarize and discuss in context of the state of the art in this area. We investigate on future challenges and argue that the field should still be explored from many perspectives ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages to be used by information agents, and to the adoption of agents for computational grids.
NASA Astrophysics Data System (ADS)
Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki
This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
NASA Astrophysics Data System (ADS)
Piao, Chunhui; Han, Xufang; Wu, Harris
2010-08-01
We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.
Smart Grid as Multi-layer Interacting System for Complex Decision Makings
NASA Astrophysics Data System (ADS)
Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico
This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472
Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo
2017-01-31
Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Multi-agent cooperation pursuit based on an extension of AALAADIN organisational model
NASA Astrophysics Data System (ADS)
Souidi, Mohammed El Habib; Songhao, Piao; Guo, Li; Lin, Chang
2016-11-01
An approach of cooperative pursuit for multiple mobile targets based on multi-agents system is discussed. In this kind of problem the pursuit process is divided into two kinds of tasks. The first one (coalition problem) is designed to solve the problem of the pursuit team formation. To achieve this mission, we used an innovative method based on a dynamic organisation and reorganisation of the pursuers' groups. We introduce our coalition strategy extended from the organisational agent, group, role model by assigning an access mechanism to the groups inspired by fuzzy logic principles. The second task (motion problem) is the treatment of the pursuers' motion strategy. To manage this problem we applied the principles of the Markov decision process. Simulation results show the feasibility and validity of the given proposal.
Multi-Agent Simulations of the Immune Response to Hiv during the Acute Stage of Infection
NASA Astrophysics Data System (ADS)
Walshe, R.; Ruskin, H. J.; Callaghan, A.
Results of multi-agent based simulations of the immune response to HIV during the acute phase of infection are presented here. The model successfully recreates the viral dynamics associated with the acute phase of infection, i.e., a rapid rise in viral load followed by a sharp decline to what is often referred to as a "set point", a result of T-cell response and emergence of HIV neutralizing antibodies. The results indicate that sufficient T Killer cell response is the key factor in controlling viral growth during this phase with antibody levels of critical importance only in the absence of a sufficient T Killer response.
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061
Vera, Javier
2018-01-01
What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.
Agent-based models of cellular systems.
Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca
2013-01-01
Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.
Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology.
Colosimo, Alfredo
2018-01-01
This contribution reports on the simulation of some dynamical events observed in the collective behavior of different kinds of populations, ranging from shape-changing cells in a Petri dish to functionally correlated brain areas in vivo. The unifying methodological approach, based upon a Multi-Agent Simulation (MAS) paradigm as incorporated in the NetLogo™ interpreter, is a direct consequence of the cornerstone that simple, individual actions within a population of interacting agents often give rise to complex, collective behavior.The discussion will mainly focus on the emergence and spreading of synchronous activities within the population, as well as on the modulation of the collective behavior exerted by environmental force-fields. A relevant section of this contribution is dedicated to the extension of the MAS paradigm to Brain Network models. In such a general framework some recent applications taken from the direct experience of the author, and exploring the activation patterns characteristic of specific brain functional states, are described, and their impact on the Systems-Biology universe underlined.
2006-11-01
mallei , Burkholderia pseudomallei and Variola virus (smallpox virus). A chimera of 2040 bp was engineered to produce PCR amplicons of different sizes...potential bio-warfare use have been completely sequenced, B. mallei , the etiologic agent of glanders , and B. pseudomallei, causative agent of... Burkholderia mallei Nierman et al, 2004 Burkholderia pseudomallei Holden et al, 2004 Burkholderia thailandensis
Multi-agent simulation of the von Thunen model formation mechanism
NASA Astrophysics Data System (ADS)
Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin
2008-10-01
This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.
Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce
NASA Astrophysics Data System (ADS)
Gutowska, Anna; Sloane, Andrew
This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.
NASA Astrophysics Data System (ADS)
Bosse, Stefan
2013-05-01
Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.
Group consensus control for networked multi-agent systems with communication delays.
An, Bao-Ran; Liu, Guo-Ping; Tan, Chong
2018-05-01
This paper investigates group consensus problems in networked multi-agent systems (NMAS) with communication delays. Based on the sed state prediction scheme, the group consensus control protocol is designed to compensate the communication delay actively. In light of algebraic graph theories and matrix theories, necessary and(or) sufficient conditions of group consensus with respect to a given admissible control set are obtained for the NMAS with communication delays under mild assumptions. Finally, simulations are performed to demonstrate the effectiveness of the theoretical results. Copyright © 2018 ISA. All rights reserved.
Leader–follower fixed-time consensus of multi-agent systems with high-order integrator dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Bailing; Zuo, Zongyu; Wang, Hong
The leader-follower fixed-time consensus of high-order multi-agent systems with external disturbances is investigated in this paper. A novel sliding manifold is designed to ensure that the tracking errors converge to zero in a fixed-time during the sliding motion. Then, a distributed control law is designed based on Lyapunov technique to drive the system states to the sliding manifold in finite-time independent of initial conditions. Finally, the efficiency of the proposed method is illustrated by numerical simulations.
On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.
Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R
2013-04-06
Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
A multi-agent architecture for geosimulation of moving agents
NASA Astrophysics Data System (ADS)
Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem
2015-10-01
In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.
Designing Realistic Human Behavior into Multi-Agent Systems
2001-09-01
different results based on some sort of randomness built into it, a trend can be looked at over time and a success or failure rate can be...simulation remains in that state, very different results can be achieved each simulation run. An analyst can look at success and failure over a long
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
Distributed consensus for discrete-time heterogeneous multi-agent systems
NASA Astrophysics Data System (ADS)
Zhao, Huanyu; Fei, Shumin
2018-06-01
This paper studies the consensus problem for a class of discrete-time heterogeneous multi-agent systems. Two kinds of consensus algorithms will be considered. The heterogeneous multi-agent systems considered are converted into equivalent error systems by a model transformation. Then we analyse the consensus problem of the original systems by analysing the stability problem of the error systems. Some sufficient conditions for consensus of heterogeneous multi-agent systems are obtained by applying algebraic graph theory and matrix theory. Simulation examples are presented to show the usefulness of the results.
Agent Based Intelligence in a Tetrahedral Rover
NASA Technical Reports Server (NTRS)
Phelps, Peter; Truszkowski, Walt
2007-01-01
A tetrahedron is a 4-node 6-strut pyramid structure which is being used by the NASA - Goddard Space Flight Center as the basic building block for a new approach to robotic motion. The struts are extendable; it is by the sequence of activities: strut-extension, changing the center of gravity and falling that the tetrahedron "moves". Currently, strut-extension is handled by human remote control. There is an effort underway to make the movement of the tetrahedron autonomous, driven by an attempt to achieve a goal. The approach being taken is to associate an intelligent agent with each node. Thus, the autonomous tetrahedron is realized as a constrained multi-agent system, where the constraints arise from the fact that between any two agents there is an extendible strut. The hypothesis of this work is that, by proper composition of such automated tetrahedra, robotic structures of various levels of complexity can be developed which will support more complex dynamic motions. This is the basis of the new approach to robotic motion which is under investigation. A Java-based simulator for the single tetrahedron, realized as a constrained multi-agent system, has been developed and evaluated. This paper reports on this project and presents a discussion of the structure and dynamics of the simulator.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Consensus for second-order multi-agent systems with position sampled data
NASA Astrophysics Data System (ADS)
Wang, Rusheng; Gao, Lixin; Chen, Wenhai; Dai, Dameng
2016-10-01
In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated. The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13F030005) and the National Natural Science Foundation of China (Grant No. 61501331).
Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation
NASA Astrophysics Data System (ADS)
Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid
2017-09-01
Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.
A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.
Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús
2018-06-02
As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
2011-02-07
Sensor UGVs (SUGV) or Disruptor UGVs, depending on their payload. The SUGVs included vision, GPS/IMU, and LIDAR systems for identifying and tracking...employed by all the MAGICian research groups. Objects of interest were tracked using standard LIDAR and Computer Vision template-based feature...tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous Locali- zation and Mapping ( SLAM ). Our system contains
Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots
2011-01-18
IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored
Demeter, persephone, and the search for emergence in agent-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Howe, T. R.; Collier, N. T.
2006-01-01
In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent ormore » potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.« less
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
NASA Astrophysics Data System (ADS)
Dickes, Amanda Catherine; Sengupta, Pratim
2013-06-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2016-05-01
We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.
Evacuation Simulation in Kalayaan Residence Hall, up Diliman Using Gama Simulation Software
NASA Astrophysics Data System (ADS)
Claridades, A. R. C.; Villanueva, J. K. S.; Macatulad, E. G.
2016-09-01
Agent-Based Modeling (ABM) has recently been adopted in some studies for the modelling of events as a dynamic system given a set of events and parameters. In principle, ABM employs individual agents with assigned attributes and behaviors and simulates their behavior around their environment and interaction with other agents. This can be a useful tool in both micro and macroscale-applications. In this study, a model initially created and applied to an academic building was implemented in a dormitory. In particular, this research integrates three-dimensional Geographic Information System (GIS) with GAMA as the multi-agent based evacuation simulation and is implemented in Kalayaan Residence Hall. A three-dimensional GIS model is created based on the floor plans and demographic data of the dorm, including respective pathways as networks, rooms, floors, exits and appropriate attributes. This model is then re-implemented in GAMA. Different states of the agents and their effect on their evacuation time were then observed. GAMA simulation with varying path width was also implemented. It has been found out that compared to their original states, panic, eating and studying will hasten evacuation, and on the other hand, sleeping and being on the bathrooms will be impedances. It is also concluded that evacuation time will be halved when path widths are doubled, however it is recommended for further studies for pathways to be modeled as spaces instead of lines. A more scientific basis for predicting agent behavior in these states is also recommended for more realistic results.
Convoy Protection under Multi-Threat Scenario
2017-06-01
14. SUBJECT TERMS antisubmarine warfare, convoy protection, screening, design of experiments, agent-based simulation 15. NUMBER OF...46 5. Scenarios 33–36 (Red Submarine Tactic-2) ...............................46 IV. DESIGN OF EXPERIMENT...47 C. NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGN ............51 V. DATA ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa
2018-01-01
In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data meaningful and quantifiable in a simulation environment. This research can help practitioners and decision makers to gain better understanding on the dynamics and complexities of precision intervention in healthcare. It can aid the improvement of the optimal allocation of resources for targeted group (s) and the achievement of maximum utility. As this technology becomes more mature, one can design policy flight simulators by which policy/intervention designers can test a variety of assumptions when they evaluate different alternatives interventions.
Agent-based Modeling with MATSim for Hazards Evacuation Planning
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
Model of load balancing using reliable algorithm with multi-agent system
NASA Astrophysics Data System (ADS)
Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.
2017-04-01
Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.
Ren, Hongwei; Deng, Feiqi
2017-11-01
This paper investigates the mean square consensus problem of dynamical networks of leader-following multi-agent systems with measurement noises and time-varying delays. We consider that the fixed undirected communication topologies are connected. A neighbor-based tracking algorithm together with distributed estimators are presented. Using tools of algebraic graph theory and the Gronwall-Bellman-Halanay type inequality, we establish sufficient conditions to reach consensus in mean square sense via the proposed consensus protocols. Finally, a numerical simulation is provided to demonstrate the effectiveness of the obtained theoretical result. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Human-Centric Teaming in a Multi-Agent EVA Assembly Task
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher
2004-01-01
NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.
Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics
NASA Astrophysics Data System (ADS)
Saeedi, Sara
2018-06-01
With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving mechanism of urbanization and provide decision-making support for urban management.
An integrative assessment of the commercial air transportation system via adaptive agents
NASA Astrophysics Data System (ADS)
Lim, Choon Giap
The overarching research objective is to address the tightly-coupled interactions between the demand-side and supply-side components of the United States Commercial Air Transportation System (CATS) in a time-variant environment. A system-of-system perspective is adopted, where the scope is extended beyond the National Airspace System (NAS) level to the National Transportation System (NTS) level to capture the intermodal and multimodal relationships between the NTS stakeholders. The Agent-Based Modeling and Simulation technique is employed where the NTS/NAS is treated as an integrated Multi-Agent System comprising of consumer and service provider agents, representing the demand-side and supply-side components respectively. Successful calibration and validation of both model components against the observable real world data resulted in a CATS simulation tool where the aviation demand is estimated from socioeconomic and demographic properties of the population instead of merely based on enplanement growth multipliers. This valuable achievement enabled a 20-year outlook simulation study to investigate the implications of a global fuel price hike on the airline industry and the U.S. CATS at large. Simulation outcomes revealed insights into the airline competitive behaviors and the subsequent responses from transportation consumers.
NASA Astrophysics Data System (ADS)
Zhou, Jianfeng; Lou, Yang; Chen, Guanrong; Tang, Wallace K. S.
2018-04-01
Naming game is a simulation-based experiment used to study the evolution of languages. The conventional naming game focuses on a single language. In this paper, a novel naming game model named multi-language naming game (MLNG) is proposed, where the agents are different-language speakers who cannot communicate with each other without a translator (interpreter) in between. The MLNG model is general, capable of managing k different languages with k ≥ 2. For illustration, the paper only discusses the MLNG with two different languages, and studies five representative network topologies, namely random-graph, WS small-world, NW small-world, scale-free, and random-triangle topologies. Simulation and analysis results both show that: 1) using the network features and based on the proportion of translators the probability of establishing a conversation between two or three agents can be theoretically estimated; 2) the relationship between the convergence speed and the proportion of translators has a power-law-like relation; 3) different agents require different memory sizes, thus a local memory allocation rule is recommended for saving memory resources. The new model and new findings should be useful for further studies of naming games and for better understanding of languages evolution from a dynamical network perspective.
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care
NASA Astrophysics Data System (ADS)
Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.
This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, D.; Peng, Z. H.
2017-09-01
Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223
Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback
NASA Astrophysics Data System (ADS)
Zhang, Wenle; Liu, Jianchang
2016-04-01
This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.
Grounding language in action and perception: From cognitive agents to humanoid robots
NASA Astrophysics Data System (ADS)
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.
Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.
Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle
2016-02-01
This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Multi-agent robotic systems and applications for satellite missions
NASA Astrophysics Data System (ADS)
Nunes, Miguel A.
A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.
2016-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.
ERIC Educational Resources Information Center
Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam
2015-01-01
Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment…
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Designing a Successful Bidding Strategy Using Fuzzy Sets and Agent Attitudes
NASA Astrophysics Data System (ADS)
Ma, Jun; Goyal, Madhu Lata
To be successful in a multi-attribute auction, agents must be capable of adapting to continuously changing bidding price. This chapter presents a novel fuzzy attitude-based bidding strategy (FA-Bid), which employs dual assessment technique, i.e., assessment of multiple attributes of the goods as well as assessment of agents' attitude (eagerness) to procure an item in automated auction. The assessment of attributes adapts the fuzzy sets technique to handle uncertainty of the bidding process as well use heuristic rules to determine the attitude of bidding agents in simulated auctions to procure goods. The overall assessment is used to determine a price range based on current bid, which finally selects the best one as the new bid.
Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm
NASA Astrophysics Data System (ADS)
Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie
2018-02-01
The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Nicewarner, Keith
2006-01-01
We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.
Simultaneous Deployment and Tracking Multi-Robot Strategies with Connectivity Maintenance
Tardós, Javier; Aragues, Rosario; Sagüés, Carlos; Rubio, Carlos
2018-01-01
Multi-robot teams composed of ground and aerial vehicles have gained attention during the last few years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper, we propose two Lloyd-based tracking strategies to allow the ground robots (agents) to follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a minimum spanning tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments. PMID:29558446
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Two Formal Gas Models For Multi-Agent Sweeping and Obstacle Avoidance
NASA Technical Reports Server (NTRS)
Kerr, Wesley; Spears, Diana; Spears, William; Thayer, David
2004-01-01
The task addressed here is a dynamic search through a bounded region, while avoiding multiple large obstacles, such as buildings. In the case of limited sensors and communication, maintaining spatial coverage - especially after passing the obstacles - is a challenging problem. Here, we investigate two physics-based approaches to solving this task with multiple simulated mobile robots, one based on artificial forces and the other based on the kinetic theory of gases. The desired behavior is achieved with both methods, and a comparison is made between them. Because both approaches are physics-based, formal assurances about the multi-robot behavior are straightforward, and are included in the paper.
NASA Technical Reports Server (NTRS)
Clancey, William J.
2004-01-01
This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.
Employment, Production and Consumption model: Patterns of phase transitions
NASA Astrophysics Data System (ADS)
Lavička, H.; Lin, L.; Novotný, J.
2010-04-01
We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.
NASA Astrophysics Data System (ADS)
Orencio, P. M.; Endo, A.; Taniguchi, M.
2014-12-01
Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the model will be presented within a platform following a parameterized architecture.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
Multi-agent Reinforcement Learning Model for Effective Action Selection
NASA Astrophysics Data System (ADS)
Youk, Sang Jo; Lee, Bong Keun
Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.
A Multi-agent Simulation Tool for Micro-scale Contagion Spread Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Daniel B
2016-01-01
Within the disaster preparedness and emergency response community, there is interest in how contagions spread person-to-person at large gatherings and if mitigation strategies can be employed to reduce new infections. A contagion spread simulation module was developed for the Incident Management Preparedness and Coordination Toolkit that allows a user to see how a geographically accurate layout of the gathering space helps or hinders the spread of a contagion. The results can inform mitigation strategies based on changing the physical layout of an event space. A case study was conducted for a particular event to calibrate the underlying simulation model. Thismore » paper presents implementation details of the simulation code that incorporates agent movement and disease propagation. Elements of the case study are presented to show how the tool can be used.« less
A Biologically Inspired Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
A Stigmergic Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.
2004-01-01
In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
Numerical Modeling of Mixing and Venting from Explosions in Bunkers
NASA Astrophysics Data System (ADS)
Liu, Benjamin
2005-07-01
2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in a concrete bunker with ambient air, stored chemical or biological warfare (CBW) agent simulant, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code, that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used for all materials with the exception of any high explosives employed, which were characterized with conventional JWL models. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of agent heating that could be obtained prior to venting of the bunker and resultant agent dispersal. Parameters investigated included the bunker construction, agent layout, energy density in the bunker and the yield-to-agent mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the agent.
Modelling and simulating a crisis management system: an organisational perspective
NASA Astrophysics Data System (ADS)
Chaawa, Mohamed; Thabet, Inès; Hanachi, Chihab; Ben Said, Lamjed
2017-04-01
Crises are complex situations due to the dynamism of the environment, its unpredictability and the complexity of the interactions among several different and autonomous involved organisations. In such a context, establishing an organisational view as well as structuring organisations' communications and their functioning is a crucial requirement. In this article, we propose a multi-agent organisational model (OM) to abstract, simulate and analyse a crisis management system (CMS). The objective is to evaluate the CMS from an organisational view, to assess its strength as well as its weakness and to provide deciders with some recommendations for a more flexible and reactive CMS. The proposed OM is illustrated through a real case study: a snowstorm in a Tunisian region. More precisely, we made the following contribution: firstly, we provide an environmental model that identifies the concepts involved in the crisis. Then, we define a role model that copes with the involved actors. In addition, we specify the organisational structure and the interaction model that rule communications and structure actors' functioning. Those models, built following the GAIA methodology, abstract the CMS from an organisational perspective. Finally, we implemented a customisable multi-agent simulator based on the Janus platform to analyse, through several performed simulations, the organisational model.
Non-linear modelling and control of semi-active suspensions with variable damping
NASA Astrophysics Data System (ADS)
Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin
2013-10-01
Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.
Virtual commissioning of automated micro-optical assembly
NASA Astrophysics Data System (ADS)
Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian
2015-02-01
In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping
Distributed robust finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2016-04-01
This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.
Grounding language in action and perception: from cognitive agents to humanoid robots.
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.
Curry, Joanne; Fitzgerald, Anneke; Prodan, Ante; Dadich, Ann; Sloan, Terry
2014-01-01
This article focuses on a framework that will investigate the integration of two disparate methodologies: patient journey modelling and visual multi-agent simulation, and its impact on the speed and quality of knowledge translation to healthcare stakeholders. Literature describes patient journey modelling and visual simulation as discrete activities. This paper suggests that their combination and their impact on translating knowledge to practitioners are greater than the sum of the two technologies. The test-bed is ambulatory care and the goal is to determine if this approach can improve health services delivery, workflow, and patient outcomes and satisfaction. The multidisciplinary research team is comprised of expertise in patient journey modelling, simulation, and knowledge translation.
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-Agent Cooperative Target Search
Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao
2014-01-01
This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884
Investigation of Simulated Trading — A multi agent based trading system for optimization purposes
NASA Astrophysics Data System (ADS)
Schneider, Johannes J.
2010-07-01
Some years ago, Bachem, Hochstättler, and Malich proposed a heuristic algorithm called Simulated Trading for the optimization of vehicle routing problems. Computational agents place buy-orders and sell-orders for customers to be handled at a virtual financial market, the prices of the orders depending on the costs of inserting the customer in the tour or for his removal. According to a proposed rule set, the financial market creates a buy-and-sell graph for the various orders in the order book, intending to optimize the overall system. Here I present a thorough investigation for the application of this algorithm to the traveling salesman problem.
Multi-agent electricity market modeling with EMCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M.; Macal, C.; Conzelmann, G.
2002-09-05
Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less
Cultural Geography Model Validation
2010-03-01
the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
Identification of walking human model using agent-based modelling
NASA Astrophysics Data System (ADS)
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
Multi-Agent Flight Simulation with Robust Situation Generation
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Hansman, R. John, Jr.
1994-01-01
A robust situation generation architecture has been developed that generates multi-agent situations for human subjects. An implementation of this architecture was developed to support flight simulation tests of air transport cockpit systems. This system maneuvers pseudo-aircraft relative to the human subject's aircraft, generating specific situations for the subject to respond to. These pseudo-aircraft maneuver within reasonable performance constraints, interact in a realistic manner, and make pre-recorded voice radio communications. Use of this system minimizes the need for human experimenters to control the pseudo-agents and provides consistent interactions between the subject and the pseudo-agents. The achieved robustness of this system to typical variations in the subject's flight path was explored. It was found to successfully generate specific situations within the performance limitations of the subject-aircraft, pseudo-aircraft, and the script used.
NASA Astrophysics Data System (ADS)
Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro
A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.
High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2018-01-01
Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.
High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.
2018-01-01
Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894
NASA Astrophysics Data System (ADS)
Rienow, Andreas; Stenger, Dirk
2014-07-01
The Ruhr is an "old acquaintance" in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.
NASA Astrophysics Data System (ADS)
Jie, Cao; Zhi-Hai, Wu; Li, Peng
2016-05-01
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).
Multiscale Modeling of Angiogenesis and Predictive Capacity
NASA Astrophysics Data System (ADS)
Pillay, Samara; Byrne, Helen; Maini, Philip
Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.
NASA Astrophysics Data System (ADS)
Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.
2006-06-01
The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.
A bio-inspired swarm robot coordination algorithm for multiple target searching
NASA Astrophysics Data System (ADS)
Meng, Yan; Gan, Jing; Desai, Sachi
2008-04-01
The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Lian, Jianming; Kalsi, Karanjit
The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power)more » flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.« less
Attitude coordination of multi-HUG formation based on multibody system theory
NASA Astrophysics Data System (ADS)
Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin
2017-04-01
Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.
A Cross-Cultural Multi-agent Model of Opportunism in Trade
NASA Astrophysics Data System (ADS)
Hofstede, Gert Jan; Jonker, Catholijn M.; Verwaart, Tim
According to transaction cost economics, contracts are always incomplete and offer opportunities to defect. Some level of trust is a sine qua non for trade. If the seller is better informed about product quality than the buyer, the buyer has to rely on information the seller provides or has to check the information by testing the product or tracing the supply chain processes, thus incurring extra transaction cost. An opportunistic seller who assumes the buyer to trust, may deliver a lower quality product than agreed upon. In human decisions to deceive and to show trust or distrust, issues like mutual expectations, shame, self-esteem, personality, and reputation are involved. These factors depend in part on traders' cultural background. This paper proposes an agent model of deceit and trust and describes a multi-agent simulation where trading agents are differentiated according to Hofstede's dimensions of national culture. Simulations of USA and Dutch trading situations are compared.
Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng
2008-10-01
Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.
NASA Astrophysics Data System (ADS)
Sahal, A.; Leone, F.; Péroche, M.
2013-07-01
Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera) in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes-Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based) and micro-simulators (multi-agent-based) to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.
Distributed Market-Based Algorithms for Multi-Agent Planning with Shared Resources
2013-02-01
1 Introduction 1 2 Distributed Market-Based Multi-Agent Planning 5 2.1 Problem Formulation...over the deterministic planner, on the “test set” of scenarios with changing economies. . . 50 xi xii Chapter 1 Introduction Multi-agent planning is...representation of the objective (4.2.1). For example, for the supply chain mangement problem, we assumed a sequence of Bernoulli coin flips, which seems
Research of negotiation in network trade system based on multi-agent
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Guozheng; Wu, Haiyan
2009-07-01
A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
Optimal control in microgrid using multi-agent reinforcement learning.
Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin
2012-11-01
This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-issue Agent Negotiation Based on Fairness
NASA Astrophysics Data System (ADS)
Zuo, Baohe; Zheng, Sue; Wu, Hong
Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Fang, Wen
2015-04-01
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY
Somogyi, Endre; Hagar, Amit; Glazier, James A.
2017-01-01
Living tissues are dynamic, heterogeneous compositions of objects, including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes. Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology (CCOPM) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models. PMID:29282379
Coordinating teams of autonomous vehicles: an architectural perspective
NASA Astrophysics Data System (ADS)
Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo
2005-05-01
In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).
TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY.
Somogyi, Endre; Hagar, Amit; Glazier, James A
2016-12-01
Living tissues are dynamic, heterogeneous compositions of objects , including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes . Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology ( CCOPM ) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models.
Modelling and multi-parametric control for delivery of anaesthetic agents.
Dua, Pinky; Dua, Vivek; Pistikopoulos, Efstratios N
2010-06-01
This article presents model predictive controllers (MPCs) and multi-parametric model-based controllers for delivery of anaesthetic agents. The MPC can take into account constraints on drug delivery rates and state of the patient but requires solving an optimization problem at regular time intervals. The multi-parametric controller has all the advantages of the MPC and does not require repetitive solution of optimization problem for its implementation. This is achieved by obtaining the optimal drug delivery rates as a set of explicit functions of the state of the patient. The derivation of the controllers relies on using detailed models of the system. A compartmental model for the delivery of three drugs for anaesthesia is developed. The key feature of this model is that mean arterial pressure, cardiac output and unconsciousness of the patient can be simultaneously regulated. This is achieved by using three drugs: dopamine (DP), sodium nitroprusside (SNP) and isoflurane. A number of dynamic simulation experiments are carried out for the validation of the model. The model is then used for the design of model predictive and multi-parametric controllers, and the performance of the controllers is analyzed.
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Designing of Roaming Protocol for Bluetooth Equipped Multi Agent Systems
NASA Astrophysics Data System (ADS)
Subhan, Fazli; Hasbullah, Halabi B.
Bluetooth is an established standard for low cost, low power, wireless personal area network. Currently, Bluetooth does not support any roaming protocol in which handoff occurs dynamically when a Bluetooth device is moving out of the piconet. If a device is losing its connection to the master device, no provision is made to transfer it to another master. Handoff is not possible in a piconet, as in order to stay within the network, a slave would have to keep the same master. So, by definition intra-handoff is not possible within a piconet. This research mainly focuses on Bluetooth technology and designing a roaming protocol for Bluetooth equipped multi agent systems. A mathematical model is derived for an agent. The idea behind the mathematical model is to know when to initiate the roaming process for an agent. A desired trajectory for the agent is calculated using its x and y coordinates system, and is simulated in SIMULINK. Various roaming techniques are also studied and discussed. The advantage of designing a roaming protocol is to ensure the Bluetooth enabled roaming devices can freely move inside the network coverage without losing its connection or break of service in case of changing the base stations.
NASA Astrophysics Data System (ADS)
Jonker, C. M.; Snoep, J. L.; Treur, J.; Westerhoff, H. V.; Wijngaards, W. C. A.
Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli's intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell's essential dynamic patterns.
BTFS: The Border Trade Facilitation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, L.R.
The author demonstrates the Border Trade Facilitation System (BTFS), an agent-based bilingual e-commerce system built to expedite the regulation, control, and execution of commercial trans-border shipments during the delivery phase. The system was built to serve maquila industries at the US/Mexican border. The BTFS uses foundation technology developed here at Sandia Laboratories' Advanced Information Systems Lab (AISL), including a distributed object substrate, a general-purpose agent development framework, dynamically generated agent-human interaction via the World-Wide Web, and a collaborative agent architecture. This technology is also the substrate for the Multi-Agent Simulation Management System (MASMAS) proposed for demonstration at this conference. Themore » BTFS executes authenticated transactions among agents performing open trading over the Internet. With the BTFS in place, one could conduct secure international transactions from any site with an Internet connection and a web browser. The BTFS is currently being evaluated for commercialization.« less
NASA Astrophysics Data System (ADS)
Ning, Boda; Jin, Jiong; Zheng, Jinchuan; Man, Zhihong
2018-06-01
This paper is concerned with finite-time and fixed-time consensus of multi-agent systems in a leader-following framework. Different from conventional leader-following tracking approaches where inherent dynamics satisfying the Lipschitz continuous condition is required, a more generalised case is investigated: discontinuous inherent dynamics. By nonsmooth techniques, a nonlinear protocol is first proposed to achieve the finite-time leader-following consensus. Then, based on fixed-time stability strategies, the fixed-time leader-following consensus problem is solved. An upper bound of settling time is obtained by using a new protocol, and such a bound is independent of initial states, thereby providing additional options for designers in practical scenarios where initial conditions are unavailable. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
NASA Astrophysics Data System (ADS)
Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.
NASA Astrophysics Data System (ADS)
Kanta, L.; Berglund, E. Z.
2015-12-01
Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.
An agent-based hydroeconomic model to evaluate water policies in Jordan
NASA Astrophysics Data System (ADS)
Yoon, J.; Gorelick, S.
2014-12-01
Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.
From market games to real-world markets
NASA Astrophysics Data System (ADS)
Jefferies, P.; Hart, M. L.; Hui, P. M.; Johnson, N. F.
2001-04-01
This paper uses the development of multi-agent market models to present a unified approach to the joint questions of how financial market movements may be simulated, predicted, and hedged against. We first present the results of agent-based market simulations in which traders equipped with simple buy/sell strategies and limited information compete in speculatory trading. We examine the effect of different market clearing mechanisms and show that implementation of a simple Walrasian auction leads to unstable market dynamics. We then show that a more realistic out-of-equilibrium clearing process leads to dynamics that closely resemble real financial movements, with fat-tailed price increments, clustered volatility and high volume autocorrelation. We then show that replacing the `synthetic' price history used by these simulations with data taken from real financial time-series leads to the remarkable result that the agents can collectively learn to identify moments in the market where profit is attainable. Hence on real financial data, the system as a whole can perform better than random. We then employ the formalism of Bouchaud in conjunction with agent based models to show that in general risk cannot be eliminated from trading with these models. We also show that, in the presence of transaction costs, the risk of option writing is greatly increased. This risk, and the costs, can however be reduced through the use of a delta-hedging strategy with modified, time-dependent volatility structure.
Relay tracking control for second-order multi-agent systems with damaged agents.
Dong, Lijing; Li, Jing; Liu, Qin
2017-11-01
This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Multi-Agent System for Intelligent Online Education.
ERIC Educational Resources Information Center
O'Riordan, Colm; Griffith, Josephine
1999-01-01
Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali
2017-01-04
This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.
Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai
2015-08-01
This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.
Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.
Multi-Agent Framework for Virtual Learning Spaces.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Nunez, Gustavo
1999-01-01
Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…
Multi-agent simulation of generation expansion in electricity markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botterud, A; Mahalik, M. R.; Veselka, T. D.
2007-06-01
We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less
Research and application of multi-agent genetic algorithm in tower defense game
NASA Astrophysics Data System (ADS)
Jin, Shaohua
2018-04-01
In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.
A new class of finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2014-02-01
This paper is devoted to investigating the finite-time consensus problem for a multi-agent system in networks with undirected topology. A new class of global continuous time-invariant consensus protocols is constructed for each single-integrator agent dynamics with the aid of Lyapunov functions. In particular, it is shown that the settling time of the proposed new class of finite-time consensus protocols is upper bounded for arbitrary initial conditions. This makes it possible for network consensus problems that the convergence time is designed and estimated offline for a given undirected information flow and a group volume of agents. Finally, a numerical simulation example is presented as a proof of concept.
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
Collective navigation of cargo-carrying swarms
Shklarsh, Adi; Finkelshtein, Alin; Ariel, Gil; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel
2012-01-01
Much effort has been devoted to the study of swarming and collective navigation of micro-organisms, insects, fish, birds and other organisms, as well as multi-agent simulations and to the study of real robots. It is well known that insect swarms can carry cargo. The studies here are motivated by a less well-known phenomenon: cargo transport by bacteria swarms. We begin with a concise review of how bacteria swarms carry natural, micrometre-scale objects larger than the bacteria (e.g. fungal spores) as well as man-made beads and capsules (for drug delivery). A comparison of the trajectories of virtual beads in simulations (using different putative coupling between the virtual beads and the bacteria) with the observed trajectories of transported fungal spores implies the existence of adaptable coupling. Motivated by these observations, we devised new, multi-agent-based studies of cargo transport by agent swarms. As a first step, we extended previous modelling of collective navigation of simple bacteria-inspired agents in complex terrain, using three putative models of agent–cargo coupling. We found that cargo-carrying swarms can navigate efficiently in a complex landscape. We further investigated how the stability, elasticity and other features of agent–cargo bonds influence the collective motion and the transport of the cargo, and found sharp phase shifts and dual successful strategies for cargo delivery. Further understanding of such mechanisms may provide valuable clues to understand cargo-transport by smart swarms of other organisms as well as by man-made swarming robots. PMID:24312731
Chen, Hai; Liang, Xiaoying; Li, Rui
2013-01-01
Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.
Agent-based modeling of the interaction between CD8+ T cells and Beta cells in type 1 diabetes.
Ozturk, Mustafa Cagdas; Xu, Qian; Cinar, Ali
2018-01-01
We propose an agent-based model for the simulation of the autoimmune response in T1D. The model incorporates cell behavior from various rules derived from the current literature and is implemented on a high-performance computing system, which enables the simulation of a significant portion of the islets in the mouse pancreas. Simulation results indicate that the model is able to capture the trends that emerge during the progression of the autoimmunity. The multi-scale nature of the model enables definition of rules or equations that govern cellular or sub-cellular level phenomena and observation of the outcomes at the tissue scale. It is expected that such a model would facilitate in vivo clinical studies through rapid testing of hypotheses and planning of future experiments by providing insight into disease progression at different scales, some of which may not be obtained easily in clinical studies. Furthermore, the modular structure of the model simplifies tasks such as the addition of new cell types, and the definition or modification of different behaviors of the environment and the cells with ease.
Multi-A Graph Patrolling and Partitioning
NASA Astrophysics Data System (ADS)
Elor, Y.; Bruckstein, A. M.
2012-12-01
We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.
Controllability of multi-agent systems with time-delay in state and switching topology
NASA Astrophysics Data System (ADS)
Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen
2010-02-01
In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.
NASA Astrophysics Data System (ADS)
Mamy Rakotoarisoa, Mahefa; Fleurant, Cyril; Taibi, Nuscia; Razakamanana, Théodore
2016-04-01
Hydrological risks, especially for floods, are recurrent on the Fiherenana watershed - southwest of Madagascar. The city of Toliara, which is located at the outlet of the river basin, is subjected each year to hurricane hazards and floods. The stakes are of major importance in this part of the island. This study begins with the analysis of hazard by collecting all existing hydro-climatic data on the catchment. It then seeks to determine trends, despite the significant lack of data, using simple statistical models (decomposition of time series). Then, two approaches are conducted to assess the vulnerability of the city of Toliara and the surrounding villages. First, a static approach, from surveys of land and the use of GIS are used. Then, the second method is the use of a multi-agent-based simulation model. The first step is the mapping of a vulnerability index which is the arrangement of several static criteria. This is a microscale indicator (the scale used is the housing). For each House, there are several criteria of vulnerability, which are the potential water depth, the flow rate, or the architectural typology of the buildings. For the second part, simulations involving scenes of agents are used in order to evaluate the degree of vulnerability of homes from flooding. Agents are individual entities to which we can assign behaviours on purpose to simulate a given phenomenon. The aim is not to give a criterion to the house as physical building, such as its architectural typology or its strength. The model wants to know the chances of the occupants of the house to escape from a catastrophic flood. For this purpose, we compare various settings and scenarios. Some scenarios are conducted to take into account the effect of certain decision made by the responsible entities (Information and awareness of the villagers for example). The simulation consists of two essential parts taking place simultaneously in time: simulation of the rise of water and the flow using classical hydrological functions and multi agent system (transfer function and production function) and the simulation of the behaviour of the people facing the arrival of hazard.
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-11-01
This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling Emergence in Neuroprotective Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.
2013-01-05
The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less
NASA Astrophysics Data System (ADS)
Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao
A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.
Sustainable Society Formed by Unselfish Agents
NASA Astrophysics Data System (ADS)
Kikuchi, Toshiko
It has been pointed out that if the social configuration of the three relations (market, communal and obligatory relations) is not balanced, a market based society as a total system fails. Using multi-agent simulations, this paper shows that a sustainable society is formed when all three relations are integrated and function respectively. When agent trades are based on the market mechanism (i.e., agents act in their own interest and thus only market relations exist), weak agents who cannot perform transactions die. If a compulsory tax is imposed to enable all weak agents to survive (i.e., obligatory relations exist), then the fiscal deficit increases. On the other hand, if agents who have excess income undertake the unselfish action of distributing their surplus to the weak agents (i.e., communal relations exist), then trade volume increases. It is shown that the existence of unselfish agents is necessary for the realization of a sustainable society. However, the survival of all agents is difficult in a communal society. In an artificial society, for all agents survive and fiscal balance to be maintained, all three social relations need to be fully integrated. These results show that adjusting the balance of the three social relations well lead to the realization of a sustainable society.
Bipartite flocking for multi-agent systems
NASA Astrophysics Data System (ADS)
Fan, Ming-Can; Zhang, Hai-Tao; Wang, Miaomiao
2014-09-01
This paper addresses the bipartite flock control problem where a multi-agent system splits into two clusters upon internal or external excitations. Using structurally balanced signed graph theory, LaSalle's invariance principle and Barbalat's Lemma, we prove that the proposed algorithm guarantees a bipartite flocking behavior. In each of the two disjoint clusters, all individuals move with the same direction. Meanwhile, every pair of agents in different clusters moves with opposite directions. Moreover, all agents in the two separated clusters approach a common velocity magnitude, and collision avoidance among all agents is ensured as well. Finally, the proposed bipartite flock control method is examined by numerical simulations. The bipartite flocking motion addressed by this paper has its references in both natural collective motions and human group behaviors such as predator-prey and panic escaping scenarios.
Swarming behaviors in multi-agent systems with nonlinear dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Wenwu, E-mail: wenwuyu@gmail.com; School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001; Chen, Guanrong
2013-12-15
The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agentmore » is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.« less
NASA Astrophysics Data System (ADS)
Saunders, Vance M.
1999-06-01
The downsizing of the Department of Defense (DoD) and the associated reduction in budgets has re-emphasized the need for commonality, reuse, and standards with respect to the way DoD does business. DoD has implemented significant changes in how it buys weapon systems. The new emphasis is on concurrent engineering with Integrated Product and Process Development and collaboration with Integrated Product Teams. The new DoD vision includes Simulation Based Acquisition (SBA), a process supported by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs. This paper discusses the Air Force Research Laboratory's efforts to use Modeling and Simulation (M&S) resources within a Collaborative Enterprise Environment to support SBA and other Collaborative Enterprise and Virtual Prototyping (CEVP) applications. The paper will discuss four technology areas: (1) a Processing Ontology that defines a hierarchically nested set of collaboration contexts needed to organize and support multi-disciplinary collaboration using M&S, (2) a partial taxonomy of intelligent agents needed to manage different M&S resource contributions to advancing the state of product development, (3) an agent- based process for interfacing disparate M&S resources into a CEVP framework, and (4) a Model-View-Control based approach to defining `a new way of doing business' for users of CEVP frameworks/systems.
Multi Agent Reward Analysis for Learning in Noisy Domains
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2005-01-01
In many multi agent learning problems, it is difficult to determine, a priori, the agent reward structure that will lead to good performance. This problem is particularly pronounced in continuous, noisy domains ill-suited to simple table backup schemes commonly used in TD(lambda)/Q-learning. In this paper, we present a new reward evaluation method that allows the tradeoff between coordination among the agents and the difficulty of the learning problem each agent faces to be visualized. This method is independent of the learning algorithm and is only a function of the problem domain and the agents reward structure. We then use this reward efficiency visualization method to determine an effective reward without performing extensive simulations. We test this method in both a static and a dynamic multi-rover learning domain where the agents have continuous state spaces and where their actions are noisy (e.g., the agents movement decisions are not always carried out properly). Our results show that in the more difficult dynamic domain, the reward efficiency visualization method provides a two order of magnitude speedup in selecting a good reward. Most importantly it allows one to quickly create and verify rewards tailored to the observational limitations of the domain.
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
An Agent-Based Model of Farmer Decision Making in Jordan
NASA Astrophysics Data System (ADS)
Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim
2016-04-01
We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.
Tutoring and Multi-Agent Systems: Modeling from Experiences
ERIC Educational Resources Information Center
Bennane, Abdellah
2010-01-01
Tutoring systems become complex and are offering varieties of pedagogical software as course modules, exercises, simulators, systems online or offline, for single user or multi-user. This complexity motivates new forms and approaches to the design and the modelling. Studies and research in this field introduce emergent concepts that allow the…
Health Care Decision Support System for the Pediatric Emeregency Department Management.
Ben Othman, Sarah; Hammadi, Slim; Quilliot, Alain; Martinot, Alain; Renard, Jean-Marie
2015-01-01
Health organization management is facing a high amount of complexity due to the inherent dynamics of the processes and the distributed organization of hospitals. It is therefore necessary for health care institutions to focus on this issue in order to deal with patients' requirements and satisfy their needs. The main objective of this study is to develop and implement a Decision Support System which can help physicians to better manage their organization, to anticipate the overcrowding feature, and to establish avoidance proposals for it. This work is a part of HOST project (Hospital: Optimization, Simulation, and Crowding Avoidance) of the French National Research Agency (ANR). It aims to optimize the functioning of the Pediatric Emergency Department characterized by stochastic arrivals of patients which leads to its overcrowding and services overload. Our study is a set of tools to smooth out patient flows, enhance care quality and minimize long waiting times and costs due to resources allocation. So we defined a decision aided tool based on Multi-agent Systems where actors negotiate and cooperate under some constraints in a dynamic environment. These entities which can be either physical agents representing real actors in the health care institution or software agents allowing the implementation of optimizing tools, cooperate to satisfy the demands of patients while respecting emergency degrees. This paper is concerned with agents' negotiation. It proposes a new approach for multi-skill tasks scheduling based on interactions between agents.
A multi agent model for the limit order book dynamics
NASA Astrophysics Data System (ADS)
Bartolozzi, M.
2010-11-01
In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book. The agents follow a noise decision making process where their actions are related to a stochastic variable, the market sentiment, which we define as a mixture of public and private information. The model, despite making just few basic assumptions over the trading strategies of the agents, is able to reproduce several empirical features of the high-frequency dynamics of the market microstructure not only related to the price movements but also to the deposition of the orders in the book.
Real-time flight conflict detection and release based on Multi-Agent system
NASA Astrophysics Data System (ADS)
Zhang, Yifan; Zhang, Ming; Yu, Jue
2018-01-01
This paper defines two-aircrafts, multi-aircrafts and fleet conflict mode, sets up space-time conflict reservation on the basis of safety interval and conflict warning time in three-dimension. Detect real-time flight conflicts combined with predicted flight trajectory of other aircrafts in the same airspace, and put forward rescue resolutions for the three modes respectively. When accorded with the flight conflict conditions, determine the conflict situation, and enter the corresponding conflict resolution procedures, so as to avoid the conflict independently, as well as ensure the flight safety of aimed aircraft. Lastly, the correctness of model is verified with numerical simulation comparison.
NASA Astrophysics Data System (ADS)
Iwamura, T.; Fragoso, J.; Lambin, E.
2012-12-01
The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers, Tapirs, Capybara exist but very low. This finding is well aligned with the hunting dataset - Agouti/Paca consists 27% of total hunting. Based on our simulation, it seems the dominance of Agouti/Paca among hunted animals shown in the field data can be explained solely by their high carrying capacity against human extraction (population density of the Paca/Agouti = 60 per square km, whereas other animals ranges 0.63 to 7). When we incorporate agriculture, the "rodentation" of the animal population toward Agouti/Paca becomes more obvious. This simulation shows the interactions of people and animals through land change and hunting, which were observed in our fields.
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, Colin; Waraich, Rashid; Campbell, Andrew
This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less
NASA Astrophysics Data System (ADS)
Bommel, P.; Bautista Solís, P.; Leclerc, G.
2016-12-01
We implemented a participatory process with water stakeholders for improving resilience to drought at watershed scale, and for reducing water pollution disputes in drought prone Northwestern Costa Rica. The purpose is to facilitate co-management in a rural watershed impacted by recurrent droughts related to ENSO. The process involved designing "ContaMiCuenca", a hybrid agent-based model where users can specify the decisions of their agents. We followed a Companion Modeling approach (www.commod.org) and organized 10 workshops that included research techniques such as participatory diagnostics, actor-resources-interaction and UML diagrams, multi-agents model design, and interactive simulation sessions. We collectively assessed the main water issues in the watershed, prioritized their importance, defined the objectives of the process, and pilot-tested ContaMiCuenca for environmental education with adults and children. Simulation sessions resulted in debates about the need to improve the model accuracy, arguably more relevant for decision-making. This helped identify sensible knowledge gaps in the groundwater pollution and aquifer dynamics that need to be addressed in order to improve our collective learning. Significant mismatches among participants expectations, objectives, and agendas considerably slowed down the participatory process. The main issue may originate in participants expecting technical solutions from a positivist science, as constantly promoted in the region by dole-out initiatives, which is incompatible with the constructivist stance of participatory modellers. This requires much closer interaction of community members with modellers, which may be hard to attain in the current research practice and institutional context. Nevertheless, overcoming these constraints is necessary for a true involvement of water stakeholders to achieve community-based decisions that facilitate integrated water management. Our findings provide significant guidance for improving the trans-generational engagement of stakeholders in participatory modeling processes in a context of limited technical skills and information, research expectative mismatches, and poor multi-stakeholder interaction for decision-making.
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
Building intelligence in third-generation training and battle simulations
NASA Astrophysics Data System (ADS)
Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan
2003-09-01
Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on experience.
Social Simulation for AmI Systems Engineering
NASA Astrophysics Data System (ADS)
Garcia-Valverde, Teresa; Serrano, Emilio; Botia, Juan A.
This paper propose the use of multi-agent based simulation (MABS) to allow testing, validating and verifying Ambient Intelligence (AmI) environments in a flexible and robust way. The development of AmI is very complex because of this technology must often adapt to contextual information as well as unpredictable and changeable behaviours. The concrete simulation is called Ubik and is integrated into the AmISim architecture which is also presented in this paper. This architecture deals with AmI applications in order to discover defects, estimate quality of applications, help to make decisions about the design, etc. The paper shows that Ubik and AmISim provide a simulation framework which can test scenarios that would be impossible in real environments or even with previous AmI simulation approaches.
The value of information in a multi-agent market model. The luck of the uninformed
NASA Astrophysics Data System (ADS)
Tóth, B.; Scalas, E.; Huber, J.; Kirchler, M.
2007-01-01
We present an experimental and simulated model of a multi-agent stock market driven by a double auction order matching mechanism. Studying the effect of cumulative information on the performance of traders, we find a non monotonic relationship of net returns of traders as a function of information levels, both in the experiments and in the simulations. Particularly, averagely informed traders perform worse than the non informed and only traders with high levels of information (insiders) are able to beat the market. The simulations and the experiments reproduce many stylized facts of tick-by-tick stock-exchange data, such as fast decay of autocorrelation of returns, volatility clustering and fat-tailed distribution of returns. These results have an important message for everyday life. They can give a possible explanation why, on average, professional fund managers perform worse than the market index.
Multi-Agent simulation of generation capacity expansion decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botterud, A.; Mahalik, M.; Conzelmann, G.
2008-01-01
In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less
Verifying Multi-Agent Systems via Unbounded Model Checking
NASA Technical Reports Server (NTRS)
Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.
2004-01-01
We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems
Modeling and simulating human teamwork behaviors using intelligent agents
NASA Astrophysics Data System (ADS)
Fan, Xiaocong; Yen, John
2004-12-01
Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.
Real-time path planning in dynamic virtual environments using multiagent navigation graphs.
Sud, Avneesh; Andersen, Erik; Curtis, Sean; Lin, Ming C; Manocha, Dinesh
2008-01-01
We present a novel approach for efficient path planning and navigation of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed using first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. Moreover, we use the path information and proximity relationships for local dynamics computation of each agent by extending a social force model [Helbing05]. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues and present techniques to improve the accuracy of our algorithm. Our algorithm is used for real-time multi-agent planning in pursuit-evasion, terrain exploration and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.
Computer modeling describes gravity-related adaptation in cell cultures.
Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny
2009-12-16
Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.
NASA Astrophysics Data System (ADS)
Rienow, A.; Menz, G.
2015-12-01
Since the beginning of the millennium, artificial intelligence techniques as cellular automata (CA) and multi-agent systems (MAS) have been incorporated into land-system simulations to address the complex challenges of transitions in urban areas as open, dynamic systems. The study presents a hybrid modeling approach for modeling the two antagonistic processes of urban sprawl and urban decline at once. The simulation power of support vector machines (SVM), cellular automata (CA) and multi-agent systems (MAS) are integrated into one modeling framework and applied to the largest agglomeration of Central Europe: the Ruhr. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) functions as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. The machine learning algorithm of SVM is applied in order to enhance SLEUTH. Thus, the stochastic variability of the CA is reduced and information about the human and ecological forces driving the local suitability of urban sprawl is incorporated. Subsequently, the supported CA is coupled with the MAS ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). The MAS models population patterns, housing prices, and housing demand in shrinking regions based on interactions between household and city agents. Semi-explicit urban weights are introduced as a possibility of modeling from and to the pixel simultaneously. Three scenarios of changing housing preferences reveal the urban development of the region in terms of quantity and location. They reflect the dissemination of sustainable thinking among stakeholders versus the steady dream of owning a house in sub- and exurban areas. Additionally, the outcomes are transferred into a digital petri dish reflecting a synthetic environment with perfect conditions of growth. Hence, the generic growth elements affecting the future face of post-industrial cities are revealed. Finally, the advantages and limitations of linking pixels and people by combining AI and machine learning techniques in a multi-scale geosimulation approach are to be discussed.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
Agent-Based Framework for Personalized Service Provisioning in Converged IP Networks
NASA Astrophysics Data System (ADS)
Podobnik, Vedran; Matijasevic, Maja; Lovrek, Ignac; Skorin-Kapov, Lea; Desic, Sasa
In a global multi-service and multi-provider market, the Internet Service Providers will increasingly need to differentiate in the service quality they offer and base their operation on new, consumer-centric business models. In this paper, we propose an agent-based framework for the Business-to-Consumer (B2C) electronic market, comprising the Consumer Agents, Broker Agents and Content Agents, which enable Internet consumers to select a content provider in an automated manner. We also discuss how to dynamically allocate network resources to provide end-to-end Quality of Service (QoS) for a given consumer and content provider.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Human-Centered Design for the Personal Satellite Assistant
NASA Technical Reports Server (NTRS)
Bradshaw, Jeffrey M.; Sierhuis, Maarten; Gawdiak, Yuri; Thomas, Hans; Greaves, Mark; Clancey, William J.; Swanson, Keith (Technical Monitor)
2000-01-01
The Personal Satellite Assistant (PSA) is a softball-sized flying robot designed to operate autonomously onboard manned spacecraft in pressurized micro-gravity environments. We describe how the Brahms multi-agent modeling and simulation environment in conjunction with a KAoS agent teamwork approach can be used to support human-centered design for the PSA.
2017-11-01
Finite State Machine ............................................... 21 9 Main Ontological Concepts for Representing Structure of a Multi -Agent...19 NetLogo Simulation of persistent surveillance of circular plume by 4 UAVs ........................36 20 Flocking Emergent Behaviors in Multi -UAV...Region) - Undesirable Group Formation ................................................................................... 40 24 Two UAVs Moving in
Modelling Agent-Environment Interaction in Multi-Agent Simulations with Affordances
2010-04-01
allow operations analysts to conduct statistical studies comparing the effectiveness of different systems or tactics in different scenarios. 11 Instead of...in a Monte-Carlo batch mode, producing statistical outcomes for particular measures of effectiveness. They typically also run at many times faster...Combined with annotated signs, the affordances allowed the traveller agents to find their way around the virtual airport and to conduct their business
BioASF: a framework for automatically generating executable pathway models specified in BioPAX.
Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K Anton; Abeln, Sanne; Heringa, Jaap
2016-06-15
Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF CONTACT: j.heringa@vu.nl. © The Author 2016. Published by Oxford University Press.
Delloye, Justin; Peeters, Dominique; Thomas, Isabelle
2015-01-01
In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system.
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
Modeling Multi-Agent Self-Organization through the Lens of Higher Order Attractor Dynamics.
Butner, Jonathan E; Wiltshire, Travis J; Munion, A K
2017-01-01
Social interaction occurs across many time scales and varying numbers of agents; from one-on-one to large-scale coordination in organizations, crowds, cities, and colonies. These contexts, are characterized by emergent self-organization that implies higher order coordinated patterns occurring over time that are not due to the actions of any particular agents, but rather due to the collective ordering that occurs from the interactions of the agents. Extant research to understand these social coordination dynamics (SCD) has primarily examined dyadic contexts performing rhythmic tasks. To advance this area of study, we elaborate on attractor dynamics, our ability to depict them visually, and quantitatively model them. Primarily, we combine difference/differential equation modeling with mixture modeling as a way to infer the underlying topological features of the data, which can be described in terms of attractor dynamic patterns. The advantage of this approach is that we are able to quantify the self-organized dynamics that agents exhibit, link these dynamics back to activity from individual agents, and relate it to other variables central to understanding the coordinative functionality of a system's behavior. We present four examples that differ in the number of variables used to depict the attractor dynamics (1, 2, and 6) and range from simulated to non-simulated data sources. We demonstrate that this is a flexible method that advances scientific study of SCD in a variety of multi-agent systems.
Mobile, Virtual Enhancements for Rehabilitation (MOVER)
2013-11-28
Modeling Autobiographical Memory for Believable Agents, AIIDE, Boston, MA. 2013. From the abstract: “We present a multi-layer hierarchical...connectionist network model for simulating human autobiographical memory in believable agents. Grounded in psychological theory, this model improves on...previous attempts to model agents’ event knowledge by providing a more dynamic and nondeterministic representation of autobiographical memories .” This
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
Computer Laboratory for Multi-scale Simulations of Novel Nanomaterials
2014-09-15
schemes for multiscale modeling of polymers. Permselective ion-exchange membranes for protective clothing, fuel cells , and batteries are of special...polyelectrolyte membranes ( PEM ) with chemical warfare agents (CWA) and their simulants and (2) development of new simulation methods and computational...chemical potential using gauge cell method and calculation of density profiles. However, the code does not run in parallel environments. For mesoscale
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Agent-based models of financial markets
NASA Astrophysics Data System (ADS)
Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T.
2007-03-01
This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont-Bouchaud, Solomon-Levy-Huang and Lux-Marchesi models. Open research questions are discussed in our concluding section.
Model and simulation of Krause model in dynamic open network
NASA Astrophysics Data System (ADS)
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Assessing groundwater policy with coupled economic-groundwater hydrologic modeling
NASA Astrophysics Data System (ADS)
Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.
2014-03-01
This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.
NASA Astrophysics Data System (ADS)
Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel
2014-11-01
This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or not at all predictable. The development and simulation of a priori policy scenarios capturing the most plausible or interesting outcomes of such collective decisions on measures for low-water management allows these difficulties to be overcome. The building of these kind of scenarios requires close collaboration between researchers and stakeholders involved in arenas of collective choice, and implies the integration of the production of model and the analysis of scenarios as one component of the polycentric political process of water management.
Synchronization control in multiplex networks of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng
2017-12-01
This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.
Research on Production Scheduling System with Bottleneck Based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke
Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Communication and Distributed Control in Multi-Agent Systems
2011-08-01
centre of mass of the simulated aircraft and moving with them, we can identify three class of rotations allowed to the MAVs: yaw, pitch, and roll. In...a customised version of the swinglet1 (see Figure 1), a 420g light 80cm wing-span mono/fixed-wing MAV produced by senseFlyTM2, generally used for...replicate its work in a faithful way. 2.3.2 Customised (Parker’s-based) implementation of Reynolds’ algo- rithm As aforementioned there are some degrees of
A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks
Ye, Dayon; Zhang, Minji; Yang, Yu
2015-01-01
Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063
Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, Beth Leigh
The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT*more » when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis for each of the above mentioned algorithms is confirmed in simulations.« less
Bharwani, Sukaina; Bithell, Mike; Downing, Thomas E; New, Mark; Washington, Richard; Ziervogel, Gina
2005-11-29
Seasonal climate outlooks provide one tool to help decision-makers allocate resources in anticipation of poor, fair or good seasons. The aim of the 'Climate Outlooks and Agent-Based Simulation of Adaptation in South Africa' project has been to investigate whether individuals, who adapt gradually to annual climate variability, are better equipped to respond to longer-term climate variability and change in a sustainable manner. Seasonal climate outlooks provide information on expected annual rainfall and thus can be used to adjust seasonal agricultural strategies to respond to expected climate conditions. A case study of smallholder farmers in a village in Vhembe district, Limpopo Province, South Africa has been used to examine how such climate outlooks might influence agricultural strategies and how this climate information can be improved to be more useful to farmers. Empirical field data has been collected using surveys, participatory approaches and computer-based knowledge elicitation tools to investigate the drivers of decision-making with a focus on the role of climate, market and livelihood needs. This data is used in an agent-based social simulation which incorporates household agents with varying adaptation options which result in differing impacts on crop yields and thus food security, as a result of using or ignoring the seasonal outlook. Key variables are the skill of the forecast, the social communication of the forecast and the range of available household and community-based risk coping strategies. This research provides a novel approach for exploring adaptation within the context of climate change.
Cultural Geography Modeling and Analysis in Helmand Province
2010-10-01
the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.
Kono, Shinya; Kitamura, Akira
2015-08-01
In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.
2008-06-01
postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the
Towards Time Automata and Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Hutzler, G.; Klaudel, H.; Wang, D. Y.
2004-01-01
The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)
NASA Technical Reports Server (NTRS)
Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)
2004-01-01
These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.
Distributed robust adaptive control of high order nonlinear multi agent systems.
Hashemi, Mahnaz; Shahgholian, Ghazanfar
2018-03-01
In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Saptarshi
Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Adaptive behaviors in multi-agent source localization using passive sensing.
Shaukat, Mansoor; Chitre, Mandar
2016-12-01
In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.
Galle, J; Hoffmann, M; Aust, G
2009-01-01
Collective phenomena in multi-cellular assemblies can be approached on different levels of complexity. Here, we discuss a number of mathematical models which consider the dynamics of each individual cell, so-called agent-based or individual-based models (IBMs). As a special feature, these models allow to account for intracellular decision processes which are triggered by biomechanical cell-cell or cell-matrix interactions. We discuss their impact on the growth and homeostasis of multi-cellular systems as simulated by lattice-free models. Our results demonstrate that cell polarisation subsequent to cell-cell contact formation can be a source of stability in epithelial monolayers. Stroma contact-dependent regulation of tumour cell proliferation and migration is shown to result in invasion dynamics in accordance with the migrating cancer stem cell hypothesis. However, we demonstrate that different regulation mechanisms can equally well comply with present experimental results. Thus, we suggest a panel of experimental studies for the in-depth validation of the model assumptions.
Adaptivity in Agent-Based Routing for Data Networks
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan
2000-01-01
Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.
An Agent-Based Data Mining System for Ontology Evolution
NASA Astrophysics Data System (ADS)
Hadzic, Maja; Dillon, Darshan
We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.
On deception detection in multi-agent systems and deception intent
NASA Astrophysics Data System (ADS)
Santos, Eugene, Jr.; Li, Deqing; Yuan, Xiuqing
2008-04-01
Deception detection plays an important role in the military decision-making process, but detecting deception is a challenging task. The deception planning process involves a number of human factors. It is intent-driven where intentions are usually hidden or not easily observable. As a result, in order to detect deception, any adversary model must have the capability to capture the adversary's intent. This paper discusses deception detection in multi-agent systems and in adversary modeling. We examined psychological and cognitive science research on deception and implemented various theories of deception within our approach. First, in multi-agent expert systems, one detection method uses correlations between agents to predict reasonable opinions/responses of other agents (Santos & Johnson, 2004). We further explore this idea and present studies that show the impact of different factors on detection success rate. Second, from adversary modeling, our detection method focuses on inferring adversary intent. By combining deception "branches" with intent inference models, we can estimate an adversary's deceptive activities and at the same time enhance intent inference. Two major kinds of deceptions are developed in this approach in different fashions. Simulative deception attempts to find inconsistency in observables, while dissimulative deception emphasizes the inference of enemy intentions.
NASA Astrophysics Data System (ADS)
Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John
2015-04-01
Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.
Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction
NASA Astrophysics Data System (ADS)
Xiong, Jun; Li, Junmin
2017-07-01
In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.
Optimal consensus algorithm integrated with obstacle avoidance
NASA Astrophysics Data System (ADS)
Wang, Jianan; Xin, Ming
2013-01-01
This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
Novel high-fidelity realistic explosion damage simulation for urban environments
NASA Astrophysics Data System (ADS)
Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya
2010-04-01
Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.
ERIC Educational Resources Information Center
Barbalios, N.; Ioannidou, I.; Tzionas, P.; Paraskeuopoulos, S.
2013-01-01
This paper introduces a realistic 3D model supported virtual environment for environmental education, that highlights the importance of water resource sharing by focusing on the tragedy of the commons dilemma. The proposed virtual environment entails simulations that are controlled by a multi-agent simulation model of a real ecosystem consisting…
Model-free learning on robot kinematic chains using a nested multi-agent topology
NASA Astrophysics Data System (ADS)
Karigiannis, John N.; Tzafestas, Costas S.
2016-11-01
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.
A stochastic agent-based model of pathogen propagation in dynamic multi-relational social networks
Khan, Bilal; Dombrowski, Kirk; Saad, Mohamed
2015-01-01
We describe a general framework for modeling and stochastic simulation of epidemics in realistic dynamic social networks, which incorporates heterogeneity in the types of individuals, types of interconnecting risk-bearing relationships, and types of pathogens transmitted across them. Dynamism is supported through arrival and departure processes, continuous restructuring of risk relationships, and changes to pathogen infectiousness, as mandated by natural history; dynamism is regulated through constraints on the local agency of individual nodes and their risk behaviors, while simulation trajectories are validated using system-wide metrics. To illustrate its utility, we present a case study that applies the proposed framework towards a simulation of HIV in artificial networks of intravenous drug users (IDUs) modeled using data collected in the Social Factors for HIV Risk survey. PMID:25859056
Research on monocentric model of urbanization by agent-based simulation
NASA Astrophysics Data System (ADS)
Xue, Ling; Yang, Kaizhong
2008-10-01
Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.
NASA Technical Reports Server (NTRS)
Birisan, Mihnea; Beling, Peter
2011-01-01
New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation of fielded sensors and supporting capacity for processing and displaying data will translate into ever more capable platforms, but with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their current task using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real time model of the analysts' task and subsequently use the model to dynamically retrieve relevant content. This paper presents results from a pilot experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle traffic environment. We compare agent performance between MIL aided trials and unaided trials.
Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma
NASA Astrophysics Data System (ADS)
Rezaei, Golriz; Kirley, Michael
2012-12-01
Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.
Efficient Evaluation Functions for Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2004-01-01
Evolutionary computation can be a powerful tool in cresting a control policy for a single agent receiving local continuous input. This paper extends single-agent evolutionary computation to multi-agent systems, where a collection of agents strives to maximize a global fitness evaluation function that rates the performance of the entire system. This problem is solved in a distributed manner, where each agent evolves its own population of neural networks that are used as the control policies for the agent. Each agent evolves its population using its own agent-specific fitness evaluation function. We propose to create these agent-specific evaluation functions using the theory of collectives to avoid the coordination problem where each agent evolves a population that maximizes its own fitness function, yet the system has a whole achieves low values of the global fitness function. Instead we will ensure that each fitness evaluation function is both "aligned" with the global evaluation function and is "learnable," i.e., the agents can readily see how their behavior affects their evaluation function. We then show how these agent-specific evaluation functions outperform global evaluation methods by up to 600% in a domain where a set of rovers attempt to maximize the amount of information observed while navigating through a simulated environment.
TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds
ERIC Educational Resources Information Center
Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien
2013-01-01
Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…
Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Lomunscio, Alessio
2004-01-01
We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.
Delloye, Justin; Peeters, Dominique; Thomas, Isabelle
2015-01-01
In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system. PMID:26308858
ERIC Educational Resources Information Center
Gu, X.; Blackmore, K. L.
2015-01-01
This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…
Gossip-based solutions for discrete rendezvous in populations of communicating agents.
Hollander, Christopher D; Wu, Annie S
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.
Gossip-Based Solutions for Discrete Rendezvous in Populations of Communicating Agents
Hollander, Christopher D.; Wu, Annie S.
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm. PMID:25397882
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Game theoretic sensor management for target tracking
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan
2010-04-01
This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
A distributed model predictive control scheme for leader-follower multi-agent systems
NASA Astrophysics Data System (ADS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2018-02-01
In this paper, we present a novel receding horizon control scheme for solving the formation problem of leader-follower configurations. The algorithm is based on set-theoretic ideas and is tuned for agents described by linear time-invariant (LTI) systems subject to input and state constraints. The novelty of the proposed framework relies on the capability to jointly use sequences of one-step controllable sets and polyhedral piecewise state-space partitions in order to online apply the 'better' control action in a distributed receding horizon fashion. Moreover, we prove that the design of both robust positively invariant sets and one-step-ahead controllable regions is achieved in a distributed sense. Simulations and numerical comparisons with respect to centralised and local-based strategies are finally performed on a group of mobile robots to demonstrate the effectiveness of the proposed control strategy.
Distributed optimisation problem with communication delay and external disturbance
NASA Astrophysics Data System (ADS)
Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu
2017-12-01
This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.
Environmental dilemma game to establish a sustainable society dealing with an emergent value system
NASA Astrophysics Data System (ADS)
Tanimoto, Jun
2005-01-01
To induce whether we can obtain a sustainable society by shifting our paradigm from the materialistic to the eco-conscientious, we established a multi-agent simulation model. The model primarily featured a dilemma structure encouraged by a conflict between each agent's private desire to earn more and the need for environmental conservation. Another important feature is that the model has two evolutionary layers. The subordinate layer is a learning system comprised of a finite state machine (FSM) and a genetic algorithm (GA) primarily, which is carried with each individual agent to determine his/her next behavior and how much he/she must earn to maximize an individual fitness function. The supra layer is the so-called value system, the gene pool of which is shared within the society. The value system stipulates an agent's fitness function, which in turn affects the agent's behavior. The value system of each agent was set up to be entirely ego-oriented at the beginning of the simulation episode. A numerical experiment based on the model reveals a scene in which, under a certain condition related to assumptions of the value system, a group of agents undergoes a paradigm shift from the ego-oriented materialism to the eco-conscious sustainable society. The key condition is a latent existence of several values that ultimately lead to sustainability, even though they do not work at all at the beginning of the episode. In terms of the evolutionary game theory, this implies that changing game structure on the way of a simulation episode by transforming the fitness function seems to be much powerful measures for the emergent collective cooperation among the agents than ordinal options to support cooperation. In addition, we made a detailed analysis on how assumed agents have obtained a sustainable value system. Each agent has an individual decision-making process based on the input with a learning mechanism. We focus here on two types of learning system, the finite state machine (FSM) plus genetic algorithm (GA), and profit shearing (PS). Observation of the generative trails of FSM and the value table of PS lead us to a profound understanding of what kind of inception triggers the emergence of a sustainable society.
2013-04-01
DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were
Multi-Agent Architecture with Support to Quality of Service and Quality of Control
NASA Astrophysics Data System (ADS)
Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique
Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.
Evolution of a multi-agent system in a cyclical environment.
Baptista, Tiago; Costa, Ernesto
2008-06-01
The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.
Knowledge Management in Role Based Agents
NASA Astrophysics Data System (ADS)
Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz
In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.
An, Gary
2008-05-27
One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.
NASA Astrophysics Data System (ADS)
Okamoto, Taro; Taniguchi, Eiichi; Yamada, Tadashi
In Japan, the network of urban expressway has been expanding with the development of urban areas. However, the patrol systems in the urban expressway has not been operated on the basis of scientific evidence, but of conformity and experience. It is therefore crucial to efficiently operate such systems, not only to facilitate the rapid recovery of decreased expressway functionality, but also to acquire the income that supports the operation of privatized expressway companies. Therefore, we develop a multiagent simulation model consisting of the decision-making of four agents, including expressway company, highway patol company, road network users and road authority. These agents determines their schemes depending on their profit obtained. Results of the simulation identyfies the schemes that could offer the profits to the expressway companies in terms of the convenience of the users and the improvement of their operation.
A Simple Evacuation Modeling and Simulation Tool for First Responders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Daniel B; Payne, Patricia W
2015-01-01
Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools canmore » quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.« less
Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih
2016-11-01
Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.
A trust-based sensor allocation algorithm in cooperative space search problems
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2011-06-01
Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.
Money creation and circulation in a credit economy
NASA Astrophysics Data System (ADS)
Xiong, Wanting; Fu, Han; Wang, Yougui
2017-01-01
This paper presents a multi-agent model describing the main mechanisms of money creation and money circulation in a credit economy. Our special attention is paid to the role of debt in the two processes. With the agent-based modeling approach, macro phenomena are well founded in micro-based causalities. A hypothetical economy composed of a banking system and multiple traders is proposed. Instead of being a pure financial intermediary, the banking system is viewed as the center of money creation and an accelerator of money circulation. Agents finance their expenditures not only by their own savings but also through bank loans. Through mathematical calculations and numerical simulation, we identify the determinants of money multiplier and those of velocity of money. In contrast to the traditional money creation model, the money multiplier is determined not only by the behavior of borrowing but also by the behavior of repayment as well. The velocity of money is found to be influenced by both money-related factors such as the expenditure habits of agents with respect to their income and wealth and debt-related factors such as borrowing and repayment behaviors of debtors and the reserve requirements faced by banks.
Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent
Han, Jing; Wang, Lin
2013-01-01
For a given multi-agent system where the local interaction rule of the existing agents can not be re-designed, one way to intervene the collective behavior of the system is to add one or a few special agents into the group which are still treated as normal agents by the existing ones. We study how to lead a Vicsek-like flocking model to reach synchronization by adding special agents. A popular method is to add some simple leaders (fixed-headings agents). However, we add one intelligent agent, called ‘shill’, which uses online feedback information of the group to decide the shill's moving direction at each step. A novel strategy for the shill to coordinate the group is proposed. It is strictly proved that a shill with this strategy and a limited speed can synchronize every agent in the group. The computer simulations show the effectiveness of this strategy in different scenarios, including different group sizes, shill speed, and with or without noise. Compared to the method of adding some fixed-heading leaders, our method can guarantee synchronization for any initial configuration in the deterministic scenario and improve the synchronization level significantly in low density groups, or model with noise. This suggests the advantage and power of feedback information in intervention of collective behavior. PMID:23658695
iCrowd: agent-based behavior modeling and crowd simulator
NASA Astrophysics Data System (ADS)
Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.
2016-05-01
Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.
An Application of Artificial Intelligence to the Implementation of Electronic Commerce
NASA Astrophysics Data System (ADS)
Srivastava, Anoop Kumar
In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.
Finite-time containment control of perturbed multi-agent systems based on sliding-mode control
NASA Astrophysics Data System (ADS)
Yu, Di; Ji, Xiang Yang
2018-01-01
Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours
NASA Astrophysics Data System (ADS)
Tang, Yutao
2017-10-01
In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
Consensus-Based Formation Control of a Class of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Gonzalez, Oscar R.
2014-01-01
This paper presents a consensus-based formation control scheme for autonomous multi-agent systems represented by double integrator dynamics. Assuming that the information graph topology consists of an undirected connected graph, a leader-based consensus-type control law is presented and shown to provide asymptotic formation stability when subjected to piecewise constant formation velocity commands. It is also shown that global asymptotic stability is preserved in the presence of (0, infinity)- sector monotonic non-decreasing actuator nonlinearities.
A Distributed Intelligent E-Learning System
ERIC Educational Resources Information Center
Kristensen, Terje
2016-01-01
An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…
NASA Astrophysics Data System (ADS)
Sahelgozin, M.; Alimohammadi, A.
2015-12-01
Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.
MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.
Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir
2016-09-30
Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
MIDAS: A Practical Bayesian Design for Platform Trials with Molecularly Targeted Agents
Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir
2016-01-01
Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time, and thus not efficient for this task. We propose a Bayesian phase II platform design, the Multi-candidate Iterative Design with Adaptive Selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and “graduate” the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. PMID:27112322
Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van
2017-01-01
The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chronic Heart Failure Follow-up Management Based on Agent Technology.
Mohammadzadeh, Niloofar; Safdari, Reza
2015-10-01
Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
NASA Astrophysics Data System (ADS)
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Trust-based learning and behaviors for convoy obstacle avoidance
NASA Astrophysics Data System (ADS)
Mikulski, Dariusz G.; Karlsen, Robert E.
2015-05-01
In many multi-agent systems, robots within the same team are regarded as being fully trustworthy for cooperative tasks. However, the assumption of trustworthiness is not always justified, which may not only increase the risk of mission failure, but also endanger the lives of friendly forces. In prior work, we addressed this issue by using RoboTrust to dynamically adjust to observed behaviors or recommendations in order to mitigate the risks of illegitimate behaviors. However, in the simulations in prior work, all members of the convoy had knowledge of the convoy goal. In this paper, only the lead vehicle has knowledge of the convoy goals and the follow vehicles must infer trustworthiness strictly from lead vehicle performance. In addition, RoboTrust could only respond to observed performance and did not dynamically learn agent behavior. In this paper, we incorporate an adaptive agent-specific bias into the RoboTrust algorithm that modifies its trust dynamics. This bias is learned incrementally from agent interactions, allowing good agents to benefit from faster trust growth and slower trust decay and bad agents to be penalized with slower trust growth and faster trust decay. We then integrate this new trust model into a trust-based controller for decentralized autonomous convoy operations. We evaluate its performance in an obstacle avoidance mission, where the convoy attempts to learn the best speed and following distances combinations for an acceptable obstacle avoidance probability.
A Novel Network Attack Audit System based on Multi-Agent Technology
NASA Astrophysics Data System (ADS)
Jianping, Wang; Min, Chen; Xianwen, Wu
A network attack audit system which includes network attack audit Agent, host audit Agent and management control center audit Agent is proposed. And the improved multi-agent technology is carried out in the network attack audit Agent which has achieved satisfactory audit results. The audit system in terms of network attack is just in-depth, and with the function improvement of network attack audit Agent, different attack will be better analyzed and audit. In addition, the management control center Agent should manage and analyze audit results from AA (or HA) and audit data on time. And the history files of network packets and host log data should also be audit to find deeper violations that cannot be found in real time.
Applications of Agent Based Approaches in Business (A Three Essay Dissertation)
ERIC Educational Resources Information Center
Prawesh, Shankar
2013-01-01
The goal of this dissertation is to investigate the enabling role that agent based simulation plays in business and policy. The aforementioned issue has been addressed in this dissertation through three distinct, but related essays. The first essay is a literature review of different research applications of agent based simulation in various…
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
NASA Astrophysics Data System (ADS)
Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale
2015-11-01
Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhao, T. H.; Yin, Z.; Song, Y. Z.
2012-11-01
The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.
Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata
NASA Astrophysics Data System (ADS)
Zeng, Y. N.; Yu, M. M.; Li, S. N.
2018-04-01
Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.
Quadratic stabilisability of multi-agent systems under switching topologies
NASA Astrophysics Data System (ADS)
Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long
2014-12-01
This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.
NASA Astrophysics Data System (ADS)
Abustan, M. S.; Rahman, N. A.; Gotoh, H.; Harada, E.; Talib, S. H. A.
2016-07-01
In Malaysia, not many researches on crowd evacuation simulation had been reported. Hence, the development of numerical crowd evacuation process by taking into account people behavioral patterns and psychological characteristics is crucial in Malaysia. On the other hand, tsunami disaster began to gain attention of Malaysian citizens after the 2004 Indian Ocean Tsunami that need quick evacuation process. In relation to the above circumstances, we have conducted simulations of tsunami evacuation process at the Miami Beach of Penang Island by using Distinct Element Method (DEM)-based crowd behavior simulator. The main objectives are to investigate and reproduce current conditions of evacuation process at the said locations under different hypothetical scenarios for the efficiency study of the evacuation. The sim-1 is initial condition of evacuation planning while sim-2 as improvement of evacuation planning by adding new evacuation area. From the simulation result, sim-2 have a shorter time of evacuation process compared to the sim-1. The evacuation time recuded 53 second. The effect of the additional evacuation place is confirmed from decreasing of the evacuation completion time. Simultaneously, the numerical simulation may be promoted as an effective tool in studying crowd evacuation process.
Emergent Societal Effects of Crimino-Social Forces in an Animat Agent Model
NASA Astrophysics Data System (ADS)
Scogings, Chris J.; Hawick, Ken A.
Societal behaviour can be studied at a causal level by perturbing a stable multi-agent model with new microscopic behaviours and observing the statistical response over an ensemble of simulated model systems. We report on the effects of introducing criminal and law-enforcing behaviours into a large scale animat agent model and describe the complex spatial agent patterns and population changes that result. Our well-established predator-prey substrate model provides a background framework against which these new microscopic behaviours can be trialled and investigated. We describe some quantitative results and some surprising conclusions concerning the overall societal health when individually anti-social behaviour is introduced.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems
NASA Technical Reports Server (NTRS)
Balaban, Mariusz A.; Hester, Patrick T.
2012-01-01
Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes.
Delay-dependent coupling for a multi-agent LTI consensus system with inter-agent delays
NASA Astrophysics Data System (ADS)
Qiao, Wei; Sipahi, Rifat
2014-01-01
Delay-dependent coupling (DDC) is considered in this paper in a broadly studied linear time-invariant multi-agent consensus system in which agents communicate with each other under homogeneous delays, while attempting to reach consensus. The coupling among the agents is designed here as an explicit parameter of this delay, allowing couplings to autonomously adapt based on the delay value, and in order to guarantee stability and a certain degree of robustness in the network despite the destabilizing effect of delay. Design procedures, analysis of convergence speed of consensus, comprehensive numerical studies for the case of time-varying delay, and limitations are presented.
A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.
Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio
2016-08-24
Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
Fault-tolerant Control of a Cyber-physical System
NASA Astrophysics Data System (ADS)
Roxana, Rusu-Both; Eva-Henrietta, Dulf
2017-10-01
Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
Users matter : multi-agent systems model of high performance computing cluster users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Hood, C. S.; Decision and Information Sciences
2005-01-01
High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less
Evaluation of Littoral Combat Ships for Open-Ocean Anti-Submarine Warfare
2016-03-01
known. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory Using a Historical Case...coverage over a small area. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory...Defense Tech, May 30. Hill, R R, R G Carl, and L E Champagne . “Using agent-based simulation to empirically examine search theory using a
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
NASA Technical Reports Server (NTRS)
Mourou, Pascal; Fade, Bernard
1992-01-01
This article describes a planning method applicable to agents with great perception and decision-making capabilities and the ability to communicate with other agents. Each agent has a task to fulfill allowing for the actions of other agents in its vicinity. Certain simultaneous actions may cause conflicts because they require the same resource. The agent plans each of its actions and simultaneously transmits these to its neighbors. In a similar way, it receives plans from the other agents and must take account of these plans. The planning method allows us to build a distributed scheduling system. Here, these agents are robot vehicles on a highway communicating by radio. In this environment, conflicts between agents concern the allocation of space in time and are connected with the inertia of the vehicles. Each vehicle made a temporal, spatial, and situated reasoning in order to drive without collision. The flexibility and reactivity of the method presented here allows the agent to generate its plan based on assumptions concerning the other agents and then check these assumptions progressively as plans are received from the other agents. A multi-agent execution monitoring of these plans can be done, using data generated during planning and the multi-agent decision-making algorithm described here. A selective backtrack allows us to perform incremental rescheduling.
2017-10-01
perturbations in the energetic material to study their effects on the blast wave formation. The last case also makes use of the same PBX, however, the...configuration, Case A: Spore cloud located on the top of the charge at an angle 45 degree, Case B: Spore cloud located at an angle 45 degree from the charge...theoretical validation. The first is the Sedov case where the pressure decay and blast wave front are validated based on analytical solutions. In this test
NASA Astrophysics Data System (ADS)
Yan, H.
2015-12-01
Farmland is the most basic material conditions for guaranteeing rural livelihoods and national food security, and exploring management strategies that take both of the sustainable rural livelihoods and sustainable farmland use into account has vital significance of theory and practice. Farmland is a complex and self-adaptive system that couples human and natural systems together, and natural factors and social factors that are related to its changing process need to be considered when modeling farmland changing process. This paper takes Qianjingou Town in Inner Mongolia farming-pastoral zone as study area. From the perspective of the relationship between households' livelihoods and farmland use, this study builds the process mechanism of farmland use change based on questionnaires data, and constructs multi-agent simulation model of farmland use change with the help of Eclipse and Repast toolbox. Through simulating the relationship between natural factors (with geographical location) and households' behaviors, this paper systematically simulates households' renting and abandoning farmland behaviors, and truly describes dynamic interactions between households' livelihoods and factors related to farmland use change. These factors include natural factors (net primary productivity, road accessibility, slope and relief amplitude) and social factors (households' family structures, economic development and government policies). In the end, this study scientifically predicts farmland use change trend in the future 30 years. The simulation results show that, the number of abandoned and sublet farmland plots has a gradually increasing trend, the number of non-farm households and pure-outwork households has a remarkable increasing trend, and the number of part-farm households and pure-farm households shows a decreasing trend. Households' livelihoods sustainability in the study area is confronted with increasing pressure, and households' nonfarm employment has an increasing trend, while regional appropriate-scale agricultural management can be maintained. The research results establish the theory foundation and basic method for developing sustainable farmland use managements that can both meet households' willing and guarantee grain and ecology security.
Battle Lab Simulation Collaboration Environment (BLSCE): Multipurpose Platform for Simulation C2
2006-06-01
encryption, low-probability of intercept and detection communications, and specialized intelligent agents will provide the brick an d mortar for our...echelons. It allows multi-celled experimentations among several locations that cover all of the United States. It has become a gateway for Joint...of exercises from remote locations , including live-force play. • Integration of combined arms experimentation in support of Army Transformation
Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations
NASA Technical Reports Server (NTRS)
Seah, Chin; Sierhuis, Maarten; Clancey, William J.
2005-01-01
A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.
a Simulation-As Framework Facilitating Webgis Based Installation Planning
NASA Astrophysics Data System (ADS)
Zheng, Z.; Chang, Z. Y.; Fei, Y. F.
2017-09-01
Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users' operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents' process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.
Chemical sensors fabricated by a photonic integrated circuit foundry
NASA Astrophysics Data System (ADS)
Stievater, Todd H.; Koo, Kee; Tyndall, Nathan F.; Holmstrom, Scott A.; Kozak, Dmitry A.; Goetz, Peter G.; McGill, R. Andrew; Pruessner, Marcel W.
2018-02-01
We describe the detection of trace concentrations of chemical agents using waveguide-enhanced Raman spectroscopy in a photonic integrated circuit fabricated by AIM Photonics. The photonic integrated circuit is based on a five-centimeter long silicon nitride waveguide with a trench etched in the top cladding to allow access to the evanescent field of the propagating mode by analyte molecules. This waveguide transducer is coated with a sorbent polymer to enhance detection sensitivity and placed between low-loss edge couplers. The photonic integrated circuit is laid-out using the AIM Photonics Process Design Kit and fabricated on a Multi-Project Wafer. We detect chemical warfare agent simulants at sub parts-per-million levels in times of less than a minute. We also discuss anticipated improvements in the level of integration for photonic chemical sensors, as well as existing challenges.
Inconsistency as a diagnostic tool in a society of intelligent agents.
McShane, Marjorie; Beale, Stephen; Nirenburg, Sergei; Jarrell, Bruce; Fantry, George
2012-07-01
To use the detection of clinically relevant inconsistencies to support the reasoning capabilities of intelligent agents acting as physicians and tutors in the realm of clinical medicine. We are developing a cognitive architecture, OntoAgent, that supports the creation and deployment of intelligent agents capable of simulating human-like abilities. The agents, which have a simulated mind and, if applicable, a simulated body, are intended to operate as members of multi-agent teams featuring both artificial and human agents. The agent architecture and its underlying knowledge resources and processors are being developed in a sufficiently generic way to support a variety of applications. We show how several types of inconsistency can be detected and leveraged by intelligent agents in the setting of clinical medicine. The types of inconsistencies discussed include: test results not supporting the doctor's hypothesis; the results of a treatment trial not supporting a clinical diagnosis; and information reported by the patient not being consistent with observations. We show the opportunities afforded by detecting each inconsistency, such as rethinking a hypothesis, reevaluating evidence, and motivating or teaching a patient. Inconsistency is not always the absence of the goal of consistency; rather, it can be a valuable trigger for further exploration in the realm of clinical medicine. The OntoAgent cognitive architecture, along with its extensive suite of knowledge resources an processors, is sufficient to support sophisticated agent functioning such as detecting clinically relevant inconsistencies and using them to benefit patient-centered medical training and practice. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Qianqian; Yang, Tao; Zhao, Erbo; Xia, Xing’ang; Han, Zhangang
2013-01-01
There has been an increasing interest in the geographic aspects of economic development, exemplified by P. Krugman’s logical analysis. We show in this paper that the geographic aspects of economic development can be modeled using multi-agent systems that incorporate multiple underlying factors. The extent of information sharing is assumed to be a driving force that leads to economic geographic heterogeneity across locations without geographic advantages or disadvantages. We propose an agent-based market model that considers a spectrum of different information-sharing mechanisms: no information sharing, information sharing among friends and pheromone-like information sharing. Finally, we build a unified model that accommodates all three of these information-sharing mechanisms based on the number of friends who can share information. We find that the no information-sharing model does not yield large economic zones, and more information sharing can give rise to a power-law distribution of market size that corresponds to the stylized fact of city size and firm size distributions. The simulations show that this model is robust. This paper provides an alternative approach to studying economic geographic development, and this model could be used as a test bed to validate the detailed assumptions that regulate real economic agglomeration. PMID:23484007
New approaches in agent-based modeling of complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2017-12-01
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
Chronic Heart Failure Follow-up Management Based on Agent Technology
Safdari, Reza
2015-01-01
Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038
Physical insights into the blood-brain barrier translocation mechanisms
NASA Astrophysics Data System (ADS)
Theodorakis, Panagiotis E.; Müller, Erich A.; Craster, Richard V.; Matar, Omar K.
2017-08-01
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Timmermans, Harry
2011-06-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.
Simulation-based intelligent robotic agent for Space Station Freedom
NASA Technical Reports Server (NTRS)
Biegl, Csaba A.; Springfield, James F.; Cook, George E.; Fernandez, Kenneth R.
1990-01-01
A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators.
A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass
Sánchez, Jesús M.; Carrera, Álvaro; Iglesias, Carlos Á.; Serrano, Emilio
2016-01-01
Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911
Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far.
Bordoloi, Devivasha; Roy, Nand K; Monisha, Javadi; Padmavathi, Ganesan; Kunnumakkara, Ajaikumar B
2016-01-01
Research over the past several years has developed many mono-targeted therapies for the prevention and treatment of cancer, but it still remains one of the fatal diseases in the world killing 8.2 million people annually. It has been well-established that development of chemoresistance in cancer cells against mono-targeted chemotherapeutic agents by modulation of multiple survival pathways is the major cause of failure of cancer chemotherapy. Therefore, inhibition of these pathways by non-toxic multi-targeted agents may have profoundly high potential in preventing drug resistance and sensitizing cancer cells to chemotherapeutic agents. To study the potential of curcumin, a multi-targeted natural compound, obtained from the plant Turmeric (Curcuma longa) in combination with standard chemotherapeutic agents to inhibit drug resistance and sensitize cancer cells to these agents based on available literature and patents. An extensive literature survey was performed in PubMed and Google for the chemosensitizing potential of curcumin in different cancers published so far and the patents published during 2014-2015. Our search resulted in many in vitro, in vivo and clinical reports signifying the chemosensitizing potential of curcumin in diverse cancers. There were 160 in vitro studies, 62 in vivo studies and 5 clinical studies. Moreover, 11 studies reported on hybrid curcumin: the next generation of curcumin based therapeutics. Also, 34 patents on curcumin's biological activity have been retrieved. Altogether, the present study reveals the enormous potential of curcumin, a natural, non-toxic, multi-targeted agent in overcoming drug resistance in cancer cells and sensitizing them to chemotherapeutic drugs.
Simulation of trading strategies in the electricity market
NASA Astrophysics Data System (ADS)
Charkiewicz, Kamil; Nowak, Robert
2011-10-01
The main objective of the energy market existence is reduction of the total cost of production, transport and distribution of energy, and so the prices paid by terminal consumers. Energy market contains few markets that are varying on operational rules, the important segments: the Futures Contract Market and Next Day Market are analyzed in presented approach. The computer system was developed to simulate the Polish Energy Market. This system use the multi-agent approach, where each agent is the separate shared library with defined interface. The software was used to compare strategies for players in energy market, where the strategies uses auto-regression, k-nearest neighbours, neural network and mixed algorithm, to predict the next price.
A Computational Model and Multi-Agent Simulation for Information Assurance
2002-06-01
Podell , Information Security: an Integrated Collection of Essays, IEEE Computer Society Press, Los Alamitos, CA, 1994. Brinkley, D. L. and Schell, R...R., “What is There to Worry About? An Introduction to the Computer Security Problem,” ed. Abrams and Jajodia and Podell , Information Security: an
CulSim: A simulator of emergence and resilience of cultural diversity
NASA Astrophysics Data System (ADS)
Ulloa, Roberto
CulSim is an agent-based computer simulation software that allows further exploration of influential and recent models of emergence of cultural groups grounded in sociological theories. CulSim provides a collection of tools to analyze resilience of cultural diversity when events affect agents, institutions or global parameters of the simulations; upon combination, events can be used to approximate historical circumstances. The software provides a graphical and text-based user interface, and so makes this agent-based modeling methodology accessible to a variety of users from different research fields.
A Decentralized Framework for Multi-Agent Robotic Systems
2018-01-01
Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849
Towards an agent-oriented programming language based on Scala
NASA Astrophysics Data System (ADS)
Mitrović, Dejan; Ivanović, Mirjana; Budimac, Zoran
2012-09-01
Scala and its multi-threaded model based on actors represent an excellent framework for developing purely reactive agents. This paper presents an early research on extending Scala with declarative programming constructs, which would result in a new agent-oriented programming language suitable for developing more advanced, BDI agent architectures. The main advantage the new language over many other existing solutions for programming BDI agents is a natural and straightforward integration of imperative and declarative programming constructs, fitted under a single development framework.
NASA Astrophysics Data System (ADS)
Jain, Anoop; Ghose, Debasish
2018-01-01
This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.
Efficient Agent-Based Models for Non-Genomic Evolution
NASA Technical Reports Server (NTRS)
Gupta, Nachi; Agogino, Adrian; Tumer, Kagan
2006-01-01
Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
Applications of Multi-Agent Technology to Power Systems
NASA Astrophysics Data System (ADS)
Nagata, Takeshi
Currently, agents are focus of intense on many sub-fields of computer science and artificial intelligence. Agents are being used in an increasingly wide variety of applications. Many important computing applications such as planning, process control, communication networks and concurrent systems will benefit from using multi-agent system approach. A multi-agent system is a structure given by an environment together with a set of artificial agents capable to act on this environment. Multi-agent models are oriented towards interactions, collaborative phenomena, and autonomy. This article presents the applications of multi-agent technology to the power systems.
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun; Niu, Hongli
2015-10-01
Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.
Wu, Chunxue; Wu, Wenliang; Wan, Caihua
2017-01-01
Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793
NASA Technical Reports Server (NTRS)
Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris;
2009-01-01
This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.
Clustering recommendations to compute agent reputation
NASA Astrophysics Data System (ADS)
Bedi, Punam; Kaur, Harmeet
2005-03-01
Traditional centralized approaches to security are difficult to apply to multi-agent systems which are used nowadays in e-commerce applications. Developing a notion of trust that is based on the reputation of an agent can provide a softer notion of security that is sufficient for many multi-agent applications. Our paper proposes a mechanism for computing reputation of the trustee agent for use by the trustier agent. The trustier agent computes the reputation based on its own experience as well as the experience the peer agents have with the trustee agents. The trustier agents intentionally interact with the peer agents to get their experience information in the form of recommendations. We have also considered the case of unintentional encounters between the referee agents and the trustee agent, which can be directly between them or indirectly through a set of interacting agents. The clustering is done to filter off the noise in the recommendations in the form of outliers. The trustier agent clusters the recommendations received from referee agents on the basis of the distances between recommendations using the hierarchical agglomerative method. The dendogram hence obtained is cut at the required similarity level which restricts the maximum distance between any two recommendations within a cluster. The cluster with maximum number of elements denotes the views of the majority of recommenders. The center of this cluster represents the reputation of the trustee agent which can be computed using c-means algorithm.
Analysis of Foreign Exchange Interventions by Intervention Agent with an Artificial Market Approach
NASA Astrophysics Data System (ADS)
Matsui, Hiroki; Tojo, Satoshi
We propose a multi-agent system which learns intervention policies and evaluates the effect of interventions in an artificial foreign exchange market. Izumi et al. had presented a system called AGEDASI TOF to simulate artificial market, together with a support system for the government to decide foreign exchange policies. However, the system needed to fix the amount of governmental intervention prior to the simulation, and was not realistic. In addition, the interventions in the system did not affect supply and demand of currencies; thus we could not discuss the effect of intervention correctly. First, we improve the system so as to make much of the weights of influential factors. Thereafter, we introduce an intervention agent that has the role of the central bank to stabilize the market. We could show that the agent learned the effective intervention policies through the reinforcement learning, and that the exchange rate converged to a certain extent in the expected range. We could also estimate the amount of intervention, showing the efficacy of signaling. In this model, in order to investigate the aliasing of the perception of the intervention agent, we introduced a pseudo-agent who was supposed to be able to observe all the behaviors of dealer agents; with this super-agent, we discussed the adequate granularity for a market state description.
Numerical simulation of the interaction of elements of active protection with metal barriers
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.
2017-10-01
The present paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elasto-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
A New Multi-Agent Approach to Adaptive E-Education
NASA Astrophysics Data System (ADS)
Chen, Jing; Cheng, Peng
Improving customer satisfaction degree is important in e-Education. This paper describes a new approach to adaptive e-Education taking into account the full spectrum of Web service techniques and activities. It presents a multi-agents architecture based on artificial psychology techniques, which makes the e-Education process both adaptable and dynamic, and hence up-to-date. Knowledge base techniques are used to support the e-Education process, and artificial psychology techniques to deal with user psychology, which makes the e-Education system more effective and satisfying.
Multi-Wavelength Photomagnetic Imaging for Oral Cancer
NASA Astrophysics Data System (ADS)
Marks, Michael
In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.
Chadha, Navriti; Silakari, Om
2017-09-01
Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiagent intelligent systems
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.
2003-09-01
This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.
Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.
ERIC Educational Resources Information Center
Solomos, Konstantinos; Avouris, Nikolaos
1999-01-01
Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)
Parallel computing in enterprise modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less
Strategy Space Exploration of a Multi-Agent Model for the Labor Market
NASA Astrophysics Data System (ADS)
de Grande, Pablo; Eguia, Manuel
We present a multi-agent system where typical labor market mechanisms emerge. Based on a few simple rules, our model allows for different interpretative paradigms to be represented and for different scenarios to be tried out. We thoroughly explore the space of possible strategies both for those unemployed and for companies and analyze the trade-off between these strategies regarding global social and economical indicators.
An agent based architecture for high-risk neonate management at neonatal intensive care unit.
Malak, Jaleh Shoshtarian; Safdari, Reza; Zeraati, Hojjat; Nayeri, Fatemeh Sadat; Mohammadzadeh, Niloofar; Farajollah, Seide Sedighe Seied
2018-01-01
In recent years, the use of new tools and technologies has decreased the neonatal mortality rate. Despite the positive effect of using these technologies, the decisions are complex and uncertain in critical conditions when the neonate is preterm or has a low birth weight or malformations. There is a need to automate the high-risk neonate management process by creating real-time and more precise decision support tools. To create a collaborative and real-time environment to manage neonates with critical conditions at the NICU (Neonatal Intensive Care Unit) and to overcome high-risk neonate management weaknesses by applying a multi agent based analysis and design methodology as a new solution for NICU management. This study was a basic research for medical informatics method development that was carried out in 2017. The requirement analysis was done by reviewing articles on NICU Decision Support Systems. PubMed, Science Direct, and IEEE databases were searched. Only English articles published after 1990 were included; also, a needs assessment was done by reviewing the extracted features and current processes at the NICU environment where the research was conducted. We analyzed the requirements and identified the main system roles (agents) and interactions by a comparative study of existing NICU decision support systems. The Universal Multi Agent Platform (UMAP) was applied to implement a prototype of our multi agent based high-risk neonate management architecture. Local environment agents interacted inside a container and each container interacted with external resources, including other NICU systems and consultation centers. In the NICU container, the main identified agents were reception, monitoring, NICU registry, and outcome prediction, which interacted with human agents including nurses and physicians. Managing patients at the NICU units requires online data collection, real-time collaboration, and management of many components. Multi agent systems are applied as a well-known solution for management, coordination, modeling, and control of NICU processes. We are currently working on an outcome prediction module using artificial intelligence techniques for neonatal mortality risk prediction. The full implementation of the proposed architecture and evaluation is considered the future work.
Multi-attribute Regret-Based Dynamic Pricing
NASA Astrophysics Data System (ADS)
Jumadinova, Janyl; Dasgupta, Prithviraj
In this paper, we consider the problem of dynamic pricing by a set of competing sellers in an information economy where buyers differentiate products along multiple attributes, and buyer preferences can change temporally. Previous research in this area has either focused on dynamic pricing along a limited number of (e.g. binary) attributes, or, assumes that each seller has access to private information such as preference distribution of buyers, and profit/price information of other sellers. However, in real information markets, private information about buyers and sellers cannot be assumed to be available a priori. Moreover, due to the competition between sellers, each seller faces a tradeoff between accuracy and rapidity of the pricing mechanism. In this paper, we describe a multi-attribute dynamic pricing algorithm based on minimax regret that can be used by a seller's agent called a pricebot, to maximize the seller's utility. Our simulation results show that the minimax regret based dynamic pricing algorithm performs significantly better than other algorithms for rapidly and dynamically tracking consumer attributes without using any private information from either buyers or sellers.
Anticipation by multi-modal association through an artificial mental imagery process
NASA Astrophysics Data System (ADS)
Gaona, Wilmer; Escobar, Esaú; Hermosillo, Jorge; Lara, Bruno
2015-01-01
Mental imagery has become a central issue in research laboratories seeking to emulate basic cognitive abilities in artificial agents. In this work, we propose a computational model to produce an anticipatory behaviour by means of a multi-modal off-line hebbian association. Unlike the current state of the art, we propose to apply hebbian learning during an internal sensorimotor simulation, emulating a process of mental imagery. We associate visual and tactile stimuli re-enacted by a long-term predictive simulation chain motivated by covert actions. As a result, we obtain a neural network which provides a robot with a mechanism to produce a visually conditioned obstacle avoidance behaviour. We developed our system in a physical Pioneer 3-DX robot and realised two experiments. In the first experiment we test our model on one individual navigating in two different mazes. In the second experiment we assess the robustness of the model by testing in a single environment five individuals trained under different conditions. We believe that our work offers an underpinning mechanism in cognitive robotics for the study of motor control strategies based on internal simulations. These strategies can be seen analogous to the mental imagery process known in humans, opening thus interesting pathways to the construction of upper-level grounded cognitive abilities.
Bouden, Mondher; Moulin, Bernard; Gosselin, Pierre
2008-01-01
Background Since 1999, the expansion of the West Nile virus (WNV) epizooty has led public health authorities to build and operate surveillance systems in North America. These systems are very useful to collect data, but cannot be used to forecast the probable spread of the virus in coming years. Such forecasts, if proven reliable, would permit preventive measures to be put into place at the appropriate level of expected risk and at the appropriate time. It is within this context that the Multi-Agent GeoSimulation approach has been selected to develop a system that simulates the interactions of populations of mosquitoes and birds over space and time in relation to the spread and transmission of WNV. This simulation takes place in a virtual mapping environment representing a large administrative territory (e.g. province, state) and carried out under various climate scenarios in order to simulate the effects of vector control measures such as larviciding at scales of 1/20 000 or smaller. Results After setting some hypotheses, a conceptual model and system architecture were developed to describe the population dynamics and interactions of mosquitoes (genus Culex) and American crows, which were chosen as the main actors in the simulation. Based on a mathematical compartment model used to simulate the population dynamics, an operational prototype was developed for the Southern part of Quebec (Canada). The system allows users to modify the parameters of the model, to select various climate and larviciding scenarios, to visualize on a digital map the progression (on a weekly or daily basis) of the infection in and around the crows' roosts and to generate graphs showing the evolution of the populations. The basic units for visualisation are municipalities. Conclusion In all likelihood this system might be used to support short term decision-making related to WNV vector control measures, including the use of larvicides, according to climatic scenarios. Once fully calibrated in several real-life contexts, this promising approach opens the door to the study and management of other zoonotic diseases such as Lyme disease. PMID:18606008
NASA Astrophysics Data System (ADS)
Maghami, Mahsa; Sukthankar, Gita
In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.
Bures, Vladimír; Otcenásková, Tereza; Cech, Pavel; Antos, Karel
2012-11-01
Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.
Mukherjee, Prasenjit; Shah, Falgun; Desai, Prashant; Avery, Mitchell
2011-01-01
SARS-CoV from the coronaviridae family has been identified as the etiological agent of Severe Acute Respiratory Syndrome (SARS), a highly contagious upper respiratory disease that reached epidemic status in 2002. SARS-3CLpro, a cysteine protease indispensible to the viral life cycle, has been identified as one of the key therapeutic target against SARS. A combined ligand and structure based virtual screening was carried out against the Asinex Platinum collection. Multiple low micromolar inhibitors of the enzyme were identified through this search, one of which also showed activity against SARS-CoV in a whole cell CPE assay. Furthermore, multi nanosecond explicit solvent simulations were carried out using the docking poses of the identified hits to study the overall stability of the binding site interactions as well as identify important changes in the interaction profile that were not apparent from the docking study. Cumulative analysis of the evaluated compounds and the simulation studies led to the identification of certain protein-ligand interaction patterns which would be useful in further structure based design efforts. PMID:21604711
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
NASA Astrophysics Data System (ADS)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy
2015-07-01
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.
2015-07-28
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less
BUDEM: an urban growth simulation model using CA for Beijing metropolitan area
NASA Astrophysics Data System (ADS)
Long, Ying; Shen, Zhenjiang; Du, Liqun; Mao, Qizhi; Gao, Zhanping
2008-10-01
It is in great need of identifying the future urban form of Beijing, which faces challenges of rapid growth in urban development projects implemented in Beijing. We develop Beijing Urban Developing Model (BUDEM in short) to support urban planning and corresponding policies evaluation. BUDEM is the spatio-temporal dynamic model for simulating urban growth in Beijing metropolitan area, using cellular automata (CA) and Multi-agent system (MAS) approaches. In this phase, the computer simulation using CA in Beijing metropolitan area is conducted, which attempts to provide a premise of urban activities including different kinds of urban development projects for industrial plants, shopping facilities, houses. In the paper, concept model of BUDEM is introduced, which is established basing on prevalent urban growth theories. The method integrating logistic regression and MonoLoop is used to retrieve weights in the transition rule by MCE. After model sensibility analysis, we apply BUDEM into three aspects of urban planning practices: (1) Identifying urban growth mechanism in various historical phases since 1986; (2) Identifying urban growth policies needed to implement desired urban form (BEIJING2020), namely planned urban form; (3) Simulating urban growth scenarios of 2049 (BEIJING2049) basing on the urban form and parameter set of BEIJING2020.
Reinforcement learning in supply chains.
Valluri, Annapurna; North, Michael J; Macal, Charles M
2009-10-01
Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.
Multi-Agent Methods for the Configuration of Random Nanocomputers
NASA Technical Reports Server (NTRS)
Lawson, John W.
2004-01-01
As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.
A Primer for Agent-Based Simulation and Modeling in Transportation Applications
DOT National Transportation Integrated Search
2013-11-01
Agent-based modeling and simulation (ABMS) methods have been applied in a spectrum of research domains. This primer focuses on ABMS in the transportation interdisciplinary domain, describes the basic concepts of ABMS and the recent progress of ABMS i...
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
ERIC Educational Resources Information Center
Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto
2018-01-01
Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
NASA Astrophysics Data System (ADS)
Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.
2008-12-01
In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non-cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.
Physics-based agent to simulant correlations for vapor phase mass transport.
Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A
2013-12-15
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. Published by Elsevier B.V.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
Learning in engineered multi-agent systems
NASA Astrophysics Data System (ADS)
Menon, Anup
Consider the problem of maximizing the total power produced by a wind farm. Due to aerodynamic interactions between wind turbines, each turbine maximizing its individual power---as is the case in present-day wind farms---does not lead to optimal farm-level power capture. Further, there are no good models to capture the said aerodynamic interactions, rendering model based optimization techniques ineffective. Thus, model-free distributed algorithms are needed that help turbines adapt their power production on-line so as to maximize farm-level power capture. Motivated by such problems, the main focus of this dissertation is a distributed model-free optimization problem in the context of multi-agent systems. The set-up comprises of a fixed number of agents, each of which can pick an action and observe the value of its individual utility function. An individual's utility function may depend on the collective action taken by all agents. The exact functional form (or model) of the agent utility functions, however, are unknown; an agent can only measure the numeric value of its utility. The objective of the multi-agent system is to optimize the welfare function (i.e. sum of the individual utility functions). Such a collaborative task requires communications between agents and we allow for the possibility of such inter-agent communications. We also pay attention to the role played by the pattern of such information exchange on certain aspects of performance. We develop two algorithms to solve this problem. The first one, engineered Interactive Trial and Error Learning (eITEL) algorithm, is based on a line of work in the Learning in Games literature and applies when agent actions are drawn from finite sets. While in a model-free setting, we introduce a novel qualitative graph-theoretic framework to encode known directed interactions of the form "which agents' action affect which others' payoff" (interaction graph). We encode explicit inter-agent communications in a directed graph (communication graph) and, under certain conditions, prove convergence of agent joint action (under eITEL) to the welfare optimizing set. The main condition requires that the union of interaction and communication graphs be strongly connected; thus the algorithm combines an implicit form of communication (via interactions through utility functions) with explicit inter-agent communications to achieve the given collaborative goal. This work has kinship with certain evolutionary computation techniques such as Simulated Annealing; the algorithm steps are carefully designed such that it describes an ergodic Markov chain with a stationary distribution that has support over states where agent joint actions optimize the welfare function. The main analysis tool is perturbed Markov chains and results of broader interest regarding these are derived as well. The other algorithm, Collaborative Extremum Seeking (CES), uses techniques from extremum seeking control to solve the problem when agent actions are drawn from the set of real numbers. In this case, under the assumption of existence of a local minimizer for the welfare function and a connected undirected communication graph between agents, a result regarding convergence of joint action to a small neighborhood of a local optimizer of the welfare function is proved. Since extremum seeking control uses a simultaneous gradient estimation-descent scheme, gradient information available in the continuous action space formulation is exploited by the CES algorithm to yield improved convergence speeds. The effectiveness of this algorithm for the wind farm power maximization problem is evaluated via simulations. Lastly, we turn to a different question regarding role of the information exchange pattern on performance of distributed control systems by means of a case study for the vehicle platooning problem. In the vehicle platoon control problem, the objective is to design distributed control laws for individual vehicles in a platoon (or a road-train) that regulate inter-vehicle distances at a specified safe value while the entire platoon follows a leader-vehicle. While most of the literature on the problem deals with some inadequacy in control performance when the information exchange is of the nearest neighbor-type, we consider an arbitrary graph serving as information exchange pattern and derive a relationship between how a certain indicator of control performance is related to the information pattern. Such analysis helps in understanding qualitative features of the `right' information pattern for this problem.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
Agent Architectures for Compliance
NASA Astrophysics Data System (ADS)
Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua
A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.
An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy.
Day, Theodore Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann
2013-01-01
Agent-based models are valuable for examining systems where large numbers of discrete individuals interact with each other, or with some environment. Diabetic Veterans seeking eye care at a Veterans Administration hospital represent one such cohort. The objective of this study was to develop an agent-based template to be used as a model for a patient with diabetic retinopathy (DR). This template may be replicated arbitrarily many times in order to generate a large cohort which is representative of a real-world population, upon which in-silico experimentation may be conducted. Agent-based template development was performed in java-based computer simulation suite AnyLogic Professional 6.6. The model was informed by medical data abstracted from 535 patient records representing a retrospective cohort of current patients of the VA St. Louis Healthcare System Eye clinic. Logistic regression was performed to determine the predictors associated with advancing stages of DR. Predicted probabilities obtained from logistic regression were used to generate the stage of DR in the simulated cohort. The simulated cohort of DR patients exhibited no significant deviation from the test population of real-world patients in proportion of stage of DR, duration of diabetes mellitus (DM), or the other abstracted predictors. Simulated patients after 10 years were significantly more likely to exhibit proliferative DR (P<0.001). Agent-based modeling is an emerging platform, capable of simulating large cohorts of individuals based on manageable data abstraction efforts. The modeling method described may be useful in simulating many different conditions where course of disease is described in categorical stages.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
Using Ontologies to Formalize Services Specifications in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann
2004-01-01
One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.
Unifying Temporal and Structural Credit Assignment Problems
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2004-01-01
Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.
QUICR-learning for Multi-Agent Coordination
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2006-01-01
Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
Towards the implementation of a spectral database for the detection of biological warfare agents
NASA Astrophysics Data System (ADS)
Carestia, M.; Pizzoferrato, R.; Gelfusa, M.; Cenciarelli, O.; D'Amico, F.; Malizia, A.; Scarpellini, D.; Murari, A.; Vega, J.; Gaudio, P.
2014-10-01
The deliberate use of biological warfare agents (BWA) and other pathogens can jeopardize the safety of population, fauna and flora, and represents a concrete concern from the military and civil perspective. At present, the only commercially available tools for fast warning of a biological attack can perform point detection and require active or passive sampling collection. The development of a stand-off detection system would be extremely valuable to minimize the risk and the possible consequences of the release of biological aerosols in the atmosphere. Biological samples can be analyzed by means of several optical techniques, covering a broad region of the electromagnetic spectrum. Strong evidence proved that the informative content of fluorescence spectra could provide good preliminary discrimination among those agents and it can also be obtained through stand-off measurements. Such a system necessitates a database and a mathematical method for the discrimination of the spectral signatures. In this work, we collected fluorescence emission spectra of the main BWA simulants, to implement a spectral signature database and apply the Universal Multi Event Locator (UMEL) statistical method. Our preliminary analysis, conducted in laboratory conditions with a standard UV lamp source, considers the main experimental setups influencing the fluorescence signature of some of the most commonly used BWA simulants. Our work represents a first step towards the implementation of a spectral database and a laser-based biological stand-off detection and identification technique.
An Agent-Based Cockpit Task Management System
NASA Technical Reports Server (NTRS)
Funk, Ken
1997-01-01
An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.
Ising model of financial markets with many assets
NASA Astrophysics Data System (ADS)
Eckrot, A.; Jurczyk, J.; Morgenstern, I.
2016-11-01
Many models of financial markets exist, but most of them simulate single asset markets. We study a multi asset Ising model of a financial market. Each agent has two possible actions (buy/sell) for every asset. The agents dynamically adjust their coupling coefficients according to past market returns and external news. This leads to fat tails and volatility clustering independent of the number of assets. We find that a separation of news into different channels leads to sector structures in the cross correlations, similar to those found in real markets.
Modeling marine oily wastewater treatment by a probabilistic agent-based approach.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong
2018-02-01
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multi-agent approach to intelligent monitoring in smart grids
NASA Astrophysics Data System (ADS)
Vallejo, D.; Albusac, J.; Glez-Morcillo, C.; Castro-Schez, J. J.; Jiménez, L.
2014-04-01
In this paper, we propose a scalable multi-agent architecture to give support to smart grids, paying special attention to the intelligent monitoring of distribution substations. The data gathered by multiple sensors are used by software agents that are responsible for monitoring different aspects or events of interest, such as normal voltage values or unbalanced intensity values that can end up blowing fuses and decreasing the quality of service of end consumers. The knowledge bases of these agents have been built by means of a formal model for normality analysis that has been successfully used in other surveillance domains. The architecture facilitates the integration of new agents and can be easily configured and deployed to monitor different environments. The experiments have been conducted over a power distribution network.
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
NASA Astrophysics Data System (ADS)
Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.
2017-12-01
Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.
ERIC Educational Resources Information Center
Lai, K. Robert; Lan, Chung Hsien
2006-01-01
This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
Agent 2003 Conference on Challenges in Social Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaret Clemmons, ed.
Welcome to the Proceedings of the fourth in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the second conference in which three Special Interest Groups from the North American Association for Computational Social and Organizational Science (NAACSOS) have been involved in planning the program--Computational Social Theory; Simulation Applications; and Methods, Toolkits and Techniques. The theme of Agent 2003, Challenges in Social Simulation, is especially relevant, as there seems to be no shortage of such challenges. Agent simulation has been applied with increasing frequency to social domains for several decades,more » and its promise is clear and increasingly visible. Like any nascent scientific methodology, however, it faces a number of problems or issues that must be addressed in order to progress. These challenges include: (1) Validating models relative to the social settings they are designed to represent; (2) Developing agents and interactions simple enough to understand but sufficiently complex to do justice to the social processes of interest; (3) Bridging the gap between empirically spare artificial societies and naturally occurring social phenomena; (4) Building multi-level models that span processes across domains; (5) Promoting a dialog among theoretical, qualitative, and empirical social scientists and area experts, on the one hand, and mathematical and computational modelers and engineers, on the other; (6) Using that dialog to facilitate substantive progress in the social sciences; and (7) Fulfilling the aspirations of users in business, government, and other application areas, while recognizing and addressing the preceding challenges. Although this list hardly exhausts the challenges the field faces, it does identify topics addressed throughout the presentations of Agent 2003. Agent 2003 is part of a much larger process in which new methods and techniques are applied to difficult social issues. Among the resources that give us the prospect of success is the innovative and transdisciplinary research community being built. We believe that Agent 2003 contributes to further progress in computational modeling of social processes, and we hope that you find these Proceedings to be stimulating and rewarding. As the horizons of this transdiscipline continue to emerge and converge, we hope to provide similar forums that will promote development of agent simulation modeling in the years to come.« less
Adding ecosystem function to agent-based land use models
USDA-ARS?s Scientific Manuscript database
The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeoche...
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.
Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M
2011-08-01
During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.
Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing
NASA Astrophysics Data System (ADS)
Yang, Bo; Wu, Yan
2018-03-01
Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.
Agent-Based Scientific Workflow Composition
NASA Astrophysics Data System (ADS)
Barker, A.; Mann, B.
2006-07-01
Agents are active autonomous entities that interact with one another to achieve their objectives. This paper addresses how these active agents are a natural fit to consume the passive Service Oriented Architecture which is found in Internet and Grid Systems, in order to compose, coordinate and execute e-Science experiments. A framework is introduced which allows an e-Science experiment to be described as a MultiAgent System.
Investigating accident causation through information network modelling.
Griffin, T G C; Young, M S; Stanton, N A
2010-02-01
Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings
NASA Astrophysics Data System (ADS)
Kwak, Jun-young
Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.
Agent-based modeling of malaria vectors: the importance of spatial simulation.
Bomblies, Arne
2014-07-03
The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.
Sánchez-Rodríguez, Aminael; Tejera, Eduardo; Cruz-Monteagudo, Maykel; Borges, Fernanda; Cordeiro, M. Natália D. S.; Le-Thi-Thu, Huong; Pham-The, Hai
2018-01-01
Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents. PMID:29420638
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
System-Wide Water Resources Program Nutrient Sub-Model (SWWRP-NSM) Version 1.1
2008-09-01
species including crops, native grasses, and trees . The process descriptions utilize a single plant growth model to simulate all types of land covers...characteristics: • Multi- species , multi-phase, and multi-reaction system • Fast (equilibrium-based) and slow (non-equilibrium-based or rate- based...Transformation and loading of N and P species in the overland flow • Simulation of the N and P cycle in the water column (both overland and
Towards a genetics-based adaptive agent to support flight testing
NASA Astrophysics Data System (ADS)
Cribbs, Henry Brown, III
Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.
Adaptive consensus of scale-free multi-agent system by randomly selecting links
NASA Astrophysics Data System (ADS)
Mou, Jinping; Ge, Huafeng
2016-06-01
This paper investigates an adaptive consensus problem for distributed scale-free multi-agent systems (SFMASs) by randomly selecting links, where the degree of each node follows a power-law distribution. The randomly selecting links are based on the assumption that every agent decides to select links among its neighbours according to the received data with a certain probability. Accordingly, a novel consensus protocol with the range of the received data is developed, and each node updates its state according to the protocol. By the iterative method and Cauchy inequality, the theoretical analysis shows that all errors among agents converge to zero, and in the meanwhile, several criteria of consensus are obtained. One numerical example shows the reliability of the proposed methods.
NASA Astrophysics Data System (ADS)
Navaz, H. K.; Dang, A. L.; Atkinson, T.; Zand, A.; Nowakowski, A.; Kamensky, K.
2014-05-01
A general-purpose multi-phase and multi-component computer model capable of solving the complex problems encountered in the agent substrate interaction is developed. The model solves the transient and time-accurate mass and momentum governing equations in a three dimensional space. The provisions for considering all the inter-phase activities (solidification, evaporation, condensation, etc.) are included in the model. The chemical reactions among all phases are allowed and the products of the existing chemical reactions in all three phases are possible. The impact of chemical reaction products on the transport properties in porous media such as porosity, capillary pressure, and permeability is considered. Numerous validations for simulants, agents, and pesticides with laboratory and open air data are presented. Results for chemical reactions in the presence of pre-existing water in porous materials such as moisture, or separated agent and water droplets on porous substrates are presented. The model will greatly enhance the capabilities in predicting the level of threat after any chemical such as Toxic Industrial Chemicals (TICs) and Toxic Industrial Materials (TIMs) release on environmental substrates. The model's generality makes it suitable for both defense and pharmaceutical applications.
Distributed reconfigurable control strategies for switching topology networked multi-agent systems.
Gallehdari, Z; Meskin, N; Khorasani, K
2017-11-01
In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis multi-agent with precense of the leader
NASA Astrophysics Data System (ADS)
Achmadi, Sentot; Marjono, Miswanto
2017-12-01
The phenomenon of swarm is a natural phenomenon that is often done by a collection of living things in the form of motion from one place to another. By clustering, a group of animals can increase their effectiveness in food search and avoid predators. A group of geese also performs a swarm phenomenon when flying and forms an inverted V-formation with one of the geese acting as a leader. Each flying track of members of the geese group always follows the leader's path at a certain distance. This article discusses the mathematical modeling of the swarm phenomenon, which is the optimal tracking control for multi-agent model with the influence of the leader in the 2-dimensional space. The leader in this model is intended to track the specified path. Firstly, the leader's motion control is to follow the predetermined path using the Tracking Error Dynamic method. Then, the path from the leader is used to design the motion control of each agent to track the leader's path at a certain distance. The result of numerical simulation shows that the leader trajectory can track the specified path. Similarly, the motion of each agent can trace and follow the leader's path.
Coastal zone management with stochastic multi-criteria analysis.
Félix, A; Baquerizo, A; Santiago, J M; Losada, M A
2012-12-15
The methodology for coastal management proposed in this study takes into account the physical processes of the coastal system and the stochastic nature of forcing agents. Simulation techniques are used to assess the uncertainty in the performance of a set of predefined management strategies based on different criteria representing the main concerns of interest groups. This statistical information as well as the distribution function that characterizes the uncertainty regarding the preferences of the decision makers is fed into a stochastic multi-criteria acceptability analysis that provides the probability of alternatives obtaining certain ranks and also calculates the preferences of a typical decision maker who supports an alternative. This methodology was applied as a management solution for Playa Granada in the Guadalfeo River Delta (Granada, Spain), where the construction of a dam in the river basin is causing severe erosion. The analysis of shoreline evolution took into account the coupled action of atmosphere, ocean, and land agents and their intrinsic stochastic character. This study considered five different management strategies. The criteria selected for the analysis were the economic benefits for three interest groups: (i) indirect beneficiaries of tourist activities; (ii) beach homeowners; and (iii) the administration. The strategies were ranked according to their effectiveness, and the relative importance given to each criterion was obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.
SSIC model: A multi-layer model for intervention of online rumors spreading
NASA Astrophysics Data System (ADS)
Tian, Ru-Ya; Zhang, Xue-Fu; Liu, Yi-Jun
2015-06-01
SIR model is a classical model to simulate rumor spreading, while the supernetwork is an effective tool for modeling complex systems. Based on the Opinion SuperNetwork involving Social Sub-network, Environmental Sub-network, Psychological Sub-network, and Viewpoint Sub-network, drawing from the modeling idea of SIR model, this paper designs super SIC model (SSIC model) and its evolution rules, and also analyzes intervention effects on public opinion of four elements of supernetwork, which are opinion agent, opinion environment, agent's psychology and viewpoint. Studies show that, the SSIC model based on supernetwork has effective intervention effects on rumor spreading. It is worth noting that (i) identifying rumor spreaders in Social Sub-network and isolating them can achieve desired intervention results, (ii) improving environmental information transparency so that the public knows as much information as possible to reduce the rumors is a feasible way to intervene, (iii) persuading wavering neutrals has better intervention effects than clarifying rumors already spread everywhere, so rumors should be intervened in properly in time by psychology counseling.
Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.
de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J
2016-03-01
Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.
NASA Astrophysics Data System (ADS)
Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi
This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.
Community Currency Trading Method through Partial Transaction Intermediary Process
NASA Astrophysics Data System (ADS)
Kido, Kunihiko; Hasegawa, Seiichi; Komoda, Norihisa
A community currency is local money that is issued by local governments or Non-Profit Organization (NPO) to support social services. The purpose of introducing community currencies is to regenerate communities by fostering mutual aids among community members. In this paper, we propose a community currency trading method through partial intermediary process, under operational environments without introducing coordinators all the time. In this method, coordinators perform coordination between service users and service providers during several months from the start point of transactions. After the period of coordination, participants spontaneously make transactions based on their trust area and a trust evaluation method based on the number of provided services and complaint information. This method is especially effective to communities with close social networks and low trustworthiness. The proposed method is evaluated through multi-agent simulation.
Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria
Balagam, Rajesh; Igoshin, Oleg A.
2015-01-01
Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus cells can align and form clusters through pure mechanical interactions among cells and between cells and substrate. We test this hypothesis using an agent-based simulation framework in which each agent is based on the biophysical model of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility values, can align and form cell clusters but only when periodic reversals of cell directions are suppressed. However, by extending our model to introduce the observed ability of cells to deposit and follow slime trails, we show that effective trail-following leads to clusters in reversing cells. Furthermore, we conclude that mechanical cell alignment combined with slime-trail-following is sufficient to explain the distinct clustering behaviors observed for wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are robust to variation in model parameters, match the experimentally observed trends and can be applied to understand surface motility patterns of other bacterial species. PMID:26308508
Applications of agent-based modeling to nutrient movement Lake Michigan
As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...
Cognitive Modeling for Agent-Based Simulation of Child Maltreatment
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard
This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.
NASA Astrophysics Data System (ADS)
Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun
2017-08-01
Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.
Distributed event-triggered consensus strategy for multi-agent systems under limited resources
NASA Astrophysics Data System (ADS)
Noorbakhsh, S. Mohammad; Ghaisari, Jafar
2016-01-01
The paper proposes a distributed structure to address an event-triggered consensus problem for multi-agent systems which aims at concurrent reduction in inter-agent communication, control input actuation and energy consumption. Following the proposed approach, asymptotic convergence of all agents to consensus requires that each agent broadcasts its sampled-state to the neighbours and updates its control input only at its own triggering instants, unlike the existing related works. Obviously, it decreases the network bandwidth usage, sensor energy consumption, computation resources usage and actuator wears. As a result, it facilitates the implementation of the proposed consensus protocol in the real-world applications with limited resources. The stability of the closed-loop system under an event-based protocol is proved analytically. Some numerical results are presented which confirm the analytical discussion on the effectiveness of the proposed design.
Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang
2017-08-18
The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bannwarth, M A; Grovermann, C; Schreinemachers, P; Ingwersen, J; Lamers, M; Berger, T; Streck, T
2016-01-01
Pesticide application rates are high and increasing in upland agricultural systems in Thailand producing vegetables, fruits and ornamental crops, leading to the pollution of stream water with pesticide residues. The objective of this study was to determine the maximum per hectare application rates of two widely used pesticides that would achieve non-hazardous pesticide concentrations in the stream water and to evaluate how farm household incomes would be affected if farmers complied with these restricted application rates. For this purpose we perform an integrated modeling approach of a hydrological solute transport model (the Soil and Water Assessment Tool, SWAT) and an agent-based farm decision model (Mathematical Programming-based Multi-Agent Systems, MPMAS). SWAT was used to simulate the pesticide fate and behavior. The model was calibrated to a 77 km(2) watershed in northern Thailand. The results show that to stay under a pre-defined eco-toxicological threshold, the current average application of chlorothalonil (0.80 kg/ha) and cypermethrin (0.53 kg/ha) would have to be reduced by 80% and 99%, respectively. The income effect of such reductions was simulated using MPMAS. The results suggest that if farm households complied with the application thresholds then their income would reduce by 17.3% in the case of chlorothalonil and by 38.3% in the case of cypermethrin. Less drastic income effects can be expected if methods of integrated pest management were more widely available. The novelty of this study is to combine two models from distinctive disciplines to evaluate pesticide reduction scenarios based on real-world data from a single study site. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krawiecki, A.
A multi-agent spin model for changes of prices in the stock market based on the Ising-like cellular automaton with interactions between traders randomly varying in time is investigated by means of Monte Carlo simulations. The structure of interactions has topology of a small-world network obtained from regular two-dimensional square lattices with various coordination numbers by randomly cutting and rewiring edges. Simulations of the model on regular lattices do not yield time series of logarithmic price returns with statistical properties comparable with the empirical ones. In contrast, in the case of networks with a certain degree of randomness for a wide range of parameters the time series of the logarithmic price returns exhibit intermittent bursting typical of volatility clustering. Also the tails of distributions of returns obey a power scaling law with exponents comparable to those obtained from the empirical data.
Projective simulation for artificial intelligence
NASA Astrophysics Data System (ADS)
Briegel, Hans J.; de Las Cuevas, Gemma
2012-05-01
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Projective simulation for artificial intelligence
Briegel, Hans J.; De las Cuevas, Gemma
2012-01-01
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690
NASA Technical Reports Server (NTRS)
Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter;
2008-01-01
This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir
2015-09-28
It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.
NASA Astrophysics Data System (ADS)
Kodama, Yu; Hamagami, Tomoki
Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D
2011-11-01
The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.
DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.
Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng
2017-12-19
Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.
Driving-forces model on individual behavior in scenarios considering moving threat agents
NASA Astrophysics Data System (ADS)
Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia
2017-09-01
The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.
NASA Astrophysics Data System (ADS)
Avisse, N.; Tilmant, A.; Zhang, H.; Talozi, S.; Muller, M. F.; Rajsekhar, D.; Yoon, J.; Gorelick, S.
2016-12-01
The Yarmouk River, the main tributary to the Jordan River, is shared but not jointly managed by three countries: Syria, Jordan and Israel. Political distrust and conflicts mean that the equitable sharing of its waters has never materialized despite the signature of bilateral agreements. This state of affairs culminated in the 90ies and led to a rapid change in the flow regime of the Yarmouk River, where both peak and base flows almost disappeared at the turn of the millennium. Jordan blames Syria for building more dams than agreed on in 1987, while Syria blames Israel for doing the same in the Golan Heights. Even though less water is available for downstream Jordan and Israel, these two countries keep exchanging water, following updated rules since the 1994 Peace Treaty. While both literature and stakeholders in the region concur that most freshwater resources are consumed in Syria, there is actually no study that tracks agricultural and storage changes, both legal and illegal, in the Yarmouk basin in relation to the flow regime. This exercise is compounded by unavailability of information on water uses due to the long-standing lack of cooperation in the region, an issue exacerbated more recently by the ongoing civil war in Syria. Using a modeling framework based on remote sensing and a multi-agent simulation model, changes in the Yarmouk River flow regime are explained for three different development stages corresponding to the years 1984, 1998 and 2014. Landsat images, coupled with the analysis of land surface temperature, made possible the distinction of rainfed and irrigated crops, as well as the estimation of reservoirs' storage. For each stage, the impact on downstream riparian countries is assessed using a simulation model of the Israel-Jordan Peace Treaty. Other scenarios are also analyzed to assess the effectiveness of alternative policy and cooperation scenarios including water demand management measures in Syria, the reoperation of illegal reservoirs and the restructuring of inter-basin water transfers.
Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments
2017-12-01
BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS by Adam L. Atwood December 2017 Thesis Advisor: Mark Karpenko Second...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FLEXIBLE MULTI-BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS 5...spacecraft simulator for use in testing optimal control-based slew and maneuver designs . The simulator is modified from an earlier prototype, which
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
A Belief-based Trust Model for Dynamic Service Selection
NASA Astrophysics Data System (ADS)
Ali, Ali Shaikh; Rana, Omer F.
Provision of services across institutional boundaries has become an active research area. Many such services encode access to computational and data resources (comprising single machines to computational clusters). Such services can also be informational, and integrate different resources within an institution. Consequently, we envision a service rich environment in the future, where service consumers can intelligently decide between which services to select. If interaction between service providers/users is automated, it is necessary for these service clients to be able to automatically chose between a set of equivalent (or similar) services. In such a scenario trust serves as a benchmark to differentiate between service providers. One might therefore prioritize potential cooperative partners based on the established trust. Although many approaches exist in literature about trust between online communities, the exact nature of trust for multi-institutional service sharing remains undefined. Therefore, the concept of trust suffers from an imperfect understanding, a plethora of definitions, and informal use in the literature. We present a formalism for describing trust within multi-institutional service sharing, and provide an implementation of this; enabling the agent to make trust-based decision. We evaluate our formalism through simulation.
Method for distributed agent-based non-expert simulation of manufacturing process behavior
Ivezic, Nenad; Potok, Thomas E.
2004-11-30
A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.
Teamwork Reasoning and Multi-Satellite Missions
NASA Technical Reports Server (NTRS)
Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)
2002-01-01
NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.
Evolutionary Games in Multi-Agent Systems of Weighted Social Networks
NASA Astrophysics Data System (ADS)
Du, Wen-Bo; Cao, Xian-Bin; Zheng, Hao-Ran; Zhou, Hong; Hu, Mao-Bin
Much empirical evidence has shown realistic networks are weighted. Compared with those on unweighted networks, the dynamics on weighted network often exhibit distinctly different phenomena. In this paper, we investigate the evolutionary game dynamics (prisoner's dilemma game and snowdrift game) on a weighted social network consisted of rational agents and focus on the evolution of cooperation in the system. Simulation results show that the cooperation level is strongly affected by the weighted nature of the network. Moreover, the variation of time series has also been investigated. Our work may be helpful in understanding the cooperative behavior in the social systems.
Evolution of cooperation in Axelrod tournament using cellular automata
NASA Astrophysics Data System (ADS)
Schimit, P. H. T.; Santos, B. O.; Soares, C. A.
2015-11-01
Results of the Axelrod Tournament were published in 1981, and since then, evolutionary game theory emerged as an idea for understanding relations, like conflict and cooperation, between rational decision-makers. Robert Axelrod organized it as a round-robin tournament where strategies for iterated Prisoner's Dilemma were faced in a sequence of two players game. Here, we attempt to simulate the strategies submitted to the tournament in a multi-agent context, where individuals play a two-player game with their neighbors. Each individual has one of the strategies, and it plays the Prisoner's Dilemma with its neighbors. According to actions chosen (cooperate or defect), points of life are subtracted from their profiles. When an individual dies, some fitness functions are defined to choose the most successful strategy which the new individual will copy. Although tit-for-tat was the best strategy, on average, in the tournament, in our evolutionary multi-agent context, it has not been successful.
NASA Astrophysics Data System (ADS)
Lu, Yanrong; Liao, Fucheng; Deng, Jiamei; Liu, Huiyang
2017-09-01
This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation.
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.
NASA Astrophysics Data System (ADS)
Chen, Jiaxi; Li, Junmin
2018-02-01
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T-S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.
Multi-hierarchical movements in self-avoiding walks
NASA Astrophysics Data System (ADS)
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2017-07-01
A self-avoiding walk (SAW) is a series of moves on a lattice that visit the same place only once. Several studies reported that repellent reactions of foragers to previously visited sites induced power-law tailed SAWs in animals. In this paper, we show that modelling the agent's multi-avoidance reactions to its trails enables it to show ballistic movements which result in heavy-tailed movements. There is no literature showing emergent ballistic movements in SAWs. While following SAWs, the agent in my model changed its reactions to marked patches (visited sites) by considering global trail patterns based on local trail patterns when the agent was surrounded by previously visited sites. As a result, we succeeded in producing ballistic walks by the agents which exhibited emergent power-law tailed movements.
The Science of Transportation Analysis and Simulation
NASA Astrophysics Data System (ADS)
Gleibe, John
2010-03-01
Transportation Science focuses on methods developed to model and analyze the interaction between human behavior and transportation systems. From the human behavioral, or demand, perspective, we are interested in how person and households organize their activities across space and time, with travel viewed as an enabling activity. We have a particular interest in how to model the range of responses to public policy and transportation system changes, which leads to the consideration of both short- and long-term decision-making, interpersonal dependencies, and non-transportation-related opportunities and constraints, including household budgets, land use systems and economic systems. This has led to the development of complex structural econometric modeling systems as well as agent-based simulations. From the transportation systems, or supply, perspective we are interested in the level of service provide by transportation facilities, be it auto, transit or multi-modal systems. This has led to the development of network models and equilibrium concepts as well as hybrid simulation systems based on concepts borrowed from physics, such as fluid flow models, and cellular automata-type models. In this presentation, we review a representative sample of these methods and their use in transportation planning and public policy analysis.
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
Lee, Wonki; Kim, DaeEun
2017-11-25
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots' position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.
Autonomous Shepherding Behaviors of Multiple Target Steering Robots
Lee, Wonki; Kim, DaeEun
2017-01-01
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots’ position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach. PMID:29186836
ERIC Educational Resources Information Center
Romero-Hall, E.; Watson, G. S.; Adcock, A.; Bliss, J.; Adams Tufts, K.
2016-01-01
This research assessed how emotive animated agents in a simulation-based training affect the performance outcomes and perceptions of the individuals interacting in real time with the training application. A total of 56 participants consented to complete the study. The material for this investigation included a nursing simulation in which…
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-Agent Task Negotiation Among UAVs to Defend Against Swarm Attacks
2012-03-01
are based on economic models [39]. Auction methods of task coordination also attempt to deal with agents dealing with noisy, dynamic environments...August 2006. [34] M. Alighanbari, “ Robust and decentralized task assignment algorithms for uavs,” Ph.D. dissertation, Massachusetts Institute of Technology...Implicit Coordination . . . . . . . . . . . . . 12 2.4 Decentralized Algorithm B - Market- Based . . . . . . . . . . . . . . . . 12 2.5 Decentralized
The distributed agent-based approach in the e-manufacturing environment
NASA Astrophysics Data System (ADS)
Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.
2015-11-01
The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K
2016-10-10
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modelling Tradeoffs Evolution in Multipurpose Water Systems Operation in Response to Extreme Events
NASA Astrophysics Data System (ADS)
Mason, E.; Gazzotti, P.; Amigoni, F.; Giuliani, M.; Castelletti, A.
2015-12-01
Multipurpose water resource systems are usually operated on a tradeoff of the operating objectives, which - under steady state climatic and socio-economic boundary conditions - is supposed to ensure a fair and/or efficient balance among the conflicting interests. Extreme variability in the system's drivers might affect operators' risk aversion and force a change in the tradeoff. Properly accounting for these shifts is key to any rigorous retrospective assessment of operators' behavior and the associated system's performance. In this study, we explore how the selection of different optimal tradeoffs among the operating objectives is linked to the variations of the boundary conditions, such as, for example, drifting rainfall season or remarkable changes in crop and energy prices. We argue that tradeoff selection is driven by recent, extreme variations in system performance: underperforming on one of the operating objective target value should push the tradeoff toward the disadvantaged objective. To test this assumption, we developed a rational procedure to simulate the operators' tradeoff selection process. We map the selection onto a multi lateral negotiation process, where different multiple, virtual agents optimize different operating objectives. The agents periodically negotiate a compromise on the operating policy. The agent's rigidity in each negotiation round is determined by the recent system performances according to the specific objective it represents. The negotiation follows a set-based egocentric monotonic concession protocol: at each negotiation step an agent incrementally adds some options to the set of its acceptable compromises and (possibly) accepts lower and lower satisfying policies until an agreement is achieved. We apply this reiterated negotiation framework on the regulated Lake Como, Italy, simulating the lake dam operation and its recurrent updates over the last 50 years. The operation aims to balance shoreline flood prevention and irrigation deficit control in the downstream irrigated areas. The results of our simulated negotiations are able to accurately capture the operator's risk aversion changes as driven by extreme wet and dry situations, and to well reproduce the observational release data.
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
Walsh, Stephen J; Malanson, George P; Entwisle, Barbara; Rindfuss, Ronald R; Mucha, Peter J; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Verdery, Ashton M; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng
2013-05-01
The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics.
Walsh, Stephen J.; Malanson, George P.; Entwisle, Barbara; Rindfuss, Ronald R.; Mucha, Peter J.; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Verdery, Ashton M.; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng
2013-01-01
The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT – Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT – Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules – the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics. PMID:24277975
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
Bravo, Rafael; Axelrod, David E
2013-11-18
Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.
Powerful Voter Selection for Making Multistep Delegate Ballot Fair
NASA Astrophysics Data System (ADS)
Yamakawa, Hiroshi
For decision by majority, each voter often exercises his right by delegating to trustable other voters. Multi-step delegates rule allows indirect delegating through more than one voter, and this helps each voter finding his delegate voters. In this paper, we propose powerful voter selection method depending on the multi-step delegate rule. This method sequentially selects voters who is most delegated indirectly. Multi-agent simulation demonstrate that we can achieve highly fair poll results from small number of vote by using proposed method. Here, fairness is prediction accuracy to sum of all voters preferences for choices. In simulation, each voter selects choices arranged on one dimensional preference axis for voting. Acquaintance relationships among voters were generated as a random network, and each voter delegates some of his acquaintances who has similar preferences. We obtained simulation results from various acquaintance networks, and then averaged these results. Firstly, if each voter has enough acquaintances in average, proposed method can help predicting sum of all voters' preferences of choices from small number of vote. Secondly, if the number of each voter's acquaintances increases corresponding to an increase in the number of voters, prediction accuracy (fairness) from small number of vote can be kept in appropriate level.
NASA Astrophysics Data System (ADS)
Zhang, Zhong
In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.
Riaz, Faisal; Niazi, Muaz A
2017-01-01
This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.
Niazi, Muaz A.
2017-01-01
This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294
Devolatilization Analysis in a Twin Screw Extruder by using the Flow Analysis Network (FAN) Method
NASA Astrophysics Data System (ADS)
Tomiyama, Hideki; Takamoto, Seiji; Shintani, Hiroaki; Inoue, Shigeki
We derived the theoretical formulas for three mechanisms of devolatilization in a twin screw extruder. These are flash, surface refreshment and forced expansion. The method for flash devolatilization is based on the equation of equilibrium concentration which shows that volatiles break off from polymer when they are relieved from high pressure condition. For surface refreshment devolatilization, we applied Latinen's model to allow estimation of polymer behavior in the unfilled screw conveying condition. Forced expansion devolatilization is based on the expansion theory in which foams are generated under reduced pressure and volatiles are diffused on the exposed surface layer after mixing with the injected devolatilization agent. Based on these models, we developed the simulation software of twin-screw extrusion by the FAN method and it allows us to quantitatively estimate volatile concentration and polymer temperature with a high accuracy in the actual multi-vent extrusion process for LDPE + n-hexane.
Multi-Agent Patrolling under Uncertainty and Threats.
Chen, Shaofei; Wu, Feng; Shen, Lincheng; Chen, Jing; Ramchurn, Sarvapali D
2015-01-01
We investigate a multi-agent patrolling problem where information is distributed alongside threats in environments with uncertainties. Specifically, the information and threat at each location are independently modelled as multi-state Markov chains, whose states are not observed until the location is visited by an agent. While agents will obtain information at a location, they may also suffer damage from the threat at that location. Therefore, the goal of the agents is to gather as much information as possible while mitigating the damage incurred. To address this challenge, we formulate the single-agent patrolling problem as a Partially Observable Markov Decision Process (POMDP) and propose a computationally efficient algorithm to solve this model. Building upon this, to compute patrols for multiple agents, the single-agent algorithm is extended for each agent with the aim of maximising its marginal contribution to the team. We empirically evaluate our algorithm on problems of multi-agent patrolling and show that it outperforms a baseline algorithm up to 44% for 10 agents and by 21% for 15 agents in large domains.
Simulating Cancer Growth with Multiscale Agent-Based Modeling
Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.
2014-01-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698
Multi-Agent Information Classification Using Dynamic Acquaintance Lists.
ERIC Educational Resources Information Center
Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed
2003-01-01
Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…
Scalco, Andrea; Ceschi, Andrea; Sartori, Riccardo
2018-01-01
It is likely that computer simulations will assume a greater role in the next future to investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based models (ABMs) represent a method of investigation of social phenomena that blend the knowledge of social sciences with the advantages of virtual simulations. Within this context, the development of algorithms able to recreate the reasoning engine of autonomous virtual agents represents one of the most fragile aspects and it is indeed crucial to establish such models on well-supported psychological theoretical frameworks. For this reason, the present work discusses the application case of the theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based modeling: It is argued that this framework might be helpful more than others to develop a valid representation of human behavior in computer simulations. Accordingly, the current contribution considers issues related with the application of the model proposed by the TPB inside computer simulations and suggests potential solutions with the hope to contribute to shorten the distance between the fields of psychology and computer science.
The self-aware diabetic patient software agent model.
Wang, Zhanle; Paranjape, Raman
2013-11-01
This work presents a self-aware diabetic patient software agent for representing a human diabetic patient. To develop a 24h, stochastic and self-aware patient agent, we extend the original seminal work of Ackerman et al. [1] in creating a mathematical model of human blood glucose levels in three aspects. (1) We incorporate the stochastic and unpredictable effects of daily living. (2) The Ackerman model is extended into the period of night-time. (3) Patients' awareness of their own conditions is incorporated. Simulation results are quantitatively assessed to demonstrate the effectiveness of lifestyle management, such as adjusting the amount of food consumed, meal schedule, intensity of exercise and level of medication. In this work we show through the simulation that the average blood glucose can be reduced by as much as 51% due to careful lifestyle management. Self monitoring blood glucose is also quantitatively evaluated. The simulation results show that the average blood glucose is further dropped by 25% with the assistance of blood glucose samples. In addition, the blood glucose is perfectly controlled in the target range during the simulation period as a result of joint efforts of lifestyle management and self monitoring blood glucose. This study focuses on demonstrating how human patients' behavior, specifically lifestyle and self monitoring of blood glucose, affects blood glucose controls on a daily basis. This work does not focus on the insulin-glucose interaction of an individual human patient. Our conclusion is that this self-aware patient agent model is capable of adequately representing diabetic patients and of evaluating their dynamic behaviors. It can also be incorporated into a multi-agent system by introducing other healthcare components so that more interesting insights such as the healthcare quality, cost and performance can be observed. © 2013 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2009-04-01
The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1995-01-01
This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
Creating Digital Environments for Multi-Agent Simulation
2003-12-01
foliage on a polygon to represent a tree). Tile A spatial partition of a coverage that shares the same set of feature classes with the same... orthophoto datasets can be made from rectified grayscale aerial images. These datasets can support various weapon systems, Command, Control...Raster Product Format (RPF) Standard. This data consists of unclassified seamless orthophotos , made from rectified grayscale aerial images. DOI 10